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Abstract
The appearance of a surface texture is highly dependent on
illumination. This is why current surface texture classifica-
tion methods require multiple training images captured un-
der a variety of illumination conditions for each class. We
show that a single training image per class can be sufficient
if the surfaces are of uniform albedo and smooth and shal-
low relief, and the illumination is sufficiently far from the
texture macro-normal. The performance of our approach
is demonstrated on classification of 20 textures in the Pho-
Tex database. For test images which are most different from
the training images (different instances of the same texture
observed, non-equal illumination slants), the success rate
achieved is in the range of 60–80%. When the test images
differ from the training ones only in illumination tilt, the
success rate achieved is well above 95%.

1. Introduction
Appearance of textures possessing a three-dimensional re-
lief strongly depends on illumination. While all state-of-art
methods dealing with illumination-invariant texture classi-
fication need multiple training images per class, the central
question posed in this article is: Does there exist a method
for illumination-insensitive comparison of two images of
a texture captured under different illumination conditions?
Under the assumptions summarised in the Abstract, this pa-
per shows that the answer to this question can be positive,
and

i) presents a theory which shows that two images of a
surface can be made virtually identical by filtering
each of the images by a linear filter corresponding to
a directional derivative. The filters are generally dif-
ferent for each of the two images, and depend on the
illumination directions used (see Fig. 1),

ii) implements a method which employs this theory to es-
tablish the similarity measure of a pair of texture im-
ages captured under two unknown illumination direc-
tions, and

-

-

Figure 1: Basic idea of our approach: When images illu-
minated from two different directions (indicated by white
arrows) are filtered by a directional derivative in reciprocal
directions (grey arrows) and properly scaled, they can look
almost identical. ‘Reciprocal’ means that projected light di-
rection of the first image is used to filter the second image,
and vice versa.

iii) employs this method for illumination-invariant texture
classification with a single training image per class.
The classification is based on simply computing the
distances of a query image to each of the class exem-
plar images, and choosing the one which is the closest.

To the best of our knowledge, this paper is the first
which, albeit under assumptions which might look at a
first sight restrictive, solves the problem of illumination-
invariant two-image texture comparison. While such a prob-
lem is indeed interesting on its own, it is motivated by
practical considerations. For example, for retrieval from
unstructured databases, image-by-image comparison of a
query image with the database images has to be performed.
By unstructured, we mean that the database does not neces-
sarily contain images that are representative set for a wide
range of illumination conditions for a given material.

The central question we address is naturally related to
the topic of illumination invariants and previous work on
two-image comparison under different illumination. Chen,
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Belhumeur and Jacobs [4] used joint probability of image
gradient directions to compute the likelihood that two im-
ages come from the same surface; Jacobs, Belhumeur and
Basri [7] exploited the fact that the ratio of the two images
is varying slower when they are produced from the same
surface than if they come from two different objects. How-
ever, these approaches rely on joint, inter-image features
which require the images to be spatially registered (or at
least, spatially registerable). They are thus not easily ex-
tendable for comparing two texture images, as these usually
come from two different instances (surface portions) which,
for the same texture, share only the texture statistics but not
the geometry.

Recent work of Osadchy, Lindenbaum and Jacobs [9]
achieves illumination quasi-invariance on smooth surfaces
using the whitening approach. The assumptions are that the
surface is Lambertian, of uniform reflectance, and of shal-
low relief and that the illumination direction is sufficiently
inclined from the surface macro-normal. The method is ap-
plied for classification of registered images of smooth ob-
jects. It is not easily extendable for texture recognition ei-
ther, as its effect increases the dissimilarity between images
coming from different objects, as opposed to making the
images produced by the same surface more similar [9].

Our method is fundamentally different from previous
work in that it can make the two images of the same surface
virtually identical. We therefore hypothesise that it can also
match the image statistics of the same surface texture ob-
served under different illumination conditions, and we im-
plement a method for such two-image texture comparison.

