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Abstract : This paper shows that directed illumination used in the image acquisition process can act as a directional filter 

of three-dimensional texture. An image model of texture is presented which, given the illuminant vector, may used to 

predict the directional characteristics of image texture. Simulations and the results of laboratory experiments are presented 

that confirm the predicted directional filtering effects. The image model is used to predict the output of a directional texture 

measure : Laws’  L5E5 operator [1]. Empirical results using four samples of isotropic texture confirm that the operator’s 

output is significantly affected by changes in the angle of tilt of the illuminant. They also show that the model provides a 

good basis for predicting the behaviour of such operators. Finally the effect of changes in illuminant tilt on the distributions 

of the operator for two isotropic textures are presented. These results show that considerable mis-classification would result 

in using an L5E5 based classifier if the illuminant tilt angle were changed between training and classification sessions. 

1. Introduction 

Although the field of automated texture classification has seen many advances in the past twenty years, one 

associated area of research has received little attention. The effect of variation in illuminant direction on the 

classification process has rarely been discussed within the open literature. This is surprising, as it well known 

that the characteristics of lighting do affect the appearance of texture. For instance photographers will often use 

single point light sources positioned to provide directed illumination at low grazing angles if they wish to 

emphasise textural qualities [2] and there are many other circumstances in which the characteristics of the 

illumination are known to affect the appearance of texture. It is therefore all the more puzzling that its effect on 

automated texture classification has largely been ignored. A number of papers do describe "rotation invariant" 

texture classification schemes, but they do not consider the effect of the rotation of the illuminant direction [3-

11]. They therefore implicitly assume that image texture is due solely to surface markings (rather than surface 

relief) or that the illuminant is omnidirectional (‘ flat’ ). However, in order to test their algorithms against a 

common standard, they have used what has become the de facto benchmark  a set of scanned images from 
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Brodatz’s texture album [2]. Many of these textures clearly violate one or both of these assumptions. 

This paper presents theory and empirical results which show that changes in the direction of the 

illuminant vector do significantly affect the characteristics of image texture. In particular the directionality of 

image texture is shown to be affected by variation in the illuminant’s angle of tilt. This is important because 

many texture classification and segmentation schemes use directional feature measures. One such measure - 

Laws’  L5E5 operator - is examined in detail and is shown to be significantly affected by changes in tilt angle. 

Although the effect of illuminant changes on the appearance of three-dimensional texture presented here 

may seem obvious, it is believed that this is the first time that such effects have been investigated and reported 

from the perspective of automated texture classification and segmentation. 

2. An image model of three-dimensional texture 

This section presents a model of the image of an illuminated three-dimensional texture. It is based on theory 

developed by Kube and Pentland [12] and further developed by Chantler [13 & 14]. The theory, which is given 

in the appendix, develops an expression for the spectrum of image texture in terms of the surface texture’s 

spectrum and the illuminant vector. It assumes : 

(i) a Lambertian surface (i.e. perfectly diffuse reflection), 

(ii) an orthogonal camera model, 

(iii) a constant illuminant vector over the scene, 

(iv) a viewer-centred co-ordinate system, in which the reference plane of the surface is perpendicular to the 

viewing direction, 

(v) that shadowing and occlusion are not significant, 

(vi) that slope angles are low, and 

(vii) that image texture is solely due to surface height variation. 

The Lambertian reflectance model is linearised, expressed in terms of partial derivatives, and applied to a 

frequency domain representation of the surface texture  resulting in the following expression for the Fourier 
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transform of the image : 

F i FI H( , ) ( , ).cos( ).sinω θ ω ω θ θ τ σ= − −  (1) 

where  

FH ( ,ω θ ) is the Fourier transform of the height map of the surface, 

ω is the angular frequency of the Fourier component, 

θ is its direction w.r.t. the x-axis, 

i represents a 90° phase change, 

σ and τ are the slant and tilt angles of the illuminant vector L as defined in Figure 1. 
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Figure 1 - Definition of axis and illumination angles  

From (1) it is clear that the theory predicts that image texture is a function of the height-map of the physical 

texture and the slant (σ) and tilt (τ) of the illuminant. Most importantly it predicts that the directionality of 

image texture is not only a function of surface relief but is also a function of the illuminant’s angle of tilt τ. The 

influence of each of these factors may be more easily identified if the model is divided into three components :  

