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Abstract

Many image-rotation invariant texture classification approaches have been
presented. However, image rotation is not necessarily the same as surface
rotation. This paper proposes a novel scheme that is surface-rotation
invariant. It uses magnitude spectra of the partial derivatives of the surface
obtained using photometric stereo. Unfortunately the partial derivative
operator is directional. It is therefore not suited for direct use as a rotation
invariant feature. We present a simple frequency domain method of removing
the directional artefacts. Polarograms (polar functions of spectra) are
extracted from resulting spectra. Classification is performed by comparing
training and classification polarograms over a range of rotations (1° steps
over the range 0° to 180°). Thus the system both classifies the test texture and
estimates its orientation relative to the relevant training texture.

A proof for the removal of directional artefacts from partial derivative
spectra is provided. Results obtained using the classification scheme on
synthetic and real textures are presented.

1 Introduction
Many texture classification schemes have been presented that are invariant to image
rotation [1,2,3]. They normally derive their features directly from a single image and are
tested using rotated images. If the image texture results solely from albedo variation
rather that surface relief, or if the illumination is not directional or immediately
overhead; then these schemes are surface-rotation invariant as well. However, in many
cases rotation of a textured surface produces images that differ radically from those
provided by pure image rotation. This is mainly due to the directional filtering effect of
imaging using side-lighting [4, 5].

We present a highly novel surface rotation invariant approach to texture
classification. Our approach uses polarograms [6] derived from surface derivative
spectra. We use photometric stereo to obtain the required partial derivative fields. They
are Fourier transformed and combined to provide a frequency domain function that does
not contain the directional artefacts associated with partial derivatives. Polarograms of
this function are compared with those of training classes using a goodness-of-fit measure
to provide rotation invariant texture classification.



1.1 Organisation of this paper
The next section describes the problem and related work. Section 3 presents theory that
shows that our polarograms do not suffer from directional artefacts. Section 4 describes
the complete classification scheme, while section 5 presents results obtained by applying
this scheme to synthetic and real textures.

2 The problem
This section discusses the problems that occur when 3D surface textures are imaged
using directional illumination. First we define three terms:
3D surface texture - the three-dimensional variation of surface relief,

Albedo texture - the of variation of the albedo property due, for instance, to a
printed ’pattern’ on a flat surface, and

Image texture - the variation in grey-scale or colour value in an image that results
from imaging 3D surface texture, albedo texture or a combination
of the two.

3D surface textures are often illuminated from one side when they are photographed in
order to enhance their image texture, e.g. [7]. Such imaging acts as a directional filter of
the 3D surface texture [5]. This phenomena is illustrated below. Figure 1 shows the same
sample of 3D surface texture imaged using two different illumination conditions.

τ = 0° τ = 90°

Figure 1 - Images of the same 3D surface texture imaged at two different illuminat
tilt (τ ) directions (shown by the arrows)

The directional filtering effect is more obvious in the frequency domain. Figure 2 shows
the Fourier transforms of the two image textures shown above.
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Figure 2 - FFTs of the images shown in Figure 1

This shows more clearly that side-lighting accentuates texture components in the
illuminant  tilt direction (τ) and attenuates those at right angles. It follows that if the



surface is rotated and imaged under directional illumination conditions, the images
produced will be a function of the rotated surface’s characteristics and the directional
filtering effect described above. The four image textures below illustrate this point.

ϕ = 45° ϕ = 75° ϕ = 105° ϕ = 135°

Figure 3 - four images of a directional texture. The surface  has been rotated at
angles of 45°, 75°, 105°, and 135° (white arrows). The illuminant tilt was kept

constant at τ = 45° (black block arrows). Note that when the 3D surface texture
direction is at right angles to the illuminant tilt the texture is hardly discernable.

These images show that rotation of a 3D surface texture does not result in a simple
rotation of the image texture. Conventional image rotation invariant algorithms [1,2,3]
do not take this important and everyday phenomena into account.

2.1 Related work
As previously stated many texture classification schemes have been presented that are
invariant to image rotation [1,2,3]. Few take into account the problems caused by
illumination described above. Exceptions include Leung and Malik’s classification
system which is trained on textures that are each imaged under 20 different illumination
and orientation conditions [8]. This generalises the classifier but does not use explicit
3D surface texture information directly. Their textures were obtained from the
Columbia-Utrecht Reflectance and Texture Database [9]. Dana and Nayer describe a
correlation model for 3D surface texture and suggest how this might be used to provide a
3D surface texture feature, correlation length. They do not however, use this for texture
classification purposes [10].

