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We investigate the ability of humans to perceive changes in the appearance of images of surface texture caused
by the variation of their higher order statistics. We incrementally randomize their phase spectra while holding
their first and second order statistics constant in order to ensure that the change in the appearance is due
solely to changes in third and other higher order statistics. Stimuli comprise both natural and synthetically
generated naturalistic images, with the latter being used to prevent observers from making pixel-wise com-
parisons. A difference scaling method is used to derive the perceptual scales for each observer, which show a
sigmoidal relationship with the degree of randomization. Observers were maximally sensitive to changes
within the 20%—-60% randomization range. In order to account for this behavior we propose a biologically plau-
sible model that computes the variance of local measurements of phase congruency. © 2010 Optical Society of

America
OCIS codes: 330.5000, 330.5020, 330.5510.

1. INTRODUCTION

The frequency channel model has provided many valuable
insights into human spatial vision [1,2], and it has also
provided a wealth of features for computer classification
of the image texture [3,4]. Much of this research has been
carried out on the first and second order statistics of im-
ages and it is now well understood as to how these statis-
tics influence perception, and how models—typified by the
filter-rectify-filter (FRF) structure—can be used to ac-
count for these effects [5—8]. Many studies have also ex-
ploited the frequency channel model to investigate “nth
order statistics” particularly with respect to the preatten-
tive segregation of patterned image regions or abutted
images [9-19]. Although these studies provided strong
psychophysical evidence of the ability of humans to per-
form discrimination and segregation tasks, they were,
however, based on highly stylized binary textures con-
structed using geometric elements for which the control
and computation of third and higher order statistics are
reasonably straightforward.

Unfortunately standard methods for modeling higher
order statistics per se in natural (gray-level) images are
often extremely complex [20-22] and it is difficult to ob-
tain an intuitive understanding of what the many param-
eters represent. However, many researchers have pointed
out that most of the visually pertinent information in an
image is encoded in its phase spectrum and there are nu-
merous examples that show that phase randomizing an
image (also referred to as “scrambling”) leaves it largely
unrecognizable [23-28]. Furthermore, it is well known
that there is an intimate relationship between the higher
order statistics and the phase spectra, and studies have
demonstrated that visually salient features in images
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(such as edges and bars) correspond to the points where
the various harmonics representing the image (as a two-
dimensional signal) have the same phase alignment
(known as phase congruency) [29,30].

While phase randomization almost certainly changes
the higher order statistics of images, it is also likely to af-
fect the first order statistics since phase randomizing a
wide bandwidth image will (due to the central limit theo-
rem) result in a normal distribution. Some studies have
investigated the first order natural image statistics that
could potentially account for the visual effects of phase
perturbing natural images [8,31,32]. Additionally, it has
also been reported that, while the first and second order
statistics are independent in natural images, a correla-
tion between them appears when the images are phase
scrambled [8,33,34].

Researchers have recently exploited techniques for
gradual phase randomization of natural images in order
to investigate the amount that is required before recogni-
tion or segregation becomes impossible [32,35-40]. Of
these studies only two [32,38] have related the observer’s
performance to metrics directly derived from the image
data. Thomson et al. [32] measured higher order moments
(skewness and kurtosis) derived from first order statistics
of the image histogram rather than higher order statis-
tics. Hansen and Hess [38] used phase scrambling over
different frequency bands to investigate the degree of
cross-scale phase alignment required for the identifica-
tion of natural or naturalistic scenes. They proposed a
“structural sparseness metric” (SSM) in order to aid the
interpretation of their results and concluded that observ-
ers are less tolerant to phase scrambling when identifying
more structured scenes (for example, a scene representing
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a dense forest will contain significantly more structural
information than one depicting the sea or a blue sky).

To our knowledge, all of the above mentioned papers
employed phase spectra scrambling while seeking to
maintain constant power spectra. However, while several
studies do normalize the mean and variance of the image
luminance they do not explicitly control other higher or-
der moments (skewness and kurtosis) derived from the
image histogram. Thus it is unclear as to whether the per-
ceived image variations are due to changes in the higher
order moments of first order statistics or due to higher or-
der statistics. Furthermore, none of these studies directly
investigate the correlation of an image metric with the
perceived changes caused by the gradual perturbation of
the phase spectrum.

