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Abstract

We present a new theory that shows that two images of the same object taken
under two different light directions can be made virtually identical by filter-
ing each image by a directional derivative filter. The direction and magnitude
of the derivative is generally different for each image, and depends on illu-
mination directions used. The method requires the object surface to be of
uniform Lambertian reflectance and a shallow relief, and the light directions
used to be sufficiently inclined from the surface macro-normal. For a specific
case when the surface consists of spherical patches, the two images can be
made identical, for any two light directions used provided that none of them
is perpendicular to the viewing axis. We provide some simple experiments
which illustrate the validity of this theory.

1 Introduction
Handling changes in an image induced by changes in illumination has been the topic of
extensive research. Object recognition and texture classification have been the main fields
which have contributed to this subject. The changes in an image due to illumination are
known to affect the recognition performance dramatically; in the area of face recognition,
for example, it was shown that the intra-class variance due to illumination is greater than
the inter-class variance due to the change of individual [4]. Our long-term goal is to
develop algorithms which would be able to recognise three-dimensional textures captured
under different illumination conditions. Such goal implies specific requirements which we
discuss below. Our paper presents the novel theory which will enable to construct such
algorithms.

We have structured our review as follows. We name two specific properties of the
image comparison method which we would like to meet, and discuss their meaning on
examples from related work. Finally we review works that presented research that is
closest to the work presented here, and then we state the contribution of the paper.

Two image comparison. Our goal is to deliver a method which would be able to produce
a measure of likeliness that two given images are images of the same object captured under
different illumination conditions. To describe this requirement in the language of object
classification, we assume that the training set for each class consists of only one image,
which is an image of an object under certain illumination. Such an exemplar image is
being compared with a query image. This discriminates our method from methods which



use large training sets, like the method of the illumination cone [2, 4], or methods in
texture recognition ([8] and [10], to name two) which require several images obtained
under different illumination conditions to be present in the training set.

No joint inter-image features. Some methods for comparing two images under varying
illumination rely strongly on that the two images are pixel-wise spatially registered. This
means that both the camera and the object are fixed in between changing the illumination,
and the co-located pixels in the two images observe the same object point. An example of
this approach is that of Chen, Belhumeur and Jacobs [3] which employs joint probability
of image gradient directions, or that of Jacobs, Belhumeur and Basri [6] which uses the
ratio of the two images and employs the fact that such ratio is ‘simpler’ when the two
images come from the same object than if they come from two different objects.

In contrast, we require our method to be extendable to the case when the images are
not registered. This is mainly motivated by that we want to use the method for relating
images of two different instances of a three-dimensional texture (i.e. two realisations of
the same texture) which are obviously mis-registered (and even can not be registered, as
they only share the surface statistics but are not of the same geometry). This implies the
need to deliver a method which makes two images of the same object virtually identical
(or, of the same image statistics in the just discussed case of texture instances), as opposed
to similar.

There are several works which are close to the ours but do not satisfy the above re-
quirements. Besides the ones already discussed above, a recent work of Osadchy, Linden-
baum and Jacobs [9] achieves illumination quasi-invariance on smooth surfaces using the
whitening approach. The assumptions of this method are that the surface is Lambertian
and of uniform reflectance, that the surface is of shallow relief and that the illumination
direction is sufficiently inclined from the surface macro-normal. However, the method
actually requires the images to be spatially registered because rather than increasing simi-
larity between the images of the same object, it increases the dissimilarity between images
of different objects. In addition, it needs to have the filter trained on a number of images,
and the filter shape depends on surface roughness.

Our method, as for the surface and light properties, requires the same assumptions as
just discussed work [9], namely smooth surfaces of uniform Lambertian reflectance and of
shallow relief, and illumination directions which are sufficiently inclined from the surface
macro-normal. However, it is able to make the images taken under different illumination
conditions almost identical, and therefore, makes possible to relax the requirement of
image spatial registration. But even when the images are spatially registered, our method
brings true two-image comparison because it does not require any training on multiple
images, and can be used in the same form for surfaces with arbitrary roughness.

The method presented is based on filtering each of the two images by a linear filter
corresponding to directional derivative. Importantly, the filters are generally different for
each of the images, and depend on the two illumination directions used.

The paper is structured as follows. Section 2 first gives the necessary notations and
concepts, and then presents our new theory for image comparison. Section 3 presents sim-
ple experiments on real data which illustrate the performance of the method, and Section 4
concludes the paper.



