Rotation invariant classification of rough surfaces

G .McGunnigle and M.J.Chantler

Abstraet: Rotation of 2 rough, textured surface will not produce a simple rotation of the image
texturc, It follows that where image texture is a function of surface topography, existing rotation
mvariant texture classification algorithms are not robust to surface rotation. The effect of surlace
rodation on the observed image is analysed using an existing |heory, a novel scheme to stabilise
classification accuracy is proposed and cvaluated. The scheme nses photometric sterea 1o estimate
the surface derivatives, which arc then used as the input to a classifier. Simulations indicate that,
where the level of image noise 18 moderate, or low, the approach is successinl in maintaining
classification accuracy. Furthermore, in some circumstances, the cxtra infornation used by the
algorithm allows classification accuracy superior to that based on one image alone, even without

rotation,

1 Introduction

The development of texture classification algorithms that
are robust to texture rotation is an important arca of
research within texture analysis, and dates back to lhe
carliest days of the field [1]. Most rotation invatiant
schemes are derived [rom rotation sensitive algorithims,
such as co-cceurrence methods [1, 2], autorcgressive
techniques [3, 4], Markov random fields [5, 6], wavelets
[6, 7], and Gabor filters [6, 8]. A brief revicw of rotation
invariant algorithms is given in [6],

The algorithms can be divided into two classes; rotation
insensitive and rotation invariant algorithms [9]. The
former ignores  directional  information  completely,
whereas the latter exploits information about the ovienta-
tion of texture components telative to cach other while
ignoring their absolute orientation. Rotatien insensitive
gchemes include the circular autoregressive technigue [3]
und the isotropic Gabor (ilter used by Porter and Canagar-
ajah [6]. Rotation invariant techniques are more complex
and include techniques such as Kashyap’s additional
feature and Choe’s two-level gystem [10]. This paper is
restricicd Lo rotation insensitive classificrs, The problem
that is identificd, however, occurs prior to the application of
any algorithm and so is equally velevant fo rotation invar-
iant classifiers.

All of the slgorithms discussed above deal with the
rotation of image fexture. ITowever, in this paper it is
argucd that this is an insuflicient mode! for many applica-
tions. Rotation of a rough surface is not equivalent to the
rotation of its image. It follows that rotation invariant
algorithms will not be robust to surface rotation,

This paper uses simulalion to demonstrate the visual
effect of rotating a rough surface, and analyscs the effect
using theovy, The inability of an image rotation insensitive
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system to deal with surface rotation is also demonstrated.
Tlence the main ebjectives of this paper are: first, to cxpli-
citly show that rotation ola rough surfice is not cquivalent to
rotation of its image, and that conventional retation-invar-
iant algorithms may fail under these conditions; and
secondly, to proposc a new classification scheme that uses
surface gradient information derived [rom  photometric
stereo to provide 4 surface rotation invariant classificr.

2 Problem description

2.1 Image effects

Caonsider the hypothetical inspeetion task shown in Fig. 1,
A raugh surface cemprising two or mors classes of surlace
topography iz illuminated and is imaged using a mano-
chrome CCD camera, The test piece may be rotaled by an
arbitrary angle ¢ frem the angie at which training
occurred. The position of the camera and illumination
will be held constant, We shall assume the surface’s
reflectance chavacteristics to be uniform and diffuse
throughout the surface, and the obscrved texture to be a
product of the interaction of tho illuminaut and the surface
topography. We will alse assume an orthographic projec-
tion, that is, the image corresponds to a uniform sampling
of intensity over the surface planc,

If the surface texture is isotropic, surface rotatien will
have no cffect on the characteristios of the imaged texturc
(Fig. 2), though it is possible to follow the rotation of
individual surface structures from frame to frame, TF, on the
other hand, the surface is directional, sutace rotation will
alter the imaged texture beyond simple rotation (Fig. 3). In
this case, as the surface is rotated the directionality of the
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Fig). 1 Geomeiry of a hypothefical inspection system



AF L i Y K 3
Fig. 2 rfmages of isoliopic surfuce rotated by 0¢, 45° and 90°

Artow shows relative erieniadion of the swiace

Fig. 3  Dnagey nf direciional surfice votated by 0°, 45° and 20°
Arrow shows relalive oricnfation of the surface

texture rotates. However, as the surface directionalily
{originally collinear with the itluminant) is rotated relative
to the illuminant, the divectionality visible in the inage is
attenuated. This gives the rotated surface an appearance
distinet [rom that of the unrotated surface.
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2.2 Classification
We begin with a brief description of an image rotation
insensitive ([RLS) classifier. The feature scteused in this
paper consists of a set of isotropic Gabor filters, similar to
those described in [6], though in this case the classifier will
be used to scgment, rather than classify the image, The
filters measure the signal energy held within a radial
freguency band; no directional filtering takes place and
s0 the features contain no information about the dircction-
ality of the texture. In this way the features are vnaffected
by rotatien of the data sct.