A. Current Study

Given that the contribution of first and second order sta-
tistics for segregation or discrimination tasks is well re-
searched, it is intriguing to investigate how well we can
detect changes in natural images that are due solely to
changes in higher order statistics (that is statistics higher
than second order). The goals of this paper therefore are
(1) to investigate the ability of observers to perceive dif-
ferences in images caused solely by changes in higher or-
der statistics and (2) to propose a biologically plausible
image processing model that accounts for these percep-
tions.

We present two experiments in which we use natural
images and synthesized naturalistic images to investigate
the ability of humans to detect small changes in higher
order statistics. We do this by keeping the image histo-
gram and the power spectrum constant while gradually
phase randomizing the image. In the first experiment we
use a large number of phase randomization levels to de-
rive perceptual scales for each observer, whereas in the
second experiment we use a smaller number of random-
ization levels with, however, a more extensive set of im-
ages.

2. METHODS

A 2-alternative forced choice (2AFC) procedure was used
to capture human judgments. This method was preferred
over some other popular methods such as the method of
adjustment [41] or ratio scaling since it reduces the bur-
den of having to arbitrarily assign values to randomized
textures being discriminated, is easy to implement, and
also requires a few trials to fit the observers’ judgments to
a perceptual scale. The estimation of a perceptual scale
that corresponds to the amount of phase randomization
was performed using the technique of maximum likeli-
hood difference scaling (MLDS) [42]. The MLDS is a
method that has been used for estimating supra-
threshold differences across a range of images that have
undergone some physical changes, for example, in the
quantification of color differences [42], the direct mea-
surement of human perception of image compression [43],
or the estimation of gloss scales [44]. The MLDS works by
using a set of four stimuli (a quadruple) chosen randomly
from a full set of textures with different degrees of
randomization. The MLDS requires the use of non-
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overlapping quadruples for each reference texture. A set
of N randomized images (for each reference texture) al-
lows the generation of N!/(4!(IN-4)!) non-overlapping
quadruples. For 11 degrees of randomization we obtain
330 non-overlapping quadruples [e.g., (2,3) and (2,8) is an
overlapping quadruple and is not counted in the 330 qua-
druples]. A more detailed explanation of the MLDS is pro-
vided in Appendix A.

A. Observers

The observers asked to perform the experiments pre-
sented in this study had normal or corrected-to-normal vi-
sion. All of the observers were naive to (1) perceptual tex-
ture characteristics and the nature of the stimuli, and (2)
the purpose of the experiments.

B. Stimuli

A set of 12 stimuli comprising six natural textures and six
computer synthesized naturalistic textures were used in
the psychophysical experiment. The natural textures
were captured under unknown illumination conditions,
whereas the naturalistic textures were synthesized under
controlled conditions. In the second case, a Lambertian
model of reflectance was used to render surface height
maps that were generated using a random or semi-
random placement of texture elements. Where primitives
overlapped we took the maximum of the height of any
primitive at that position. Unlike the natural textures,
each synthetic naturalistic one could be generated repeat-
edly using different seeds controlling the placement of the
texture elements. A total of ten seeds was used for each
synthetic texture. This procedure ensured that the pairs
of synthetic textures could not be compared pixel-wise,
and so the synthetic textures provide a control for the pos-
sibility that observers compared the natural texture pairs
in this way. Figure 1 shows all the reference textures used
in the experiment. The first two rows in Fig. 1 show the
natural textures, and rows 3 and 4 show the naturalistic
ones.

All the reference textures were forced to follow normal
intensity distributions before being phase randomized.
While the naturalistic textures were generated with nor-
mal intensity distributions, the natural textures were
mapped to normal distributions using the mean and stan-
dard deviation of their original distributions. Figure 2
shows the pea images before (left column) and after (right
column) the mapping process. To obtain test stimuli with
varying amounts of higher order statistics, the reference
textures were subjected to different degrees of phase ran-
domization. To ensure that the randomized images for
each reference texture varied only in their higher order
statistics, the textures were normalized to have the same
first and second order statistics. The normalization pro-
cess was performed at each randomization stage so that
the resulting image was constructed using the partially
randomized phase spectrum of each reference texture and
its original power spectrum. This allowed the second or-
der statistics to be kept constant for all partially random-
ized images. Additionally, each randomized image was
subjected to a D’Agostino—Pearson normality test to
verify whether its intensity distribution had deviated
from the original normal distribution. If the null hypoth-
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Fig. 1. Images used in the psychophysical experiments. Top two
rows show the six natural images and the bottom two rows show
the six computer synthesized textures.

