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Abstract

Rotation of the illuminant source about a subject textured
surface can cause catastrophic failure of texture classification
schemes. This is due to the variation of texture feature output
that can occur when the illuminant direction is varied. This
paper uses theory and experiment to show that the outputs of
linear texture filters, and their features, are sinusoidal functions
of theilluminant’'stilt angle.

1. Introduction

Many image textures are formed by imaging three-
dimensional textured surfaces. It is well known that such
image textures are a function both of surface topography
and of the illumination conditions. Severa authors have
developed schemes that are robust to variations in
illuminant intensity [1] and colour [2,3]. However, it has
been demonstrated that image texture can aso be a
function illuminant direction, and that such variations can
cause catastrophic failures in classification schemes based
on Laws measures, co-occurrence matrices, fractal
measures, and Gabor filters[4,5].

In this paper a model of the surface-to-image transfer
function [6,7] is used to predict that the outputs of many
texture features vary as a sinusoidal function of the
illuminant’s tilt angle. The class of texture features
considered are those that can be modelled as a combination
of a linear filter followed by a variance estimator. The
image textures considered are those that result from
topographical variations in the surface (albedo variations
are not taken into account).

2. Theory

This section presents a frequency domain image model.
Which we use to develop an expression for texture feature
output as afunction of tilt angle.

Imaging Geometry

The imaging geometry assumptions are as follows. The test
surface is mounted perpendicularly to the camera axis (the
z-axis). It is illuminated by a point source located at
infinity, i.e. the incident vector field is uniform in
magnitude and direction throughout the test area. The
direction of the illuminant with respect to the texture is
defined by two polar co-ordinates: slant and tilt. Slant (o)
is the angle between the camera axis and the illuminant
vector; in this work it shall be held constant at 60°. Tilt(7)

refersto the polar angle of the illuminant on a plane normal
to the camera axis.

Image Model

Kube and Pentland presented a frequency domain model of
the formation of the image from the surface [6]. The most
significant assumptions are that: the surface reflectance is
Lambertian, there is no self or cast shadowing, the camera
model is orthographic and that surface dlope angles are
small. Using the last assumption to justify a linearisation of
the Lambertian equation, Kube and Pentland develop a
transfer function linking surface and image spectra
Chantler [7] modified and generalised this to the form
shown below (1).

l(@,6) = w? cos?(6— 7)sin?(0)Yw, 6) (1)
where
(w,0) isthe polar form of spatia frequency with 8 = 0°

being the direction of the x-axis.
is the image power spectrum.
is the surface power spectrum.
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This paper deals with the effects of the cos* (6 —7) term;

this is directiona filter and is independent of radial
frequency, .

Modelling Texture Feature Output

Many texture features are, or may be approximated by, a
combination of a linear filter (often directional) followed
by a non-linear operator. Examples of linear texture filters
include Gabor, Wavelet, and Laws filters; while the non-
linear element often comprises a square (x°) or absolute
(Ix), function, followed by a lowpass filter or averaging
function.

Feature generation may therefore be modelled as shown
below (Figure 1).
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Since the surface-to-image transfer function (1) that we use
is linear, the image formation stage and the linear texture
filter may be interchanged to provide the model shown
below (Figure 2).
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A(@,0) is the notional power spectrum of the output of the
linear texture filter applied directly to the surface height
function. It istherefore unaffected by illuminant tilt.

From (1) the feature output istherefore
f(z) = [0® sin®(0).2[ cos® (0 - 7). A(, 6).d6.dw» @)
0 0
Now consider the inner integral
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where A6 =7x/n
With respect to the variable 7, the above summation is
simply a series of cosines of varying amplitude and phase
but of constant frequency (27). A similar argument holds
for the outer integral of (2), hence the feature output

f () =a+bcos(27 + ) 3
where:

a=sin’(0)[ o [ Aw,0).d6.dw
0 0

and b and ¢ are constants.
If the standard deviation is used to calculate the feature
value then the output is of the form:

f (r) = Ja+bcos(27 + @) 4)
In either case it can be seen that this model predicts that

texture features outputs vary as the illumination source is
rotated about the texture surface.

3. Testing the theor etical predictions

In this section the theoretical prediction (4) is compared
with results obtained by applying a set of Gabor features to
both computer-generated and real surface textures.

The Texture Features

Gabor filters based on the parameter set defined in [8] were
used in our directiona features. Jain and Farrokhnia
arrange these filters into frequency bands which increase in
octaves, each band contains four filters oriented at

0°,45°,90° and 135° respectively. The filters have radial
and polar bandwidths of one octave and 45°, respectively.
We refer to the directiona filters using the form Fandg,
where a, is the filter's centre frequency in cycles per
image, and ¢ is the orientation of the filter in degrees.

