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Abstract:

We report results from a new methodology for investigating the visually perceived properties of 

surface textures. Densely sampled two-dimensional f/1 noise processes are used to model 

natural looking surfaces, which are rendered using combined point-source and ambient lighting. 

Surfaces are shown in motion to provide rich cues to their relief. They are generated in real time 

to enable observers to dynamically manipulate surface parameters. A method of adjustment is 

employed to investigate the effects that the two surface parameters, magnitude roll-off factor and 

RMS height, have on perceived roughness. The results are used to develop an estimation method 

for perceived roughness. 

Keywords: Perceived roughness, appearance, roughness perception, texture
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1. Introduction

The surfaces of most objects and materials vary in their relief (or surface height function), and in 

their reflectance. While these characteristics differ in detail from one patch of a surface to 

another, they have statistical properties that remain approximately constant and which define the 

surface texture. When a surface is illuminated and viewed, these properties are captured in the 

pattern of luminance and colour in its image, and define image texture. To the extent that effects 

of illumination on image texture can be resolved, an observer will be able to determine properties 

of surface texture. In turn, these provide information such as the large-scale slants and curvatures 

of surfaces (e.g. Malik & Rosenholtz, 1997; Saunders & Backus, 2006), or the physical 

properties, uses and identities of objects. In using texture to obtain such information about 

objects, we are able not only to recognise the surface textures characteristic of particular objects, 

but also to make judgements about the similarities and differences between surface textures. For 

example, we might use the surface texture of a novel fruit to help decide whether it belongs to a 

familiar edible category or not, or we might judge whether the surface textures of a wall covering 

and a fabric harmonise or not. In everyday language, we express our judgements of surface 

textures in terms of properties such as fineness, regularity or roughness, but can these perceived 

properties be identified with physical properties of surfaces?

Several methods have been used to determine the mappings between physical and perceived 

properties of surface textures. A number of studies have used sets of photographic images of a 

wide variety of natural or manufactured textured objects, such as those provided by the Brodatz 
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album (Brodatz, 1966). In some cases (Tamura, Mori & Yamawaki, 1978; Amadasun & King, 

1989), observers were given predetermined texture properties and asked to rank the photographs 

according to how strongly they represented each one. The properties chosen were determined by 

proposed machine algorithms for measuring image textures, and correlations were found 

between human and machine rankings. However, not all the descriptive terms were ones that are 

used spontaneously in describing surfaces, and so the observers may have been implicitly 

prompted to look for texture properties corresponding to those which the algorithms were 

designed to measure. To overcome this problem, Rao and Lohse (1996), Heaps and Handel 

(1999), and Long and Leow (2001) used free sorting tasks, asking observers to sort photographs 

of textured surfaces into similar groups of their own choosing, without any prompts about the 

texture properties to use. Multidimensional scaling, cluster analysis and other methods were 

applied to the similarity matrices obtained in order to identify the dimensions that determined 

observers’ judgements of similarity. However, there were differences between the studies in the 

number and the nature of the dimensions obtained, suggesting that this method does not identify 

stable perceived properties of textures. Heaps & Handel (1999) argued that an observer’s 

similarity judgements are always influenced by the whole set of textures presented, and therefore 

that no context-free set of perceived dimensions exists.

Another approach to the problem of mapping physical and perceived properties of textures is to 

manipulate properties of images and to measure the effect on observers’ perception of them. The 

difficulty with this approach lies in creating images that resemble images of real textured 

surfaces closely enough to engage the same perceptual mechanisms. Balas (2006) achieved this 

by using a texture synthesis algorithm (Portilla & Simoncelli, 2000) to create images that 
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matched a sample photograph in a set of statistical properties. Observers then tried to detect the 

odd texture patch in triplets where one patch was from the original image and two were synthetic 

(or vice versa). The results identified which statistical properties were most critical for 

perceptually successful synthesis of particular types of texture. However, the experiments used 

brief (250 ms) stimulus presentations, and the results may not extend from pre-attentive vision to 

judgements made over longer periods of inspection.