§

(a) original (b) mapped to normal

Fig. 2. Example of a natural image whose intensity distribution
is mapped to a normal one.
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esis of a non-normal distribution was not rejected at the
0.05 level of significance, the processed image was forced
to the reference texture’s normal distribution and the sec-
ond order statistics were again adjusted. This process is
repeated until both first and second order statistics were
the same as the original image.

Gradual phase randomization was performed by add-
ing a random variable to the principal phase values of the
original texture images. The random variable was drawn
from the uniform distribution [0,c]. Eleven degrees of
phase randomization were used with degree 0 being o
=0 and degree 10 being o=2 for 100% phase randomiza-
tion and with the other degrees representing linear incre-
ments in o.

Complex conjugate symmetry was maintained in the
randomized phase spectra in order to provide a zero
power imaginary spatial domain image and to ensure that
the second order statistics in the real spatial domain im-
age remained constant. Figure 3 shows one synthetic
(blood) texture and one natural (seeds) texture at four dif-
ferent levels of phase randomization (0%, 30%, 60%, and
100%). All the reference textures were non-periodic (and
also tileable in the case of synthetic textures), and fully
phase randomizing them results in visually continuous
images. On the other hand, phase randomizing highly pe-
riodic textures does not lead to visually continuous im-
ages (see Fig. 4) and therefore such textures were not
used in this study.

C. Experimental Setup

A 20 in. TFT (thin-film transistors) monitor (NEC
LCD2090UXi) with a pixel pitch of 0.255 mm (100 dpi)
was used to display a 2 X 2 array (quadruple) of images of
size 512 %512 pixels for each trial. The calibration of the
gamma responses (y=2.2) was performed using a Gareth
Macbeth Eye One Pro spectrometer. The luminance of the
monitor was fixed at 120 cd/m? with the color tempera-
ture set at 6500 K for a frame rate of 60 Hz. Observers
fixed the screen from a distance of 70 ¢m, where it sub-
tended a visual angle of 11°.

3. EXPERIMENT 1

The objective of experiment 1 was to investigate how well
observers could discriminate between pairs of texture im-
ages that differ in their higher order statistics, expressed
as the 11 degrees of randomization described in Section 2.
While a larger number of trials (with more than 11 ran-
domization levels) would provide higher confidence levels
in estimating the perceptual scales using the MLDS, 330
trials per reference image is more realistic for the percep-
tual task considered. Experiment 1, however, considered
only a subset of natural and synthetic images since it is
not practical for observers to judge trials from all 12 ref-
erence textures (i.e., 3960 trials) at one go. Two natural
(gravel and seeds) and two synthetic (blood and RanFrac)
reference textures were used in this experiment.

A. Procedure

Six observers participated in this experiment. The observ-
ers were presented with two pairs (a quadruple) of stimuli
(a,b) and (c,d) displayed one above the other and were
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0% 30%
Fig. 3. Reference textures at different levels of randomization: Blood (top) and seeds (bottom).

asked to identify the pair that had the larger perceptual
difference. The trials for each texture were presented se-
quentially with the observer having the option to take a
break in between each set of trials presented. No time
limit was imposed on observers in making their choice;
however, the interface presented to them required that
one of the two pairs was selected (forced choice mecha-
nism). Observers did not have the option to return to a
previous trial.

The MLDS technique requires that each trial is com-
posed of textures having an ordered degree of randomiza-
tion; however, there was no restriction in the way in
which the images were presented to the observers. Thus
the position (top or bottom) of each pair was randomized
at each trial and also the position (left or right) within
each pair was also randomized. Additionally, since the
stimuli belonging to each reference texture were pre-
sented sequentially, the order in which the sets were pre-
sented to each observer was alternated. This was done in
order to balance any effect of fatigue. The result R; for
each trial { was saved in a binary form (R;=0/1) with a
value of zero corresponding to the upper pair having the
larger perceptual difference or 1 for the lower pair. The
final results for each test texture were fed to the MLDS
program to estimate the perceptual scales. A MLDS pack-
age implemented using the R programming language was
used for the estimation process [45].