We employ our two-image comparison approach for tex-
ture classification problem. Previous work in the area
of texture classification under varying illumination can be
roughly divided into two groups:

i) Appearance-based approaches need a representative set
of examples captured under varying illumination. This ap-
proach includes Leung and Malik [8], Varma and Zisserman
[10] or Cula and Dana [5]. The methodology in this group
is that the textons are obtained first from the training data by
clustering in a high-dimensional space, and their histograms
are then used as features. For assessing the proximity of
features, a χ2-test is used.

ii) Model-based approaches are called so in this paper as
they employ the illumination model. These are represented
by works of Chantler et al [3] or Barsky [2]. Chantler et
al show that the response of variance of a filtered image is
sinusoidal under varying illumination tilt. Barsky [2] com-
putes statistical surface descriptors from data obtained by
photometric stereo, and generalises Chantler’s approach to
non-uniform albedo materials and general light directions.
Both these works use variance of images filtered by linear
operators as features.
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Figure 2: (a) Reflectance geometry: the angle of incidence
θi. (b) Slant and tilt of a light source l: slant θ is the angle
between the camera axis and l. Tilt φ is the angle between
the x-axis and the projected light l̂.

All these previous approaches need multiple training im-
ages per class. Our classification method requires a sin-
gle training image per class, and is implemented by simply
computing the distances of the query image to all training
images, and then selecting the class of the one which is the
closest.

2. Theory
In this Section, we show that two images of the same surface
captured under different light directions can be made virtu-
ally identical. This is achieved by filtering each of them
by a derivative filter which depends on the light used for
capturing the other image. The assumptions needed for de-
veloping the theory are that the surface is smooth, of uni-
form Lambertian reflectance and shallow relief, and that the
illumination is sufficiently inclined from the surface macro-
normal.

The way we proceed is as follows. First, we review what
the link is between the image gradient and the surface dif-
ferential properties (similar derivation can be found in [4]).
This comprises Eqs. (1)—(6), and is a pre-requisite for the
principal observation made in the rest of this Section.

Notations and definitions. Partial derivatives of a function
f are denoted by a letter subscript (fx

def= ∂f/∂x). The gra-
dient of f is denoted ∇f . A directional derivative of f with
respect to a vector u ∈ R2 is denoted by a vector subscript
(fu) and its relation to gradient is fu = u · ∇f . Vector u is
called directional derivative vector. The camera is assumed
to be orthographic with square pixels, and the global coordi-
nate system to have its z-axis vertical and aligned with the
camera optical axis. The slant and tilt of illumination di-
rection are defined as the polar and azimuth angle in usual
spherical coordinates (see Fig. 2(b)). Any surface geom-
etry is assumed to be representable by a height function
z = z(x, y). This function is assumed to be C2 continu-
ous, implying that zxy = zyx. And finally, having a vector



x ∈ R3, a projected vector x̂ ∈ R2 represents the projec-
tion of such vector onto the plane x−y (see Fig. 2(b) for an
example given by projected light vector l̂).

For Lambertian surfaces, the surface reflectance at a sur-
face patch is characterised by albedo which represents the
amount of light which is scattered from the surface back
into the air and is denoted ρ. The intensity i at a pixel ob-
serving the patch is then

i = ρσ cos θi , (1)

where θi is the angle of incidence (see Fig. 2(a)) and σ is
the light source intensity. In this article, we assume uniform
albedo surfaces, and without loss of generality we set ρ = 1.
The above equation can then be rewritten as

i = σlT n = (σl)T n = sT n , (2)

where l and n are the unit light and normal vectors, respec-
tively, and the vector s = σl is called the scaled light. Ex-
pressing the normal as n = (−p,−q, 1)T

/
√

1 + p2 + q2

with p = zx, q = zy being the surface height gradient [6],
gives

i = sT (−p,−q, 1)T√
1 + p2 + q2

. (3)

The derivative of image intensity with respect to x is

ix =
−ŝT (px, qx)T√

1 + p2 + q2
− 1

�2
sT (−p,−q, 1)T√

1 + p2 + q2
3 (�2ppx + �2qqx)

=
−ŝT (px, qx)T√

1 + p2 + q2
− i

−n̂T (px, qx)T√
1 + p2 + q2

(4)

where ŝ is the projected light vector and n̂ is the projected
surface normal n̂ = (−p,−q)T

/
√

(1 + p2 + q2). The
other component of intensity gradient is, similarly,

iy =
−ŝT (py, qy)T√

1 + p2 + q2
− i

−n̂T (py, qy)T√
1 + p2 + q2

. (5)

Denoting H =
[

px qx

py qy

]
the surface height Hessian, the

image intensity gradient ∇i can thus be written briefly as

∇i =
H√

1 + p2 + q2
(−ŝ + in̂) = H̃(−ŝ + in̂) , (6)

where H̃ = H/
√

1 + p2 + q2 is the local surface Hessian
scaled by the denominator term.