The spectral response of a filter centred at e is shown in
eqn. |

(m — wp)?
P

Glon) = exp (1

where G(e) is the frequency response of the filter, o is the
radial frequency, w, is the cenire frequency of the filter,
and a,, is the bandwidth parameter of the filter.

Classilicalion is carricd oul on the basis of the responses
of four filters with centre frequencies at 64, 32, 16 and 8
cycles per image, The bandwidths of the filters, o, are 32,
16, 8 and 4 e¢ycles per image, respectively, The power
specira of the fillers used in this paper arc shown in Fig. 4.
The filtered images arc then rectified and lowpass filtered
to produce a set of feature images. These features are
passed to a statistical classifier (11, p.125} and the image is
segmenled into reglons using classilication on a pixel-by-
|pixel basis. The process is summarised in Fig. 5.
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The fiest objcetive of this paper is' to show that image
rotation-insensitive {IRIS) classifiers arc not appropriate
for surface rotation. To do this we must show that the
classifier is: first, able to deal with image rolation; and
secondly, unable to deal with surlace rotation.

We defline the test montage shown in Fig. 6, which
consists of four textures which have been generated
using o Lambertian rendering of synthetic height maps.
The surfaces are assumed to be illuminated from a tilt
angle of 270 and a slant angle of 50°. Clockwiss from
uppet left-hand comer: surface 1 is an isotropic fractal
surface with roll-off # = 3.0 and rms slope 0.25, surfaces 2
and 4 hoth exhibit fractal roll-off from a central speciral
pealk el radial frequency at 16 and 32 cycles per image,
respectively. Surface 3 conforms to the model of direc-
tional surfaces proposed by Ogilvy [12] with vertical and
harizonial cortelation distances of 10 and 25 pixcls,

Fig. 4 Spectal bands of filiers
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Fig. 6  Yosr monwge and training region

respectively. The spectra of these surfaces are shewn in
Tig. 7,

The classificr is used for two tasks: in the first, (he
control experiment, the image is rolated. This is the test
applicd o conventional rotation invariant algorithms. In
the sccond cxperiment the swrface is rotaled and s
rendered under the same illumination geometry, In both
cases the clagsifier {s trained from the central area (25%) of
the montage prior fo rotation,

In the control cxperiment, the classificr is able to deal
with image rotation with only a small ilucluation in
classification accuracy (Fig, 8). The surface rotation
experiment, in contrast, shows that the rotation invariant

Fig. 7 Low power specira of fosi swrfices
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algorithm is unable to deal with the combined cifect of the
directional illuminant and surface rotation {or 2 wide range
of romations, We conclude that image rotation is not
equivalent to surface cotation and that image rotation
invariant algorithms may not be suitable for the rotation
invariant texture classification of rough surfaces.

3 Theory

3.1 Image

Kube and Pentland [13] developed a model, defined in
speciral (erms, which links the surface (which we wish o
classifyy to the image (on which we wish to make the
classification). Kubc and Pentland assume the surface
reficctance to be Lambertian. The image i(x, ¥) can then
he expressed as a function of (e illuminant ericntation
{7, o) and the surface partial derivative fields, p(x, »} and
§(x, ).

—plx, vycostsing — glx, ) sintsing - cos o

VPRGN P+ L

i, y) =
(2)

A lnear approximation {eqn. 3) to this cquation is used to
derive a frequency domain cxpression {cqn. 4). The
assumption of linearity is valid for surfaces with modorate
(= 157y slape angles [13].

i(x, 1) = —plx, y)coscging — ¢x, y)sintsing + cosa
&)

Since differentiation is a lincar operation this can be
trans(ormed into the frequency domain, and expressed as
a function of the surface magnitude spectrum

1 (o, 1y =~ sin g[cos(fh) cos(z)

-t sin{0y sin(z)]S, (0, 0 — o) {4
where £ 0w, @) is the image magnimde spectrum, and
Sle0, 0 — ¢y is the magnitude spectrum of the surlace
rotated by an angle ¢.