2 Theory

2.1 Notations and Concepts

Directional derivatives. Having a function f = f (x,y), the partial derivatives with re-
spect to x and y are denoted fx and fy, respectively. A directional derivative with re-
spect to the vector d ∈ R2 is denoted fd, and its relation to the gradient ∇ f = ( fx, fy)

T

is fd = d ·∇ f . The vector d is called the directional derivative vector. Note that while
letter subscripts denote directional derivatives, integer subscripts index the components
of a vector: a = (a1,a2, . . . ,an).

Camera and Coordinate system. The camera is assumed to be orthographic with square
pixels, and the world coordinate system is defined as follows: the x and y axes are given by
the camera plane, and the optical axis gives the z axis direction, with the positive direction
pointing towards the camera. The z axis is assumed to be vertical.

Projected vector. A projected vector is given by projecting a three-vector onto the camera
plane. Projected vectors are denoted by a hat. The projected vector â of a three-vector
a = (a1,a2,a3)

T has components

â = (a1,a2)
T . (1)

Surface parametrisation. It is assumed that the surface can be represented by a height
function z = z(x,y) parametrised by the camera plane axes x and y. The function is as-
sumed to be C2 continuous.

Surface differential entities. Having a surface height function z = z(x,y), the height
gradient g and its components p, q are defined as

g = ∇z =
(

zx
zy

)
def=

(
p
q

)
. (2)

The Hessian of the height function z is

H =
[

zxx zxy
zyx zyy

]
=

[
px py
qx qy

]
def=

[
a s
s b

]
(3)

Note that the Hessian is symmetric (zyx = zxy) which follows from the assumed C2 conti-
nuity. This fact is referred to as integrability and plays a crucial role in the development
of the theory presented.

Relationship between the height gradients and surface normals. Given the surface
gradient g = (p,q)T , the unit normal vector at that point is (see for example [5])

n =
1√

1+ p2 +q2

 −p
−q
1

 . (4)
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Figure 1: (a) Reflectance geometry: the angle of incidence θi. (b) Slant and tilt of a light
source l: slant θ is the angle between the camera axis and l. Tilt φ is the angle between
the x-axis and the projected light l̂.

2.2 Linear filtering approach
In this Section, we will show how to make the images produced under two different light
directions virtually identical by filtering each of them by a (different) linear filter.

For Lambertian objects [7], the reflectance at a surface patch is characterised by
albedo which represents the amount of light which is scattered from the surface back
into the air, and is denoted ρ . The intensity i at a pixel observing the patch is then

i = ρσ cosθi , (5)

where θi is the angle of incidence (see Fig. 1(a)) and σ is the light source intensity. In this
article, we will be dealing with uniform albedo surfaces, and without loss of generality
we set ρ = 1. The above equation can then be rewritten as

i = σ lT n = (σ l)T n = sT n , (6)

where l and n are the unit light and normal vectors, respectively, and the vector s = σ l
will be called the scaled light throughout this paper. Now, expressing the normal n as in
Eq. (4) gives

i = sT (−p,−q,1)T√
1+ p2 +q2

=
−s1 p− s2q+ s3√

1+ p2 +q2
. (7)

Forming the derivative of image intensity with respect to x gives

ix =
−s1 px− s2qx√

1+ p2 +q2
− 1

�2
−s1 p− s2q+ s3√

1+ p2 +q23 (�2ppx +�2qqx) =

=
−(s1,s2)(a,s)T√

1+ p2 +q2
− i

(p,q)(a,s)T

1+ p2 +q2 =
−ŝT (a,s)T√
1+ p2 +q2

− i
−n̂T (a,s)T√
1+ p2 +q2

, (8)

where n̂ is the projected surface normal n̂ = (−p,−q)T /
√

(1+ p2 +q2) (cf. Eq. (4)).
The other component of intensity gradient is, similarly,

iy =
−ŝT (s,b)T√
1+ p2 +q2

− i
−n̂T (s,b)T√
1+ p2 +q2

. (9)



The intensity gradient ∇i can thus be written in a compact form as

∇i =
H√

1+ p2 +q2
(−ŝ+ in̂) = H̃(−ŝ+ in̂) , (10)

where H̃ = H/
√

1+ p2 +q2 is the local surface Hessian scaled by the denominator term.
We now consider two images of the surface, one illuminated with light s and the other

with light t. Denoting the intensity observed under the first and second light i(s) and i(t),
respectively, the respective gradients are

