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Abstract

The aim of this paper is to assess the validity of a model, proposed by Kube and Pentland [1], that
relates a rough surface to its image texture. Simulation was used to assess whether a linear approximation
is appropriate, and whether the optimal linear filter agrees with the predictions of Kube and Pentland’s
model. The predictions of the model about image directionality were also assessed on real images. It
was found that a linear model is capable of modelling the imaging process for surfaces of moderate
roughness and Lambertian reflectance, and that, subject to a small modification, Kube and Pentland’s

model accurately predicts the relationship between surface and image spectra.
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I. INTRODUCTION

A large class of visual textures are formed by the interaction of light with natural rough
surfaces and several authors have used synthetic textures produced by rendering fractal
surfaces [2][3]. However, although Kube and Pentland’s paper is expressed in terms of
fractals, they develop a frequency domain model (Case 1) that provides an analytical
link between surface and image spectra. The analytical nature of this model results in
predictions that are both testable and relevent to texture analysis. This paper validates the
model by assessing its assumptions using synthetic data and testing whether the model’s
predictions are observable for real textures.

Where the model is valid, it is an extremely powerful and useful tool for texture analysis.
It allows the formation of a coherent spectral model of texture formation that extends
from the physical surface to image classification, see [4]. Several authors have shown that
image texture can be dramatically affected by the relative orientation of the surface and
the illuminant [5],[6],[7], Kube and Pentland’s model accurately predicts many of these
effects on both the image and features derived from it. In [8] van Ginneken et al. developed
a model describing the gray level histogram of a rough surface texture under variations
of irradiation and viewing direction. In [9] the effect of variations in the irradition and
viewing directions on the correlation length of the image is modelled. It is interesting
to compare Pentland and Kube’s spectral model with these models. Kube and Pentland

model a more constrained system; assuming the viewing direction to be perpendicular to
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the surface plane and ignoring shadowing. To balance these constraints the Kube and
Pentland model has greater predictive ability—it is able to predict the image of a specific
surface—rather than a set of statistics. Furthermore, the inverted model can be used to
reduce the effect of directional illumination [10] or to estimate the surface height function
from its image [11]. In the context of our research, i.e. relatively constrained inspection
tasks, the predictive abilities of Pentland and Kube’s model outweigh its constraints.
Given the potential usefulness of this model, it is worthy of further investigation.

Kube and Pentland’s frequency domain model is derived algebraically from a first order,
i.e. local, approximation to the rendering function. The validity of the spectral model de-
pends on the accuracy of this linearisation and the emphasis of this paper will be on testing
the approximation. We initially test whether the image of a rough, Lambertian surface can
be accurately approximated with a linear model. The accuracy of a least squares linear
mapping from the surface derivatives vector field to the intensity field is measured. This
optimal mapping makes no assumptions save that of linearity. By comparing the effect
of illuminant tilt on the estimated parameters with the predictions made by the Kube
Pentland model we can assess how close Kube and Pentland’s analytical model is to the
optimal linear case. Although this correspondence emphasises the local behaviour of the
frequency domain model, we will also assess its global effects using physically based surface

models and we will consider the implications of the global model for texture analysis.

II. THEORY

This section discusses two sets of theoretical models: rough surface models and imaging
models. This paper is concerned with the interaction of these models to produce visual

textures.

A. Surface Models

The topography of rough surfaces is of interest in several fields including scattering
theory and tribology and we can draw upon models proposed within these areas. We
will assume that the distribution of heights is Gaussian (many naturally occurring rough
surfaces fall into this category [12]) and that the surface is differentiable. A Gaussian

signal may be completely characterised by its second order statitics, i.e. its autocorrelation
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function, or equivalently its power spectrum—assuming the signal is wide-sense stationary.

Several models have been proposed that are stated in terms of the power spectrum.
Sayles suggested that the surface profiles of many rough surfaces exhibit an inverse square
relationship between frequency and power [13]. The two dimensional form is shown in (1)
and a realisation of the model, generated from the specified power spectrum and a random
phase spectrum, then rendered using Lambert’s law, is shown in Figure 1. Mulvanney
developed a related model where the spectrum is white below a cut-off frequency, and
obeys a power law above that frequency [14]. The two dimensional form is shown in (2)
and a rendered instance with a cut-off frequency of 12 cycles per image (c/i) is shown in

Figure 2.