For the purposcs of this paper it is morc convenient to
cxpress this in terms of the power spectrum in the Torm
shown in eqn. 5.

I, 0y = w?[sing?| cos(@ — 0)28¢0, 0 — ¢ (5)

where  f(eod) is the image power spectrum, and
San, 1 — ) is the surface power spectrum rotated by an
angle o,

Thoe imaging process may be thought of as a directional
highpass liltering of the swrface [14]. If we consider only
the directional aspects of this filtering we can sce (hat the
image directionalily is a product of the illuminant tilt angle
(1) as well as the surface directienality,. Thus a surface
rotation will not, in general, be cquivalent to image rota-
tion if the illuminant is not also rotated.

It is useful to focus on the directional aspeets of the
magnitude speclrum. We integrate the specirum over radial
frequency, over the range w=0.125m, to w=0.75w,,
where @, is the sampling [requency, to obtain a one-
dimensional distribution of fiequency components as a
function ol {).

Vor an isottopic surface, image directionality is due
solely to the dircctional effect of the illuminant, Rotation
of the surface will cause no significant change in the image
directionality so long as the illuminant direction is held
constant (Fig. 9).
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Fig. 9 Polar plot of image spectrin from isotropic surface
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The directionality in the image of a directional surface is
the product of both the surface and ifluminant directional-
itics. The surface directionality will gither be accentuated
or attenuated depending on its otientation relative to that of
the illuminant. Thus rotation of the directional surface
causes the peak in the polar plot to be shifted. However,
the amplitude of the peak falls as the surface directionality
moves away from the angle of illumination, until, for
¢ =90° the peak is completely attenuated (1ig. 10).

3.2 Fealures
The classifier uses features which are derived from the
image. 1t follows that if the image is affected then the
features, and ultimately the classifier, will also be affected.
Althongh the nonlinear nature of classification Hmits our
ability to analyse it, we can observe the cflect of surface
rotation on features, and so gain insight into the cffect at
the decision level of the classifier,

The isotropic Gabor filters act as isctropic bandpass
filters. The power spectrum of the [ltered images is given
by

Feo, ) = [G{eo)*Hen, ) {6)
Using eqn. 5 we may write
Flw, 8) = |Glew)|2o?| sin af?| cos(0 — 1))°S(w, & — ¢) (7)

Although the filters are real, and therefore not admissible,
we assume the filtered images have a mean value of zero.
We achieve this by removing the mean compenent of the
images prior to f{iltering. This of course, assumcs that all
the texture classes share the samme mean. We justily this
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Fig. 10 Polar plot of specirum of divectionu! surfuce

rotated by =07
,,,,,, rotated by o =907
——— rotated by ¢=45"
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assumption with the following argument: the surfaces are
assumed to have random phasc and be globally flat. The
random phase spectrum condition allows us o invoke the
cenfral limil theorem, predicling that the surface height
distribution will be Gaussian. Differentialion is a lincar
operation, therefore the distributions of the derivatives are
also Gaussian. Since the surface is globally flat the deri-
vative distributions will both have zcro means, The render-
ing tunction is assumed to be lincar, we would thereforc
expeet the images to retain a Gaussian disteibution that is
symmetric about the intensity which corresponds to a
horizontal facet. Assuming the reflectance (unction is
identical for all the textures, the classes will share a
common moan, which can be removed from the image
giving a [iller output with a mean vilue of zero.
The variance of the filter output is given by

2 DS
= J J |G ()P e sina)?] cos(d — 7))
O=0Jw=0
* S, — ) dw di (8)
For simplicily, assume that the surface spectrum is separ-
able into radial and polar functions, S,{m} and Sp(())

]

x S, ()| G(w)|* dev dO) ©)

cos(0 = 1)|°5,(0 — )’ | sin o}

In the case of an isotropic surface, S, is a conslant and
surface rotation will have no cffeet. [f we approximate the
polar plot of the dircetional surface oriented in direction v,
with an impulse function, 6(0 — ), i.¢.

5,00 = 30— — ) (10)

Then eqn, 9 will be zero for all directions except 0 =7+ ¢,
and

25 ()Gl de (L)

o = [lcos(y +¢ —)lfe|sine

We would therefore expect the standard deviation of the
filiered image associated with the divectional swface to
vary wilh |cos(y - ¢ — 7)| and that of the isotropic surlace
to he constant,

Before the filtered image can be passed to the classifier,
it must be processed by a nonlinear function. In this paper
we use a simple rectification operation, We assume the
slope distribution to be Gaussian. Both Kubes model and
the Gabor filters are lincar operators, and we would there-
fore expect the signal prior to the nonlincarity to be
Gaussian with standard deviation o,

The rectification will cause the probability distribution
to assume the lorm (cqn. 12)

2 —f?
- 12
2a0, cxP(Zaﬁ,) (12)

where /= 0 is the value ol the feature.

The mean of this distribution is approximately 0.6,
The mean of the feature derived [rom a unidirectional
surface would therefore vary with the cosine of the angle
between = and 4.

P =

My o |eos(y + ¢ — 7)) (13)

Therefore, in the case of a directional surface, the firsi-
order statistics of the RIS feaiure are still functions of the
angle of rotation, ¢. This means that the classilier will be
sensitive to surface rotation, and this may cause it to fail,
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This effect is shown in Fig. 11 with the surfaces *rock’
and ‘sand ripple’, introduced in ligs. 2 and 3, respectively.
The results for the sand ripple texture are well modclled
with a best €l jcos(y + & -- 1) curve,

4 A rotation invariant scheme

The inspection task discussed earlier is designed fo classify
surfaces on the basis of their image texture. lar a rotation
invariant algorithm to be applicd, the directional cffect duc
to the illuminant must be removed. Wo now briefly
comsider several techniques.

4.1 Candidate techniques

4.1.7 Single image schemes: Chautler has uscd
[Kube’s model as the basis for a scheme for the removal
of directionul efleots associated with the illumination 9],
while Pentland has used it as the basis for a surlace shape
estimator [13]. Both schemes estimate a quantity that is
independent of the orientation of the surface relative Lo the
illuminant, and which would therclore be a usclul starting
point for a rotation invariant classifier. However, both arc
derived from Kube’s model, and share two signilicant
weaknesses that stem [rom the linearisation inherent in
Kube'’s model. First, the schemes are unable to estimate
signal components perpendicular to the illuminant direc-
tion, and neighbouring estimates arc noisy. Sccondly, a
linear model can be optimal for only a certain class of
surfaces [16]. For a classification task, where several
textures ure present, the cstimate will neeessarily be
suboptimal. Tn view of this we belicve hat neither of
these schemies is sufficiently tobust for use in a classifier.

4.1.2 Photometric schemes: Ia our hypothetical
inspection task, we wish to classify surfaces. 1t would be
dosirable i we could do so on the properties of the surlace,
by eliminating the effects of illuymination and reducing the
problem to onc of rotation invariance. Photometric techni-
ques use several images of the same surface imaged under
dilferent illumination directions 1o formy an cstimate of
surface shape. Unlike conventional shape from shading
algorithms, the phetometric problemi is not undercon-
strained, and il is not necessary to use the smoothness
constraints used in most single image shapes from shading
algorithms. McGunnigle and Chantler [17] used photo-
metric sterco to oblain surface devivatives of teaining
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surfaces which could then be rendered to produce training
data appropriate to a surface illuminated from an arbitrary
tilt angle. While this technique proved successtul, il is not
suitable for the problem of rotation invariance, Smith e «l.
[18] tock the use of photometric sterea oul of the context
of training and also used it at the classification stage. Using
the photometric cstimate they were able Lo isolate the
albedo component of texture from that due o the topo-
graphy. In this paper we proposc a scheme which combines
photometric sterco with a maodifled rotation invariant algo-
vithm to produce a classifier that is robust o surface
tolalion.

A photometric secheme will produce cstimates of the
surface derivatives which may be integrated to give a
surface height map, A height map is initially attractive
since it is a real scalar ficld that can be directly incorpo-
rated into an existing classilier. However, recovery of the
height map from the surface derivatives is not trivial for
rough surfaces; errorg are cumulative and the derivative
estimates may not be intcgrable. Furthermore, in speclral
terms, inlegration represenis  the cmphasis  of  low
froquency components and the deemphasis o high
{tequency components, This is not desirable for segmenta-
Lion.