∇i(s) = H̃(−ŝ+ i(s)n̂) , ∇i(t) = H̃(−t̂+ i(t)n̂) . (11)

Making the directional derivative of the first image with respect to direction t̂ and of the
second image with respect to direction ŝ gives

it̂(s) =−t̂T H̃ŝ+ i(s)t̂T H̃n̂ , iŝ(t) =−ŝT H̃t̂+ i(t)ŝT H̃n̂ . (12)

The first terms (−t̂T H̃ŝ and −ŝT H̃t̂) are equal for both images because the Hessian is
symmetric due to normal field integrability. The second terms are generally different. If
the result of filtering is required to give a virtually identical image, the second terms must
be guaranteed to be small compared with the first terms, i.e.

|ŝT H̃t̂| �max(|i(t)ŝT H̃n̂)|, |i(s)t̂T H̃n̂|) . (13)

The general necessary conditions for these inequalities to hold are the following:

a) Shallow relief. The projected normal should be of small length (‖n̂ � 1‖) which
scales down the magnitude of the terms required to be small in Eq. (13).

b) Non-vertical illumination. This is an obvious necessity as if, say, s is vertical then
ŝ = 0 and the symmetric term ŝT H̃t̂ would vanish.

As stated, these conditions are necessary but they are not sufficient because ŝT H̃t̂ can
still vanish in special configurations of the two lights and the Hessian matrix H̃. As
an example, consider the case when the Hessian is a scaled identity matrix and the two
projected light directions are perpendicular to each other. In such case, the symmetric
term ŝT H̃t̂ is zero. Whether this is a problem or not depends on the geometry of the
surface imaged. The magnitude of the second terms is constrained by the two conditions,
and thus even several points within the image in which the first term has large magnitude
should be sufficient to make the images virtually identical.

Figure 2 illustrates the theory. The surface is a synthetically generated 3D texture
of shallow relief. The mean normal inclination from the vertical direction is 11◦. It is
illuminated by a light source of 40◦ slant (see Fig. 1(b) for description of slant and tilt).
As shown, filtering each image by a different derivative filter brings the two images very
close together.
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Figure 2: Results of directional derivative filtering for synthetically generated 3D texture.
The surface is illuminated by lights with tilt 0◦ and −90◦, respectively (illumination di-
rection is indicated by white arrows). Making derivatives in reciprocal directions (grey
arrows) results in images which are very similar.

2.3 Exact fit: spherical patches
In the previous Section, conditions were identified which are necessary for making the
method applicable to a general surface geometry. In this Section, we show that for a
very specific case of spherical surface patches, there exists a pair of directional derivative
filters which makes two images taken under different illumination conditions equal. It
turns out that for a spherical surface our approach can output exactly the same images for
any two illuminations (i.e. even when they are close to the camera axis), provided that
none of them is perpendicular to the camera axis. This can be shown as follows. For a
sphere of radius R, the height map is

z =
√

R2− x2− y2, (14)

and the normals are clearly

n =
1
R

 x
y
z

 . (15)

This means that the intensity observed while illuminating the sphere by a light source s is

i =
1
R

sT (x,y,z)T (16)

and the image derivatives are then

ix =
1
R

(s1 + s3 p) , iy =
1
R

(s2 + s3q) , (17)

and the image gradient is now (cf. Eq. (10))

∇i =
1
R

(ŝ+ s3g) . (18)
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Figure 3: The result of directional derivative filtering of an illuminated spherical cap.
The cap is illuminated with lights of tilts 0◦ and −60◦, respectively (indicated by white
arrows). By filtering the images with directional derivatives as explained in Section 2.3
(grey arrows), the two images can be made identical. The slants used were 40◦ and 25◦

(top and bottom image, respectively) and the cap angular radius was 45◦.

Now, considering the sphere illuminated from two different light directions s and t, and
taking the directional derivatives w.r.t. two general directions u and v, gives

iu(s) =
1
R

uT (ŝ+ s3g) iv(t) =
1
R

vT (
t̂+ t3g

)
(19)

As the surface gradient g varies along the surface, the only way to make the second terms
s3uT g and t3vT g equal is to take (provided that both s3 and t3 are non-zero)

u = t3d , v = s3d , (20)

with (so far) arbitrary vector d ∈ R2. Requiring the first terms to be equal as well leaves
us with a linear homogeneous equation for d:

t3dT ŝ = s3dT t̂ ⇐⇒ dT (t3ŝ− s3 t̂) = 0 , (21)

which constrains d always unless t3ŝ− s3 t̂ vanishes. But the case when this vanishes cor-
responds to the case when the lights s and t are the same (possibly differing in magnitude).
In such circumstances, any d will make images look the same.