Fig. 1. Rendered Sayles surface

Fig. 2. Rendered Mulvanney type surface
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Ssq(w) s the two dimensional power spectrum

where

w 1s the radial frequency
w. 18 the cut-off frequency
k is a constant
Although many surfaces are at least approximately isotropic, an important class are
directional. Ogilvy suggests a model of directional surfaces where the cut-off frequency
is a function of polar angle [12]. The algebraic expression of Ogilvy’s model is shown in
(3). A surface generated using this model with cut-off frequencies 5 and 12 ¢/i is shown

in Figure 3.

k
(u +u?)(02 +0?)

Soq(u,v) =

where

u and v are the cartesian frequency coordinates
u. and v, are the cut-off frequencies in the # and y directions.

k is a constant
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Fig. 4. Scatter plot of slopes from a Sayles surface.

Fig. 5. Scatter plot of slopes from an Ogilvy surface.

Although no single parameter is sufficient to fully describe a textured surface, it may
capture important characteristics. Except in the case of (cast) shadowing, the intensity of
a point on the image is a function of the surface derivatives of the corresponding surface
facet rather than its height. Unlike height, surface slope is a directional parameter, and
therefore can indicate the presence of surface directionality. The root mean square (rms)
slope is therefore a useful parameter in the context of this work.

We adopt p,s and ¢, as the standard deviation of the surface partial derivatives
measured along the z and y-axes respectively. Scatter plots of the slopes of the Sayles
and Ogilvy surfaces are shown in Figures 4 and 5, since differentiation is a linear process,
the distributions of p and ¢ are Gaussian. We will assume the directionality of the surface
is aligned with the axes such that p and ¢ are uncorrelated. We also assume the surfaces
to be globally flat, and that both components of the mean slope are consequently zero,

the resulting joint distribution is zero mean and Gaussian. Note that the directionality of
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the Ogilvy surface is apparent in the asymmetry of its slope distribution. In contrast, the
slope distribution of the isotropic surface has n-fold rotational symmetry. The parameters

are linked to the surface power spectrum as shown in (4) and (5).
Pl = //UZS(u,v)dudv (4)

o= [ [0S, 0)dude (5)
B. Reflectance Models

This section is divided into two parts, the first considers the intensity of reflected light
on a local basis, i.e. the intensity of a surface facet as a function of the surface derivatives,
lighting orientation and, in some cases, viewer orientation. The second part, which is
derived from the ideas developed by Kube and Pentland, takes a linear approximation
to the local function and uses this to develop a transfer function which links the surface
spectrum to the image spectrum. In the experimental section we will verify and refine this

analytical model using simulation.

B.1 Local Models

We will consider only surfaces with reflectance functions that are diffuse in character.
The classical Lambertian model is generally regarded as being an adequate model of
diffuse reflection for most computer graphics applications. The Lambertian assumption is
also popular within the field of shape-from-shading. More recently, several authors have
developed alternative models [15][16][17][18]. However, since Kube and Pentland’s model
is derived from the Lambertian case, we will retain Lambert’s law in this work.

The reflectance function can be conveniently expressed as a reflectance map (see [19]) .
This shows the intensity of a facet as a function of its p and ¢ parameters, and assumes the
position of the viewer and light source are held constant. It is defined over the same domain
as the scatter plots shown in Figures 4 and 5. The reflectance map for a Lambertian facet
illuminated from a tilt angle, 7 = 0° and a slant angle of & = 50° is shown in Figure 6, p

and ¢ have the same ranges as in Figures 4 and 5.
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Fig. 6. Reflectance map for Lambertian surface.

B.2 Global Models

B.2.a Kube and Pentland’s Model. Kube and Pentland developed a spectral model (Case
1) that links the surface to the image [1]. The spectral model assumes an orthographic
projection onto the z,y plane and that the surface derivatives are small. Kube and Pent-
land also assume that the illuminant slant angle is greater than 6°. In this correspondence
we shall only consider the case where the slant angle is equal to 50°. They also initially as-
sume the surface reflectance to be Lambertian—the image ¢(x, y) can then be expressed as
a function of the illuminant orientation (7, ), surface albedo p and the surface derivative

fields, p(z,y) and ¢(z,y):

p(—p(x,y)cosTsino — g(a,y)sinTsino + cos o)
VP, ) + (e, y)?+ 1

A linear approximation (7) to this equation for a given illumination direction (7, 0) is

(6)

i(l‘,y) =

used to derive a frequency domain expression. The assumption of linearity is valid for

surfaces with moderate slopes (< 0.5)[1].

