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Abstract 
 
This paper proposes a method to estimate the 

parameters of an illumination model and then uses 
these parameters for the synthesis of specular surface 
textures. We used the relationship between surface 
gradient maps in the frequency domain as a constraint 
for the separation of diffuse and specular components. 
During the estimation, we always keep errors between 
the real images and reconstructed images as small as 
possible. The estimated parameters form sample 
surface representation maps, which are then used as 
inputs for the synthesis of large representation maps. 
The synthesized representation maps are finally relit 
using the illumination model to produce new images 
under arbitrary illumination directions.  

 

1. Introduction 

Illumination models are very important in 
describing the image formation process for an object 
illuminated from certain directions. They can be used 
to extract geometric and material representations of the 
sample surface textures [1,2,3,4,5,6,7]. Compared with 
other surface representation methods that do not 
employ illumination models, these representations are 
normally more compact and efficient [8]. Once we 
obtain compact representations of a sample texture, we 
may use them as input for the synthesis of 3D surface 
textures. Unlike traditional 2D texture synthesis 
[11,12,14,16,18], the synthesis of 3D surface textures 
allows the captured textures to be synthesized and relit 
using illumination conditions and viewing angles that 
differ from those of the original [19,17,15,12].  

In this paper, we present a new method to estimate 
the parameters of the illumination model proposed by 
Nayar et. al. [5]. These parameters form sample surface 
representation maps, which can be used as inputs for 

the synthesis of 3D surface textures under arbitrary 
illumination directions. We use the relationship 
between surface gradient maps in the frequency domain 
as a constraint for the separation of diffuse and 
specular components. During the estimation, we always 
keep errors between the real images and reconstructed 
images as small as possible.  

The remaining of this paper is organized as follows. 
Section 2 reviews previous work on recovering 
reflectance models concerning specularities. Section 3 
introduces our approach on estimating the parameters 
of the illumination model proposed in [5] and 
synthesizing specular surface textures. Section 4 
presents the primary results. Finally, we conclude our 
work in section 5. 

2. Previous work  

We briefly review previous work in estimating 
parameters of illumination models with specular 
components. We divide the literature into two 
classes. The first class assumes sample surfaces do not 
have uniform diffuse coefficients, or albedo, but have 
uniform specular coefficients. Typical work includes 
[13, 9, 7]. In [13], Tagare and deFigueiredo presented a 
method to simultaneously estimate surface normal and 
reflectance parameters using a simplified Torrance-
Sparrow model. The suface roughness is set to be 
constant (2.578) through the estimation. Ramamoorthi 
and Hanrahan proposed a signal-processing framework 
and employed spherical harmonics to analyze several 
reflectance models.  The input consists of object 
geometry and 60 images taken under different 
illumination directions [9]. Lin used four images to 
recover diffuse and specular reflectance of the Cook-
Torrance model [7]. It is assumed that the highlight 
areas do not overlap in the four images used for 
recovering reflectance. 



 The other class of estimation methods does not 
require the assumption of uniform parameters [4, 3, 5, 
6, 2]. This presents difficulty because more images are 
required in order to capture specularities. Based on 
photometric sampling, Nayar et. al. presented a method 
to recover shape and reflectance by using the sampling 
frequency constraint and the unique orientation 
constraint [3]. Sato and Katsushi used range images to 
recover the parameters of a simplified Torrance-
Sparrow reflection model [2]. In [6], Saito et. al. 
recovered shape and surface reflectance from color 
images captured under a rotating light source based on  
Phong’s model.  If the specular component is not 
captured in a pixel location, the parameters of specular 
reflectance are estimated by interpolation of the 
neighboring values. In [4], Kay and Caelli presented a 
detailed procedure to simultaneously estimate surface 
normal and specular parameters of Nayar’s model [5]. 
They concluded that altogether 57% of pixels could not 
be recovered because of ill-conditioning(27%) or 
regression failure (30%) in their experiments.  