We thus showed that if the scene imaged consists of spherical patches then (not de-
pending on patch radii) two images of such scene taken under two different illumination
directions can be made identical by filtering both images with two directional derivative
filters. The filters differ only in magnitude but not in orientation for this case. The just
stated is true for any two light directions used unless one of the light sources is perpen-
dicular to the optical axis. This result is demonstrated in Fig. 3 which shows a sphere
illuminated from two general directions (left image pair) and the images filtered by di-
rectional derivative vectors as explained in this Section (right image pair). The filtered
images exhibit exact agreement.



2.4 Methods
The theory presented in the previous Sections showed that the directional derivative filters
to be applied are dependent on the light directions used for acquiring the images. In
practise, the light directions are not known, and there is a need to estimate the directional
derivative vectors for the two filters.

Within this introductory paper, we deal only with the case of spatially registered im-
ages. Having images i(s) and i(t) taken under two unknown illumination directions s
and t, we compute the image gradients ∇i(s) and ∇i(t) and then solve for two vectors
u,v ∈ R2 such that

uT
∇i(s) = vT

∇i(t) (22)

holds. Every pixel produces one equation (22), and the resulting system is clearly overde-
termined. The system is solved in a least-square sense using SVD. The solution gives the
directional derivative vectors u and v.

3 Experiment
We performed basic tests of the theory on publicly available PhoTex database [1] of 3D
textures. The aim of the experiment was to judge whether our filtering approach is fea-
sible for making the images taken under different illumination conditions look similar.
We tested the approach on 20 textures and here we present representative examples (see
Figure 4).

For each class, we selected a reference image which was taken under certain illumi-
nation condition (slant was 45◦ and tilt was 30◦; this choice was somewhat arbitrary).
Then we took images of the same surface taken under different illuminations, applied the
SVD-based method for estimating the directional derivative vectors as described in Sec-
tion 2.4, and displayed the filtered images. Overall, the match of the filtered images is
very good, as can be seen from Fig. 4. The match is especially impressive for cases when
the perceptual difference of the raw images is high (class AAJ).

Within this paper, we did not address the case of spatially unregistered images al-
though the basic principle presented enables to extend the method for that case. In our
preliminary experiments on texture classification, we used a more complex algorithm
which searches for a pair of directional derivative vectors which make image statistics of
the filtered images as close as possible. The full implementation of this approach is the
topic for future work.

4 Conclusion
This paper presented a new theory necessary to develop novel algorithms for object and
texture recognition, classification and retrieval under varying illumination. To the best of
our knowledge, it is the only method which is able to make two images captured under two
illumination directions look virtually identical, while not requiring large training datasets.
The price paid for these advantages is a rather limiting set of assumptions, and the fact
that if illumination directions are not known, the directional derivative vectors have to
be estimated. As shown, in case of spatially registered images this involves a simple



Class AAA
∆φ = 60◦ ∆φ = 120◦

Class AAJ
∆φ = 60◦ ∆φ = 120◦

Class ABA
∆φ = 60◦ ∆φ = 120◦

Class ACD
∆φ = 60◦ ∆φ = 120◦

Figure 4: Results for four classes in the PhoTex database (AAA, AAJ, ABA and ACD).
The number ∆φ above each quadruple of images is the difference in illumination tilts used
for capturing the two images. The layout of the quadruple is the same as in Fig. 2 (the non-
framed images are therefore the raw ones, while the framed images are the filtered ones).
Overall, the filtering brings the raw images very close together, despite large differences
in illumination conditions. Note that although the raw images for Class AAJ, for example,
are perceptually quite different, the match of the filtered images is excellent. The slants
used for acquiring the raw images were 45◦ and 60◦ (top and bottom ones, respectively.)
The raw images are normalised for display purposes.



algorithm for solving an overdetermined system of linear homogeneous equations in four
unknowns.

Interestingly, it was shown that when the imaged scene consists of spherical surface
patches (with arbitrary, varying radii), the two images can be made identical under any
two illumination directions, provided that none of them is perpendicular to the viewing
axis.
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