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Abstract

Representing the appearances of surfaces
illuminated from different directions has long been an
active research topic. While many representation
methods have been proposed, the relationships
between the different representations have been less
well researched. These relationships are important, as
they provide (a) an insight into the different
capabilities of the surface representations, and (b) a
means by which they may be converted to common
computer graphics application formats. In this paper,
we introduce a single mathematical framework and use
it to express three commonly used surface texture
relighting representations:  Surface  Gradients,
Polynomial Texture Maps (PTM) and Eigen base
images. The framework explicitly reveals the relations
between the three methods, and from this we propose
a set of conversion methods.

1. Introduction
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were specially developed for extracting surfaceuiex
representations from a set of pre-captured images
[2,3,8,9]. Meanwhile, the relations between diffare
methods or representations also attracted much
attention [8,9,10,11,12]. These relations can retrea
connections between different representations and
provide optional formats for the use in computer
graphics applications. However, no previous worg ha
been published on the explicit connections in
mathematics between surface gradient maps [4],
Polynomial Texture Maps [8] and eigen images [13,
17], which is the main objective of this paper.

Figure 1. Two images of a 3D surface texture imaged

Real-world surface textures commonly consist of a under differing illumination. The textureis from an Aran

spatial variation of reflectance properties (foample
variation in colour albedo) combined with rough
surface geometry. Variation of illumination can three

jumper.

In this paper, we investigate the relations between
commonly used surface representations:

therefore produce dramatic changes their appearanceGradient[4], Polynomial Texture Maps(PTM)[8] and

For example, Figure 1 shows two example images of aEigen[13,17]. Based on previous work in [14,5], we
3D surface texture illuminated from two directions. introduce a single mathematical framework that can
The difference due to varying illumination presents summarize the three surface representations. We
challenges in both computer vision and computer further propose conversion methods between differen

graphics [1,2,3,4]. It is therefore important totraxt
surface representations of the sample texture undeimethods present

arbitrary illumination directions.
Representing

representations. The framework and conversion
a novel view on the three
representations. We believe that no other work has

the appearances of an objectbeen published on this subject.
illuminated from different directions has long besm

The rest of this paper is organized as follows.

active research topic. In the past two decadesyman Section 2 presents the mathematical framework that

methods have been proposed [5,11,12,15,16,17]. Somean describe the

relations between the three



representations. In section 3, we propose Conversio The framework expresses the image data matrix as

methods between different representations. a product:

Experimental results are shown in section 4. Amall I=M;M, (3)

we conclude our work in section 5. whereM; and M, are two matricesM, is the surface
relighting representation matrix that we want ttraot.

2. The mathematical framework and three Thus, if we know M, and assume a certain

surface representation methods reflectance/lighting model, we can solvg; by using
SVD. The Gradient and PTM methods fall into this

We first present a mathematical framework that category. If we do not know/, or do not want to
summarizes the common properties of the threeassume any reflectance/lighting model, we can tjrec
methods. We then introduce ti@radient, PTM and  use SVD to analyze the image data maltrand obtain

Eigen methods under the framework. M, andM, as will be shown in thEigen method.
Thus, the relighting process can be expressed as a
2.1. The mathematical framework product of the surface representation malfix and a
vectorc related to the required illumination direction:
The framework uses Singular Value Decomposition i=M,c (4)

(SVD) to analyze the image intensity matrix. SVD is wherei =iy, i2,...,im)" is the image data vector and
based on the following theorem of linear algebra: i1, i2,...,im are pixel values.

Any m' xN' matrix whose number of rowsY is
greater than or equal to its number of colurins can 2.2 The Gradient method
be written as the product of am x n' column-

orthogonal matrixU, ann' xn' diagonal matrixw According to Lambert's law, surface gradient and
with positive or zero elements, and the transpdsano  albedo maps can be used to represent 3D surface
n'xn' orthogonal matrixV . That is textures for relighting. We call this methGaadient.

M = UWVT ) At a pixel location(x,y), the Lambertian reflectance

T T . i . function is expressed as
whereU U=V 'V =E andEis the unit matrix. The i(xy)=Aan0  (5)

elements on the diagonal & are called singular
values. Thepseudoinverse of M is expressed as
M=vw1uT 2).
For a group of linear equatiordd [x =b , where

where:

i(x,y) is the intensity of an image pixel

A is the incident intensity to the surface

a is the albedo value of the Lambertian reflection

X = (%, X0, %) @nd b = (by,b,,...,by) " are two | is the unit illumination vector at positiof, y)
vectors, we can solvE according to equation (2) and can be expressed as
x=M"b=vwWw2uTh I=(.1,.1,,)" =(cosrsing, sinrsing, coso)’
The mathematical framework is based on the 7 ando are the illumination tilt and slant angles
analysis of the image data matrix, which contailhs a n is the normalized surface normal at positfgny)
images captured under multiple illumination direns. and can be expressed as