The methods reviewed so far all share an important limitation. They work with single still 

images of textured surfaces, or synthetic images derived from them, and not with the surfaces 

themselves. Furthermore, these images have been obtained under arbitrary and unspecified 

illumination, and so will contain ambiguities about surface relief and reflectance which cannot be 

resolved, as in a natural situation, by altering the relative orientation of the surface and the 

illuminant (Belhumeur, Kriegman and Yuille, 1999). One way of overcoming this problem is to 

use sets of photographs of a surface obtained under multiple, precisely controlled illumination 

conditions, such as the image database used by  Koenderink, van Doorn, Kappers, te Pas and 

Pont (2003) in experiments on observers’ ability to judge the elevation and azimuth of a light 

source from images of textured surfaces. Another is to create models of surface relief and 

reflectance that are then rendered graphically under specified illumination. This second method 

has the advantages of speed and flexibility, although it depends on the quality of the model 

surface and its rendering. Ho and colleagues used this approach to investigate the stability of 

judgements of the roughness of a surface as the direction of illumination changed (Ho, Landy 

and Maloney, 2006) or as the observer’s viewpoint changed (Ho, Maloney and Landy, 2007). 

They used surface models made up of irregular arrays of triangular facets, varying the mean 
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height of the facets to create surfaces of different roughness. Observers were able to judge the 

relative roughness of images presented in pairs, but did not fully compensate for variation in the 

elevation of the light source, or in viewpoint. These results imply that roughness of these 

surfaces is judged by the use of approximate heuristics, or ‘pseudocues’, that support only partial 

roughness constancy.

In our experiments, we also present observers with images of synthetic surfaces (see Figure 1 for 

examples), created by rendering a model of surface relief, and test the effects of varying specific 

parameters of the model on observers’ judgements of surface roughness. However, these images 

are novel in two important respects. First, they have a more natural appearance, and are more 

densely sampled, than those used previously. Second, they are generated rapidly enough both to 

create animations simulating the rotation of a surface under a light source, and to allow observers 

to control surface parameters in real time. 

(Figure 1 here)

We achieve a natural appearance by using isotropic surface models generated from f/1 noise, 

and rendered assuming Lambertian reflectance and a simple lighting model. By f/1 noise, we 

mean that the height map has a magnitude spectrum )( fH scaled with spatial frequency, of the 

form:

βf
βN

σ
fH 

)(
)( (1)

where β is the roll-off factor of the surface height magnitude spectrum (i.e. the inverse of its 

slope in log H and log f co-ordinates),  is the RMS height of the surface and N(β) is a 
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normalizing factor. A f/1  noise spectrum can be considered as a random fractal function 

generated in the frequency domain (Mandelbrot, 1983; Saupe, 1988). In our models, height maps 

are random-phase, and surfaces have uniform reflectance. The effects of varying two parameters 

of the height magnitude spectrum, the RMS height σ and the roll-off factor β are illustrated for 

examples of our surfaces in Figure 1.

The surface model is rotated back and forth, creating a sequence of images of a surface that 

‘wobbles’ under a fixed light source. Such a dynamic image sequence can provide observers 

with rich information about object structure, to resolve ambiguities existing in the case of single 

image stimuli (Belhumeur et al., 1999). Our dynamic stimuli can be thought of as simulating the 

way that humans commonly examine a real surface by turning it under a light. 

To our knowledge, this technique for creating synthetic surfaces has not previously been used in 

research on texture perception. Harvey and Gervais (1981) controlled the spectral content of 

images used in a similarity judgement task by creating compound gratings made up of seven 

spatial frequencies with randomly chosen amplitudes, but these images did not have a natural 

appearance, and were not created by rendering surface models. 

Our aim in these experiments is to define how observers’ perception of the roughness of 

isotropic f/1 noise surfaces is determined by the parameters σ and β of the surface height 

magnitude spectrum. In Experiment 1, we use a method of adjustment to determine the 

combinations of these two parameters that give rise to equal perceived roughness. We then use 

these results to derive the parameters of an estimator of perceived roughness with the form of a 
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bandpass filter. In Experiment 2, we use a bisection method (Fagot and Stewart, 1970) to 

determine how the output of the estimator is scaled with perceived roughness.