B. Results
Plots of the estimated perceptual scales for six observers
are displayed in Figs. 5 and 6 for the chosen naturalistic

Fig. 4. Effect of full phase randomization on the appearance of a
highly periodic texture (left, original; right, randomized).

60% 100%

(blood and RanFrac) and natural (gravel and seeds) im-
ages. Each plot shows how the difference scale values
vary for the selected textures when their phase spectra
were gradually randomized. The bootstrap procedure de-
scribed by Maloney and Yang [42] was used to estimate
the confidence intervals (=1 SD) shown in the plots. We
observe that all the plots in both Figs. 5 and 6 exhibit a
sigmoidal behavior, monotonically increasing from 0 and
saturating at 1. For both natural and synthesized tex-
tures, the plots clearly show that for an amount of phase
randomization varying from 0% to 20%, the changes in
the difference scale values are low for most of the observ-
ers. This indicates that observers encountered appre-
ciable difficulty in discriminating texture pairs within the
0%—20% range.

The plots for the synthetic textures (Fig. 5) show sharp
slopes for the range 20%—60% of phase randomization.
This shows a greater ability of observers in discriminat-
ing between the synthetic texture pairs presented, thus
indicating that observers were more sensitive to smaller
differences in randomization within this range. Beyond
the 60% mark, all observers perceived a little change in
the appearance in the partially randomized synthetic tex-
tures.

Inspection of Fig. 3 suggests the basis for the sigmoidal
relationship; at 30% randomization, the texture elements
remain as visible as in the original image, whereas from
60% onward they are not. It should be noted that the ob-
servers were not explicitly asked to judge the texture
pairs based on the visibility of texture elements.

While the plots for natural textures show similar
shapes (see Fig. 6), we observe that the steep slopes ex-
tend to 70%—80% phase randomization. The greater abil-
ity of humans to judge perceptual difference between
natural textures within a range up to 80% phase random-
ization may be due to the pixel-wise comparisons that ob-
servers were able to make for natural textures.

Additionally, the plots in Fig. 5 show very similar be-
havior for the two synthesized textures, while this is not
the case for the two natural textures. We observe that the
behavior for the seed texture is more linear within the
range 20%—60% than for the gravel texture. A possible ex-
planation may be that while the synthetic textures are
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Fig. 5. Plots showing the behavior of individual observers’ difference scales with changing amount of phase randomization for synthetic
textures blood and RanFrac.

made up of a single texture element, the texture elements thetic textures is maintained for a larger set of textures.
from the natural textures vary in size, shape, and con- In this experiment a set of eight reference textures, com-
trast. prising four synthetic and four natural textures, was

used. To allow a larger set to be tested, the number of ran-
4, EXPERIMENT 2 domization levels was decreased leading to a fewer trials

per reference image. Figures 5 and 6 from experiment 1

Experiment 2 was carried out to investigate whether the R
showed that beyond 80% randomization, observers were

behavior of the perceptual scales for the natural and syn-
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unable to perceive any changes in the appearance of the
randomized textures. Thus, only the first nine (i.e., 0%—
80%) degrees of randomization were presented in the cur-
rent experiment.

A. Procedure

The same procedure as that for experiment 1 was used. A
total of four observers participated in this experiment.
For each reference texture a set of 126 trials (quadruples)
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was presented to observers (i.e., a total of 1008 trials for
eight textures). While the trials for each reference texture
were presented in sequence, the presentation order for
the natural and synthetic textures was randomized.

B. Results

Figure 7 shows the plots (left column) for the natural and
synthesized textures tested and also the mean behavior
(right column) for four observers who participated in this
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experiment. The plots for the eight different textures con-
firm the general behavior (i.e., monotonic and sigmoidal)
of the perceptual scales derived in experiment 1, and also
provide additional evidence that observers had a greater
ability to discriminate smaller changes in the appearance
of synthetic textures within the 20%-60% range of ran-
domization while being more sensitive to a greater range
(up to 70%-80%) for natural textures. Additionally, the
perceptual scales for the natural textures also appear
more linear, with a rather constant slope, as compared to
the scales for the synthetic textures. These observations
may be due to the fact that observers may have used
strong localized information as characterized by high-
lights and shadow information to make pixel-wise com-
parison for natural textures, although most structural in-
formation was destroyed beyond the 60% randomization
level as illustrated in Fig. 3.

5. MODELING OF PERCEPTUAL
DIFFERENCES

In this section we seek a biologically plausible model that
can generate a perceptual measure with the following
characteristics: (1) it has a monotonic sigmoidal relation-
ship with increasing phase randomization and (2) it
shows a steep change in the range 20%—60% of phase ran-
domization.

It is well known that higher order statistics (i.e., higher
than second order) are affected by the phase relationship
of patterns [26]; however, a simple model to represent
phase information is difficult to achieve due to its complex
representation (mainly due to phase wrapping in the
range [—,+m]). Since it is known that natural images
contain structure that is aligned locally in phase space
[29,30], we have investigated and applied Kovesi’s phase
congruency model [30] to represent the change in the ap-
pearance of textured surfaces at different levels of phase
randomization. We observed in Fig. 3 that randomizing
the phase spectra of the texture images destroys the spa-
tial arrangements of local features and changes the ap-
pearance of the texture surfaces. In this study, therefore,
we provide what we believe to be a novel feature derived
from Kovesi’s phase congruency model [30], which charac-
terizes the change in the appearance of the surface tex-
tures, and we show that this feature meets the criteria de-
scribed above.

Kovesi’s phase congruency model [30] was inspired by
the local energy model presented by Morrone and Burr
[29], which models the way in which the human visual
system uses odd and even symmetric receptors in the vi-
sual cortex to decode local features such as edges and
lines. Morrone and Burr’s model [29] uses phase congru-
ence information to detect these local features and it has
been applied successfully both to the segmentation of vi-
sual scenes and to predict the perceptual appearance of
these scenes [30,46,47]. Their model consists of two
stages. In the first stage quadrature filter pairs (odd and
even symmetric) are applied at different spatial frequen-
cies and orientations. A function based on the sum of
squares of the responses from these filters is computed,
and peaks corresponding to salient features are identi-
fied. The second stage classifies these peaks in terms of
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different perceptual features (such as edges or bars).
Morrone and Burr’s model [29], however, does not provide
good localization of local features due to its dependence on
the local contrast. Kovesi [30] improved Morrone and
Burr’s model [29] to provide better localization of features
by computing the phase congruence information that is
invariant to changes in the image contrast and also by
identifying and compensating for noise.

The appearance of surface texture is primarily charac-
terized by the presence of local perceptual features such
as edges, lines, or corners. Thus, any change in those per-
ceptual features would contribute to changing the appear-
ance of surfaces. Kovesi’s model [30] has been successfully
utilized for the detection of edges and localized features in
images and has also been shown to perform better than
other detectors such as Canny or Prewitt [30,48]. We have
therefore employed it in order to investigate how the edge
information changes with the varying amount of phase
randomization. Figure 8 shows phase congruency maps of
the blood texture at different levels of phase randomiza-
tion. These maps were generated using a MATLAB imple-
mentation of phase congruency available at [49] and de-
scribed in [30].

A. Single Feature Representation

Rather than a phase congruency map, we require a single
measure per image as the basis of the perceptual scale. A
visual inspection of the maps shown in Fig. 8 suggests
that as the level of phase randomization is increased, the
edge information is gradually degraded, leading to a noise
image when the texture is fully randomized. This appears
as a change in the distribution of the edge intensity val-
ues as shown in the bottom row in Fig. 8, which suggests
that the histogram statistics of the phase congruency
maps may provide useful perceptual scales. Figure 9
shows how the mean, variance, skewness, and kurtosis of
the phase congruency histograms vary with increasing
levels of phase randomization for the blood, RanFrac, and
seed textures. While both skewness and variance change
considerably with the change in randomization level, the
variance is the only feature that behaves in a monotonic
way for the three textures investigated. We observe that
the behavior of skewness is not monotonic within the 0%—
20% range for two of the textures considered (it is mono-
tonic only for the RanFrac texture).