Assume each image haspixels and_ we .have totgl aof n = (n, 1y, )"
images per sample texture. To simplify notatiors, | _ : 1

ik denote the intensity value of pixeh thek" image, =( P__ I T
where1< j<m andisksn. Then we write all image Vp?+a?+1 yp?+a?+1 p?+q®+1
intensity dataijx into anmxn matrix pand g are the partial derivatives of the surface
height function in thex andy directions respectively.

i11 12 ... i

i1 in ion In this paper, we assum& as a constant and
I merge it with albeday . We simply useo to represent

ir;ﬂ ir;12 ir;1n A a . Thus, the data matrixcan be expressed as:

: [=ANL 6
where each column represents an image captured unde ©)

a certain illumination direction and each row rejergs
the intensity values of a pixel location under eliént
illumination directions.

where:



o1 0
A= pe is the surface albedo matrix;
0 P
N=(n;,n,,...,n,)" is the surface normal matrix;
L=(4,l5,...,1,) is the lighting matrix.

We further define a new matriX, which is the
product of the surface normal matid and the albedo
matrix A:

N, =AN.

Thus we can simply express the image data matrix as

I =N,L (7).
Comparing equation (7) with equation (3), we have:
M; =N, andM, =L .
The matrixN,, which contains surface gradient and
albedo information, is the unknown.
It is trivial to obtainN, by using SVD. We first

decompose the lighting matrix 4s= U, W, V, ".
Then we have
N, =1L =1v,w, U, ".
By relighting N,, which contains surface gradient

1= AL pim (8)
[a11 a1z a3 a4 a5 aws
where 5 - a1 a2 a2 a2 as aze
ptm . . . . . .
lam amz am3 am4 ams ame
[ 1 1 1]
|y1 |y2 |Yn
L _ Ixa Ix2 Ixn
P halyr Ixaly2 Ixnlyn
|yl2 |y22 |yn2
|><l2 |><22 |><n2

Each row of matriA,m represents six coefficients
of the luminance model at each pixel location. Ehes
coefficients are stored as spatial maps and called
Polynomial Texture Maps (PTMs). We cail;, the
PTM matrix andL ,m is the lighting matrix. Although
the lighting matrix contains quadratic terms, ihdae
pre-calculated offline. In accordance with equat{@h
in the mathematical frameworkdym and Ly, are
equivalent tavl; andM , respectively.

Since the image data matrix and the lighting
matrix L m are known, we can use SVD to solve the

maps scaled by albedo, we can generate new imagegver-determined system (8) and obtain the PTM matri

under arbitrary illumination. The Lambertian modkel
used again for relighting:
i =N,

where i =(iy, i2,...,im)" is the image data vector

and | = (cosrsing, sinrsing, coso)' is the lighting
vector.

The advantage of th@radient method is that the
surface gradient and albedo maps are compatibke wit
computer graphics programming or packages for
rendering [18, 7].

2.3. The PTM method

The PTM method uses Polynomial Texture Maps

as surface representations for relighting [8].

Malzbender et. al. proposed a luminance model that

employs a quadratic function of the lighting vector
capture variations due to self-shadowing and
interreflections. It is based on the Lambertian
assumption and uses the first two elements of tie u
lighting vector to form a new six-dimensional ligig
vector

lptm = (152, Iy?, 1y, Ix,ly )T = (cog rsin’ o, sirt rsirt o,
cogsinzsin’o, cosrsing ,sinrsing, 1)’
The image data matrix is expressed as

Apm. This is similar to solving for surface gradient
representations described in section 2.2. Given an
illumination direction and recalling equation (4he
relit image can be expressed as

i=M 1C:Aptm|ptm ,

wherei =(i1, iz,...,im)" is the image data vector and
loim is the PTM lighting vector. Thus, the relightirgy i
achieved by linear combinations of PTMs.

Since relighting is implemented using a linear
combination of pre-computed quadratic terms, the
PTM method is suitable for real-time rendering
applications in graphics hardware [8].

2.4. The Eigen methods

Eigen-based methods are widely used by many
researchers to model the effect due to varying
illumination e.g. [13, 17]. These methods have the
advantage that an assumption concerning surface
reflectance is not required. We apply SVD to geteera
base images in eigen-space. The image data nigtrix
expressed as

IEVRAVA
Each column inJ, therefore is an eigen vector of
11T corresponding to the singular value \i. U, is
used to construct eigen base images ‘e{an contains



coefficients for linear combinations. We can write 3.1. The Gradient and PTM methods

W, =diag(w,wz,...,wn) , where wi is the singular

value of the image data matrixand wi > wi +1. In [8], it has been shown that surface normals can
Since singular values decrease rapidly and the firs be converted to PTMs in the lease squares sense bas

few eigenvectors account for most of the informatio  ©n Approximation Theory. It is however, more obwsou

we approximate the origin&V, by if we use matrix expressions and the SVD method.

