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Abstract— Changes in the angle of illumination incident
upon a 3D surface texture can significantly alter its appear-
ance. Such variations effect texture feature images and can
dramatically increase the failure rates of texture classifiers.
In a previous paper we presented theory and experimen-
tal results that showed that changes in illuminant tilt an-
gle cause texture clusters to describe Lissajous’s ellipses in
feature space. In this paper we use this model to develop
a classifier that can classify surface textures imaged under
unknown illumination tilt angles. In experiments with 30
real textures classification rates of over 99% were achieved.

Keywords— Texture, illumination, texture features, tex-
ture classification

I. INTRODUCTION

HANGES in the angle of illumination incident upon
a 3D surface texture can change its appearance sig-
nificantly as illustrated in Fig. 1. Such changes in image

Fig. 1. Two images of the same surface texture sample captured
using different illuminant tilt angles

texture can cause complete misclassification of surface tex-
tures [1]. Essentially the problem is that side-lighting, as
used for instance in Brodatz’s texture album [2], enhances
the appearance of surface texture but produces an image
which is a directionally filtered version of the surface height
function.

In a previous paper [5] we presented theory and experi-
mental results that showed that changes in illuminant tilt
angle! cause texture clusters to describe Lissajous’s ellipses
in feature space. In this paper we use this model to develop
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'n the axis system we use, the camera, axis is parallel to the z-axis,
illuminant tilt is the angle the illuminant vector makes with the x-
axis when it is projected into the z,y plane, and illuminant slant is
the angle that the illuminant vector makes with the camera axis.

a classifier that can classify surface textures imaged under
unknown illumination tilt angles.

Very little work has been published on this subject.
Dana, Nayer, van Ginneken and Koenderink established
the Columbia-Utrecht database of real world surface tex-
tures which they used to investigate bidirectional texture
functions [6]. Later they developed histogram [7], [8] and
correlation models [9] of these textures. Leung and Ma-
lik developed a texture classification scheme that identifies
3D ’textons’ in the Columbia-Utrecht database for the pur-
poses of illumination and viewpoint invariant classification
[10], [11].

In this paper we model a texture’s behaviour in feature
space as a hyper-elliptical function of illuminat tilt. We
combine this with a multivariate Gaussian model of the
effects of noise, shadowing etc. to provide a maximum
likelihood classifier that identifies the class of the unknown
texture and estimates the illuminant tilt direction.

The elliptical model of feature behaviour assumes the use
of a set of ’linear texture filters’[4]. These are simply linear
bandpass filters followed by energy estimation functions:
such as Gabor filters, Laws masks, wedge and ring filters
etc. Thus the classification scheme that we have developed
is application to a wide range of classifiers.

The next section briefly presents the elliptical model of
texture feature behaviour. This is followed by a description
of the classifier. Finally, results using thirty real textures
are presented and conclusions drawn.

II. THE ouTPUT OF LINEAR TEXTURE FILTERS AND
THEIR FEATURES
A. The behaviour of a single feature

We exploit a model of the surface to image transfer func-
tion originally due to Kube and Pentland [3]:

I(w,0) = w?cos® (0 — 1)sin® (o) H (w,6) (1)
where:
I(w,0) is the image power spectrum;
H(w,0) is the surface power spectrum;
T is the illuminant tilt angle; and
o is the illuminant slant angle.

We define a Linear Texture Feature as a linear filter fol-
lowed by a variance estimator[4]. The mean output of such
a feature is therefore:

f(r) =VAR(o(2,y)) (2)

where o(z,y) is the output of the linear filter.



If o(z,y) is a zero mean filter and O(w, ) is its power
spectrum expressed in polar co-ordinates then:
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Using equation 1 on the preceding page we can express
O(w,0) as:

Ow,0) = w?cos*(# —7)sin’(0)A(w,0) (4)
where:
A(w,0) = H(w,0)|F(w,0))?
F(w,0) is the transfer function of the linear filter