McGunnigle and Chantler proposed scheme that used photometric stereo to obtain
gradient information, these data were used to synthesise images of the training textures
once the classification illumination conditions were known [11, 12]. The scheme was not
rotation invariant. Later they proposed another photometric-based system, however, this
time the gradient information was directly filtered using isotropic gabor filters to provide
a rotation insensitive scheme [13].
Smith also uses 3D surface texture information directly [14]. He uses photometric stereo
to acquire surface gradient information and suggests the use of features derived from the
gradient space (including attitude, principal orientation, shape factor, and shape
distribution) for the ’quantitative analysis of repetitive surface textures’. He does not go
as far as applying this approach to the task of classification of rough surfaces using a
conventional classifier - although it would be very interesting to see the results. In many
respects our own gradient space approach which uses eigenvalues as the features is very
similar [15]. However, this paper presents a different approach; it uses frequency
domain information rather than gradient space features.



3    Theory
Our approach uses estimated partial derivatives of the surface height function. We obtain
these using photometric stereo [12, 16, 17]. Unfortunately the partial derivative operator
is a directional filter of surface texture. This means that the partial derivatives cannot be
used directly in a rotation invariant classifier; they must be processed first.

This section proposes a method by which the partial derivatives may be combined in
the frequency domain in such a way as to remove these directional artefacts. The
gradient estimates provided by photometric stereo are normally in the form of the partial
derivative fields p(x,y) and q(x,y).

xzyxp ∂∂=),( (1)

yzyxq ∂∂=),( (2)

where: z(x,y) is the surface height function of a texture in the x-y  plane.
The Fourier transforms of (1 & 2) are:
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where: S(u,v) and S(ω,θ) are the Fourier transforms of surface height function in
cartesian and polar forms,
u,v are spatial frequency variables, and
ω,θ are their polar equivalents.

Now (3 & 4) show that both derivatives act as directional filters due to the cosθ and sinθ
terms. However, we may combine them to provide a function free of directional
artefacts:
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To utilise the directional information contained in M(u,v) we use its polarogram:
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Note that while both M(ω,θ) and its polarogram do not theoretically contain any
directional artefacts they are however, rotationally sensitive. That is, if the surface is
rotated by an angle ϕ then a new spectrum Mϕ(ω,θ) and a new polarogram Πϕ(θ) will
result (see Figures 6 & 9), such that:

Πϕ(θ) = Π (θ +ϕ) (7)
Hence in order to provide rotationally invariant discriminate functions we compare the
test texture’s polarogram against each of the training textures’ polarograms. This
comparison is performed over a range angular displacements of the test polarogram (ϕtest

= 0°, 1°, 2°, ….180°).

4 Surface Rotation Invariant Classification
The complete classification scheme is shown in Figure 4. A photometric image set (three
images taken at illuminant tilt angles of 0°, 90° and 180° of the test texture) is captured.
The photometric algorithm uses these to provide estimates of the partial derivative fields
p and q. These are Fourier transformed and processed to provide an estimate of the
texture's polarogram, which is compared with polarograms obtained from training
images over a range of angular displacements (ϕtest). In fact in order to exploit some of
the radial information we actually take four polarograms of each texture over different
frequency bands (ω = 1-4, 5-8, 9-12, and 13-16 cycles per image width). We use a sum



of squared differences as a goodness-of-fit indicator at each displacement value (ϕtest)
and choose the best fitting combination of displacement (ϕtest) and training texture to
provide both classification output and an orientation estimate for the test texture.
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Figure 4 - The surface rotation invariant classification scheme

5 Experiments
A set of experiments were performed on synthetic and real textures. The experiments on
the synthetic textures were designed to show that the M(ω,θ) functions and their
polarograms are rotationally sensitive but contain no directional artefacts. That is Mϕ(θ)
= M (θ +ϕ) and similarly Πϕ(θ) = Π (θ +ϕ). These textures were also used to test the
basic classifier. Further testing was performed using four real textures.

5.1 Synthetic Textures
Montages of a selection of synthetic images (Rock, Sand, Ogil, Malv) are shown in
Figure 5. These textures are defined in [12]. From Figure 6 it can be seen that the
M(ω,θ) functions of the rotated textures are simply a rotation of the original (ϕ = 0°)
M(ω,θ) function as predicted. This shows that the M(ω,θ) function conatins no
directional artefacts such as a directional filtering effect.



Rock Sand

Malv Ogil

Rotation angle ϕ = 0°

Rotation angle ϕ = 90° Rotation angle ϕ = 150°

Figure 5 - Synthetic textures at three surface rotations with constant  illumination. Surfaces,
rotated as indicated by white arrows, rendered at an illuminant tilt of 90° (black arrows) and

combined into montage for display purposes.

Rotation angle ϕ = 30° Rotation angle ϕ = 60°

Rotation angle ϕ = 90° Rotation angle ϕ = 150°
Figure 6 – M(ω,θ) functions of each of the 4 synthetic textures shown in montage format (as

above) for 4 surface rotations.
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It is not surprising therefore, that Figure 7, dipicting the polarograms of the rotated Sand
surface, shows that a rotated texture’s polarogram is an approximate translation of the
unrotated texture’s polarogram.

For classification the
system was trained using
photometric image sets
synthesised from the four
surfaces obtained at a
surface rotation angle of
ϕ = 0°. This provided the
four ’training’
polarograms (one for
each class). The
classification was
performed on 256x256
samples of the textures
rotated at 30°
increments over the
range 0° to 180°. Each
of the resulting 76 polarograms was compared with each of the 4 'training' polarograms.
The class was assigned to training texture with the best-fit polarogram.  No classification
failures occurred. A more testing experiment is described below.

5.2 Real Textures
Photometric image sets of four real textures were obtained over a range of surface
rotations (0° to 180° in 30° steps). Montages of a selection of these images are shown
below (Figure 8).

Frac1 Ogilvy1

Ripple2 Ogilvy3

Rotation angle ϕ = 0°

Rotation angle ϕ = 60° Rotation angle ϕ = 90°

Figure 8 – Real textures shown in montage format

Figure 7 - Polarograms of the synthetic Sand texture at
surface rotations of  ϕ = 0°, 30°, 60°, 90°, and 150°.



For illustration purposes montages have been constructed from single images of the
textures. The textures were in fact rotated individually. All textures shown above were
captured at  an illuminant tilt angle τ = 0°. Images were also captured using iluminant tilt
angles 90° and 180° images as well but are not shown here).

Comparison of the images Ogilvy1(ϕ = 0°) and Ogilvy1(ϕ = 90°), show that they are
not simple rotations of each other. In Ogilvy1 (ϕ = 0°) the vertical lines of the texture are
clearly present. In Ogilvy1(ϕ = 90°) the image texture has been attenuated and the lines
(which should be vertical) are no longer visible. Similarly for Frac1's images.

Figure 6 below shows the polarograms of the Ogilvy1 texture.

Figure 9 - Polarograms of the real Ogilvy1 texture at surface rotations of  ϕ = 0°,
30°, 60°, 90°, 120° and 150°.

It can be seen that these polarograms are again approximate translations of each other,
and that the degree of each translation approximates the corresponding rotation of the
surface.

Figure 7 shows polarograms of all four textures obtained at a surface rotation angle
of ϕ = 0°, these form the 'training' polarograms.

Figure 10 - Training polarograms  (for a  256x256 sample size)
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The classification task therefore becomes one of comparing the polarogram of the test
texture against each of the polarograms shown in Figure 10. Again the test polarogram
must be ’rotated’ (or rather translated) to find the best-fit. The texture is then assigned to
the class for which the lowest sum of square differences occurs at each of these best-fit
rotation angles. This classification test was repeated using sample sizes 128x128, 64x64
and 32×32. The samples were cut from the original 256x256 images to provide the
maximum number of samples without overlap. Hence for the 32x32 case 4864
classifications were performed (64 samples per rotation x19 rotations x 4 textures). The
results are shown below in Table 1 and Figure 11.

32*32 64*64 128*128 256*256
Frac1 46.9% 74.1% 78.6% 100%

Ogilvy1 34.4% 55.4% 67.9% 100%
Ogilvy3 87.1% 86.6% 96.4% 100%
Ripple2 59.2% 93.8% 96.4% 100%

No. of classifications 4864 1216 304 76
Average of accuracy 57% 77% 85% 100%
Misclassification rate 43% 23% 15% 0%

Table 1 - Classification results for real textures

Figure 11 – Misclassification rates for real textures.

The results show that the approach is very sensitive to the sample size - this is probably
due to the errors that result from computing the polarogram (a polar measure) from small
discrete cartesian FFTs. However, we have not had time to investigate this further.

Nevertheless the results show that for the larger sample sizes the approach attains
remarkable accuracy for a set real and rotated 3D surface textures.

6  Conclusions
1. This paper has proposed a completely novel texture classification scheme that is

surface-rotation invariant.
2. We have presented theory and experiment that shows that the basic feature set,

polarograms derived from surface gradient spectra, is free of directional artefacts.
We have shown that this is not the case for single side-lighted images of surface
texture.
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3. We have also presented results that show that our classification scheme achieves
very good classification rates using large sample sizes and poor classification rates
using smaller sizes.

4. We therefore think that this classification scheme is suited to classification of
sample images and the estimation of the texture direction, but that a gradient space
approach such as that presented in [15] would be better for use on texture
segmentation problems.
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