On the use of gradient space eigenvaluesfor rotation invariant texture
classification
M.J. Chantler and G. McGunnigle

Department of Computing and Electrical Engineering, Heriot-Watt University, Edinburgh, Scotland
M.J.Chantler @hw.ac.uk, http://mww.cee.hw.ac.uk/~mjc

Abstract

Many image-rotation invariant texture classification
approaches have been presented previously. This paper
proposes a hovel scheme that is surface-rotation invariant.
It uses the eigenvalues of a surface’s gradient-space
distribution as its features. Unlike the partial derivatives,
from which they are computed, these eigenvalue features
are invariant to surface rotation. First we show that a
simple classifier using a single isotropic feature (grey-level
standard deviation) is not invariant to surface rotation.
Then a practical surface rotation invariant classifier that
uses photometric stereo to estimate surface derivatives is
developed. Results for both classifiers are presented.

1. Introduction

Many texture classification schemes have been presented
that are invariant to image rotation [1,2,3]. They either
employ isotropic features that are insensitive to directional
information, or they use some relative directiona
characteristics that are invariant to image rotation. In either
case they derive their features directly from a single image
and are tested using rotated images. If the image texture
results solely from abedo variation rather that surface
relief, or if the illumination is not directiona or
immediately overhead; then these schemes are sufficient
for surface rotation as well.

However, in many cases rotation of a textured surface
produces images that differ radically from those provided
by pure image rotation. This is mainly due to the
directional filtering effect of imaging using side-lighting
[4].

In this paper we use a model of the surface-to-image
transfer function [5,6] to predict that the output of a simple
isotropic feature (grey level standard deviation) is not
invariant to surface rotation unless the surface isisotropic.

Following this we present our classification scheme that
uses surface relief characteristics directly. The surface's
partial derivatives are estimated using photometric stereo.
These features are not surface-rotation variant, therefore
we compute the gradient-space eigenvalues which are.

Results for the isotropic and the eigenvalue-based
classifiers are presented.

2. Image variance as a function of image
rotation

This section presents a frequency domain image model and
uses it to develop an expression for image variance as a
function of relative illuminant tilt angle.

A. Imaging Geometry

The imaging geometry assumptions are as follows. The test
surface is mounted in the x-y plane and is perpendicular to
the camera axis (the z-axis). It is illuminated by a point
source located at infinity, i.e. the incident vector field is
uniform in magnitude and direction throughout the test
area. The direction of the illuminant with respect to the
texture is defined by two polar co-ordinates: slant and tilt.
Slant (o) is the angle between the camera axis and the
illuminant, while tilt (7) is the angle that the illuminant
direction makes with the x-axis in the x-y plane. Surface
rotation is measured in the x-y plane using the variable ¢.
For adirectional surfaceit istaken as the angle between the
x-axis and the angle of the most dominant surface
directionality. It is the effect of surface rotation (i.e.
variation of ¢) that is of most interest here.

B. Image Model

Kube and Pentland presented a frequency domain model of
the formation of the image from the surface [5]. The most
significant assumptions are that: the surface reflectance is
Lambertian, there is no self or cast shadowing, the camera
model is orthographic and that surface slope angles are
small. Chantler [6] modified and generalised this to aform
similar to that shown below (1).
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where
(0,6) is the polar form of spatial frequency with 6 =

0° being the direction of the x-axis.

is the image power spectrum.

is the surface power spectrum of a surface
orientated at ¢.
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In this paper the most important aspect of (1) is the
cos’(9—7) term; this is directional filter dependent upon

the tilt angle (t) of the illuminant. It is this directional
filtering effect that makes the output of an isotropic texture
feature vary with the orientation of a directional surface, as
is shown in the next section.



C. Predicting the Variation of Image Variance with
Surface Rotation

From (1) the isotropic texture feature: image variance, may
be expressed as a function of surface rotation:

f,(p) = Ta)z sin? (o).zj cos’ (6 -7).S, (w,6)do.do  (2)

Now choosing a new set of axes aligned with the direction
of the texture such that G, = 0- ¢, (2) becomes:
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where S(w,6,.y) is the surface power spectrum of the

surface in the new axes system. Now, considering the inner
integral of (3)
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where A6 =7z/n
With respect to surface’s rotation angle ¢, the above
summation is simply a series of cosines of varying
amplitude and phase but of constant frequency (2¢). A
similar argument holds for the outer integral of (3). Hence
image variance is

f, (@) =a+bcos(2p - 27)
where a, b are constants, and

(4)

a=sin’(0)[ o’ [ S(w,6).d0.dw
0 0

from (4) an aternative isotropic feature may be derived:
the standard deviation of an image:

f,(z) = Ja+bcos(2p - 27) ®)

If the surface is isotropic then the b will evaluate to zero
and only the constant a term will be left. However, for
directional surfaces b will be non-zero and hence image
variance will be a sinusoidal function of surface rotation.

