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Abstract
This paper develops new theory for the optimal placement
of photometric stereo lighting in the presence of camera
noise. We show that for three lights, any triplet of orthog-
onal light directions minimises the uncertainty in scaled
normal computation. The assumptions are that the camera
noise is additive and normally distributed, and uncertainty
is defined as the expectation of squared distance of scaled
normal to the ground truth. If the camera noise is of zero
mean and variance σ2, the optimal (minimum) uncertainty
in the scaled normal is 3σ2. For case of n > 3 lights, we
show that the minimum uncertainty is 9σ2/n, and identify
sets of light configurations which reach this theoretical min-
imum.

1. Introduction
Photometric stereo [7] is a method which computes local
surface orientations and reflectance at each pixel using im-
ages captured under different illumination conditions with
a fixed camera. In general, the intensity i at a pixel observ-
ing a certain surface patch will depend on the orientation of
the patch with respect to the viewing and illumination direc-
tions (see Fig. 1). For Lambertian surfaces [3], this intensity
is given by∗

i = ρκ cos θi , (1)

where ρ is the albedo representing the amount of light re-
flected back from the surface, κ is the light source intensity,
and θi is the angle of incidence. This can be further rewrit-
ten as

i = ρκlTn = (κl)T(ρn) = sTb (2)

where l and n are the unit light and normal vectors, respec-
tively, and vectors b = ρn and s = κl are the scaled nor-
mal and the scaled light, respectively. Scaled normals and
scaled lights are the basic entities of Lambertian photomet-
ric stereo.

∗In this article, we adopt the usual convention that ‘pixel intensity’ and
‘radiance’ are interchangeable terms.
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Figure 1: Reflectance geometry. In general, the reflectance
depends on the orientation of the surface patch normal n
and its reference plane (x′–y′) with respect to the viewing
direction v and illumination direction l.

Photometric stereo is based on inverting the model of
reflectance. For the case of Lambertian reflectance, it is
obvious from (2) that having the intensities i1, i2 and i3
observed for three scaled light sources s1, s2 and s3, there
holds

i = [i1, i2, i3]
T = [s1, s2, s3]

Tb = STb , (3)

where the vector i = [i1, i2, i3]
T stacks the intensity mea-

surements and the matrix S, called the light matrix, stacks
the scaled light vectors, S = [s1, s2, s3]. Therefore, pro-
vided that S is invertible, it is possible to compute the scaled
normal b as

b = S−Ti . (4)

Albedo ρ can then be computed as the magnitude of this
vector, while the normal orientation n is given by normalis-
ing this vector.

In principle, there are several sources of errors which af-
fect the accuracy with which the scaled surface normal is
determined.

In a fundamental paper on this topic, Ray, Birk and Kel-
ley [5] identify principal sources of errors, and strategies for
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dealing with them. Among the error sources, there are: im-
precise measurement of intensities i (camera sensor noise);
error in calibration of light source directions; detector non-
linearity; shadows and specularities (i.e. deviation from the
reflectance model assumed); spatial and spectral distribu-
tion of incident light; surface micro-structure; and optical
imperfections of the surrounding environment. The authors
provide equations for computing the error caused by errors
in observed intensities and in the directions of lights used.
For such error analysis, they work with gradient space rep-
resentations of reflectance maps, which results in rather
complicated equations. This is why Jiang and Bunke [2]
later repeated the derivation using a different parametrisa-
tion to provide a simpler formulation.

While the work discussed above concentrated on error
analysis, the goal of this article is to present new theory that
enables the light source configurations to be determined that
guarantee that the effect of the errors is minimised.

To the best of our knowledge this fundamental topic has
not been addressed formally in full before.

A qualitative recommendation on the placement of light
sources has been made by Lee and Kuo [4] who developed
an algorithm for two-source photometric stereo. By exam-
ining the shape of the reflectance maps, they suggested that
the tilts of light sources should be 90◦ apart.

The article closest to the work described here is that of
Spence and Chantler [6]. They worked with three lights
of equal slant and using numerical optimisation they con-
cluded that the normals are best reconstructed when the
light sources are 120◦ apart, and of slant ∼ 54.74◦. This
corresponds to orthogonal light directions and is in full
agreement with the results derived from the theory pre-
sented here. Additionally, from our formulation of the prob-
lem it follows that all orthogonal triplets of lights are opti-
mal, relaxing the condition that their slant should be the
same. This result also agrees with a brief analysis within
the work of Bezděk [1] who investigated a tri-illuminant
case and concluded that the three light sources should be
orthogonal.

