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Abstract—An ever-growing number of real world computer
vision applications require classification, segmentation, retrieval,
or realistic rendering of genuine materials. However, the appear-
ance of real materials dramatically changes with illumination
and viewing variations. Thus, the only reliable representation of
material visual properties requires capturing of its reflectance
in as wide range of light and camera position combinations
as possible. This is a principle of the recent most advanced
texture representation, the Bidirectional Texture Function (BTF).
Multispectral BTF is a seven-dimensional function that depends
on view and illumination directions as well as on planar tex-
ture coordinates. BTF is typically obtained by measurement
of thousands of images covering many combinations of illu-
mination and viewing angles. However, the large size of such
measurements has prohibited their practical exploitation in any
sensible application until recently. During the last few years the
first BTF measurement, compression, modeling and rendering
methods have emerged. In this paper we categorize, critically
survey, and psychophysically compare such approaches, which
were published in this newly arising and important computer
vision & graphics area.
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I. INTRODUCTION

Robust visual classification, segmentation, retrieval or

view / illumination invariant methods dealing with images

of textured natural materials, as well as augmented reality

applications creating virtual objects in rendered scenes with

real material surface optical properties, require realistic physi-

cally correct textures. Such texture representation considerably

depends on the view and illumination directions and can be

efficiently and the most accurately obtained in the form of

rough surface textures represented by Bidirectional Texture

Function. Additionally, applications of this advanced texture

representation allow accurate photo-realistic material appear-

ance approximation for such complex tasks as visual safety

simulations or interior design in automotive / airspace industry

(Fig. 2), architecture or dermatology [8] among others.

The first attempt to formally specify real material reflectance

was by Nicodemus et al. [76] who introduced a novel nomen-

clature for the Bidirectional Reflectance Distribution Function
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Fig. 1. Examples of measured BTF samples (ceiling panel, aluminium profile,
and two fabrics) rendered on objects and illuminated by environment lighting.

(BRDF), although its importance has long been recognized by

artists and scientists such as Galileo [78]. A four-dimensional

BRDF was formalized in [76] as a specific case of eight-

dimensional Bidirectional Scattering-Surface Reflectance Dis-

tribution Function (BSSRDF), restricted to opaque materials.

Multispectral BRDF is a 5D function describing how a sam-

ple’s color reflectance depending on illumination and viewing

directions. Two principal properties of BRDF are view and

illumination direction reciprocity and energy conservation. To

represent the spatial dependencies in surface texture a BRDF

can be extended to the six-dimensional Spatially-Varying

BRDF (SVBRDF), i.e., a set of surface points with mutually

independent BRDFs. However, the two mentioned properties

impose restrictions on SVBRDF use, mostly for representation

of near flat and opaque materials.

Twenty years later Dana et al. [10] proposed a more

general representation of sample structure geometry and its

light transport properties [54], in the form of Bidirectional

Texture Function (BTF), which is applicable to most real-

world surfaces. Multispectral BTF is a seven-dimensional

function, which considers measurement dependency on color

spectrum, planar material position, as well as its dependence

on illumination and viewing angles:

BTF (r, θi, φi, θv, φv) (1)

where the multiindex r = [r1, r2, r3] specifies planar horizon-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, AUGUST 200X 2

Fig. 2. Examples of leather, fabrics, aluminium, and lacquered wood BTF rendering in Mercedes C Class interior using [25] method (3D model courtesy
of DaimlerChrysler).

tal and vertical position in material sample image, r3 is the

spectral index and θ, φ are elevation and azimuthal angles of

the illumination and view direction vector (see Fig. 3). The

BTF measurements comprise a whole hemisphere of light and

camera positions in observed material sample coordinates ac-

cording to selected quantization steps (see example in Fig. 4).

Fig. 3. Relationship between
illumination and viewing an-
gles within sample coordinate
system.

Fig. 4. An example of light or
camera trajectory above the sam-
ple during measurement [80].

The variability of the material sample appearance in reg-

istered and rectified BTF images is illustrated in Fig. 5

examples.

Fig. 5. Examples of significant material appearance change for varying
illumination / view directions, as captured by BTF for knitted wool and
lacquered wood.

Rough textures provide ample information about local light

field structure as well as the surface relief. Effects presented

in rough textures such as self-occlusions, self-shadowing,

inter-reflection or subsurface scattering are preserved in BTF

measurements (Fig. 1). A downside of using original measure-

ments is their enormous storage size, since an average sample

takes several gigabytes.

Methods exist for interactive editing of measured BTF [47],

which enable us to change materials properties by several

physically non-plausible operators. However, a fast BTF syn-

thesis method with substantial compression is essential for

many applications requiring accurate realtime rendering of

these data using graphics hardware. In addition, the original

BTF measurements cannot be used in any practical application

due to missing necessary measurements from all arbitrary

vantage points under arbitrary illumination and due to their

small size. Thus, a seamless spatial enlargement (modeling)

method of this otherwise huge BTF data is inevitable.

Contribution of the paper: The main contribution is to

provide the first thorough state-of-the-art overview of BTF

measurement, modeling, and compression methods published

so far, while selected methods are mutually compared in

several aspects. The only survey dealing with some parts of

the complex BTF acquisition and modeling process is [72].

This survey provides an elegant, brief overview of principles

of BTF measurement, compression, and visualization methods

and explains issues related to a whole BTF processing pipeline

from acquisition to optimal BTF rendering on graphics hard-

ware. Although the survey provides useful insight into the field

of BTF acquisition, compression and rendering, it lacks rigor-

ous side-by-side comparison of individual BTF measurement

setups and compression methods, and it only touches on BTF

synthesis. Additionally, the mentioned survey paper does not

comprehensively mention all published methods in the field

of BTF acquisition, compression, and modeling, while our

survey does. Furthermore, a number of novel BTF acquisi-

tion, compression, and synthesis methods have appeared since

publication of the said survey [72].

In this paper we focus mainly on thorough comparison and

categorization of the BTF measurement systems and synthesis

methods. We put the emphasis on modeling of BTF data

and on rigorous comparison of the selected compression and

synthesis techniques. While in [72] the parameters of the

compared methods were selected in order to give subjectively

nice results and to fit within current graphics hardware limits,

we have performed a psychophysical experiment using sev-

eral BTF samples. Our experiment determined BTF sample-

dependent parameters of the selected tested methods providing

results visually indiscernible from the original BTF rendering.

The proposed psychophysical testing allowed us to prepare

a fair comparison of the selected BTF compression and

modeling techniques in terms of analysis and synthesis speed,

compression ratio, etc.

BTF applications in computer vision: BTF data are the

most advanced and accurate digital representation of a real-

world material visual properties to date, and their analysis

provides abundant information about the measured material

that cannot, for the majority, be attained using any alternative

visual measurements or representations, e.g., image based
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relighting, bump / displacement mapping, spatially varying

BRDFs, etc.

The nature of BTF data allows their straightforward ex-

ploitation for design and testing of illumination [38], [85]

and view-invariant features and algorithms in numerous robust

texture classification [5], segmentation and retrieval appli-

cations. Other image processing problems, such as image

restoration, aging modeling, face recognition, security, 3D ob-

ject recognition, content-based image retrieval [85] and many

other tasks can and should benefit from BTF comprehensive

information. An example of usefulness of BTF data is a

study of cast shadows by material structure in [79] and the

analysis of material dimensionality in [82]. Moreover, a recent

psychophysical studies of these data in [22] and [21] together

with a study present in this paper, has shown that analysis

of different BTF samples can help us to understand human

perception of different real-world materials. For all of the

above-mentioned tasks a reliable and compact representation

of massive BTF data is needed. Such a representation should

allow fast reconstruction and modeling of BTF data, which

is the aim of this paper. By modeling we understand BTF

synthesis from its parameters of arbitrary size, without visible

repetitions or other distortions, visually similar to original data.

Paper organization: Section II surveys principles and prop-

erties of BTF measurements systems. Different ways of rep-

resenting measured BTF data, and categorization of published

methods are explained in Section III. Section IV summarizes

BTF compression techniques, while the subsequent Section V

deals with more general methods allowing simultaneous com-

pression and enlargement. Modeling quality criteria are subject

to Section VI. Selected methods, i.e., those that are described

in dedicated numbered paragraphs in Sections IV and V, are

further compared and tested thoroughly with psychophysical

experiment in Section VII and Section VIII concludes the

paper.

II. BTF MEASUREMENT

Since the accurate and reliable BTF acquisition is not a

trivial task, only a few BTF measurement systems exist up

to now [10], [39], [50], [70], [75], [80], [89]. However, their

number increases every year with respect to growing demands

for photo-realistic virtual representations of real-world ma-

terials. These systems are (similar to BRDF measurement

systems) based on light source, video / still camera and

material sample. The main difference between individual BTF

measurement systems is in the type of measurement setup

allowing four degrees of freedom for camera/light and the type

of measurement sensor (CCD, video, etc.). In some systems

the camera is moving and the light is fixed [10], [73], [80]

while in others, e.g., [50] it is just the opposite. There are also

systems where both camera and light source stay fixed [39],

[70]. The main requirement on BTF measurements is accu-

rate image rectification, i.e., aligning of texture normal with

view vector, mutual registration of single BTF measurements

for different viewpoints, and sample visual constancy during

measurement. The registration accuracy strongly depends on

positioning errors of the light / camera used while the visual

constancy depends on stability of material properties during a

long measurement time when exposed to an intensive light

source. BTF, if appropriately measured from real material

samples, offers enough information about material properties,

such as anisotropy, masking or self-shadowing.

Pioneering work in BTF acquisition has been done by Dana

et al. [11], who measured a large set of various materials with

measurement setup based on fixed light source, and moving

camera and material sample position. The resulting CUReT

BTF database has a relatively sparse angular resolution. Al-

though individual images are not rectified to frontal view

position, the authors provided image coordinates to allow their

further rectification.

Some of material measurements from the CUReT database

were further extended in KTH TIPS database [40]. The main

purpose of the authors was to provide variations of scale

in addition to pose and illumination. Such a feature is not

available in any other BTF database discussed below. Each

measured material is sampled in three illuminations, three

viewing directions, and nine scales. Measurement was per-

formed by still camera and ordinary desk light. Authors pro-

vide no rectification marks in the data images, so the database

is mainly focused on material classification applications. A

slight variation of this database is the database KTH-TIPS2

[5], introducing additional ambient lighting.

The BTF measurement system developed by Koudelka et

al. [50] uses fixed video camera observing material sample

positioned in a computer-controlled pan / tilt head. The sample

is illuminated by a LED array mounted on a robotic arm. The

system offers an impressive angular resolution and rigorous

image registration. However, the spatial resolution of the

resulting images is rather small, which can negatively impact

many BTF modeling methods.

A BTF measurement system based on extended setup of

Dana was developed by Sattler et al. [80]. The main change

is having the camera on a half-circle rail remote-controlled

positioning system. The setup provides rectified measurements

of reasonable angular and spatial resolutions. Later hardware

upgrade and improvement of postprocessing algorithms in this

setup suppressed registration errors and enabled an even higher

spatial resolution. The data sets from this setup were used in

our experiments for comparison of several BTF compression

and modeling methods in Section VII.

The interesting idea of BTF measurement was presented

by Han and Perlin [39]. Their system consists of a triangular

tapered tube made of mirrors presenting kaleidoscopic replica-

tions of the material surface positioned under the tube. A fixed

camera observes the kaleidoscopic image where individual

triangular subimages correspond to a surface observed from

different viewpoints. The sample is illuminated by a digital

projector illuminating individual triangles (i.e., generating

illumination positions) in the kaleidoscopic image in a shared

optical path with the camera, using a beam splitter. The

advantage of this inexpensive system is subpixel BTF images

registration. However, the spatial resolution is limited by the

camera resolution.

A dermatology BTF database, the Rutgers Skin Texture

Database [8], contains various skin diseases taken from the
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TABLE I
COMPARISON OF PUBLICLY AVAILABLE BTF DATABASES.

public BTF databases

parameter CUReT99 [11] Yale03 [50] Bonn03 [80] Bonn03 ext. KTH TIPS [40] KTH TIPS2 [5]

No. of publicly available BTF samples 61 ∼17 6 4 10 11
Raw BTF images resolution [pixels] 640×480 480×360 3032×2008 4500×3000 1280×960 1280×960
Rectified images resolution [pixels] 400×300 192×192 256×256 800×800 ≤200×200 ≤200×200
Number of view/illum. positions/scales max.205/55/1 90/120/1 81/81/1 81/81/1 3/3/9 3/4/9
Number of BTF images / material 205 10 800 6561 6561 81 72 or 108

Max. elevation θi / θv 850 / 850 800 / 750 750 / 750 750 / 750 450 / 22.50 450 / 22.50

Material sample size [cm] 10×12 < 102 10×10 10×10 n/a n/a
Size of rectified BTF dataset in PNG ∼100 MB ∼700 MB ∼700 MB ∼5 GB ∼7 MB ∼7 MB
Rectification accuracy [pixels] n/a n/a ∼5 ∼2 no rect. no rect.
Camera(s) type video video still still still still
Moving [Sample/Camera/Light](DOF) S(5),C(1) S(2),L(4) S(5),C(1) S(5),C(1) C(2),L(2) C(2),L(2)
Raw / rectified data publicly available yes / no+ yes / yes no / yes no / yes yes / yes yes / yes
BTF measurement time [hours] n/a ∼ 10 ∼ 14 ∼ 14 n/a n/a
HDR samples – – 4 – – n/a

TABLE II
COMPARISON OF DIFFERENT BTF MEASUREMENT SYSTEMS PARAMETERS

Other BTF measurement systems

parameter NewYork03 [39] Rutgers04 [12] Bonn05 [70] KULETH05 [73] MIT06 [75]

Raw BTF images resolution [pixels] 2048×1536 n/a (principle) 2048×1536 800×600 n/a
Rectified images resolution [pixels] ∼200×200 ∼200×200 1024×1024 460×460 ∼512×512
Number of view/illum. positions 22-79/22-79 continuous 151/151 264/169 13/13-100
Number of BTF images / material 484 - 6241 continuous 22801 44616 1300

Max. elevation θi / θv 760 / 760 23-370/23-370 n/a / n/a 900 / 900 600 / 600

Material sample size [cm] 5.8×5.8 1.1×0.8 ∼10×10 n/a n/a
Rectification accuracy [pixels] subpixel subpixel subpixel n/a n/a
Camera(s) type still video still (151) video still
Moving [Sample/Camera/Light](DOF) none mirror(2),L-aperture(2) none S(1),C(1) L(3)
BTF measurement time [hours] n/a ