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ABSTRACT  

In this paper we present an investigation into 
visually perceived surface roughness. 

First we present psychophysical evidence 
that suggests that there is a simple 
relationship between perceived roughness 
and two well known surface parameters: 
fractal dimension and rms roughness. And 
that neither are good estimators, on there 
own, of perceived roughness. 

Second we present a measurement model 
for deriving the perceived roughness of a 
surface from its height function which is 
motivated by the spatial frequency channel 
model of the human visual system. 

1. INTRODUCTION  

Our long-term goal is to establish 
perceptually relevant measurements for 
surface texture. By surface texture we 
understand a stochastic surface which is 
described by its three-dimensional surface 
relief and reflectance properties (see Fig. 
1(a) and Fig. 2). ‘Sand ripples’ and ‘animal 
skin’ can serve as examples of natural 
surface textures, while ‘textile’ and 
‘wallpaper’ are two man-made ones. 

To start with a problem of manageable 
complexity we constrain the study to 
measuring the perceived roughness of 
artificially generated fractal surfaces.  

− Fractal surfaces. Surface textures 
investigated in this article are 
constrained to unit-albedo Lambertian 
surfaces whose geometry is modelled 
as 1/ frequencyβ noise. They are 
parameterised by just two terms: β the 
magnitude roll-off factor, and σ the 
surface RMS roughness (see Fig. 1(a) 
for examples). 

− Perceived roughness. We select 
perceived roughness (ξ PR), as the only 
perceptual dimension to be studied. 

     (a) 

        (b) 

Figure 1. (a) Examples of fractal surfaces 
obtained for different values of β (the 
magnitude spectrum roll-off factor) and σ 
(the RMS roughness). The surfaces are 
generated for points as indicated in (b), 
which is the β − σ space. The contours 
illustrate the possible form of lines of equal 
perceived roughness (ξ). 

2. PREVIOUS WORK  

There has been surprisingly little work 
published on experiments that have sort to 
determine the mapping between the 
physical description of a surface texture and 
its perceived characteristics. Most 
researchers have tried to identify perceptual 
dimensions by using collections of still 
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images of natural textures such as the 
Brodatz album [4]. To our knowledge only 
Ho et al [8] has used surface models. We 
will therefore divide this survey into two 
parts: research using image texture, and 
research using surface models. 

2.1 Research using Image Texture 

Two broad methods have been used to 
establish a perceptual space of texture 
using collections of single still images of 
texture samples. One method has been to 
ask observers to judge texture similarity 
along pre-defined dimensions [17, 1]. While 
these experiments achieved some 
agreement in identifying perceptual 
dimensions, they did not translate well to 
digital analysis of textures for content-based 
retrieval. In other experiments [7, 15, 16], 
multi-dimensional scaling was applied to 
results from observers asked to sort image 
textures freely. These authors concluded 
that visual texture has three major 
orthogonal dimensions. Long and Leow 
pointed out that previous authors did not 
normalise for orientation or scale and 
argued that such variations would affect 
texture perception. After normalising image 
textures in this way, they established a four-
dimensional perceptual space which they 
mapped onto Gabor features using a variety 
of non-linear functions [11, 12]. Balas [2] 
manipulated images of natural textures in 
more sophisticated ways, using Portilla and 
Simoncelli’s algorithm [14] to alter specific 
statistical properties of synthesised grey-
scale images of texture. 

2.2 Research using Surface Texture 

A characteristic of the above experiments is 
that they have used image texture. 
However, our goal is to characterise 
perception of surface texture. It is well 
known that images of surface texture, and 
features derived from such images, are 
fundamentally affected by illumination and 
viewing conditions (see Fig. 2) [13, 6]. 
Moreover, single still images provide 
relatively poor sensory stimuli – multiple 
images obtained while moving our heads, 
the sample orientation, or the illumination 
greatly enhance our perceptions of surface 
characteristics. 