2.  General methods

2.1 Observers 

Data were obtained from a total of ten observers, all with normal or corrected-to-normal 

vision and naïve to the nature of the stimuli and the purpose of the experiments.

2.2 Stimuli

The surface models where generated in the frequency domain with random phase and a 

controlled magnitude (β, σ). Two graphics cards (GeForce 7 series) were used for representing 

the surfaces; these were rendered using per-vertex displacement mapping to reduce 

approximation errors (Cook, 1984). For increased realism, per-pixel Lambertian shading with 

soft-edged cast shadow was applied in real time, but we did not implement interreflections. The 

lighting model was a point-light supplemented by an ambient ‘fill’ light with a luminance one 

third that of the point light. The albedo of the surface was 0.6, corresponding to a natural 

material such as stone. The texture size chosen allowed us to match each pixel with its 

corresponding shading therefore avoiding aliasing artefacts. In total half a million faces were 

shaded (per pixel) and displaced (per vertex) in real time for each surface. 

The surfaces were presented as the circular faces of cylindrical ‘cakes’, 130.5 mm (8.5 degrees 

of visual angle) in diameter (see Figure 1). The sides of the stimuli were trimmed to avoid 
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biasing observers with directionality, by superimposing a circular ramp around the surface relief. 

The stimuli were presented at a slant, with a mean angle of 32º between the macroscopic surface 

normal and a fronto-planar view, and were animated to simulate a repeated oscillation of the 

surface through 16º about this mean, with a period of approximately 2 sec. The mean angle 

between the macroscopic surface normal and the light source was 60º. The animation used had 

been recorded during a pilot experiment in which observers were able to control surface motion 

while making a roughness judgement; this was the pattern of motion adopted by the observer 

who made the most consistent judgements. The values of viewing distance and stimulus diameter 

were chosen in order to present spatial frequencies between  f1 = 0.117 and f2 = 30 cpd, covering 

most of the range to which the human visual system is sensitive (Campbell & Robson, 1968).

Pilot experiments indicated that observers were able to make consistent roughness judgements 

when values of the surface height magnitude spectrum roll-off factor β fell between 1.7 and 2.3, 

and this range of values was used in the experiments.

We presented the stimuli on two 20-inch TFT LCD monitors (NEC LCD2090UXi), with a pixel 

pitch of 0.255mm (100 dpi). TFT monitors provide superior spatial modulation transfer functions 

to those of CRT models (Blume, Steven, Ho, Stevens, Abileah, Robinson, Roehrig, Fan, Chawla, 

& Gandhi, 2003). We used panels with 12-bit look up tables for more accurate gamma 

correction, and of A-TW-IPS manufacture to increase viewing angle, colour reproduction, white 

colour balance, and increased gamut at a loss of response time (16ms). A spectrophotometer 

(Gretag Macbeth Eye One Pro) was used to calibrate and equalize the linear gamma responses 

from both monitors, which produce a maximum error of 1.06cd/m2 (or 2.7%). In addition, to 

calibrate the maximum and minimum luminance was fixed to 100cd/m2 and 0.7cd/m2
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respectively. The variation in luminance across the area of the screen occupied by the stimuli 

was 5cd/m2. The observer’s head was fixed using a chin rest so that the stimuli were at an optical 

distance of 88cm. The monitors were rotated so that the observer’s line of sight was 

approximately perpendicular to both screens at the centre of the stimuli.

3. Experiment 1

3.1 Procedure

The aim of experiment one was to measure how observers set one parameter (σ) of a surface in 

order to match its roughness to that of a surface that differs from it in the other parameter (β). On 

each trial, observers were presented with pairs of surfaces, one on each monitor screen, and 

instructed to match the two surfaces in roughness. In order to make it clear that the fine 

structures of the surfaces should be matched, rather than the large-scale structure of the ‘cakes’, 

they were also told to imagine how each surface would feel if touched. The parameters of one 

surface (the sample surface) were fixed during the trial, while moving the computer mouse 

altered in real time the RMS height (σ) of the other (the adjustable surface). Observers indicated 

by pressing the space bar when they thought both textures had similar roughness. No time limit 

was applied to observers’ decisions, but they took on average 13 seconds to make matches. In the 

sample surface, β was always 2.0 and σ was one of five values (4 mm – 12 mm in 2 mm steps). 