Experimental verification

Figure 1 shows images of two directional textures obtained
at three angles of rotation.
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Figure 1 -Striate and Slate textures at threerotation

angles

It can be seen that these images are very different from
those that would result from image rotation alone.

Figure 2 shows the variation of standard deviation that
occurs when these surfaces are rotated. It can be seen that
for these two directional textures, image variance (which is
an isotropic feature) is certainly not invariant to surface
rotation, and that the plots are sinusoidal in nature.
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Figure2 - Variation of standard deviation with surface
rotation

3. A surfacerotation invariant classification
scheme

If a classifier is to be robust to surface rotation then it
would be better to use features that are a function of
topography rather than image intensity. Photometric stereo
[7,8] provides a means of estimating such information. It
uses multiple images of the same scene obtained under
different illumination orientations. When applied to
Lambertian surfaces it provides estimates of three
quantities for each facet: the facet albedo (p), and the
facet's gradient in terms of its partial derivatives



p=0z/0X,q=0z/dy. Here we will assume constant

albedo and only use partial derivative information. The
actual scheme that we use is fully described in [9].
Unfortunately the partial derivatives are not invariant to
rotation of the surface. Rotation of the surface resultsin an
equivalent rotation of gradient (p/q) space as is shown in
Figure 3.
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Figure 3 - Scatter plotsof p and q partial derivatives
estimated from Slate at rotations of 45° and 90°

We therefore adopt the following approach: at each pixel, a

local estimate of the bivariate (p, q) gradient distribution is

made. The eigenvalues (A; and A,) of this distribution are

calculated and these form the basis for classification. The

approach isillustrated in Figure 4 and [10]. Although the

distributions may rotate the

¥ eigenvalues will be

/ 2N constant. A classifier based

A on this approach, which we

p shall call a A or eigenvalue

classifier, should therefore
be rotation invariant.

Note that the absolute
values of the eigenvalues
give a measure of the
roughness of the surface,
while their relative values
give an indication of the
degree of the surface directionality. Compare, for instance,
the gradient distributions of Striate (Figure 5) and Sate
(Figure 3).
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Figure 4 — Eigenvalues
shown in gradient-space
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Figure5 - Scatter plotsof p and q partial derivatives
estimated from Striate at rotations of 45° and 90°

Results

This section presents two types of results. The first are
simply the behaviours of the isotropic and eigenvalue
features. The second set concerns classification
performance. Here the isotropic and eigenvalue features are
used to construct two classifiers. Each classifier uses
similar post processing: a Gaussian smoothing filter is used
to reduce the variance of the features and the results are fed
into a linear discriminant which is derived from the class
feature statistics [9].

Section 2 showed that an isotropic texture feature, grey
level standard deviation, is sensitive to surface rotation. In
contrast the Eigenvalue classifier's features have been
designed to be robust to such variations. Plots of the first
eigenvalue against surface rotation are shown in Figure 6.
They show that it is much more stable than the standard
deviation feature (compare against Figure 2).

The stability of the eigenvalue features vs. image
variance is apparent in the classification results shown in
Figure 7 and Figure 8. The intensity classifier rapidly fails
as the surfaces are rotated. However, the A (eigenvalue)
classifier does not.
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Figure 6 - Thevariation with rotation of thefirst A
feature mean for Striate and Slate surfaces
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Figure 7 - Comparison of classifiersfor rotation of
Striate and Slate surfaces



4. Conclusions

This paper has shown that an intensity-based isotropic
texture feature (i.e. grey level standard deviation) is not
surface rotation invariant when used on anisotropic
surfaces.

Furthermore we have presented a novel texture classifier
that uses photometric stereo to obtain surface gradient data.
This data, which is rotation sensitive, is used to provide
estimates of the gradient-space eigenvalues. The result is a
classifier which is surface rotation invariant.
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