( ) ( )F i Fs Hω θ ω ω θ,  = - ,   (2)  

Fτ ω θ θ τ( , ) cos( )= −  (3) 

( )Fτ ω θ σ,  = sin  (4) 

They are referred to here as the surface height function, the illuminant tilt angle response, and the illuminant 

slant angle response, respectively. It is the tilt angle response (3) which is of most significance here. It predicts 

that image acquisition using directed illumination acts as a directional filter of texture, that is, it predicts that 

the components of a texture in the same direction (θ) as the tilt angle of the illumination (τ) will be accentuated 

compared with those components at right angles to τ. This is unfortunate as the majority of feature sets used in 
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classification and segmentation exploit the directional characteristics of image texture.  

3. The response of image texture to changes in illuminant tilt 

The above theory has important implications for the classification and segmentation of images of three-

dimensional texture. However, many assumptions were made during its derivation. In particular the average 

slope angles were assumed to be low to allow the Lambertian reflectance model to be linearised. Simulation 

was used to investigate the effect of increasing slope angles. Lambert’s cosine rule was used to render height-

maps of isotropic fractal surfaces. The surfaces were synthesised with a range of height variances in order to 

provide a range of average slope angles. All surfaces were generated using Fourier filtering [15] with a power 

roll off factor β = 3.5. FFTs (fast Fourier transforms) of the resulting images showed that the image texture was 

directional. Polar plots where generated from these FFTs and are shown Figure 2.  
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Figure 2- Polar plots of magnitude spectra of images of four synthetic surfaces of varying surface variance 

In these plots each point on a graph is the sum of the magnitudes of the Fourier components in that direction 

(θ), i.e. each point is a function of the energy of the image texture in that direction. These graphs show that the 

directional characteristics of an image of a surface with low surface variance (σ2 = 7) are of the form 

cos( )θ τ−  as predicted. However, the plots of surfaces with higher variances show the effect of the non-linear 

terms that were neglected in the theory (see appendix). They suggest that the directional characteristics would 

be more accurately modelled using a raised cosine. Thus the tilt response component should be of the form : 

F m bτ τ τω θ θ τ( , ) cos( )= − +  (5) 

Unfortunately the parameters mτ  and bτ  are a function of both the surface variance and the degree of 
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shadowing and hence must be determined empirically for each texture. Further detail on these effects are 

available in [13]. The main point is, however, that the simulations support the proposition that image capture 

using directed illumination can act as a directional filter of texture, all be it in the modified form of (5). 

3.1 Laboratory exper iment - four  physical textures 

A set of experiments using real textures was performed to further investigate the effects that changes in 

illuminant tilt have on image texture. Four textures were chosen that were isotropic in appearance - so as to 

minimise their contributions to the directionality of the image textures. The textures were sprayed matte white 

to eliminate any albedo texture and to provide an approximately Lambertian reflectance characteristic. The 

texture samples were mounted perpendicularly to the camera's line of sight at a distance of 3.3m, and 

illumination was provided by a 500W lamp 1.6m from the subject. The tilt angle of the illumination was varied 

in 10° steps while all other parameters were kept constant. Sample images of the textures are shown in 

Figure 3. 

    
 

    
"beans1" : a tray of butter beans "chips1" : a tray of gravel chips "stones1" a tray of beach pebbles  "rock1" : a small piece of 

conglomerate 

Figure 3-Sample images of the test textures : top row captured at τ = 0° (i.e. the light source to the right images); bottom row captured 
at τ = 90° (light source above images) 

The variation in the images’  directional characteristics caused by a change of illuminant tilt angle from 0° to 

90° is discernible but not obvious. FFTs of the images showed that they were clearly directional and that the 

directional distribution of energy rotated with the illuminant tilt angle  the maxima always coinciding with 

the tilt angle as predicted by equation (3). Sample FFTs of images of rock1 are shown in Figure 4.  
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Figure 4 - Effect of illuminant tilt angle on two-dimensional FFT plots of images of texture rock1  
Notes :  (a) arrows indicate direction of illumination,  and 
 (b) FFTs shown as log contour plots of magnitudes  with d.c. at the centre. 