In this paper we only consider errors due to camera
noise. This admittedly is just one of the possible sources of
errors identified in [5]. However, we believe that the theo-
retical treatment developed here provides a significant step
forward. We identify optimal configurations both for the
case of three light sources, and for the more complex case
involving four or more lights.

2. Theory
In this Section, we identify light source configurations
which guarantee that the scaled normal vector b computed
by photometric stereo is least affected by errors in intensity
measurements. After describing the basic assumptions and
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Figure 2: Slant and tilt of a light source l: slant θ is the
angle between l and the viewing vector v (coinciding with
the camera axis). Tilt φ is the angle between the projection
of l onto the camera plane (x–y) and the x-axis.

the problem formulation in Section 2.1, we derive the opti-
mal configurations for three lights in Section 2.2, and then
generalise the theory for four or more lights in Section 2.3.

2.1. Assumptions and problem formulation

Slant and tilt. The direction of a light l is parametrised by
slant and tilt defined as in Fig. 2. Slant is the angle between
l and the vector v pointing towards the camera. Tilt is the
angle which the projection of l onto the camera plane (x–y)
makes with axis x. The viewing vector v is assumed to be
vertical for notational convenience.

Camera noise. The camera sensor is noisy, with the noise
being additive and normally distributed. Therefore, if the
camera sensor outputs intensity i, it is the result of i = î +
∆i with î being the true (noiseless) value and ∆i being from
N (0, σ2) where N (µ, σ2) denotes the normal distribution
with the mean µ and variance σ2.

Equal light intensities. To constrain the solution set for opti-
mal configurations, we work under the assumption that the
light sources are of equal intensities. To fix the intensity,
we set κ = 1 for all light sources. To stress this assump-
tion, we will use L to denote the light matrix instead of S
(cf. (3)). Having n lights, the light matrix L is thus formed
by columns lk of unit L2 norm:

‖lk‖ = 1 , k = {1, 2, . . . , n} . (5)

Scaled normals’ uncertainty. The camera noise (∆i) results
in errors ∆b occurring in the scaled normal estimates b
(∆b = b − b̂ where b̂ is the ground truth of the scaled
normal). The uncertainty ε(L) in scaled normal computa-
tion for a given light matrix L is defined as

ε(L) = E
[
∆bT∆b

]
, (6)

where E [·] is expectation.



Problem formulation. For n ≥ 3, find the light configura-
tion L consisting of n light sources as in (5) such that the
uncertainty in the scaled normal estimation computed using
(6) is minimum.

2.2. Optimal configurations for n = 3 lights
For three light sources and with the assumptions formulated
in the previous Section, Equation (4) is rewritten as

b = L−Ti . (7)

Because this equation is linear, it follows that ∆b =
L−T∆i, and for the uncertainty there holds (cf. (6))

ε(L) = E
[
∆iTL−1L−T∆i

]
. (8)

Because E[(∆ik)2] = σ2 and as the noise in individual
components of i is independent, we can see that this can be
further rewritten to give

ε(L) = σ2trace [L−1L−T] = σ2trace [(LTL)
−1

] . (9)

Our task now will be to minimise the above, subject to the
three constraints given by (5). Putting this down formally,
the problem to be solved is the following:

Formulation 1 Find the solution set Ω∗ of all optimal light
matrices L∗ which satisfy

L∗ = minimise
L∈GL(3)

σ2trace [(LTL)
−1

] (10)

subject to LTL =

 1 · ·
· 1 ·
· · 1

 , (11)

where GL(3) is the group of 3 × 3 invertible matrices. In
this formulation, Eq. (11) represents the same constraints
as Eq. (5) in a form which better reveals the structure of the
problem. Such formulation is not easily solvable though,
because it seems to be non-trivial to combine constraints on
elements of matrix C = LTL (in (11)) with optimisation in
the inverse of that matrix (in (10)). We will try to bypass
this problem as follows.

Formulation 2 (with weakened constraint) Find the so-
lution set Ω∗∗ of all light matrices L∗∗ such that

L∗∗ = minimise
L∈GL(3)

σ2trace [(LTL)
−1

] (12)

subject to trace [LTL] = 3 , (13)

and, subsequently, compute the intersection Ω of this solu-
tion set with the set of matrices conforming to (11):

Ω = Ω∗∗ ∩

L : LTL =

 1 · ·
· 1 ·
· · 1

 . (14)

Observation 1 (Relation of the two formulations.) The
optimisation parts of the two formulation share the same
objective function. They differ only in the solution can-
didate set. The candidate set of Formulation 2 is the su-
perset of the candidate set of Formulation 1 because if (11)
holds then (13) also holds. The optimum attained in the sec-
ond case must therefore be lower or equal to the optimum
of the original problem. If the intersection set Ω above is
empty then it means that the problem with the modified con-
straint given by (13) attains a strictly lower minimum value
compared with the original problem. In that case our ef-
fort would be wasted because solving the modified problem
(Formulation 2) would not provide any useful information
concerning the original problem. But if the intersection Ω
is non-empty then the two problems attain the same mini-
mum value and Ω represents all solutions for the original
problem, i.e.

Ω = Ω∗ (15)

(for Ω see (14), for Ω∗ see Formulation 1). In the follow-
ing text we will show that this is indeed true. We solve the
problem given by Formulation 2 and then observe not only
that Ω is non-empty, but even that the solution sets of For-
mulations 1 and 2 are equal: Ω∗ = Ω∗∗.

Before proceeding, let us present the following lemma
which will help us to solve Formulation 2 easily.

Lemma 1 Let P (3) denote the set of all symmetric positive
definite 3× 3 matrices. The solution to the problem

C∗ = minimise
C∈P (3)

σ2traceC−1 (16)

subject to traceC = n , (17)

is
C∗ = diag

[n

3
,
n

3
,
n

3

]
. (18)

Proof. The SVD decomposition of any symmetric positive
definite matrix C from the solution candidate set will be

C = Udiag[d1, d2, d3]UT , (19)

where U is an orthogonal 3× 3 matrix and dk are positive
values. The SVD decomposition of the inverse C−1 is then

C−1 = Udiag
[

1
d1

,
1
d2

,
1
d3

]
UT , (20)

and the traces of the two matrices are

traceC = d1 + d2 + d3 , (21)

traceC−1 =
1
d1

+
1
d2

+
1
d3

. (22)



Both latter equalities follow from the fact that the trace of a
product of matrices is invariant under a cyclic permutation
of the product:

trace [AB . . .YZ] = trace [ZAB . . .Y] . (23)

Using these results, the modified optimisation function (ob-
tained by including the constraint represented by (17) using
a Lagrange multiplier λ) is

σ2traceC−1 + λ(traceC− n) =

= σ2

(
1
d1

+
1
d2

+
1
d3

)
+ λ(d1 + d2 + d3 − n) . (24)

The necessary condition of optimality is that all partial
derivatives vanish, which leads to

∂

∂dk
: σ2 1

d2
k

= λ, k = {1, 2, 3}, (25)

∂

∂λ
:

3∑
k=1

dk = n . (26)

From (25) it follows that all d2
k must be the same, and as

dk’s are positive, all three, therefore, have to be equal. The
second condition represented by (26) then fixes dk = n/3
for all three. When this result is utilised in (19) together
with the fact that U is orthogonal, (18) follows. �

Solution of Formulations 1 and 2. The optimisation in
Formulation 2 is the same as the problem in Lemma 1 for
C = LTL and n = 3. Therefore, we obtain LTL =
diag[1, 1, 1] and, consequently, L is any triplet of orthog-
onal light vectors, or L ∈ O(3) where O(3) is the group
of orthogonal matrices. This solution indeed satisfies the
constraint represented by (11), and hence this is also the so-
lution to the original problem presented in Formulation 1.
Utilising this result in (9), the minimum uncertainty attained
is

ε(L) = 3σ2 . (27)

2.3. Optimal configurations for n ≥ 3 lights
The algebraic approach presented in Section 2.2 is easily
extended to the case of more than three lights. Let us first
briefly summarise how the governing equations differ from
case n = 3.