We now consider two images i and j of a surface, one
illuminated with light s and the other with light t. The re-
spective image gradients are, according to Eq. (6)

∇i = H̃(−ŝ + in̂) , ∇j = H̃(−t̂ + jn̂) . (7)

Figure 3: An example of filtering two images of the same
texture AAJ (first two images) by reciprocal projected light
directions. The match of the filtered images (last two im-
ages) is excellent, despite great perceptual difference of raw
images. The slants of the two images are 45◦ and 60◦, re-
spectively, and the tilts are 30◦ and 330◦, respectively. The
raw images are scaled for display purposes.

We observe that making the directional derivative of the first
image with respect to t̂ and of the second image with respect
to ŝ gives

t̂ · ∇i = −t̂T H̃ŝ + it̂T H̃n̂ , (8)
ŝ · ∇j = −ŝT H̃t̂ + jŝT H̃n̂ . (9)

The first terms (−t̂T H̃ŝ and −ŝT H̃t̂) are equal for both
images because the Hessian is symmetric due to C2 surface
continuity (implying py = qx). The second terms are gener-
ally different. If the result of filtering is required to give sim-
ilar images, the second terms must be small compared with
the first terms, i.e. |t̂T H̃ŝ| � max(|it̂T H̃n̂)|, |jŝT H̃n̂|).
The general necessary conditions for these inequalities to
hold are the following:

a) Shallow relief. The projected normal should be of
small length (‖n̂ � 1‖) which scales down the magni-
tude of the terms which are required to be small.

b) Non-vertical illumination. This is an obvious neces-
sity as if, say, s is vertical then ŝ = 0 and the symmet-
ric term t̂T H̃ŝ would vanish.

These conditions are necessary but not sufficient because
t̂T H̃ŝ can still vanish for special configurations of the two
lights and the Hessian matrix H̃. As an example, con-
sider the case when the Hessian is a scaled identity matrix
and the two projected light directions are perpendicular to
each other. In such case, the symmetric term t̂T H̃ŝ is zero.
Whether this represents a problem or not depends on the ge-
ometry of the surface imaged. The magnitude of the second
terms is constrained by the two conditions, and thus even
several points within the image in which the first term has
large magnitude should be sufficient to guarantee that the
images look very similar.

This theory is illustrated in Figs. 1 and 3. Fig. 1 shows
real images of a wallpaper (class ACD in PhoTex [1]) which
is illuminated from directions indicated by a white arrow
(with slants being 45 and 60 degrees, respectively). The
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Figure 5: Given the derivative filter vector u, the feature vector F(u) is constructed as follows. The image is filtered first (a),
and the filter bank is applied subsequently (b). Variances of the filtered images are computed and are concatenated to form a
vector (c). Subsequently, this vector is L2 normalised (d). Note that this figure shows one scale only; in our implementation,
the processing is done on 3 octaves, and the resulting feature vector is thus 15-dimensional.

Figure 4: The filter bank used in our experiments. The
first four filters are high-frequency odd Gabor filters at four
orientations. The last filter is a Gaussian. All filters have
σ = 1.4pixels.

images are then shown filtered in reciprocal projected light
directions and variance-normalised. Fig. 3 shows another
example, for class AAJ. The filtered images show a very
good match.

3. Algorithms and Methods
The previous section showed that two images can be made
virtually identical by filtering them in reciprocal projected
light directions. This observation can be applied to two-
image texture comparison. While two surface texture im-
ages captured under different illumination conditions have
different statistics, our approach suggests that the filtered
images will have similar statistics. The examples shown in
Figs 1 and 3 support this hypothesis.