Wz,y) = plr,y)a+q(z,y)b+c (7)
where
a=—pCcosTsino
b=—psinTsino

c=pCos o

May 8, 2000 DRAFT



It is worthwhile to note that several authors within the field of shape from shading have
also used linearised reflectance maps. Pentland’s inversion of the model [11] clearly does
s0, as does Knill and Kersten’s analogous spatial domain approach [21]. Horn also used a
linear approximation—though in this case as a simplification for an iterative scheme [20].

Since differentiation is a linear operation (7) can be transformed into the frequency

domain to obtain the image power spectrum:

I{w,0) = p*w? cos*(f — 7)sin® 0S(w, ) (8)
where

S(w,8) is the surface power spectrum

I(w,0) is the image power spectrum

w s radial frequency
6 is polar angle

The magnitude response of the rendering operation is:
M(w,8) =wpcos( —)sino 9)

B.2.b Optimal Filter Model. =~ More generally, an empirical approach may be pursued
where an arbitrary reflectance function is modeled as a linear function of surface deriva-
tives, (10). The filter coefficients, a/,¥',¢ are chosen to minimise the residue quantity
shown in (11). This mapping may be defined such that it is optimal in the least squares
sense for a given reflectance map and slope distribution. This has some parallels with Knill
and Kersten’s shape form shading scheme which forms an empirical mapping from the in-
tensity to the surface derivatives—though in that case an adaptive learning algorithm is
used [21].

The accuracy of the fit for a given reflectance map is dependent on the location and
area of the region that is being approximated. In the case of a texture this is determined
by the distribution of surface facets over the pg plane as well as the type of reflectance
function. The optimal mapping approximates the entire reflectance map—weighted by the
slope distribution function. In contrast, Kube and Pentland make a linear approximation

to the reflectance map about its origin.
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p(x,y) a
Wz, y) = | q(z,y) b (10)
1 d

2
B(esy) = (itey) — i) ) (i)
where R(z,y) is the residue image.

The characteristics of a surface will obviously affect the accuracy of the model, however,
it is our assertion that they will also affect the parameters of that model, i.e. a linear
model will be optimal for a particular illumination condition and for a particular surface.
It follows that the filter coefficients, a’, &, ¢ must be re-estimated for each surface and illu-
mination condition and that it is not meaningful to observe the accuracy of one particular
filter for a series of surfaces and illumination conditions.

In this section we have introduced two linear models of the global imaging process. The
first, Kube and Pentland’s model, (7), is analytical and can be used to predict the image
of a surface. The second model, (10), (which we refer to from here as the optimal filter) is
empirical, is not predictive but ¢s optimal for a given data set. The correspondence between
the two models will be used to assess Kube and Pentland’s model in the experimental

section.

III. EXPERIMENTAL RESULTS

In order to assess Kube and Pentland’s linear approach we must consider two questions:
1. Can a linear filter accurately model the Lambertian function for a range of surfaces?
and

2. Do the estimated parameters agree with those predicted by Kube and Pentland’s model?

A. Is the linear approximation valid?

Realisations of the Sayles and Ogilvy surfaces with varying degrees of roughness were
rendered with the Lambertian model. A least squares approximation to that image was
then calculated using (10) and the accuracy of the approximation, i.e. the ratio of the

correct signal power to the residue signal power (S/R), measured.
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We found that for the isotropic texture, the accuracy of the linear filter falls as the rms
slope rises, as shown in Figure 7. However, the filter is able to accurately predict the
images of relatively rough surfaces. With anisotropic surfaces the rms slope varies with
the measurement direction. We would therefore expect the accuracy of the prediction to
vary with the illuminant tilt. The experiment is repeated with the Ogilvy surface rendered
under various illumination tilts, Figure 8. As expected there is a tilt dependent variation
in the accuracy of the prediction. The filter is most accurate where the illuminant tilt
is perpendicular to the grain of the material. If we adopt a nominal minimal accuracy
of 10dB we can see that a linear filter is able to model images of surfaces for which the
maximum rms slope does not exceed 0.3.

The linear model is a function of the derivatives and its accuracy depends on their
first order statistics. The scope of this paper is limited to surfaces whose height, and
consequently slope, distributions are Gaussian. In this section we have used surfaces with
both isotropic and directional slope distributions of various standard deviations, and have
established the types of surface for which an optimal linear filter can accurately predict

the image.

45

SIR (dB)

T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rms Slope

Fig. 7. The accuracy of linear image prediction for an isotropic surface.