In conclusion, it is extremely difficult to estimate 
parameters of specular reflectance models. Previous 
work either assumed uniform specular parameters or 
used interpolation techniques if individual estimation is 
not possible. There are two main reasons: one is that 
the existing models cannot accurately describe the real 
image formation process; the other is that there might 
not be enough data for the specular components [4,6,2]. 
Therefore, the existing estimation methods can only be 
seen as an approximation of the ground-truth. 
Nevertheless, we propose a simple four-stage 
procedure to estimate the parameters of Nayar’s model 
and show how to minimise the numerical errors 
between original and reconstructed images.  

3. Our approach 

We first estimate the parameters of the illumination 
model proposed by Nayar et. al. [5]. The model 
comprises three components: a diffuse lobe, a specular 
lobe and a specular spike. For y)n(x,l ⋅ >0 it can be 

expressed by  
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where: 
 ),( yxI is the intensity 

),( yxkdl is the diffuse coefficient 

slk  is the glossy specular coefficient 
ssk is the specular spike coefficient 

c  is the surface roughness coefficient 
sc controls the width of the specular spike 

l  is the direction of the light source vector 
y)n(x, is the surface normal vector 

 )(cos),( 1 y)n(x,h ⋅= −yxα  and vlvlh ++= )/(  

 v is the view direction.  
 If 0≤⋅ y)n(x,l , then  ),( yxI is always zero. 

In this paper, we follow previous work by Kay and 
Caelli [4] and express the specular spike as a Gaussian 
function, which was originally noted in [13]. We also 
use the surface gradients p(x,y) and q(x,y) to express 
surface normal y)n(x, : 
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3.1 Estimating the parameters of Nayar’s 
model  

We are interested in a type of texture that 
comprises globally uniform materials, but there might 
be slight differences between different surface patches, 
e.g. a piece of painted wallpaper. As far as Nayar’s 
model concerned, we assume that globally slk , 

ssk , c and sc parameters are uniform. However, we 
wish to recover these parameters at as many pixel 
locations as possible. Since normally there are few 
pixels containing specular components within a small 
area, the global or presumed uniform parameters need 
to be used for interpolation. We have developed a four-
stage procedure: (1) estimating surface gradients and 
albedo maps, (2) estimating initial values of global 
specular parameters using linear fitting, (3) estimating 
global specular parameters using non-linear fitting, and 
(4) estimating local specular parameters at each pixel 
location if possible. 

3.1.1 Estimating surface gradient and albedo maps 

The basic idea is that we treat pixels containing 
specularities and shadows as “outliers” so that we can 
obtain the diffuse component by eliminating these 
outliers. At each pixel location, we have a set of pixel 
values captured by changing illumination directions:  

),(),...,,(),,( 00002001 yxIyxIyxI n . 

If the light is rotated by a fixed slant angle, the perfect 
diffuse response should be a sine curve [6]. However, if 
the specularities exist at certain tilt angles, the sine 
curve will not be perfect. Because the specularities 
only exist in few images under special illumination 
directions and result in higher intensity values, we may 
treat those pixels that contain specular components as 
“outliers”.  Thus, we calculate the mean and standard 



derivation of the set of pixel values and regard those 
that satisfy the following expression as “outliers”: 

 )0,0()0,0(00 *),( yxyxm CyxI σµ ≥−         (3) 

where:  
nm1 ≤≤  

)0,0( yxµ  is the mean and )0,0( yxσ  is the standard 

derivation of data set: ( ),(),...,,(),,( 00002001 yxIyxIyxI n ) 

C  is the coefficient to decide outliers.  
Those pixels mainly containing the diffuse 

component will be close to the mean value. We can 
select some representative pixels that contain 
specularities and shadows to decide an upper boundary 
for C. Once an interval for C is defined, we use the 
integratability constraint in the frequency domain to 
further decide an appropriate C.  