In the adjustable surface, β had one of seven values (1.7 – 2.3 in steps of 0.1), and σ was under 

the observer’s control, with a randomly chosen initial value. Following five practice trials, each 
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of the 35 combinations of values was repeated three times, giving a total 110 trials, in a random 

order, for each of ten observers.

3.2 Results

Simple inspection of the synthetic textured surfaces shows that they appeared rougher with 

increasing RMS height σ and with decreasing β (see Figure 1). The results of the experiment (see 

Figure 2) show that as β in the adjustable texture increases (so decreasing perceived roughness), 

observers increase σ in it. The finding that observers could compensate for differences between 

surfaces in one parameter by adjusting the difference in the other parameter in a consistent way 

implies that both parameters influence a single percept of roughness. Figure 2 also shows straight 

lines fitted to the five sets of points by least-squares regression. In all five cases, the correlation 

of β and log RMS height (σ) is significant (minimum value of r = 0.860, df = 5, p < 0.05).

(Figure 2 here)

3.3 Discussion

Experiment 1 shows that observers set consistent values of RMS height when matching the 

roughness of two surfaces. Note that this is not a trivial demonstration of an ability to match two 

surfaces for RMS height, because in this experiment observers were required to adjust RMS 

height in the one surface in order to compensate for a difference in roll-off factor β between it 

and the other surface. The regression lines plotted in Figure 2 therefore pass through 

combinations of these two parameters which yield surfaces with the same perceived roughness. 

These iso-roughness contours are found to be close to linear in β – log RMS height space, with 

mean slope 1.12.
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The results of Experiment 1 can be used to specify an estimator for perceived visual roughness in 

terms of the physical properties of a f/1 noise surface. The estimator that we propose consists 

of two stages; an isotropic, bandpass filtering of the surface height spectrum, followed by 

estimation of the variance of the filtered signal (note that the input to the filter is a surface height 

function; its relationship to image data is considered in the General Discussion). Perceived 

roughness rpu can therefore be expressed in the frequency domain by:




dfdffHfFr
f

f

pu  
2

0

2
2

1

)()( (2)

where )( fF is the Fourier transform of the isotropic, bandpass filter; ),( f  are the Fourier 

frequency coordinates in polar form, and  f1, f2 are the lower and upper frequency bounds of the 

f/1 noise surface as specified previously. The subscript u denotes that, at this step, perceived 

roughness is unscaled, and measured only to an ordinal level. Because both the filter )( fF and 

surface height spectrum )( fH are isotropic, we can replace Eqn. (2) with:

dffHfFfr
f

f

pu 
2

1

2
)()(2 (3)

Since the surface height spectrum )( fH is given by the parameters of the height map β and σ, it 

is now only necessary to define the bandpass filter )( fF . We tested the fit to the data provided 

by bandpass filters of increasing complexity (square, ramp, and Gaussian; for details, see Padilla, 

2008) and found the best fit with a Gaussian of log frequency:
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where σg and µ are parameters to be optimised. We can now calculate a predicted value for rpu

for any filter specified by (σg, µ) and any surface specified by (σ, β ), by substituting Eqns. (1) 

and (4) into Eqn. (3) and applying numerical integration to the result.

The parameters of the filter [µ, σg] must be fitted so that any two surfaces lying on an iso-

roughness contour yield the same output and therefore the same unscaled perceived roughness.

To find the values that give the best fit to the data from Experiment 1, an error value was 

calculated by taking the root mean square difference between predicted rpu and the seven actual 

values of rpu along each iso-roughness contour, normalising these to the same predicted rpu

value and then summing across the five contours. The minimum error is 0.0188 and lies at µ = 

1.9821 cycles/cm and σg = 1.90. With these values for its parameters, the estimator can then be 

used to calculate predicted iso-roughness contours in σ - β space under the conditions of 

Experiment 1. 

(Figure 3 here)

Figure 3 shows that the iso-roughness contours predicted by the estimator match those obtained 

in Experiment 1 closely. Additionally, from the forms of the estimator (eqn. 2) and of the surface 

(eqn 1) it is clear that the model for rpu is consistent with the basic observation that perceived 

roughness increases with RMS height σ (Padilla, 2008). These two facts therefore imply that the 

estimator can successfully measure perceived roughness to an ordinal level of measurement. Our 

next step is to construct a model that will take unscaled perceived roughness rpu and convert it to 
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a scaled measure. We use a bisection method (Fagot and Stewart, 1970) in Experiment 2 to do 

this, asking observers to adjust a surface texture until they perceive it to be midway between two 

sample textures in roughness. By repeating this procedure for different pairings of sample 

surfaces, we obtain data that can be used to fit a quadratic function for scaled perceived 

roughness rps in terms of estimator output rpu to the data.

4. Experiment 2

4.1 Procedure

On each trial, observers were presented with three textured surfaces, two samples with fixed 

parameters and one adjustable texture. The two sample surfaces were presented in a single 

column on one monitor in portrait position, whilst the adjustable surface was presented on the 

second monitor; the centres of both monitor screens were equidistant from the observer. In the 

sample surfaces, β was always 2.0 and RMS heights were 4 mm, 8 mm, or 12 mm. On each trial, 

the two fixed samples had different RMS heights, and the three possible combinations occurred 

equally often. In the adjustable texture, β was 1.8, 1.9, 2.0, 2.1or 2.2, and RMS height could be 

adjusted by the observer in the same way as in experiment one. Each of the 15 stimulus 

combinations was repeated three times, giving a total of 45 trials. The ten observers from 

experiment one took part, and were instructed to set the adjustable surface so that it appeared to 

be midway in roughness between the two samples, again imagining how the surfaces would feel 

if touched.

4.2 Results and Discussion
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(Figure 4 here)

Figure 4 shows the RMS heights of the adjustable textures set by observers for different values 

of β in the three bisection tasks, plotted as iso-roughness contours in the same way as in Figure 2. 

In all three cases, the correlation of β and log RMS height (σ) is significant (minimum value of r

= 0.896, df = 3, p < 0.05), and values of r2 are similar to those obtained in Experiment 1. The 

average slope of the three regression lines is 1.24, close to the slope of the iso-roughness 

contours obtained in Experiment 1, implying that performance in both the adjustment and the 

bisection tasks is determined by the same process. 

The results of Experiment 2 also enable us to scale the model for perceived roughness derived 

from Experiment 1. Each bisection task provides five pairs of values of β and RMS height 

corresponding to a perceived roughness that is the average of the perceived roughnesses of the 

two samples. These 15 pairs of values are input to the filter-based estimator to obtain values of 

unscaled perceived roughness rpu. With the addition of the estimator output values for the three 

sample surfaces, we next construct 18 quadratic expressions for scaled perceived roughness rps

in terms of rpu, with the form:

pupups b r a rr  2
(5)

Note that we assume that when the output of the filter-based estimator is zero, the perceived 

roughness of a surface is zero, and therefore there is no constant term in Eqn. (5). Our method 

for deriving the coefficients a and b is described in full in the Appendix. Briefly, assuming that 

the perceived roughness of the roughest of the three sample surfaces is 100, we have four 
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unknowns; the coefficients a and b, and the values of rps for the other two sample surfaces. After 

multiplying values of rpu by 10-8, for convenience, the best fit quadratic to the 18 points, shown 

in Figure 5, is:

pupups  r r -r 6.5204.7 2  (6)

Each set of five rpu values obtained from a bisection task with the same sample pair, but with 

different  in the adjustable texture, corresponds to one value of rps. Although the values of rpu

within each of the three sets vary, they are significantly different from each other (one-way 

ANOVA: F(2,12) = 103; p < 0.001), indicating that the bisections made by observers are 

systematically related to the sample pairs. Eqn. (6)  provides a close fit to the data of Experiment 

2 (r2 = 0.973), and a better fit than a linear relationship (r2 = 0.902). We therefore conclude that 

the model described by Eqns. (3), (4) and (6) provides a means of measuring, to an interval scale, 

the perceived roughness of isotropic, random phase f/1 surfaces.