B. Is Kube and Pentland’s model Optimal?

Having shown that an optimal filter can accurately predict the appearances of a large
and useful category of surfaces we now assess how closely the form of the optimal filter

resembles that predicted by Kube. Kube and Pentland’s model predicts that the o’ and
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Fig. 8. The variation of prediction accuracy with illuminant tilt and surface slope for the directional

texture

b parameters should vary with sin o cos 7 and sin o sin 7 respectively. The estimated pa-
rameters are plotted against the predictions in Figures 9 and 10 for the isotropic Sayles
texture. There does appear to be a good correspondence at all the rms slopes measured,
however, the differing slopes of the lines at higher rms slopes is not predicted by Kube and
Pentland’s model. We can plot the quantity sqrt(a” + %) against the rms slope to show
the roughness dependency, Figure 11, (Kube and Pentland’s model predicts a constant
value of sino, independent of rms slope). The roughness dependency is consistent with
our earlier assertion that coefficients of the filter, i.e. the parameters of the approximating
plane, are dependent both on the reflectance map and the slope distribution. Kube and
Pentland’s model is based on an approximation about the origin, it is optimal for a flat
surface, i.e. a surface whose slopes all lie at the origin, as the width of the slope distribu-
tion increases, i.e. the surface becomes rougher, Kube and Pentland’s model becomes less
optimal.

The experiment is now repeated for the directional Ogilvy surface, Figures 12 and 13.
Both filter coefficients appear to vary closely with Kube and Pentland’s predictions. The
values of the @’ and b parameters at 0° and 90° respectively (their maximum values) are
plotted against rms slope, Figure 14. The values are closely related, diverging only slightly

for relatively rough surfaces. For this reason we conclude that the modified, roughness
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Fig. 9. Estimated filter a’ coefficients plotted against Kube and Pentland’s cos 7sin ¢ relationship for

Sayles surfaces of various roughnesses.
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Fig. 10. Estimated filter b’ coefficients plotted against Kube and Pentland’s sin 7sin ¢ relationship for

Sayles surfaces of various roughnesses.

dependent, form of Kube and Pentland’s model developed for isotropic surfaces is also
valid for directional surfaces. In the case of the random phase Lambertian surfaces used
in this work, the qualified Kube expression provides an accurate analytical method for

linking surface and image providing that the surface roughness does not exceed 0.3.

C. Consequences of Kube and Pentland’s Model for Texure Analyis

In the previous experiments we concluded that, subject to a roughness dependent cor-
rection factor, Kube and Pentland’s model is able to predict the appearance of a large
class of rough surfaces. Modeling the rendering process as a linear filter allows us to relate

the spectrum of the surface to that of the image. Kube and Pentland’s model predicts
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Fig. 11. The dependency of the norm of the filter parameters a’ and b’ on rms slope for an isotropic
surface.(Note that Kube and Pentland’s model predicts a constant value of psino = 0.766p for the

norm of a’ and b’)
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Fig. 12. Estimated filter a’ coefficients plotted against Kube and Pentland’s -cos(7) relationship for the

directional surface.

that the imaging process acts as a directional high pass filter. In this section we consider
the directional and radial properties of the image spectra of the three exemplar textures.

We initially consider the radial spectra of the isotropic surfaces—measured by integrat-
ing the two dimensional power spectrum over angle and plotting the result against radial
frequency, Figure 15. The Sayles surface with a power roll-off of 3.0 gives rise to an image
with roll-off 1.0, this was explicitly predicted in Pentland and Kube’s paper. Unlike the
image of the Sayles surface which is low pass in nature, the image of the Mulvanney surface
is bandpass, with the spectrum increasing with frequency to a gentle peak at the break-

point frequency before falling with a roll-off of 1.0. This gives rise to a slight periodicity
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Fig. 14. Variation of a’ parameter at 0°and b’ parameter at 90°with rms slope for directional texture.

visible in the image.

The directional effects of image formation are shown using a polar plot—formed by
integrating the spectra over a radial frequency range and plotting power as a function of
angle. The image formed by the isotropic Sayles surface is directional, Figure 16. Since
the surface itself is isotropic this directionality is due to the process of image formation.
Furthermore, it follows the squared cosine form predicted by Kube and Pentland’s model.
Consequently if the illuminant tilt angle changes the image directionality is shifted by the
corresponding angle.