The phase congruency variance showed no significant
difference in the behavior across the randomization levels
when extracted from naturalistic textures generated us-
ing different placement seeds [see Fig. 10(a)]. This mea-
sure also converges at 100% randomization for both natu-
ral and synthetic textures as shown in Figs. 10(b) and
10(c). Additionally, changes in the variance are greatest in
the range 20%—60% of phase randomization. All these ob-
servations make the phase congruency variance a suit-
able measure to represent the psychophysical data. In
Figs. 10(b) and 10(c) we observe that although the vari-
ance converges for the selected textures, it is different at
0% randomization. This suggests that the current mea-
sure of higher order statistics may also account for the
amount of structural information across different tex-
tures in addition to existing mechanisms that employ first
and second order statistics [1,8,11,12,17,50] to do so.
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Fig. 8. Phase congruency maps (middle row) for different levels (0%, 30%, 60%, and 100%) of phase randomized blood images (top row)
obtained after applying Kovesi’s phase congruency model [30]. Bottom row shows how the edge intensity histogram of each map changes
shape when the image is randomized.
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B. Model and pooling operations are used to estimate the variance
As a model for the computation of the phase congruency of the phase congruency map for each randomized image.
variance, we propose a two stage process, with the first Figure 11 illustrates the different steps involved in this
stage corresponding to the computation of phase congru- two stage model.

ency, while in the second stage point-wise nonlinearity The first stage is specified in [30]. It uses a bank of
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Fig. 9. Behavior of the mean, variance, skewness, and kurtosis of the phase congruency distribution for textures blood, RanFrac, and
seeds across the different levels of randomization.
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Fig. 10. Variation in phase congruency variance with changing levels of phase randomization for (a) a texture image generated using
random placement of textons at different seeds, (b) six different synthetic textures generated using the same seed, and (c) six different

natural textures.

logarithmic-Gabor quadrature filters tuned to different
frequencies and orientations so as to capture localized
feature information in the texture images. The filters are
applied in the Fourier domain and the resulting spatial
domain outputs are used to generate the phase congru-
ency maps. The channels for encoding the edges corre-
spond to a sequence of FRF's in the form of filter-rectify-
filter-rectify-filter. With FRF layers able to detect only
changes in second order statistics, at least one additional
nonlinear layer is needed to capture changes in higher or-
der statistics. The first FRF layer allows the generation of
the phase congruency map PC, where the phase congru-
ency at each orientation, PC,, is computed as follows:

Wo(x)lEo(x}y) - TJ
PCo(x’y) = = _
D An(xy) + e

n

(1)

where W,(x) is a weighting function for the frequency
spread at a given orientation o and A,,,(x,y) is the ampli-
tude information derived using the response of the
quadrature filter at each scale n and orientation o.

measure 4mm @
(e) 2™ stage
pooing

E,(x,y) is the energy accumulated by the quadrature fil-
ters at N scales for a given orientation o and is given by
E, (x,y)=3,A,,AP, (x,y), where ®,,(x,y) is the weighted
mean phase angle computed at each scale and orienta-
tion. 7' is used for noise compensation and € is a small
positive constant that is used when the sum of response
vectors is very small leading to an ill-conditioned compu-
tation of phase congruency. The phase congruency map
PC is obtained by summing the noise compensated ener-
gies at all orientations and then normalizing by the sum
of amplitudes of the individual quadrature pairs applied
at all the scales and orientations.

In the second stage, the phase congruency variance 7 is
computed as follows: nzl%E(PC— w)?2. It represents the
second nonlinearity (rectify-filter) layer that the visual
system uses to perceive differences in the appearance. u
is the mean phase congruency and D represents the num-
ber of pixels in the image. Note that although the vari-
ance is computed over the whole phase congruency map,
it could also be computed over a local window. However,
for the purpose of this paper we only require a single mea-
sure per image. Fitting the psychophysical data with the
computed measure leads to a linear relationship in the

Stage 2: computation of local measure based on phase congruence information

Fig. 11.

Model: A two stage process for computing the higher order statistics measure to account for change in appearance.
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log-log space. Figure 12 illustrates this relationship. The
high correlation (R?) values indicate excellent fits for both
natural [Fig. 12(a)] and synthetic [Fig. 12(b)] textures.

6. DISCUSSION AND CONCLUSION

While it is well documented in the literature that most of
the structural information within an image is character-
ized by its higher order statistics, no studies have so far
investigated how well humans perceive small changes in
the appearance as a result of changing such statistics.
The current paper has addressed this issue by using both
naturalistic and natural textures. We randomly per-
turbed their phase spectra by differing degrees while forc-
ing all randomized images to have identical first and sec-
ond order statistics as the originals.