(Figure 5 here)

5. General Discussion

The methodology for constructing and rendering synthetic surface textures used in these 

experiments is novel in several important respects. It allows the presentation of surfaces that are 

both realistic in appearance and have precisely specified physical properties, which can be 

adjusted in real time under an observer’s control. It is possible to control independently the 

effects of illumination on a surface image, and to vary these in animations simulating in real time 

the effects of rotating a surface. Using these methods, it has been possible to specify precisely an 
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estimator for the visually perceived surface roughness of isotropic, random-phase f/1 noise 

surfaces. This consists of two stages. First, unscaled perceived roughness is computed from the 

surface height spectrum, using a Gaussian filter with two fitted parameters (µ, σg), as described 

by Eqns. 3 and 4. Second, these values are scaled using Eqn. 6, with two fitted coefficients (a, b).

5.1 How typical are 1/ f β noise surfaces of natural surfaces? 

At present, the proposed estimator for perceived roughness applies only to random-phase, 

isotropic, f/1 noise surfaces. However, these are typical of the surface textures of a variety of 

naturally occurring materials. Scaling of the luminance power spectrum has been demonstrated 

by analyses of a wide variety of sets of images of natural scenes and surfaces (e.g. Field, 1987; 

Ruderman & Bialek, 1994; van der Schaaf & van Hateren, 1996; Tolhurst, Tadmor & Chao, 

1992). There is some variation between image sets, but they generally show scaling of the image

power spectrum with roll-off factors in the range 1.7 – 2.2. In the stimuli that we have used, we 

found a realistic appearance where the roll-off factor of the surface height magnitude function 

fell between 1.7 and 2.3. Two points need to be taken into account in comparing these figures. 

First, what is the relationship between the height magnitude spectrum of a surface and the 

luminance magnitude spectrum of its image when it is illuminated? Assuming a linearised 

Lambertian model of reflectance (i.e. a surface with low slope angles), and no effect of shadows 

and interreflections, Chantler, Petrou, Penirsche, Schmidt & McGunnigle (2005) show that the 

image and height magnitude spectra I(f,θ) and H(f,θ) are related by:

),()cos()cos(),(  fHfifI  (7)
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where α and ε are the azimuth and elevation of a point illumination source. It follows from Eqn. 

(7) that

1 hi ββ (8)

where βi and βh are the roll-off factors of the image luminance magnitude spectrum and the 

surface height magnitude spectrum, respectively (note that βh is the same variable that we have 

so far denoted simply as β, for convenience). The assumptions underlying this model are realistic 

for a number of natural textured surfaces, and for synthetic surfaces of the kind used here, as 

Chantler (1995) showed that the model closely predicted measurements of the effect of 

illumination angle on the image spectrum. 

Following Eqn. (8), a surface with βh = 2 will give rise to an image with βi approximately equal 

to 1. However, this is the roll-off factor of the luminance magnitude spectrum, and must be 

doubled to give that of the power spectrum, the parameter used in the literature on scaling of 

natural images. Overall, if one of the surfaces used in our experiments has a value of 2 for its 

height magnitude function (βh), then its rendered image will have a value of β for its luminance 

power spectrum of approximately 2. We conclude that there is a close correspondence between 

the properties of the synthetic surfaces that we used and those of naturally occurring surfaces and 

scenes. 

5.2 Implementation in the visual system

The estimator that we propose has the mathematical form of a filter-rectify-filter (or linear-

nonlinear-linear) model commonly used in models of texture segregation (e.g. Bergen & Landy, 

1991). The input is passed through a linear spatial filter, the variance of the resulting signal is 
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obtained by a squaring operation, and the result is then summed over the whole surface. 

However, the algorithm is being applied here in a different context from texture segregation. In 

particular, its input is not image luminance signals, but surface height data. If it is implemented 

in the visual system as a distinct process, it must therefore follow stages in which surface relief is 

recovered from the image. In the displays that we used, this must be achieved using shading 

information, together with changes in shading as the rendered surface rotates relative to the light 

source. In natural circumstances, binocular disparity, motion parallax and other depth cues would 

also come into play. Perception of surface roughness will therefore depend both on processes 

involved in the recovery of surface depth and on those implementing our proposed estimator, and 

so any bias in the first stage will affect the perceived roughness of a surface.