We select a set of coefficients Cj from the interval. 
For each coefficient, we eliminate corresponding 
outliers and use photometric stereo methods to 
calculate surface gradient maps pj(x,y) and qj(x,y) and 
albedo ),( yxkdl . Thus, we obtain a set of surface 

gradient pairs. For each pair of surface gradient maps 
pj(x,y) and qj(x,y), we perform Fourier Transform. Let 

),( vuPj  and ),( vuQj  denote the corresponding 

expressions of p(x,y) and q(x,y) in the frequency 
domain. Ideally, we have the following equations:  

),(),( vuiuSvuPj =  (4) 

),(),( vuivSvuQj =  (5) 

where:  
),( vuS  is the frequency domain denotation of the 

spatial surface height map s(x,y) after Fourier 
Transform 

u and v are the 2D spatial frequency co-ordinates 
i is the square root of minus one. 
Thus,  

),(),( vuuQvuvP jj =  (6) 

However, it does not hold if the surface gradient 
maps pj(x,y) and qj(x,y) are not correct. Therefore, we 
choose the optimum surface gradient maps that 
minimize the difference between the two sides of (6):  

),(),( vuuQvuvP jj −  (7) 

3.1.2 Estimating initial parameters of specular 
components 

The aim of this stage is to obtain the initial values 
of parameters in specular components. Having obtained 
surface gradient and albedo maps, we can separate 
specular components from the diffuse component. Thus 
equation (1) becomes  
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For each image, we select a pixel location with the 
largest intensity value, which contains both specular 
lobe and spike components. At this location, we have a 
set of values from different images captured under 
different illumination angles. We simply eliminate the 
largest pixel value, which must contain the specular 
spike, and take logarithm on the remaining specular 
lobe component. Thus, we are solving an over-
determined linear system with unknown slk and surface 
roughness parameter c .   

For each image, we then assign a set of values for 
sc parameter so that the specular spike coefficient ssk  

can be estimated. Thus, we obtain a few groups of 
parameters for each image. We reconstruct images 
using the estimated parameters and equation (1), and 
then compare the reconstructed image with the real 
image. Those parameters that produce the minimum 
errors are selected. We repeat this process for each 
“training” image to obtain a certain number of 
parameter groups. The average value of each parameter 
group is assigned as the initial value. 

3.1.3 Estimating global specular parameters using 
non-linear fitting 

Non-linear fitting is commonly used to estimate 
parameters of illumination models and has been proved 
to be a promising method [4,6]. However, initial values 
are very important in numerical calculation. We can use 
the values obtained from 3.1.2 as the initial values to 
perform non-linear fitting. For each image, we select a 
pixel with the largest intensity value. At this pixel 
location, we use pixel values from all images under 
different illumination directions to perform non-linear 
fitting and estimate parameters in equation (1). Thus, 
the parameters are obtained by minimizing:  

22222  )),(exp( )),(exp(),( yxckyxckyxI jsssjslj αα −+−−′

where j denotes an image under a certain illumination 
direction. 

Thus, for each image we obtain a set of four 
parameters. We repeat this process for all images and 
generate a certain number of parameter groups.  

In order to decide the best parameter group, we 
reconstruct images with the same illumination 
conditions as those used in the original images. We 
calculate the sum of root mean square (rms) errors 
between all original images and reconstructed images 
for each group of parameters. The group that produces 
the smallest errors is selected as the optimum global 
parameters.  



3.1.4 Estimating parameters of specular 
components at each pixel location 

In this stage, we use a set of pixel values at each 
pixel location to perform non-linear fitting and estimate 
the parametersslk , ssk , c and sc . The global values 
generated by the previous stage are used as initial 
values. The ill-conditioning problems exist in this stage, 
as introduced in [4, 6]. We use the global values as the 
default estimation of specular parameters if there is not 
enough data of specular components or the non-linear 
fitting does not converge.  

The step-by-step estimation guarantees the rms 
errors between reconstructed images and original 
images decrease towards the minimum.  

3.2 The synthesis of specular surface textures 

The synthesis is straightforward—we use a 
modified Efros’ 2D texture synthesis algorithm to 
synthesize large surface gradient and albedo maps, and 
at the same time the specular parameters are copied 
together with surface gradients and albedo(see [18, 
15]). After the synthesis process, we use equation (1) to 
generate new images under arbitrary illumination 
directions.  

4. Results 

We used both synthetic images and real textures for 
our experiments.  

4.1 A synthetic semi-sphere 

We first perform an experiment on a synthetic 
semi-sphere. We construct a semi-sphere and 
illuminate it using equation (1) to generate a set of 
images. Uniform specular parameters are assumed. 
According to the procedure introduced in section 3.1, 
we first recover the diffuse coefficient ),( yxkdl  and 

surface normal y)n(x, . We plot the values of equation 

(7) versus different coefficients for eliminating outliers 
in Figure 1. It can be seen that the coefficient 0.8 
produces the minimum value of (7). Using this 
coefficient of 0.8, the diffuse coefficient ),( yxkdl  and 

surface normal y)n(x, are recovered. We then perform 

linear fitting and non-linear fitting according to section 
3.1.2 and 3.1.3 to estimate the specular parameters. We 
show the comparison of original values and estimated 
values in Table 1.  The reconstructed image is shown in 
Figure 2. It can be seen that the estimation method 
produced accurate results. 

4.2 Real textures  

We exploited texture images in the PhoTex texture 
database [10], which are captured under varied 
illumination directions. We show estimation and 
reconstruction results using three representative 
textures. These textures exhibit specularities, shadows 
and/or interreflections.  

Figure 3 shows comparisons of reconstructed 
images from different stages and the original image. It 
can be seen that the final result (after the 4th stage) is 
very close to the original. The image set is generated 
from a rock surface with added specular components.  

Figure 4 shows the plot of values calculated using 
equation (7) versus different coefficients for 
eliminating “outliers” for painted wallpaper. The 
optimum coefficient of 1.3 is selected. Figure 5 shows 
comparisons of reconstructed results from different 
stages and the original image.  Although some 
highlights are not recovered in the result images, the 
rms becomes smaller at the 3rd and 4th stages. The 
recovered parameters are then used for the 3D surface 
texture synthesis and relighting using the method 
described in section 3.2. Figure 6 shows a comparison 
of a real texture and a synthesized one with the same 
illumination direction. 

The third texture comprises soybeans. Figure 7 (a) 
shows a comparison of a reconstructed image from the 
final stage and the original image. Figure 7 (b) shows 
the synthesis and relighting results using the recovered 
parameters as input. It can be seen that some highlights 
are not recovered in the reconstructed images. The 
reason may be because shadows and interreflections 
cannot be captured by the current model. These affect 
the non-linear fitting process.  

Table Table Table Table 1111. The comparison of estimated results . The comparison of estimated results . The comparison of estimated results . The comparison of estimated results 
and and and and the the the the groundgroundgroundground----truth for the synthetic semitruth for the synthetic semitruth for the synthetic semitruth for the synthetic semi----
sphere.sphere.sphere.sphere.    

 ksl c kss cs 
Real value 3.00 17.0 0.1 100 
Estimated  

value 
3.0142 16.986 0.0997 100 

 

TablTablTablTable e e e 2222. Comparison of recovered pixel numbers . Comparison of recovered pixel numbers . Comparison of recovered pixel numbers . Comparison of recovered pixel numbers 
and and and and rmsrmsrmsrms errors produced by using different  errors produced by using different  errors produced by using different  errors produced by using different 
coefficients for eliminating “outliers”. coefficients for eliminating “outliers”. coefficients for eliminating “outliers”. coefficients for eliminating “outliers”.     

Coefficient Recovered 
pixel number 

rms error 

0.7 1339 0.454254 
1.3 1420 0.376947 
1.5 1284 0.387182 



 

Figure Figure Figure Figure 1111. Coefficient. Coefficient. Coefficient. Coefficientssss for eliminating “outliers” for eliminating “outliers” for eliminating “outliers” for eliminating “outliers”    vsvsvsvs    
errorerrorerrorerrorssss produced by surface gradient maps in  produced by surface gradient maps in  produced by surface gradient maps in  produced by surface gradient maps in the the the the 
frequency domain. The object is a synthetic frequency domain. The object is a synthetic frequency domain. The object is a synthetic frequency domain. The object is a synthetic 
semisemisemisemi----sphere. sphere. sphere. sphere.     