Although several studies have investigated the effect of
partially randomizing phase spectra on perception, the fo-
cus of those studies was on the ability of observers to per-
form recognition tasks. No quantitative measurements
were made of the perceptual differences in the images
that resulted. Thomson et al. [32] and Hansen and Hess
[38] are the only authors to have proposed image metrics
that change with the varying amount of phase random-
ization in their respective studies. However, neither of
these studies controlled the first order statistics of their
stimuli during the partial phase randomization process.

The experiment presented in this study captured ob-
servers’ perceptions of changes in the appearance using a
set of natural textures and synthetic textures (with natu-
ralistic appearance). A perceptual scale, derived from the
resulting psychophysical data, was shown to have sigmoi-
dal monotonically increasing behavior for all images
tested. We observed, from the perceptual scales for both
natural and synthetic textures, that observers had consid-
erable difficulty in perceiving differences in texture pairs
which were phase randomized by less than 20%. For syn-
thetic images, observers had a greater ability to discrimi-
nate small changes in the appearance within the 20%—

# Blood © RanFrac

0.7 1
0.6
0.5
0.4
0.3

0.2 4

log(perceptualscale)

R?=0.9775

T T T T T T T T T A4

44 43 42 41 -4 -39 38 -37 36 -35 -34
log(feature)

(a)
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60% range and encountered appreciable difficulty beyond
the 60% mark. However, while the perceptual scales for
natural images had the same shape, they indicated that
observers had the ability to perceive changes in the ap-
pearance over a wider range of phase randomization
(20%—70%). This may be due to the fact that observers
could directly compare the gray levels in one region of a
natural image with the same region in its paired image.
The use of a randomized placement of texture elements
prevented the observers from using the same strategy for
the synthetic images.

Although the conditions in which the images were ran-
domized suggest that a change in the appearance of the
images may correspond to a change in the visibility of the
texture elements, we cannot assume that the observers
based their judgments on the perception of the structure.
However, we showed (see Fig. 3) that the behavior in the
range 20%—60% of randomization corresponds to consid-
erable change in the visibility of the image structure.

We have also proposed an image-based metric that cor-
relates well with the perceived changes. Kovesi’s algo-
rithm [30] was used to generate phase congruency maps
that reflect the degree of phase congruence in local re-
gions of the image. The algorithm is based on Morrone
and Burr’s model [29] for the detection of visually salient
features in images, which is motivated both by the psy-
chophysical data and by the properties of single cells in
the visual cortex. In addition to being biologically moti-
vated, the proposed metric satisfies two additional condi-
tions necessary to account for the perceptual scale de-
rived: (1) it has monotonic sigmoidal behavior and (2) it
has the greatest change in gradient when extracted from
images that are randomized in the range 20%-60%. It
was also shown to correlate linearly with the perceptual
difference measurement.

The measure proposed shares a common concept, the
frequency channel model, with the SSM proposed by
Hansen and Hess [38]. While the SSM exploits the distri-
bution of a set of bandpass filter outputs, the measure we

# Grave| O Seeds

0.7

log(perceptualscale)

T T T T T T T T 6

44 43 42 41 4 -39 -38 3.7 36 -35 -3.4
log(feature)

(b)

Fig. 12. Linear relationship between perceptual difference and phase congruency variance in a log-log space for (a) synthesized textures

blood and RanFrac, and (b) gravel and seeds.
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use employs a set of quadrature bandpass filters to com-
pute the phase congruency in the image. We have chosen
the latter because spatial phase congruence information
has been widely used in the extraction of visually salient
features (e.g., edges, bars, and lines) in images
[29,30,48,51,52]. The SSM measure, in contrast, has only
been applied in the study performed by Hansen and Hess
[38].

While previous studies in texture discrimination have
focused on the ability of humans to discriminate different
categories of textures, the current study has investigated
the ability of humans to perceive small changes in the ap-
pearance of the same texture. By using textures that dif-
fer solely in higher order statistics we have demonstrated
that humans are very sensitive to the third and higher or-
der statistics that contribute to the change in the appear-
ance. Additionally, we provide a measure to characterize
the change in the appearance and show that this measure
correlates well with the perceived perceptual difference in
textures.