– The basic structures are constructed as previously: the
light matrix L = [l1, l2, .., ln] stores the lights column-
wise again, and the intensity vector i is now an n-vector
i = [i1, i2, .., in]T.

– For n > 3 lights in a general configuration, the system
of equations (3) for b is now obviously overdetermined

and the scaled normal b must, therefore, be computed to
minimise some predefined cost. A common choice is to
require that the solution b must minimise the square of
the relighting error

εrel = ‖LTb− i‖2 , (28)

which leads to the use of a pseudo-inverse (for a rectan-
gular k× l matrix A of column rank l, the pseudo-inverse
is A+ = (ATA)−1

AT). Here we have A = LT, and the
normal is thus given by (cf. (7))

b = (LLT)
−1

Li. (29)

– The definition of uncertainty represented by (6) is of
course unchanged. The analogue for (8) is now

ε(L) = E
[
∆iTLT(LLT)

−T
(LLT)

−1
L∆i

]
=(30)

(compute expectation)

= σ2trace [LT(LLT)
−T

(LLT)
−1

L] = (31)
(shift one position to the left)

= σ2trace [(LLT)
−T

(LLT)
−1

(LLT)︸ ︷︷ ︸
identity

]=(32)

= σ2trace [(LLT)
−1

] . (33)

In the above manipulation, (31) follows from (30) be-
cause of the independence of the individual components
of ∆i (cf. Eqs. (8) and (9)). Eq. (32) follows from (31)
by the cyclic property of the trace (see (23)). Eq. (33)
results straightforwardly by discarding the identity from
the right-most part of the expression, and applying the
fact that LLT is a symmetric matrix.

We may easily check that the final expression is — for
n = 3 — exactly the same as in (9)†.

– The analogue of (11) is now expressed in terms of an
n× n matrix LTL,

LTL =


1 · · · · ·
· 1 ·
...

. . .
...

· · · · · 1

 . (34)

– The analogue of (13) now changes straightforwardly into

trace [LTL] = n(= trace [LLT]) . (35)

†A careful reader will notice that while here we have trace [(LLT)
−1

],
in (9) we use trace [(LTL)

−1
]. But for n = 3 this is equal because the

latter is trace [(LTL)
−1

] = trace [L−1L−T] = trace [L−TL−1] =

trace [(LLT)
−1

].



In solving for optimal light configurations for n > 3, we
will follow the same strategy as in the case n = 3. There-
fore, instead of minimising (33) subject to (34) (which cor-
responds to Formulation 1), we will address the problem of
minimising (33) subject to (35) which corresponds to For-
mulation 2. The solution to this problem is immediate, be-
cause it is formally analogous to the problem presented in
Lemma 1 with C = LLT (and n equal to the number of
lights involved)‡. As a result, we now have

LLT = diag
[n

3
,
n

3
,
n

3

]
. (36)

What is required now is to determine which matrices satis-
fying (36) are also consistent with the equal intensity con-
straint represented by (34).

Solutions. To find a solution it suffices to find a 3× n ma-
trix L whose columns have unit L2 norms (due to equal
light intensity constraint) and whose rows are mutually or-
thogonal and of equal L2 norm (due to (36); note that re-
quiring this norm to be

√
n/3 would be redundant). Note

that all these constraints are invariant to transforming L by
an arbitrary orthogonal transformation. This means that if
some L is an optimal light configuration then any global ro-
tation/reflection of the lights is also an optimal solution. As
for the minimum uncertainty attained, we now have

ε(L) =
9
n

σ2 , (37)

which (of course) for n = 3 reduces to (27).

Observation 2 (constant slant solution.) Let the number
of lights be n ≥ 3. The following light matrices are mem-
bers of the solution set:

LF (n) =

√
2
3
×

×


sin 2π

n 1 sin 2π
n 2 . . . sin 2π

n (n− 1) sin 2π

cos 2π
n 1 cos 2π

n 2 . . . cos 2π
n (n− 1) cos 2π

1√
2

1√
2

. . . 1√
2

1√
2


(38)

which is justified as follows. The squared L2 norm of
each column is obviously 1 because the term involved is
always 2/3(sin2 +cos2 +1/2). Orthogonality of rows fol-
lows from the fact that the rows are actually members of an
n-point Fourier basis (which is known to be orthogonal). It
can also be verified that all rows have the same norm.