Known illumination conditions. In order to measure the
similarity of two surface textures imaged under known il-
lumination conditions, we apply the approach outlined in
Fig. 5 to each of the images1. For a given image, let the
projected light of the other image be u. We first filter by a
directional derivative operator (u ·∇) and then compute the
set of texture features. For our experiments, we have used
Gabors simply because they are popular in the literature (see
Fig. 4). Subsequently, we apply the usual non-linear step
consisting of taking the variance of filtered images, and we

1Disregard the L2 normalisation as this stage is only required later.

compare the resulting feature vectors using Euclidean dis-
tance which gives the measure of similarity.

Unknown illumination conditions. Under unknown illu-
mination conditions, the two derivative filter vectors must
be estimated. We remove the dependencies on their mag-
nitudes by normalising with respect to variance. What re-
mains therefore is to search through the possible tilt direc-
tions of the illuminants. We use an exhaustive search on a
small number of tilt directions.

The implementation details are as follows. For texture
features we use 5 Gabors on 3 octaves, thus the feature vec-
tors are 15 dimensional. Statistics of each image is rep-
resented by feature vectors computed for 9 tilts (0◦ to 160◦

with2 a step of 20◦). To evaluate the distance of two images,
we find the closest pair of feature vectors, which involves
9× 9 = 81 comparisons of 15-dimensional vectors.

Texture classification with single training images. Hav-
ing a single training image per class, texture classification
is achieved by computing the distance of a query image to
each of the training images. This is done using the two-
image texture comparison under unknown illumination con-
ditions. Subsequently, the class is selected according to
which of the training images is closest to the query image.

4. Experiments
All tests were carried out on the PhoTex database [1]. The
core of this database is formed by images of surface tex-
tures which are held fixed and are observed from a con-
stant viewpoint for different illumination directions. The
light slants are 30◦,45◦,60◦ and 75◦. The light tilts are
φ = {0◦, 30◦, . . . , 300◦, 330◦} for slants in the set θA =
{45◦, 60◦, 75◦}, and φ = {0◦, 90◦, 180◦, 360◦} for slant

2Note that sampling the tilt in a range of 180◦ is indeed sufficient, as
opposite derivative directions give rise to the same feature vectors.



1–AAA 2–AAB 3–AAJ 4–AAM 5–AAN

6–AAO 7–AAR 8–AAS 9–ABA 10–ABJ

11–ABK 12–ACC 13–ACD 14–ACE 15–ADB

16–ADC 17–ADD 18–ADE 19–ADG 20–ADH

Figure 6: PhoTex classes used in the classification experi-
ment. The images shown correspond to illumination slant
θ = 60◦ and illumination tilt φ = 0◦.

θB = 30◦. In this article, we work only with set θA because
set θB contains too few images.

We selected 20 textures to work with (see Fig. 6); we
considered the same set of textures as Barsky did in [2] to
allow for comparison of classification performance with this
reference.

Images in the database were all divided to two halves
(left and right). Classification experiments were carried out
both for the case when the training and test images from
the same half were employed (this meant that the same por-
tion of surface, although under different illumination, was
involved while comparing the query image with its native
class training image) and for the case when they were from
different halves.

Each classification experiment setting consisted of three
entities:

1. Surface portions used A binary parameter which says
whether the same halves of database images were used (will
be denoted ��) in an experiment, or not (denoted ��).
Note that if the same halves were used this did not mean the
overlap of training and test sets because test set was always
different at least in illumination conditions3.

2. Slant of the training images The tilt was 30◦ and slant
was 45◦ in all cases. The choice of slant is motivated by
i) eliminating the extent of shadows, and by ii) the inten-
tion to test the ability of our method to generalise for slants
which are distant from the training slant; testing on slant
75◦ gives 30◦ difference.

3If the same halves were used and the training and test images were
produced under the same illumination slant, the images corresponding to
training tilt were removed from the test set.

��, 45, 45 our Barsky[2]
first correct 81.2 85.2
correct within first 3 95.8 98.2

Table 1: Comparison of performance with the method of
Barsky [2]. First row lists the basic classification rates,
while the second row lists the rate for a case when ‘correct
class within first three retrieved’ is considered a success.

