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Abstract

The appearance of a rough surface is affected by the direction from which it
is lit and texture classifiers should account for this. We propose a classifier
that is robust to lighting direction—even when the direction is unknown. An
existing model of the dependency of texture features on lighting direction
is used to develop a probabilistic model. Given a feature set, the algorithm
estimates the most likely illumination direction for each texture class. The
likelihoods of each candidate (with their estimated lighting) are compared to
classify the sample. The ability of the classifier to identify illuminant direc-
tion, and to assign the correct class, was tested on 25 real texture samples.
The classifier was able to accurately estimate both the azimuth and the zenith
of the light source for most textures and gave a 98% classification rate.

1 Introduction

This paper deals with the classification of rough surface textures on the basis of their
image texture. Although many texture techniques have been applied implicitly to this
type of texture—the majority of Brodatz textures [1] contain at least a component due
to surface topography—little work has been carried out on the phenomena associated
with this group. One characteristic of rough surface textures is that the appearance of
the surface is a function of the illuminant direction as well as of the surface topography,
Figure 1, [2] [3]. If the image is affected by the direction of lighting, then features drawn
from the image will also be affected. The same surface may be classified as belonging
to different classes depending on the direction from which it was lit. The effect can
be modelled and either accounted for [4], or counteracted [5], if the direction of the
illumination is known. However, in many cases this information is not available and
the aim of this paper is to develop a classifier that can classify rough surface textures
consistently, without needing to know from where they are lit.

Little work has been published on this subject. Dana, Nayer, van Ginneken and Koen-
derink established the Columbia-Utrecht database of real world surface textures which
they used to investigate bidirectional texture functions [6]. Later they developed his-
togram [7, 8] and correlation models [3] of these textures. Leung and Malik developed a



Figure 1: Images of a sample lit from different azimuths (or tilt angles).

texture classification scheme that identifies 3D ’textons’ in the Columbia-Utrecht database
for the purposes of illumination and viewpoint invariant classification [9, 10]. Chantler
et al. modelled the effect of azimuth on features [11]. Penirschke et al. used this model
to develop a classifier that is able to classify surfaces that are lit by light sources whose
azimuth is unknown, [12].

This paper proposes a technique that is robust to the lighting direction—even when
the direction is not known. An existing, deterministic, model of the effect of the light
source direction on texture features is expressed in probabilistic terms. That is, for a given
texture, under known lighting conditions, we can state the probability of a feature value,
and by extension, the probability of a particular feature vector. Using Bayes’ theorem,
given a feature vector, we can therefore find the most likely lighting direction for each
class of texture. To classify, we assume that the test sample belongs to each texture
class in turn and estimate the most likely lighting direction given that assumption. By
comparing the relative likelihoods of each candidate (and their associated optimal lighting
direction) we can estimate to which class the test sample belongs, and implicitly from
which direction it was lit.

We use 25 real textures to assess how well the classifier can identify the source di-
rection and classify the sample. The algorithm was found to be effective for azimuth
estimation, zenith estimation was poorer; though the data set was limited. The classifier
was applied to the samples under 24 different lighting directions and achieved a classifi-
cation rate of 98%.

This paper presents and evaluates a technique for classifying rough surface textures
regardless of the direction from which they are lit. The classification was found to be
robust to illuminant azimuth and, within the experimental range, robust to the zenith of the
light source. The technique does not require the lighting direction to be known a priori,
however, it does require more training and computation than a conventional classifier.

2 Modelling the Feature Vector

Consider a classification task where a sample is imaged from directly overhead and lit by
a source with azimuth (or tilt) � and zenith (or slant) �, Figure 2. The classifier uses a
feature vector composed of i features. Each feature is the estimated variance of an image
produced by convolving the input image with one of a set of linear filters � �.
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Figure 2: Image capture setup.

It has been shown that this type of feature is a function of the tilt and slant of the light
source [13]. The dependency on tilt was modelled in [11], the dependency on slant and
tilt is approximated by Equation 1, [14].

���� �� � � ���� � � � �	� 
� ���� � � � ��� 
� ���� � (1)

where the parameters �, � and � are functions of the surface height function and the
linear filter of the texture feature.

If the tilt of the light source is varied, the feature vector will trace out a hyperellipse
in i-dimensional feature space [11]. Figure 3 shows the behaviour of two Gabor filters
(with the same centre frequency, but oriented at 0Æand 45Æ) as a function of illuminant tilt
for six real textures. It shows the elliptical behaviour of the cluster means. Clearly, this
variation will cause a linear classifier to fail.

In practice the feature will differ from the model’s prediction. We model the difference
as a zero mean, normally distributed random variable with standard deviation s. We can
now express the relationship between the feature and lighting direction for a given texture
class 	 in probabilistic terms, Equation 2.
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where 
������� �� is the probability of the event of feature � having value � � occuring,
given that the texture 	 is lit from ��� ��.