Smith suggests the use of bump mapping, i.c. syntheti-
cally rendering the estimated derivatives from an angle that
will emphasise discriminatory features. - This will yield a
scalar that can easily be accommodated into a lexture
analysis algorithm [18]. We note, however, that this still
includes a dircetional filtering offect and the suppression of
a significant amount of swrface information. It would be
preferable to classify surfaces on the surface derivatives
themselves, rather than some scalar quantity detived trom
them,

4.2 An SRIS classifier

Classification on the basis of the sucface derivatives
presents two difficulties. Tirst, the surface derivalives are
a vector rather than a sealar quantity and the classilier nust
be applicd to two randem liclds instead of one. Sccondly,
the components ol this vector, i.c. the partial derivatives of
the surface, contain a dircetionality which is an artefact of
the process of differcntistion. This directionality must be
temoved prior to classification,

In this paper fiequency domain filtering (using the same
set of filters used in the TRIS classifier) forms the {irst stage
of feature extraction. The first problem is dealt with by
treating the partial derivatives as the real and imaginary
inputs to the Fourier transform. o this way the two fields
can be filtered with relatively little computational overhead
beyoud that associated with the (sealary 1RIS idlter [19,
P.311]. (Note that the use of the complex FFT is pucely for
computational efficiency.)

The spectral representation of the derivative fields (eqns.
14 and 15) gives a clearer idea of the dircclionality
associated with the derivative fields, The magnitude of
these two cxpressions Mo, 1) (cqn. 16) is isotropic, i.c. the
fields can be combined to form a quantity which does not
contain any dircctionality apart from that inherent in the
surface spectrum, S, ).

Plen, 0y = ien| cos 05, &} (14}

Olen, 0) = o] sin 0|8, (15)

where 8o, ) is the Pourier fransform of s(x, »), and
Plen, 0) and Q(w, ) are the Fourier transforms ol p(x, ¥)
and ¢(x, 3, respectively.
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Fig. 12  Owttine of proposed SRIS scheme

The magnitude of these two quantilics is given by

Mim, ) = \/ f;(;;.),- 0)-2 +_Q(ﬂ_), (Ez' = inSw, ) (16)

The filtered derivative fields, p, (x,y) and ¢, {x, ), still
contain & dircctionality due to differentiation which we
wish ta remove. Since we have already fltered the deriva-
tive fields we are enly Inlerested in the amount of ¢nergy
contained in each frequency band. It is therefore permis-
gible to use a nonlinear transformation at this stage without
affecting the integrity of the spectral filtering. To remove
the directional artefacts of the component derivative ficlds
we take the norm of the vector field (cqn. 17), The resulting
quantity is free of the directional filtering effect angd is
therefore a suitable basis for a rotation invariant algerithm.
This operalion is analogous Lo the rectilication used in the
IR18 clagsifier and, in combination with the same lowpass
filtering uscd in the TRIS classifier, allows a statistical
discriminant (of the same fype and wilh the same number
of features as that used in the IRIS classifier) to classify on
the basis of the energy passed by cach of the filters. The
classifier is summarised n Fig, 12,

#ol, ) = P2 ¥} + ¢3(x. y) (17)

Duc to the use of the complex 1] there is little additional
compulational burden beyond that of the TRIS classifier,
The additional operations are one image multiplication and
on¢ image addition for cach feature image. Since these are
both pixelwise operations they are relatively cheap
compared to the farward and inverse Fourier transforms
and lowpass fikering common to both the IRIS and SRIS
classiliers

5 Resuits

8.1 Comparison of SRIS and IRIS classifiers

The new algorithm was applied to the original data set. At
each rotation the surface montage was rendered using a
Lambertian model and the surface derivatives estimaled
using a simple photometric system [16]. The estimaics
were passed to the modilicd classifier and the classification
accuracy rtecorded. The boundarics of the classified
surfaces under 0° and 43° of rotation arc ovetlaid onto
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Fig. 13  Clussification of iest montages by SRIS elussifier

e Under 04 rotation
& Under 45° rotation

the images in Fig, 13, The accuracy of the conventional
image hased (IRIS) classificr is shown for comparison in
Fig. 14. The photometric classificr is clearly superior Lo the
nilive [RIS classifier in terms of robustness 1o surface
rotation, The photometric classifier is able to maintain a
stable level of classification throughout the rotation range.
This level is comparable with the best results obtained
from the IRIS classilier at the original fraining angle. We
believe this result justifies the exira expense ol capluring
the additional images.