Figure 4’s plots clearly show that the illuminant tilt has a considerable impact on the directionality of images of 

the texture sample rock1 and that changes in tilt may cause any classifier using directional characteristics 

considerable problems. Plots of the other textures gave similar results. From the contour plots of Figure 4 it is 

difficult to assess how well the predicted tilt response (5) can be used to represent the distributions. Hence 

Figure 5 contains polar plots of the FFTs. They are of images of the four textures captured at τ = 0° and are 

shown together with the best fit1 raised cosine functions : y m b= − +τ τθ τcos( ) . 

                                                      

1 The parameters of the raised cosine were calculated using least squares linear regression. 
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c hip s1 : ta u = 0°
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stones1 : ta u = 0°
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Figure 5- Polar plots and best fit raised cosines for the four test textures (images capture at τ = 0°). 

The polar plots above confirm that all four image textures exhibit distinct directional characteristics which 

resemble a raised cosine. These empirical results therefore  

(i) confirm that image texture directionality is not only a function of surface relief but is also dependent 

upon illuminant tilt, and 

(ii) support the cos(θ - τ) relationship between illuminant tilt and image texture, but show that it may be 

more accurately modelled by adding a term to account for the raised cosine effect, that is, it confirms 

that the tilt component would be better represented by equation (5). 

These phenomena complicate the task of texture classification; as many texture measures used in such schemes 

exploit directional characteristics. Hence the next section examines the effect that changes in illuminant tilt 

angle have on the output of one texture measure which is popular in the literature. 

4. The effect of var iations in illuminant tilt angle on Laws' L5E5 texture measure 

The tasks of texture classification and segmentation both require a means of quantifying textural characteristics 

so that the similarities between texture samples or regions may be measured. Such textural characteristics are 
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normally computed using a set of feature measures [16 & 17]. This section uses both theory and laboratory 

experiment to investigate the response of one feature measure to changes in illuminant tilt, the purpose being 

two-fold : the first is to show convincingly that changes in illuminant direction do significantly affect the 

output of a directional texture measure, and the second is to show that the theory presented above can be used 

to predict the behaviour of such an operator. Note that the single Laws’  feature is used here for illustrative 

purposes only  in practice a combination of complementary features would be used for classification. 

4.1 The Laws’  L5E5 operator  

Laws developed a set of simple feature measures for texture classification and segmentation [1]. They comprise 

a set of two-dimensional filters (also referred to simply as ‘masks’ ) each of which is coupled to a mean square 

or sum of absolutes macro statistic. The macro statistic provides a measure of the energy in the pass band of the 

filters within a moving window. The most popular filters used are 5 x 5 and in common with all of Laws’  

masks are derived from the following non-recursive filters :  

L3 = (1,2,1)  - Level detection, 

E3 = (-1,0,1) - Edge detection, and 

S3 = (-1,2,-1) - Spot detection. 

Only the response of the L5E5 operator will be presented here, it is obtained from the following convolution : 

 L5E5 = E3 *  L3 *  L3T *  L3 T 

and its mask is shown in Figure 6(a). As it comprises four separable filters its frequency response is simply 

derived : 

( )
H H H H HL E E L L L5 5 1 2 3 1 5 1 5 2 5 2

1 1 2 22 2 1 2 1 2 1

( , ) ( ). ( ). ( ). ( )

sin . cos . ( cos ). ( cos )

ω ω ω ω ω ω

ω ω ω ω

=

= + + +   
 (6) 

where ω1 and ω2 are angular frequencies in x and y directions respectively. 