5.3 Conclusions

We have derived a model for measuring on a ratio scale the visually perceived roughness of 

synthetic surfaces generated by a f/1 noise process. This is the first time that it has been 

possible to specify an estimator which measures a perceived dimension of texture, given a 

physical description of its surface. Because the model is based on experiments using f/1 noise 

surfaces, it can be applied to a large class of natural materials, and there is scope in future work 

to extend it to other classes of surfaces with directionally oriented or regular textures.
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Appendix: Derivation of scaling parameters (Experiment 2)

The data from Experiment 2 were used to determine suitable values for the parameters for the 
scaling relationship (Eqn. 5). This appendix describes this estimation process.

Section 4.1 described how ten observers carried out trials in which they adjusted the RMS height 
(σ) of a surface until it was perceived to be midway in roughness between two reference 
surfaces. Three different types of reference surface were used:

Surface type d: β=2,σ=4mm 

Surface type e: β=2,σ=8mm

Surface type f: β=2,σ=12mm

Individual reference surfaces of the same type differed only by phase spectra. When visually 
inspected all surfaces used did not appear to contain any distinct phase alignments and were 
therefore likely to be of the same perceived roughness. 

Each observer performed fifteen trials using adjustable surfaces of five different β  (1.8, 1.9, 2.0 
2.1 & 2.2) with three different reference pair types: (d, e), (e, f) and (d, f). Thus they produced 
five new surfaces with a perceived roughness of (dps+ eps)/2, five of (eps+ fps)/2 and five of (dps+
fps)/2. For each observer we calculated the unscaled roughness (rpu) of each of their fifteen new 
surfaces from the (β, σ) values. The median values were then taken across observers to provide 
fifteen estimates of rpu (five for each reference pair type). Including the data from the three 
reference pair types provides eighteen corresponding values of (rps, rpu): 

rps: dps eps fps (dps+ eps)/2 (eps+ fps)/2 (dps+ fps)/2

rpu: 1 value 1 value 1 value 5 values 5 values 5 values

When these data are substituted into Eqn. 5 this provides a set of eighteen homogeneous 
equations with five unknowns (a, b, dps, eps,  and fps). 

However, we define our roughest reference surface to have a perceived roughness fps=100, 
leaving four unknowns. We solve the resulting set of over-constrained  simultaneous equations 
using least squares to provide estimates of -7.04 and 52.6 for a and b respectively.
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Figure Legends: 

Figure 1. Top row, left to right: surfaces with RMS height (σ) = 4, 8, and 12 mm. β =2 in all 

three. Bottom row, left to right: surfaces with β = 2.2, 2.0, and 1.8. RMS height = 10 mm in all 

three.

Figure 2. Experiment 1: Mean RMS heights (plotted on a log scale) of adjustable surfaces with 

different β values, set by observers to match a sample surface. In the sample surface, β was 

always 2.0 and RMS height was one of 5 values. Vertical bars: standard errors of means across 

observers (SEM). Broken lines: best-fit regression lines for each set of five points. From top to 

bottom, r2 = 0.841, 0.830, 0.830, 0.788 and 0.740.

Figure 3. Iso-roughness contours in β - σ space predicted by the Gaussian filter model for 

unscaled perceived roughness, compared to the data and best-fit regression lines from 

Experiment 1. Regression lines are the solid grey lines extending beyond the range of 

experimental observations (i.e. below  = 1.7 and above  = 2.3).

Figure 4. Experiment 2: Mean RMS heights of adjustable surfaces with different β values, set by 

observers in the three bisection tasks. In the sample surfaces, β was always 2.0 and the pairs of 

RMS heights were as shown in the inset. Vertical bars: SEMs. From top to bottom, values of r2

for the best-fit regression lines are 0.822, 0.807 and 0.817.

Figure 5. Values of filter-based estimator output rpu for each adjustable and sample surface in 

Experiment 2, plotted against values for perceived roughness rps, scaled using Eqn. (6). The line 

is the least-squares fit using a quadratic model.
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