Koenderink et al [9] used sets of still 
images of natural surfaces captured under 
precisely controlled conditions of 

illumination in order to test observers’ ability 
to estimate the direction of illumination from 
the images. More relevant to the topic of our 
work however, Ho et al [8] synthesised 
surface representations and rendered these 
under varying conditions of illumination in 
order to test observers’ perception of 
roughness as a function of illumination 
angle. They concluded that the perceived 
roughness of texture patches did not remain 
constant under varying illumination slant 
angle. However, the surfaces were 
obviously artificial (20×20 vertices were 
used) and the single, still, fronto-planar 
images subsequently generated provided 
limited stimuli for observers. 

      
Figure 2. Effect of illumination variation on 
images of surface texture. (The two images 
demonstrate the effect of illumination 
variation on resulting image texture: both 
images are of the same physical surface; 
only the illumination has been changed 
between photographs.) 

3. EXPERIMENTAL PROCEDURE 

In developing our procedure for 
investigating the perceptual nature and 
mappings of surface textures we wanted to 
use stimuli similar to those typically 
experienced by humans when visually 
inspecting a surface, but under totally 
controlled and reproducible experimental 
conditions. We have therefore used fast 
computer graphics techniques to render 
photorealistic imagery of synthesised 
surfaces in real-time. This provides: 

1. Rich real-time stimuli (up to the 
resolution of the human eye) using self 
and cast shadowing of Lambertian 
surfaces, 

2. Natural appearing surface textures (very 
similar to those produced by shattering 
plaster blocks), 

3. Real-time interactive (or pre-
programmed) variation of illumination 
and surface orientation, and 
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4. Real-time interactive variation of 
surface characteristics. 

 

Exp. 1 Constant Roughness 

Using the methods described above we 
sought to establish a series of contours of 
constant perceived roughness in the β-σ 
space of surfaces. We did this by: 

1. Generating a ‘reference’ fractal surface 
at a given β and σ, which we plot on a 
β-σ scatter plot, 

2. Generating a second ‘test’ surface at a 
different β and a random σ, 

3. Presenting the observer with 
visualisations of both surfaces, during 
which time the orientations of both 
surfaces simultaneously follow the same 
predefined wobbling motion, 

4. Asking the observer to interactively 
adjust the σ of the ‘test’ surface so its 
perceived roughness matches that of 
the reference. Observers were 
instructed to consider how the surfaces 
would feel if touched when making 
these matches. 

5. We then plot the final β-σ of the ‘test’ 
surface on a scatter plot. 

6. We repeat 1–5 with ‘test’ surfaces of 
differing β, each time randomising the 
phase of the ‘reference’ and ‘test’ 
surfaces. This provides one set of iso-
roughness points (see Fig. 3). 

7. Finally we repeat 1-6 for four other 
‘reference’ surfaces for which we 
choose a reference β-σ to provide a 
total of five iso-roughness lines at 
different perceptual roughnesses. 

 

Exp. 2 Roughness Scaling 

Later in a second set of experiments the 
scaling relationship was analysed by: 

1. Generating two ‘reference’ fractal 
surfaces at given β and σ values based 
on the successive contours found in the 
previous experiments.  

2. Generating a third ‘test’ surface at a 
similar β and a random σ, 

3. Presenting the observer with the three 
surfaces, during which time the 
orientations of the surfaces follow the 
same motion, 

4. Asking the observer to adjust the σ of 
the ‘test’ surface until it was perceived 

as being equidistant to the two 
‘reference’ surfaces, 

5. Repeat 1-4 with different β, σ and phase 
values for all possible iso-roughness 
lines found previously. 

 

Figure 3. The principle of identifying the 
isocontours of perceived roughness. An 
observer is presented with a pair of textures 
at a time: the reference texture (the dark 
point) and a test texture (a light point), and 
is asked to adjust the RMS of the test 
texture such that it matches the perceived 
roughness of the reference. Doing this for 
several test textures (light points) is a key to 
obtaining an isocontour corresponding to the 
reference, ξ = ξ ref.  

The same methods can of course be 
extended to study the effects of varying any 
parameters of surface texture on any 
perceptual judgements. 

4 RESULTS AND ANALYSIS 

Exp. 1 Constant Roughness 

Five observers completed the constant 
roughness experiments (Exp. 1). The scatter 
plot of the resulting contour lines is shown in 
Fig. 4. The data is displayed with a 
logarithmic σ-axis, as it is natural for human 
observers to appreciate surface height 
scaling in that way. 