APPENDIX A: MAXIMUM LIKELIHOOD
DIFFERENCE SCALING

The MLDS is based on a model of the observer’s percep-
tion of differences in psychophysical stimuli ordered on a
physical scale. Initially, the experimenter selects a set of p
stimuli, {I;,I5,...,I,}, with corresponding values {¢;
<¢g<-+-<¢,} on the physical scale. On each trial the ex-
perimenter presents an observer with quadruples
(I,,Iy;1,,1;) and asks him to judge which pair, 1,,I, or
1.,1,;, exhibits the larger perceptual difference. We replace
the notation (I,,I,;I.,I;) with the simpler notation
(a,b;c,d) for convenience. Over the course of the experi-
ment, the observer sees many different quadruples. In
past work, experiments have used the set of all possible
non-overlapping quadruples a <b<c<d for p stimuli and
the resulting scales have proven to be readily interpret-
able. Moreover, Maloney and Yang [42] reported extensive
evaluations of this subset of all possible quadruples.

The data consist of a list of all quadruples presented
and the observer’s judgments. The goal of the MLDS is to
assign values to {yy=yp="---=4,} that best account for
the observer’s judgments. Maloney and Yang [42] pro-
posed a stochastic model of difference judgment that al-
lows the observer to exhibit some variation in judgment.
Let Ly =], — | denote the unsigned perceived length of
the interval I,,I,. The proposed decision model is an
equal-variance Gaussian signal detection model [53]
where the signal is the difference in the lengths of the in-
tervals,

5(a,b;c,d) = |¢d - ¢c| - |¢b - ‘pal' (A]‘)

If § is positive, the observer should judge the second in-
terval larger; when negative, the first. We assume that
the decision variable employed by the observer is

Emrith et al.
A(a,b;c,d) = 8la,b;c,d) + €e=L.g— Ly, + €, (A2)

where e~ MN(0,0?): given the quadruple, (a,b;c,d), the ob-
server selects the pair I, if and only if

A(a,b;c,d) > 0. (A3)

In each experimental condition the observer completes n
trials, each based on a quadruple q*=(a*,b%;c*,d¥), with
k=1,n. The observer’s response is coded as R¥=0 (the dif-
ference of the first pair is judged larger) or R¥=1 (the sec-
ond pair is judged larger). We fit the parameters W
=(yn, 0, ...,,) and o by maximizing the likelihood of the
observer’s responses,

n S(a) \ 1-Be B\ \ Ry,
L(‘I’,a):H(I)( (q)> (1-@(5((1))) , (A4)
k=1 o g

where ®(x) denotes the cumulative standard normal dis-
tribution and 8(qf) = 8a*,b%;c*,d*) as defined in Eq. (A2).

At first glance, it would appear that the stochastic dif-
ference scaling model just presented has p+1 free param-
eters, i, ...,4,, together with the standard deviation of
the error term, o. However, any linear transformation of
#1, ..., ¥, together with a corresponding scaling by o1 re-
sults in a set of parameters that predict exactly the same
performance as the original parameters. Without any loss
of generality, we can set ;=0 and ¢,=1, leaving us with
the p—1 free parameters, i, ..., #,_1, and o.

Equation (A4) is the likelihood for a Bernoulli random
variable. Taking the negative logarithm allows the pa-
rameters to be estimated simply with a minimization pro-
cedure. We used the package MLDS described in [45] to
estimate difference scales.

The fitted values 1, ..., 4, form the difference scale in-
tended to capture human performance. These values can
be plotted against the physical values {¢;<¢o<:--<¢,}
as a convenient summary of performance. We note that
the choice of physical scale is arbitrary and any increas-
ing transformation of the physical scale is a valid physical
scale. The difference scale, however, is not arbitrary once
its limits are fixed to be 0 and 1. This opens up the possi-
bility of redefining physical scales of roughness or other
attributes so that physical spacing better approximates
the perceived difference as has been done for loudness by
coding physical scale units in decibels.

Maloney and Yang [42] evaluated the distributional ro-
bustness of the MLDS. They varied the distributions of
the error term e while continuing to fit the data with the
constant variance Gaussian error assumption. They
found that the MLDS was remarkably resistant to fail-
ures of the distributional assumptions. Knoblauch and
Maloney [45] also considered the possibility that the ob-
server cannot judge differences in any consistent manner.
Such a failure would likely result in a large value of o
relative to the scale limits of 0,1. They also proposed sev-
eral diagnostic procedures intended to detect failures of
the judgment model underlying the MLDS. Such proce-
dures are analogous to testing for the pattern of residual
values in the linear regression.
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