Using cos®(z) = 1/2(1 + cos(2x)) and cos(z — y) =
cos(z)cos(y) + sin(x)sin(y) gives:

flr) = /w?’sinz(a)/lﬂ [1 4 cos(26)cos(2T)
0 0
+sin(260)sin(27)]A(w, 8) df dw
(5)
Hence:

fr) =

The above parameters (a, b and ¢) are all functions of illu-
minat slant (o) the surface height function and the linear
filter of the texture feature. None are a function of illu-
minant tilt (7). Thus equation 6 predicts that the output
of a texture feature based on a linear filter is a sinusoidal
function of illuminant tilt> with a period 7 radians.
Figure 2 shows the behaviour of four texture features
that are typical of the results that we obtained using 30
real textures. They clearly show that the features’ outputs
are a sinusoidal function of the illuminant’s tilt angle (7).

a + bcos(27) + ¢sin(27) (6)

B. Behaviour in a Multi-Dimensional Feature Space

If two different features are derived from the same surface
texture the results can be plotted in a two-dimensional x, y
feature space. From equation 6 we obtain:

x = fi(1) = a1 + by cos(27) + ¢; sin(27) (7)
y = foT) = ag + bz cos(27) + cosin(27) (8)

Since the frequencies of the two cosines are the same, these
two equations form two simple harmonic motion compo-
nents. Therefore the trajectory in 2D feature space is a
Lissajous ellipse. In the general case of two or more filters
the result is an ellipse or hyper-ellipse.

Figure 3 on the next page shows the behaviour of two
Gabor filters (F25A45com and F25A0com) as a function
of illuminant tilt for six real textures. It clearly shows the
elliptical behaviour of the cluster means.

2In the case of A(w,0) being isotropic (for instance if both the
surface and the filter are isotropic) the response will degenerate to a
sinusoid of zero amplitude, i.e. it will be a constant (straight-line)
function of 7. However, if an isotropic filter is applied to a directional

surface then A(w, #) will not be isotropic and the tilt response will be
a sinusoidal function of tilt.
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Fig. 2. Typical sinusoidal behaviour of texture features. (Each plot
shows how one output of one feature varies when it is repeatedly
applied to the same physical texture sample, but under varying illu-
minant tilt angles. Discrete points indicate measured output and the
curves show the best-fit sinusoids)

III. THE CLASSIFIER

From figure 3 on the following page it is obvious that
linear and higher order classifiers are likely to experience
difficulty in dealing with this classification problem. We
have therefore chosen to exploit the hyper-elliptical model
of feature behaviour described above. We combine this
with a multivariate Gaussian model of the effects of noise,
shadowing etc. to develop a maximum likelihood classi-
fier that identifies the class of the unknown texture and
estimates its illuminant tilt.

A. Training

The easiest way to visualise training of the classifier is
with reference to the 2D case shown in figure 3 on the
next page. Training requires estimation of the parameters
that represent the elliptical behaviour of each texture class
(rock1, slab60 etc.). A set of training images of each tex-
ture is captured over a range of illumination tilt angles.
Each image is used to calculate one feature vector value.
The parameters of the ellipse are obtained by fitting:

fi(T) = a; + bicos(21) + ¢;sin(271) 9)

to these points to obtain estimates of a;, b; and ¢; for each
feature i. We also estimate the variance o; of the data from
the best-fit sinusiod. Each texture class is therefore mod-
elled by 4n parameters, where n is the number of features.

B. Classification

If we assume that the deviations of features from their
elliptical behaviours are independent and follow a multi-
variate Gaussian distribution then we may express the like-
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Fig. 3. The behaviour of six textures in the comF25A0/comF25A45
feature space together with the best fit ellipses (each point on an
ellipse denotes a different value of illuminant tilt)

lihood that a texture belongs to a particular class as:

o(7) = H \/%U‘ei (yi — (a; + bicos(27) + ¢;sin(27))

QUi

(10)
where y; is the value of the i*? feature of the n-dimensional
feature vector of the unknown texture, and 7 is the estimate
of the illuminant tilt under which the texture was imaged.

The classification task therefore becomes one of maximis-
ing equation 10 with respect to 7 for each texture class, and
assigning the unknown texture to the class with the max-
imum likelihood. In terms of figure 3 this approximates
to finding the closest point on each ellipse weighted by the
reciprocals of the variances o;.

To simplify the problem we take natural logs:

- 1
Zln(\/ﬂai)

_ zn: (y; — (@i + bicos(27) + ¢;sin(27))?
20i

Substituting (cos(27))? = 1 — (sin(27))? and = = sin(27)
reduces this function to a 4"¢ order polinomial in z. We
determine the maximum value of ¢(7) by finding the roots
of the derivative of this polynomial.