The feature vector, � , is composed of i features. Assuming these are orthogonal the
joint distribution can be described using Equation 3
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3 Classification

The classifier is trained by parameterising the model for each candidate class. Each tex-
ture sample must be imaged under different illumination directions and features calculated



Figure 3: The behaviour of six textures in the comF25A0/comF25A45 feature space to-
gether with the best fit ellipses (each point on an ellipse denotes a different value of
illuminant tilt)

from these images. We recommend that at least three images should be taken at two or
more slants. In this work we use 12 images at two slant angles. The parameter values
of the model are calculated to give the best fit to the data. This allows us to predict the
likelihood of a particular feature value, for a given texture class, lit from a given direction.

Presented with a feature vector, the classifier uses a probabilistic model to identify
the most likely lighting direction and texture class. The probability of a lighting direc-
tion, given a particular feature vector can be related to Equation 3 using Bayes’ theorem,
Equation 4.

����� ��� � �
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Now, assuming all lighting directions are, a prior, equally likely, � ��� �� is constant.
And because, we are only interested in the relative probabilities of the values of � and �
at a given � we may replace ���� � with a constant, i.e.

����� ��� � � ����� ��� �� (5)

The most likely direction of the light source, �� ��� for each texture is estimated by
maximising the likelihood function of that texture.
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The numerical optimisation is simplified by instead maximising the log likelihood
function, Equation 3.
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In addition, a trigonometric substitution is performed to transform the equation into a
�
�� order polynomial. This is optimised using a standard Matlab routine.

We now have a series of k competing hypotheses about the class of the sample and
the direction it was lit from. Again, we are interested only in relative probabilities. If we
assume the classes are, initially, equally likely, the most likely class can be identified by
evaluating Equation 7.
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4 Experiments

The proposed classifier is assessed on two criteria: the accuracy with which it estimates
the direction of the light source; and the accuracy with which it can assign a sample to
the correct class. The experiments were carried out on 25 samples, shown at the end of
this paper, imaged at slant angles of 45Æand 60Æand tilt angles of 30Æincrements.

The classifier’s features are estimates of the variance of images produced by filtering
the input image with a set of Gabor filters. Gabor filters are Gaussians modulated by
complex exponentials—they have a centre frequency � and orientation �. In our nomen-
clature they are denoted by �������, where � is specified in cycles per image and � is
in degrees. Sets of filters are combined into banks, Table 1.

Gabor filter bankfilter
12 10 8 6 4 3 2

comF20A0 X X X X X X X
comF20A45 X X X
comF20A90 X X X X X X X
comF20A135 X X X
comF30A0 X
comF30A45 X X X X X X
comF30A90 X
comF30A135 X X X X X
comF40A0 X X X X
comF40A45 X X
comF40A90 X X X X
comF40A135 X X

Table 1: Gabor filter banks used for classification.

The accuracy of tilt estimation is shown in Figure 4 (top). 76% of the estimates were
within 5Æof the correct value, 82% were within 10Æand only one texture sample was more



than 20Æin error. The accuracy of slant estimation is shown in Figure 4 (bottom). There
are several points to note regarding this. First, two training slants, separated by 15 Æwere
used, however 26% of the tests were more than 7.5Æin error; secondly, estimation from
45Æwas significantly more accurate than estimation from 60Æ(52% of samples have less
than 2Æof error for the 45Æcase, compared to only 4% for the 60Æcase); thirdly the image
samples that perform poorly for tilt estimation correspond well to those that perform badly
for slant estimation—these tend to be drawn from the AD* and AF* groups (repeating
primitives and fabrics) both of which experience significant shadowing. The last two
points suggest that the prime source of inaccuracy is shadowing.

The second, more important criterion for the classifier is classification accuracy. We
applied 6 feature sets composed of between 3 and 12 Gabor filters to the data set, i.e.
25 samples lit from 24 different directions. The overall error rate is shown in Figure 5.
The most effective feature vector, composed of 10 features, gave a 98% classification
rate. Increasing the number of features gave a small increase in the error rate, but also led
to numerical instability in the optimisation procedure. Reducing the number of features
increased the error rate—with the most significant increase occurring for sets of less than
6 features.

5 Conclusions

We proposed a technique to classify rough surface textures that are lit from an unknown
direction. The technique estimates the most likely illumination vector by optimising a
probabilistic model for each class and classifies by comparing the optima of each class.
The technique was effective in estimating the azimuth of the light source. Estimation
of the zenith angle was less effective, though both the training and test data were much
more limited. The evidence suggests that shadowing degrades the effectiveness of the
system when the surface is lit from shallow angles. Nonetheless, the classifier is robust
to changes in the lighting direction and is able to maintain a high level of accuracy. The
most effective feature set consisted of 10 features (98%): below 6 features was found to
be insufficient, and vectors with more than 12 were prone both to a small increase in the
error rate and to failures in the optimisation procedure.



Figure 4: Root mean square, rms, tilt error (top) and rms slant error (bottom) for the tested
surfaces



Figure 5: Percentage of misclassified images for illumination direction independent clas-
sification dependent on the used Gabor filter bank
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