This observation tells us that light sources equally sepa-
rated on a circle of uniform slant represent one of optimal

‡Note that although we have n > 3, the matrix C = LLT is again
3 × 3, hence in an SVD parametrisation of LLT in (19) we still have
3 diagonal values and a 3× 3 orthogonal matrix U.

configurations. The optimal slant is independent of n and is
equal to atan

√
2 (∼ 54.74◦).

Observation 3 (combining optimal solutions.) Let the
number of lights be n, and let {ki, i = 1, 2, . . . , I} be the set
of integers such that {ki: ki ≥ 3,

∑I
i=1 ki = n}. Let ma-

trix Li(ki) be any optimal light configuration for ki lights.
Then the concatenation of these matrices is an optimal so-
lution for n lights:

L(n) = [L1(k1)|L2(k2)| . . . |LI(kI)] , (39)

where ‘|’ denotes concatenation. This results immediately
from the fact that the rows in any Li(ki) are mutually
orthogonal (hence their concatenations are orthogonal as
well). They are also of the same norm, and hence the con-
catenated rows likewise. And, all columns in all Li(ki)’s
have unit length.

As an example, for n = 6 lights, one of the optimal
configurations is given by (38). But what the current Ob-
servation tells us is that optimal configurations can also be
constructed from the concatenation of any optimal configu-
rations for 3 + 3 lights. Any pair of orthogonal triplets is,
therefore, also an optimal light configuration for six lights§.

Observation 4 (adding one vertical light) Let n ≥ 4. If
we take the light matrix LF (n−1) for n−1 lights as in (38),
adjust the scale of the rows, and concatenate the result with
a vertical vector [0, 0, 1]T, we obtain an optimal configura-
tion for n lights. More precisely,

L =




√
n

n−1 0 0

0
√

n
n−1 0

0 0
√

n−3
n−1

LF (n− 1)

∣∣∣∣∣∣∣∣∣
0
0
1


(40)

is a member of the solution set for n lights. This corre-
sponds to placing n − 1 lights equidistantly on a constant
slant circle, and putting the last light into the vertical direc-
tion. The slant for the n − 1 lights is dependent on n (see
Fig. 3). Obviously, for n → ∞ the optimal slant would at-
tain ∼ 54.74◦ again, as in that case one vertical light would
be just an ‘unimportant perturbation’.

3. Summary, and Conclusion
This paper has presented important new theory that allows
the optimum lighting configurations for photometric stereo

§Let us recall that the optimality constraints are invariant under any
orthogonal transformation of a light configuration. This means that light
vectors within any Li(ki) can be freely rotated/reflected by a common
orthogonal transformation. For the case n = 6 discussed, one can even
have two equal, arbitrarily oriented light triplets.
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Figure 3: The dependence of optimal slant for configuration
of n ≥ 4 lights, one of which is vertical and the others
residing on the constant slant circle.

to be determined in the presence of camera noise. The the-
ory was developed initially for the three-source case and
then extended to cover four or more lights. Furthermore,
we have used this novel theory to establish a number of re-
sults.

We have shown that the optimal light configuration for
n = 3 lights is an arbitrary orthogonal triplet. Specifically
this includes the constant slant solution (of ∼ 54.74◦) de-
rived in [6] using repeated numerical optimisation and em-
pirical observation.

Interestingly enough, we showed that for n > 3 light
sources, this slant is optimal as well, with light sources
spaced equally in tilt by 360/n degrees (Observation 2).
We showed that in the case of n > 3 lights, the optimal
light configurations are numerous, including configurations
with n−1 lights with a constant slant plus one vertical light
(Observation 4). Observation 3 stressed out that optimal
configurations for n lights can be constructed from optimal
configurations for lesser lights by concatenation.

The question of optimal light configuration is fundamen-
tal to photometric stereo. It is therefore surprising that it has
not received more attention. To our knowledge this paper is
the first to provide a concise theoretical explanation on how
n ≥ 3 light sources should be placed such that the surface
properties are most precisely reconstructed in the presence
of camera noise.

It would be interesting to adapt this theory for other
sources of error.
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