In addition to these directional filters we also used a
rotation invariant feature. This feature is derived from an
isotropic, Gaussian bandpass filter similar to that presented
in [9]. Each filter's output was processed with a standard
deviation estimator to provide the feature's final output.

Verification by Smulation

Synthetic test images were generated by rendering
computer generated height maps using a simple Lambertian
shading algorithm. Rendered images of the surfaces, an
isotropic fractal and a directional Ogilvy [10] surface are
shown below.

surfaces

Figure 4 shows the feature output derived from a single
F25d0° filter applied to the image of the fractal surface
rendered using illuminant tilt angles of between 7= -90° to

7=+90°. A best fit \/a+bcos(2r+¢) function is plotted

on the same graph. The parameters a and b have been
estimated using non-linear optimisation.

Feature Mean (Normalised)

Tilt Angle (°)

Figure 4 The effect of tilt angle variation on F25d0°
feature output and best fit cosine (fractal surface)

It can be seen that the output closely approximates the
hypothesised cosine function.



In many applications a larger feature set is used. Figure 5

shows the results obtained by applying all the filters of the

set within the F25 band (including the isotropic filter). It

can be seen that:

(i) the means of the directional features vary sinusoidally
with tilt,

(if) thetilt responses have similar amplitudes,

(iii) the maxima occur when the filter orientation
coincides with thetilt angle, i.e. at t=¢, and

(iv) the isotropic feature is almost unaffected by tilt
variation in the case of an isotropic surface.
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Figure 5 Tilt responses of the F25 filtersapplied to the
images theisotropic fractal surface.

Now consider the effect on feature output of tilt variation
on the directional Ogilvy surface. In Figure 6 the feature
outputs derived from the image of a surface whose
directionality is aligned with that of the F25d90 filter are
plotted.
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Figure 6 Tilt responses of the F25 features applied to
images of the directional surface.

It can be seen that in the case of this directional surface:

(i) the directiona features again vary in a sinusoidal
manner,

(if) the output of the isotropic filter varies sinusoidally
with tilt—showing that tilt variation is not equivalent
to image rotation in the case of adirectional surface.

Verification by Experiment
In this section we shall examine results obtained using two
real surfaces, Rock and Striate, shown in Figure 7. Rock is
isotropic and is similar in appearance to the isotropic
fractal. The Striate texture is highly anisotropic, and is
closer to the Ogilvy surface.

Images were captured at 10° increments of illuminant tilt.
The Striate test sample has been aligned so that the grain of
the material is approximately collinear with the $=0° filter
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Figure 7 Rock(left) and Striate(right) textures

As with the isotropic synthetic surface, the feature means
for the Rock texture all vary with tilt in a cosine manner
with approximately equal amplitudes.
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Figure 8 F25 featureresponsesto 'Rock’ surface
illuminated at a range of tilt angles.
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Figure 9 F25 featureresponsesto 'Striate’ surface
illuminated at a range of tilt angles.



The results for the 'Striate’ texture are similar to those of
the Ogilvy surface. As with the synthetic case all features
vary in an approximately sinusoidal manner.

Figures 10 & 11 show the tilt responses of the F25d0 and
F25d90 features together with best-fit cosine functions.
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Figure 10 Tilt responses of the F25d0 and F25d90
filters applied to Rock images (with best-fit cosine
functions)

These results show that, while the ./a+bcos(27+¢)

curve is not a perfect model, it does provide a close fit to
the experimental data.

It is aso clear from the measured results that the features
are significantly affected by variations in illuminant tilt.
This has serious consequences for classification—a
classification rule developed for textures imaged under one
illuminant direction may be completely inappropriate for
classifying the same surfaces illuminated from a different
direction. It has been shown that this may result in
catastrophic failure of the classifer [4,5].
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Figure 11 Tilt responses of the F25d0 and F25d90
filtersapplied to Striateimages (shown with best-fit
cosine functions)

4. Conclusions

This paper has shown that behaviours of texture features
derived from linear filters may be modelled as a sinusoidal
function of the illumination'stilt angle (1).

f(r) =a+bcos(2r + ¢)
Only in the case where the product of the surface spectrum
and the texture filter isisotropic (e.g. isotropic surface and
isotropic filter) is the output predicted to be constant
(i.,e.b=0).
Experiments using Gabor filters applied to synthetic and
real surfaces have verified this model.

This has a number of implications for classification. Firstly,
classification of textures may be easier when they are
illuminated from certain directions, as it may be possible to
arrange illumination to improve discrimination. Secondly,
changing the direction of illumination after training may
result in the derived classification rules being inappropriate
to the task in hand. Finaly, where rotation invariant
classification is required, the rotation of the surface texture
relative to the illuminant direction introduces changes in
the observed textures beyond that of simple image rotation.
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