The optimisation of equation 10 for each texture class
provides both a likelihood figure for that class and an esti-
mate of the tilt angle 7. The test sample is assigned to the
class with the maximum likelihood and the associated 7 is
returned as the tilt estimate.

TABLE I
CLASSIFICATION ERRORS.

Percentage of Classification errors
Number of Filters | Six | five | four
| Detected errors | 0.81% | 2.02% | 3.77%

IV. TESTING THE CLASSIFIER

This section describes the texture features and image sets
used to test the classifier it then presents the results that
were obtained using thirty real textures.

A. The Texture Features

Six Gabor [12] and two Laws filters [13] were used in
various configurations in the classifier.

We use the notation typeFQAO to denote a Gabor filter
with a centre frequency of {2 cycles per image-width, a di-
rection of © degrees, and of type complex or real. Five com-
plex Gabor filters (comF25A0, comF25A45, comF25A90,
comF25A135, comF50A45) together with one real Gabor
filter (realF25A45) were implemented. The two Laws filters
that we used were L5FE5 and E5L5. Three combinations
of features were used:
set sixz: four complex Gabor Filters and two Laws Filters.
set five: five complex Gabor Filters.
set four: four complex Gabor Filters.

B. The Image-set

Thirty physical texture samples were used in our exper-
iments. 512x512 8-bit monochrome images were obtained
from each sample using illumination tilt angles ranging be-
tween 0° and 180° incremented by either 10° or 15° steps.

Every other image was selected for training. The remain-
der were used to test the classifier.

One sample image of each texture is shown at the end of
this paper.

C. Results

Both classification accuracy and the accuracy of illumi-
nant tilt estimation were investigated.

Table I shows the overall misclassification rates that oc-
curred. Table IT on the next page details the misclassifi-
cations for the six and five filter feature sets. For instance
it shows that using six filters, the classifier misclassified
slab4b imaged using an illuminant tilt angle of 70°, as
michael6 imaged at a tilt angle of 18°. Examining the
images in the appendix explains some of the misclassifica-
tions e.g. twins4s, strifd and iso45 appear similar. Oth-
ers look quite different from one another e.g. radial{5 and
michael3. However, it should be noted that the distinction
between these two textures blurs when michael3 is imaged
at 90° of tilt, as this filters out much of the 0° spaghetti
texture.

Figures 4 and 5 on the facing page show the errors that
occurred in estimating the illuminant tilt angles. Figure 4



TABLE II
CLASSIFICATION RESULTS.

Misclassification
Input siz filters four filters
texture |tilt texture |tilt | texture |tilt
stones2 | 50 | chipsl | 23

stones2 | 170 |
radial45| 170 |
slab4bs | 70 michael®6 |
twins45 | 90 stridb |
michael2| 170 |

michael7| 2.2
michael3| 90
michael6| 22

iso45 | 90
michael8| 180

18
93

shows the mean square error in tilt (the mean being cal-
culated over each set of test images obtained from a single
texture for a particular classifier). Figure 5 shows a his-
togram of the all the errors that occurred. Both of these
charts show that in the majority of cases the illuminant tilt
is estimated to within 5°. Only in a very small number of
cases, such as card! and and?7, does the error exceed 10°.
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Fig. 4. Bar-chart of error metric values for the use of four, five
complex Gabor Filters and a combination of four complex Gabor
Filters and two Laws Filters showing the goodness of tilt deviation
over the different texture samples

V. CONCLUSIONS

We have presented a new tilt invariant 3D surface tex-
ture classifier that exploits the hyper-elliptical behaviour
of texture features. It has been shown to perform well on
30 real textures: providing high classification accuracy and
good illuminant tilt angle estimation when used with com-
plete images.

The immediate questions that arise from this research
are:

1. Can this approach be used for pixel by pixel classifica-
tion, and hence segmentation?

2. How can we make the classifier robust to changes in
illuminant slant?
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Fig. 5. Histogram of all results using four, five and six filters
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TABLE IIT
ONE IMAGE OF EACH OF THE THIRTY SAMPLE TEXTURES