  
Reconstructed Original 

Figure Figure Figure Figure 2222. The ori. The ori. The ori. The original and reconstructed images.ginal and reconstructed images.ginal and reconstructed images.ginal and reconstructed images.    

5. Conclusion 

This paper proposes a novel four-stage procedure 
to estimate the parameters of Nayar’s model. These 
parameters can be used for the synthesis of specular 
textures. The surface integratability in the frequency 
domain is used as a constraint to separate the diffuse 
and specular components. The specular parameters are 
estimated at as many pixel locations as possible. Future 
work may use more images and more texture samples 
for the investigation.  

Figure Figure Figure Figure 3333. Comparisons of reconstructed results . Comparisons of reconstructed results . Comparisons of reconstructed results . Comparisons of reconstructed results 
from different stages and the original image. The from different stages and the original image. The from different stages and the original image. The from different stages and the original image. The 
second row shows the difference images, which second row shows the difference images, which second row shows the difference images, which second row shows the difference images, which 
are obtained by subtracting the result images are obtained by subtracting the result images are obtained by subtracting the result images are obtained by subtracting the result images 
from the original image. from the original image. from the original image. from the original image.     

 

Figure Figure Figure Figure 4444. Coefficient. Coefficient. Coefficient. Coefficientssss for eliminating ”outliers”  for eliminating ”outliers”  for eliminating ”outliers”  for eliminating ”outliers” vsvsvsvs    
errorerrorerrorerrorssss produced by surface gradient maps in  produced by surface gradient maps in  produced by surface gradient maps in  produced by surface gradient maps in 
frequency domain. The texture is painted frequency domain. The texture is painted frequency domain. The texture is painted frequency domain. The texture is painted 
wallpaper.wallpaper.wallpaper.wallpaper.    

 

Figure Figure Figure Figure 5555. Comparisons of reconstructed results . Comparisons of reconstructed results . Comparisons of reconstructed results . Comparisons of reconstructed results 
from different stages and the original ifrom different stages and the original ifrom different stages and the original ifrom different stages and the original image. The mage. The mage. The mage. The 
second row shows the difference images, which second row shows the difference images, which second row shows the difference images, which second row shows the difference images, which 
are obtained by subtracting the result images are obtained by subtracting the result images are obtained by subtracting the result images are obtained by subtracting the result images 
from the original image. from the original image. from the original image. from the original image.     

 
  

 

 

Figure Figure Figure Figure 6666. Synthesis. Synthesis. Synthesis. Synthesis and relighting and relighting and relighting and relighting results results results results.  The .  The .  The .  The 
large image is generated by first synthesizilarge image is generated by first synthesizilarge image is generated by first synthesizilarge image is generated by first synthesizing ng ng ng 
large surface representation maps and then large surface representation maps and then large surface representation maps and then large surface representation maps and then 
relighting the synthesized maps using Nayarrelighting the synthesized maps using Nayarrelighting the synthesized maps using Nayarrelighting the synthesized maps using Nayar’’’’s s s s 
model (see section 3.2). Block arrows the model (see section 3.2). Block arrows the model (see section 3.2). Block arrows the model (see section 3.2). Block arrows the 
illumination direction.illumination direction.illumination direction.illumination direction.    
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Figure Figure Figure Figure 7777. . . . (a) Comparison of a reconstructed (a) Comparison of a reconstructed (a) Comparison of a reconstructed (a) Comparison of a reconstructed 
image and the original image. (b) Real and image and the original image. (b) Real and image and the original image. (b) Real and image and the original image. (b) Real and 
synthesized texturessynthesized texturessynthesized texturessynthesized textures with the same illumination. with the same illumination. with the same illumination. with the same illumination.    
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