The plots show evidence of a linear 
relationship between log rms roughness and 
roll-off factor for a constant perceived 
roughness.  



Padilla, Drbohlav, Green, Chantler, Measurement of Perceptual Roughness  
 

4 

Straight lines were therefore fitted to 
each of the five sets of results (one for each 
reference surface roughness). Note the lines 
were fitted independently to each reference 
roughness.  

We believe that these results clearly 
indicate a linear relationship between log σ 
and β for a constant perceived roughness.  
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Figure 4. The results of L1 linear regression 
of experimental data. The five fitted lines in 
each graph correspond to reference 
surfaces whose β’s were set to 2, while the 
reference RMS’s (in cm) were as shown in 
the plot.  

Exp. 2 Roughness Scaling 

For the second set of experiments the 
resulting isocontours are plotted in Fig(5). 
Again, this shows evidence of the linear 
relationship, but more importantly gives us 
the scaling behaviour with which to 
investigate a measurement model.  

5 A MEASUREMENT MODEL OF 
PERCEIVED ROUGHNESS  

In this section we propose a model for 
obtaining numerical estimates of the 
perceived roughness ( PRξ ) of a surface 
from its height function. Our proposal was 
inspired by the common frequency channel 
model of V1 (the first part of the human 
visual system). It comprises a number of 
FRF stages tuned to different frequencies. 
For the purposes of this modelling, we 

express the frequency domain description of 
the fractal surfaces as cycles per degree of 
visual angle at the experimental viewing 
distance of 90 cm. 
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Figure 5. The results of the experimental 
data from the second set of experiments. 
The three solid lines correspond to the 
perceptual middle contour between the 
adjacent isocontours from the previous set 
of experiments.  

Similarly our model comprises of a linear 
filter stage (F) followed by a non-linear 
(integrating) stage (RF). It is expressed 
below in the frequency domain for 
simplicity. 

θωθωθωξ ddSFPR ),(),(∫∫=        (2) 

where 

 ),( θωS is the surface height function 
expressed in the frequency domain, and  

 ),( θωF is the linear filter.  

We have found that using a Gaussian 
function as the linear frequency-domain 
filter provides a good fit to the 
psychophysical data. We parameterised it 
with its width (Gaussian variance) and its 
weight at 30 cycles/degree.   

We optimised this model’s parameters to 
minimise the variation in predicted PRξ  
along the lines of constant roughness 



Padilla, Drbohlav, Green, Chantler, Measurement of Perceptual Roughness  
 

5 

estimated from experiments Ex.1 & 2. The 
shape of these optimisation spaces are 
shown in Figs 6 & 7 respectively. 
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Figure 6. Fit of the measurement model 

PRξ  as a function of its parameters for Ex. 
1.   
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Figure 7. Fit of the measurement model 

PRξ as a function of its parameters for Ex. 2.  

From the above it can be seen that both 
of the optimisation surfaces follow the same 
valley shape. The error is not terribly 
sensitive to traversing along the bottom of 
the valley and this gives a range of possible 
filter shapes as shown in Fig. 8. 

 Contour lines of constant roughness 

PRξ  predicted by the measurement model 
(shown in bold in Fig 8) are plotted together 
with the original psychophysical data in 
figure 9.  
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Figure 8. Possible Gaussian distributions. 
All the filters have almost similar minimum 
variances. The bold filter is the most likely 
filter, which will be used in figure 9 to plot 
the fitting of the model to the real data.  

6. SUMMARY AND CONCLUSIONS 

We have demonstrated that for fractal 
surfaces of constant perceptual roughness a 
linear relationship exists between surface 
roll-off factor and rms roughness.  

Thus neither rms roughness or fractal 
dimension (which is directly and simply 
related to the surface roll-off factor) are 
good measures of perceived roughness on 
their own. 

Finally we have proposed a measurement 
model for perceptual roughness which is 
based upon a simple frequency channel of 
V1 and which we have shown can derive the 
perceived roughness of a surface from its 
height function. 

 
  

Figure 8. Fit of the most likely model to the 
original psychophysical data from Ex. 1. 
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