This is in contrast to the Ogilvy surface, Figure 17. In this case the surface is highly

directional and this is the dominant factor in the image directionality with the illuminant
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Fig. 15. Radial image spectra of Sayles and Malvanney surfaces.
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Fig. 16. Polar distribution of image power for Sayles surface illuminated from tilts of 0° 45°and 90°.

having little effect beyond accentuation or attenuation of the directionality inherited from
the surface. Thus, when the illuminant vector is perpendicular to surface grain there is
a well defined peak, which is attenuated as the illuminant vector becomes parallel to the

grain. However, this too is consistent with Kube and Pentland’s model.

D. The effect on real textures

Although we are unable to directly measure the surface derivatives of real surfaces,
and therefore verify Kube and Pentland’s model with real data, we can test some of the
predictions of the model. The model predicts that isotropic surfaces will produce images
with a cosine distribution of signal energy and that unidirectional surfaces will have images

in which the directionality is scaled by the cosine of the angle between the directionality
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Fig. 17. Polar distribution of power for Ogilvy surface

and the tilt angle of the illumination. We will consider two test surfaces, Fracture 1, an
approximately isotropic surface and Ripple 1 a directional surface formed by wave action.
Varying the illuminant does not have a dramatic effect on the Fracture 1 surface beyond a
rotation of the image directionality, Figure 18. This rotation can be observed in the polar
plots of the Fracture 1 images, Figure 19. In the case of the Ripple 1 texture a much more
dramatic effect is observed. As the illuminant is revolved towards being collinear with the
surface directionality, the directionality in the image becomes attenuated, Figure 20. This
effect can also be observed in the textures’ polar plots, Figure 21, where the amplitude of
the peak is varied but its position remains the same. These results for real textures agree

both with our simulations and the predictions of Kube and Pentland’s model.

Fig. 18. Fracture 1 sample illuminated from 7 = 90°, 135° and 180°

As additional experiments we imaged nine surfaces illuminated at tilt intervals of 15° in
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Fig. 19. Polar spectra of Fracture 1 images.

Fig. 20. Ripple 1 sample illuminated from 7 = 135°, 180° and 225°

the range 0° to 180°. The nine surfaces are arranged into three classes: Fractures Figure
22, Ripples Figure 23, and Grounds Figure 24. The surfaces are shown illuminated from
a tilt angle perpendicular to their directionality. For reasons of space we do not show
the power spectra of each image in this correspondence. Instead we plot the standard
deviation of image intensity as a function of illuminant tilt. The standard deviation of
image intensity is the square root of the integral of the image power spectrum—assuming
the mean component to be equal to zero. Each measurement of the standard deviation
of an image should correspond to the integral of the polar plot over polar angle. For

an isotropic surface we would expect this integral to be constant, i.e. independent of
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Fig. 21. Polar spectra of Fracture 1 images.

illuminant tilt. For a directional surface the area under the plot varies with tilt. In the
extreme case of a unidirectional surface we would expect the standard deviation to vary
with the magnitude of the cosine of the angle between the illuminant direction and the
surface directionality. The standard deviations of the isotropic Fracture images do vary
with illuminant tilt, Figure 25, however the degree of variation is small. The directional
Ripple and Ground plots show a much greater degree of variation, Figure 26, Figure 27
which is of the form predicted for a directional surface. The tilt variation of image standard

deviation does appear to support the predictions made by Kube and Pentland’s model.

Fig. 22. Fracture surfaces 1-3 illuminated from 7 = 90°, 135° and 180° respectively.
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Fig. 23. Ripple surfaces 1-3 illuminated from 7 = 135°, 180° and 225° respectively.

Fig. 24. Ground samples 1-3 illuminated from 7 = 90°, 180° and 90° respectively.
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Fig. 26. Standard deviation of Ripple images as a function of tilt.

IV. CONCLUSIONS

The experimental work described in this paper strongly supports the use of a linear
aproximation to the reflectance function for Lambertian surfaces of moderate roughness,
i.e. with rms slopes < 0.3. Furthermore, the predictions made by Kube and Pentland’s
model about the behaviour of the parameters of that linear approximation are also consis-
tent with our findings, when they are corrected by a roughness dependent scaling factor.
Although constructed from a local model, Kube and Pentland’s spectral model allows the
prediction of global effects. Using physically based surface models we are able to explain
the spectral properties of the resulting visual texture. The predictions made by this model,
in particular those concerning the interaction of illuminant tilt and surface directionality,
are of relevance to the design of texture classifiers which are applied to rough surface

textures.
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