The L5E5’ s two-dimensional frequency, Figure 6(b), shows that it is a directional texture measure being 

sensitive to components around θ = 0°. The complete L5E5 texture measure, as used here, consists of the mask 

shown above followed by a 31 x 31 mean square macro statistic. Thus the mean output of this operator may be 

predicted using the model of image texture presented above (1) together with the frequency response of the 

L5E5 mask (6). As only variations due to changes in the illuminant's tilt are of interest, it is assumed that the 
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illuminant's slant does not vary, and the contribution of the corresponding component in the image model is a  
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 (a)   (b) 

Figure 6 - The Laws’  L5E5 mask (a)  and its frequency response (b) 

constant kσ. Thus the model presented in equation (1) reduces to : 

F F F kI s( , ) ( , ). ( , ).ω θ ω θ ω θτ σ=  (7) 

Now if the height maps of the test textures are assumed to be isotropic and fractal then the magnitude of the 

surface response component may be represented by : 

F ks

I

( , )ω θ ωβ

β
=

−
2

 (8) 

The parameters kβ  and β I  may be estimated by obtaining the gradient and y-intercept of the best-fit straight 

line to the average log-log radial plots of the magnitude spectra of the image. Hence the image texture 

magnitude spectra of the four samples may be modelled by combining (5), (7) and (8) to give : 

( )F k m b kI

I

( , ) cos( ) .ω θ ω θ τβ τ τ σ
β

= ′ − + ′−
2

 (9)2 

Now if only relative magnitudes are required kσ  may be eliminated and all remaining parameters estimated for 

each of the test textures as described previously. Thus the output of the first stage of Laws' L5E5 operator is  

 
{ }{ } { }

Y H F

k m b k

L E L E I5 5 5 5

2 21 1

( , ) ( , ) ( , )

sin( cos ) cos( cos ) cos( sin ) . cos( ) .

ω θ ω θ ω θ

ω θ ω θ ω θ ω θ τβ

β

τ τ σ

=

= + + ′ − + ′
−    (10) 

                                                      

2
 Note the primes added to symbols mτ  and bτ  indicate that these parameters have been normalised to avoid including a factor related 

to the total power of the texture twice.  
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where : 

ω θ ω ω θ ωcos , sin= =1 2 , and 

YL E5 5( , )ω θ   is the two-dimensional magnitude spectrum of the output of L5E5. 

The second stage of the operator provides an estimate of the "power" of the filtered image texture and hence 

the integral of the PSD (Power Spectral Density) assuming that the process under consideration is at least wide-

sense stationary. The PSD may in turn be obtained from the magnitude of the Fourier transform of the output of 

the filter. Hence the mean output of the L5E5 operator will be : 

{ }{ } { }

y Y d d
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ω

( , )

sin( cos ) cos( cos ) cos( sin ) . cos( ) .

   (11) 

The solution of the above integral for the general case is not trivial. However, it may be estimated numerically 

when the values of the parameters are known. Hence the four parameters ( ′ ′m bτ τ, ,  kβ, and β I ) were calculated 

for each of the four isotropic test textures. The integral (11) was evaluated for each of these four sets of 

parameter values for nineteen angles of illuminant tilt (0° to 180° in 10° steps). The results are shown in  

Figure 7. 
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Figure 7- Predicted effect of tilt angle variation on L5E5 output[MJC3]  

Thus the above theory predicts that the L5E5 feature measure is affected by changes in the illuminant’s angle 

of tilt. For comparison Figure 8 shows the equivalent results obtained by processing images of the textures with 

the feature measure itself  an L5E5 mask coupled to a 31 x 31 mean square macro statistic.  
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Figure 8 - Observed effect of tilt angle variation on L5E5 mean output 

The two figures above show that : 

a) variation of illuminant tilt does affect the L5E5 operator’s output, and 

b) that the image model presented above does allow the form of the operator’s response to be predicted, 

indicating that this theory may be useful for the development of an illuminant tilt-compensation scheme. 

The behaviours of feature means are obviously important; however, they do not provide sufficient 

information to allow the full effects on classification and segmentation to be assessed. A small variation in 

mean due to change in illuminant tilt may be very significant for distributions of large variance but 

insignificant for those of small variance. Hence what is required is the behaviour of the distributions.  

Figure 9 shows the distributions of L5E5 for two of the test textures captured at two angles of illuminant tilt (τ 

= 0° and 90°). 
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Figure 9 - Effect of tilt variation on L5E5 distributions[MJC4]   

Assuming equal prior probabilities the maximum likelihood classifier trained under an illuminant tilt of 

0° would have a decision surface at L5E5 = 2.3 - see Figure 9(a).  

Figure 9(b) shows the result of changing the tilt to 90° : the mean of chips1 is now clearly to the left of 

L5E5 = 2.3. Thus if a classifier were trained at τ = 0° then the majority of the class chips1 would be incorrectly 

classified at an illuminant tilt of τ = 90°. Thus changes in the illuminant's tilt have been shown to significantly 

affect the output of Laws' L5E5 operator. Experiments with the other directional texture measures (Laws, co-

occurrence and fractal dimension based) gave similar results. Experiments with omnidirectional texture 

measures showed that they may also be affected by changes in illuminant tilt when used with directional 

surface textures [13]. 

5. Conclusions 

The main conclusions concern a) the directional filtering effect caused by directed illumination and b) the 

model of image texture presented above.  

This paper has shown that the use of directed illumination during image capture can act as a directional 

filter of texture, and that a texture’s directional characteristics are therefore not just a function of surface relief 

but are also affected by the illuminant’s angle of tilt. The illumination conditions are therefore of fundamental 

importance to the analysis of images of three-dimensional texture. This is particularly so for classification and 

segmentation schemes that use directional feature measures. Changes in illumination direction over the scene 

due for instance to close proximity point lighting, or changes in illumination direction that occur between 

training and classification sessions, could both cause considerable problems for such systems  as evidenced 

by the effect of variation of tilt angle on the L5E5 operator. These points seem obvious but to the author’s 

knowledge have not been addressed before within the open literature on automated texture analysis.  

The second conclusion concerns the model of image texture presented above. Although it is based on a 

linearised version of Lambert’s law and hence extremely simple, and  although many assumptions were made 

in its derivation, it has been very successfully used to predict the directional filtering effect. It has also been 

used, all be it in a modified form, to predict the behaviour of Laws’  L5E5 feature measure. In both these cases 

the predictions have compared well with empirical results. Thus the model provides a means of predicting the 
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behaviours of image textures and feature measures in response to changes in illumination, and could therefore 

be used as the basis for tilt compensation schemes or a illuminant tilt estimation methods. 

Acknowledgements 

The author would like to thank Dr. L.M. Linnett and Professor G.T. Russell for their help during this work and 

Mr. G. McGunnigle for generating Figure 4 and Figure 6. 

References 

1. K.I. Laws, "Textured image segmentation", Ph.D. thesis, Dept. Electrical Engineering, University of Southern 

California, Jan. 1980. 

2. P. Brodatz, "Textures : a photographic album for artists and designers", Dover, New York, 1966. 

3. L.S. Davis, "Polarograms : a new tool for image texture analysis", Pattern Recognition, V13, No. 3, 1981, pp219-223. 

4. C. Sun & W.G. Wee, "Neighbouring Grey Level Dependence Matrix for Texture Classification", Computer Vision, 

Graphics & Image Processing, V23, 1983, pp341-352. 

5. R.L. Kashyap & A. Khotanzad, "A Model-Based Method for Rotation Invariant Texture Classification", IEEE 

Transactions on Pattern Analysis and Machine Intelligence, V8, July 1986, pp472-481. 

6. G. Eichmann & T. Kasparis, "Topologically Invariant Texture Descriptors", Computer Vision, Graphics & Image 

Processing, V41, 1988, pp267-281. 

7. F.S. Cohen, Z. Fan & M.A. Patel, "Classification of Rotated and Scaled textured Images Using Gaussian Markov 

Field Models", IEEE Transactions on Pattern Analysis and Machine Intelligence, V13, , pp192-202. 

8. S.J Clarke, "The analysis and synthesis of texture in side scan sonar data", Ph.D. thesis, Heriot-Watt University, May 

92. 

9. Y. Choe & R.L. Kashyap, "Modelling, Estimation, and Pattern Analysis of  Random Texture on 3-D Surfaces", Rpt. 

TR-EE-91-4, Purdue University, Jan. 91. 

10. D. Chetverikov, “Experiments in rotation-invariant texture discrimination using anisotropy features” , Proceedings of 

the 6th Int. Conf. on Pattern Recognition, Munich, 1982, pp1071-1073. 