Experimental
settingsa

our
approach Laplace ‖∇‖ no

filtering
��, 45, 45 97.3 53.6 46.8 59.5
��, 45, 60 94.5 52.3 40.5 53.6
��, 45, 75 61.8 45.5 27.7 40.5
��, 45, 45 81.2 52.5 45.8 45.8
��, 45, 60 81.2 50.4 38.8 49.6
��, 45, 75 67.5 46.2 27.1 37.5

aExperimental settings read: ��, 45, 45 = the surface portions in
training/testing sets were the same, and slant for both was 45◦.
��, 45, 60 = the surface portions for training/testing were different, slant
for training images was 45◦ and slant for test images was 60◦.

Table 2: Classification success (in percent) for different ex-
perimental settings (rows) and different methods employed
for classification (columns). The performance of our ap-
proach (first column), was compared with three naive ap-
proaches (other columns) in which filtering by directional
derivative (step (a) in Fig. 5) is replaced by a directionless
operator indicated.

3. Slant of the test images The slant was always one of
{45◦, 60◦, 75◦} and all (twelve) tilts in the database were
used.

The algorithm employed for classification was as de-
scribed in the previous section. The experiments for various
experimental settings produced promising results (see col-
umn ’our approach’) in Tab. 2. For the case when the slants
and the surface portions used for training and testing were
the same, the recognition rate was 97.3%. When different
surface portions were used, the rate decreased to 81.2%. As
expected, the rate also drops with increasing difference be-
tween the training and test slants.

Comparison with other approaches. We have com-
pared our approach with one model-based approach due to
Barsky [2] and we have also compared our method with
three naive approaches.

In Tab. 1 we show the comparison with the classification
result given by Barsky’s model-based approach [2]. Our
approach is only slightly inferior, despite the fact that we
classify using only one training image, while the work de-
scribed in [2] needs at least three registered training images
to employ photometric stereo at the first step of the algo-



rithm. The comparison is fair, but still it should be con-
sidered just approximate because Barsky used different fil-
ters to extract features, and divided the surface into quarters,
learning from one, and testing on the other three.

The naive approaches we used were: i) removing the
directional derivative (step (a) in Fig. 5), ii) replacing
the directional derivative by a directionless magnitude-of-
gradient operator, and iii) replacing the directional deriva-
tive by the (directionless) Laplacian operator. In all three
cases, we did not otherwise change the specification of the
filter banks. Table 2 shows that the three approaches per-
form better than random choice (5%). However, their per-
formance falls far short of the results produced by our ap-
proach.

Misclassifications. We investigated the misclassifications
produced by our approach4, and discovered that they were
basically of three types. The first cause of misclassifica-
tion was that some classes (e.g. AAM, AAN, AAO) were
perceptually close together. The second major cause of mis-
classification was the presence of shadows which, after be-
ing filtered, wipe out large areas of images. The third mis-
classification type was observed when filtered images of the
correct class were perceptually similar, and yet the features
we used ranked other candidates higher. We believe that this
type of error could be removed by using more sophisticated
features (e.g. [10]).

5. Summary, and Conclusions
This paper has shown that, subject to certain assumptions, it
is possible to make two images of a surface observed under
two different illuminations very similar. We have imple-
mented a method which exploits this fact and enables us to
compare two textured surfaces illuminated under unknown
illumination conditions.

The usability of the method was demonstrated on a tex-
ture classification problem with single training images per
class. The experiments showed that the performance of our
approach which employs directional derivatives is consid-
erably better than naive approaches based on (directionless)
Laplacian, magnitude of gradient, or no filtering at all. The
price paid for the high performance of our method is more
computational expense, requiring optimisation of both di-
rections of the derivatives applied to the images.

A comparison with a model-based approach due to
Barsky [2] suggests that our method performs comparably
on the PhoTex database, despite that fact that it employs sin-
gle training images. The advantage of the method described
in [2] is that it does not require the assumptions we make

4We wrote a tool to export the results of a classification experiment
into HTML where all test images can be viewed along with their filtered
versions and classification statistics. Such exports enable to easily review
the performance and hypothesise the causes of misclassifications

about the surface nor about the light sources; but needs three
registered training images per class at least.
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