5.2 Comparison with retrained IRIS classifier

As a sceond point of comparison we now compare the
proposed scheme with an [RIS classifier that has been
reftained at cuch rotation. Using a retrained classifier
allows us to resolve the effect of changes in the character-
igtics of the training data from changes in the difficulty of
the elassification al a particular orientation.

The results show that the difliculty of classification
based on the image texturcs varies significantly with
arientation, (Fig. 15). Tn our montage, at 90% of rotation
the preminent surface directionalitics are perpendicular to
the illuminant vector and are consequently heavily atienu-
ated. The loss of this useful discriminatory information
makes classification more difficult and is rellected in a
significant incredse in the level of misciassification.

Since the proposed scheme operates on the estimates of
the surface derivatives, rather than image intensitics, the
information conlent of the data set is not only more
consistent, but also richer, since directional components
are not attenuated by the imaging process. [n this way, the
additional images required by the photometric sysiem
scrve Lo make the classifier both more stable and more
accurate.
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5.3 Robustness of the scheme

The proposed technique has, up to this point, been applicd
lo test data simulated under idealised conditions, We now
test the robusiness of the algorithm to additive noise.
Comparison is made with the IRIS classifier which has
been trained at ¢» =0° and both algorithms are applied ta
the data szt that has been rotated 45°. We assume the noise
is white (and consequently isotropic) and Gaussian and
that it is present in both training and test images. Various
rcalisations of the process are added to the photometric
recovery images. Since the variance of the images varies
with (he surface orienlalion, the signal to residoe ratio
associated with noisc processes of a given variance will
vary. The ratio quoted is the average of the values asso-
ciated with cach three photometric recovery images.

In fact both the IRIS and SRIS classificrs arc surpris-
ingly tolerant to noise (Fig. 16). This is largely due to the
nature of the textures: even with at signal to noise ratio of
—5.85dB it {s possible to visually discriminate between
the textures (Iig. 17). Comparison with the 1RIS classifier
shows the photometric scheme to be less robust to noise,
Below a signal 1o residue ratio of 2dB the performance of
the proposed scheme s inforior to the [RIS classifior at
45°, Turthermore the accuracy of the SRIS classifier
collapses catastrophically, compared with the moch mare
praceful degradation of the [RTS classifier. Although these
results are highly dependent on the data set it does appear
that the SRTS classifier is less robust 1o noise and is not an
cffective approach in noisy applications.
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Fig. 17 iese moniaze corvupted by white noise
SNR = —5.85dB

6 Conclusions

In this paper we have highlighted the dillerence between
rotation of a textured image and rotation of the textured
surface from which it ig lormed, Many visual textures are
formed by the interaction of light with a rough surface, and
in many applications the classifier must cope with rotated
surfuces. Woe have shown that, when directional surfaces
are present an image rotation insensitive approach can {ail
badly under surface rotation. This problem is most signifi-
cant when the illuminant vector is nearly horizontal,
unfortunately this is also the condition under which the
surface texture becomes most apparent. We therefore argue
that many ol the rotation invariant algorithms presented in
the literature are inappropriate for classification lasks
involving surface rotation.

We have proposed a scheme o avercome this probiom in
the context of an inspection lask where illumination
conditions can be controlled. The scheme uscs photometric
stereo to cstimate the surface derivative ficlds. By using
characteristics of the surface, rather than of the image, it is
possible to apply & variant of a traditional rotation invariant
scheme. Tlowever, the cstimated partial derivative fields
represent a two-dimensional vector quantity, rather than the
scalar field associated with most lextore analysis. By
treating the two scalar, partial derivative ficlds as onc
complex field it is possible to effliciently implement a
frequency domain flter without additional computation
during the forward and backward transforms. The norm
ol the hltered derivative fields gives a feature that {s free
from the direetional (iltering cllect inherent to differentia-
tion.

The proposed scheme’s performance was tested using
simulation. Where Lhe noisc level is moderate the SRIS
scheme was found to be more robust to surface rotation
than the IRIS tcchnique. Furthermore, it was shown that
the scheme is able to utilise information from the photo-
metric recovery images which can offer improvements in
classification performance over that of the TRIS classifier
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