11. D. Chetverikov, “GLDH based analysis of texture anisotropy and symmetry” , Proceedings of the 12th Int. Conf. on 

Pattern Recognition, Jerusalem, 1994, pp444-448. 

12. P. Kube, P. & A. Pentland, "On the imaging of fractal surfaces", IEEE Transactions on Pattern Analysis and 

Machine Intelligence, V10, No. 5, pp704-707, Sept. 1988 

13. M.J. Chantler, "The effect of variation in illuminant direction on texture classification", Ph.D. thesis, Heriot-Watt 

University, August 94. 

14. M.J. Chantler, G.T. Russell, L.M. Linnett, "Illumination : a directional filter of texture ?", Proceedings of the British 

Machine Vision Conference BMVC94, York, September 1994, pp449-458.  

15. D. Saupe, "Algorithms for random fractals" in The science of fractal images, H-O Peitgen & D Saupe (eds.), Springer 

Verlag,  1988, pp71-113. 

16. J.M.H. du Buf, M. Kardan & M. Spann, "Texture feature performance for image segmentation", Pattern Recognition, 



 

14

V23, No. 3/4, 1990, pp291-309. 

17. L. Van Gool, P. Dewaele & A. Oosterlinck, "Texture analysis anno 1983", Computer Vision, Graphics & Image 

Processing, V29, 1985, pp336-357 

 

 

 

Appendix A 

This appendix presents the theory used to develop the image model of three-dimensional texture. 

The normalised image intensity I(x,y) of the surface ( )V x yH ,  is 

I x y
p q

p q
( , )

 -   +  

 +   +  
= ⋅ = −

n  L
cos sin sin sin cosτ σ τ σ σ

2 2 1  (12) 

where  

n =  the unit vector normal to the surface at the point (x,y) 

p
V

x
q

V

y

H H
 =             =  

∂
∂

∂
∂

  

V x yH( , ) is the height-map of the surface 

L =  (cosτ.sinσ, sinτ.sinσ, cosσ) is the unit vector towards the light source 

τ and σ are the illuminant vector's tilt and slant  angles as defined below. 

Now in a departure from [12] and without loss of generality, choose a new axis (x',y',z) which is rotated τ about 

the z axis such that the projection of L  onto the x-y plane will be parallel to the x' axis. In this new axis system 

the expression for intensity simplifies to  

I x y
r

r t
( , ) =   =  

 +  
n  L⋅ −

+ +
sin cosσ σ

2 2 1  (13) 

where 

 r
V

x
t

V

y
H H= =∂

∂
∂
∂'

 and 
'

,  

Taking the MacLaurin expansion  yields 
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( ) ( ) ( )
I x y r

r t r t
( , ) =   +   

! !
 − −

+
+

+�

�
�
�

�

�
�
�

sin cos .......σ σ 1
2

9

4

2 2 4 4

 (14) 

Now if the surface slope angle is less than 15°, then r t2 2 1, << ; and  the quadratic and higher order terms may 

be neglected. Note that the error introduced by this approximation for a slope angle of 15° is 3.5%. With this 

approximation (14) becomes  

( )I x y r( , ) =   +    − sin cosσ σ  (15) 

which is simply the mean, plus a linear contribution of the surface gradient, measured in the direction of the 

illuminant's tilt angle.  

Now the  partial derivative operator 
∂

∂ ′x
 is a linear operator [13], and in the frequency domain may be 

represented by : 

 
( )∂

∂
ω θ τ ω θV

x
i FH

H'
  -  ( ,

�

�
�

�

�
� = cos )

 (16) 

where 

 ω is the angular frequency of the Fourier component 

 θ is its direction w.r.t. the x-axis 

 g x y( , )  is the two-dimensional Fourier transform of g(x,y), and  

 F V x yH H( ,  =  ω θ) ( , )  

Now, from (15) 

I x y
V

x
H( , ) sin cos  -
'

 +  = ∂
∂

σ σ
 (17) 

Hence if the mean is ignored, the Fourier transform of the image intensity is : 

( )

( )[ ] ( )[ ][ ]

F
V

x

i F

I
H

H

ω θ ∂
∂

σ

ω ω θ θ τ σ

,  =

= - ,  -    

−�

�
�

�

�
�'

sin

cos sin
 (18) 