W| = diag(ws, W, ..., wk,0, ... 0), According to equation (7) and equation (8), we mbta

wherek is the number of singular values that we want I=NaL =Apmb pim -
to keep. We then obtain an approximation of thegiena Thus we have:
. _ _ -1
data matrix| thzi\t can E)e eprressed as Na = A gl b L and Ay, = NoLL g .
I=UW\V, 9)

-1 -1
. . . . = =LL
Recalling equation (3) in the mathematical We may useC, =Lyl and C, pim 10

framework we can writdvl, = U, W, . We letM; be denote the coefficient matrices for the conversions
1~ | |-

o _ between the Gradient and PTM representations.
an mxk matrix, since the last -k columns ofU, W, Obviously, the coefficient matrices can be pre-
are zeroes. Similarly, we creaté-n matrix M ,, which calculated. Thus, we have:

only contains the firsk rows of V, ", because the last Na =ApmCy andApm =N,Co.

—krows of V,' can be assigned zeroes due to the . .
n We ot ssigned z ! 3.2. The Gradient and Eigen methods

fact that the lasn—k diagonal elements o‘i\/I are

equal to zeroes. Thus, we obtain a sk lodse images By equation (7) and equation (10), we obtain
in eigen-space which are ttkecolumns ofM,. These I =N,L=MM,.

base images are called eigen base images. Mdtyix _ 1 _ 1
provides the coefficients for the linear combinatiof Hence, N, =M }M 2|f and Ml =NaLM2 ™,
eigen base images to produce those original immges WhereM; can contains eigen base images

| . We write We useC, =M,L™* andC, =LM,™* to denote

I =(i,i2,...,In) =M M, (10) the coefficient matrices for the conversions betwibe

where i1,iz,...,in are image data vectors that Gradient andEigen representations. Then we obtain
represent those original images captured under N,=M,C; andM,; =N,C,

different illumination directions.

If we use coefficients that differ from those Nhy, 3.3 The PTM and Eigen method
the linear combinations of these base images allew

to generate new images under new illumination By equation (8) and equation (10), we obtain
directions. Thus, we can use these eigen base faage I=A Lo =M-Ma.
representations of 3D surface textures for relighti ptm ™= ptm 1T 2

Hence, we have A, =M M,L ptm_l and
3. Conversions between surface

. M,=A_ L. M,> We useC=M,L_ "+ and
representations 1= Aptmbptm™ 2 5 =ML i

Ce =L pjimM , ! to denote the coefficient matrices for
_ The mathematical framework pfovides deep sight the conversions between th®TM and Eigen
into the three surface representation methods.eSinc representations. Finally, we obtain
there are mathematical connections between these th A =M.C. andM.=A . C
methods, we can convert one surface representation ptm s 1o pmes
another one by using SVD method. The conversion can
provide alternative ways for relighting/rendering i 4. Results
computer graphics applications. However, these
conversions are also based on the least squares sen  We used texture samples from the PhoTex texture
due to the assumptions and the radical properfids®eo  database in our experiments [6]. For each textuee,
SVD method. We use previously introduced use 36 images captured under different illumination
denotations to show how these representation fermat directions to extract the surface representatiale.
can be converted between each other. then apply the conversion methods to obtain new



surface representations according to section 3tlr  significant insight as to the properties of thefatiént
comparison purpose, in Figure 2 to Figure 4 we showmethods. Furthermore, we have proposed a set of
the relit images with two illumination directions methods that can be used to convert between these
produced by different surface representations, different representations - providing improved
including both original and converted. Each figure flexibility and economies in terms of storage and
contains two texture samples (a plaster rippleaserf  bandwidth.

and a rock surface). It can be seen that the pegpos

conversion methods produced reasonable results. Relighting Relighting Relighting
original PTM converted converted
Relighting Relighting Relighting PTM from PTM from
original converted converted Gradient Eigen
Gradient from Gradient from

Gradient

PTM Eigen

Figure 3 Relighting results produced by theTM

representations. Images in the first column arelpeed by
Figure 2 Relighting results produced by ti@ adient relighting original PTMs extracted from texture sHes
representations. Images in the first column arelpeed by jmages. Images in the second and third colummpmareéuced
relighting original surface gradient and albedo ®ap py relighting the converted PTMs fro@radient and Eigen
extracted from texture samples images. Imagesdirsécond  pase images respectively. The block arrows show the
and third column are produced by relighting the vested illumination directions.

gradient and albedo maps from Polynomial TexturepMa
and Eigen base images respectively. The block arsivow
the illumination directions.

5. Conclusion

In this paper we have defined the relationships
between three commonly used surface representations
in a single mathematical framework. This provides



Relighting Relighting Relighting
original Eigen converted Eigen | converted Eigen
from Gradient from PTM

Figure 4 Relighting results produced by the Eigeaseb
images. Images in the first column are producectebghting
original eigen base images extracted from textarapdes
images. Images in the second and third colummpiar@uced
by relighting the converted eigen images from Gratiand
PTMs respectively. The block arrows show the illoation

directions.
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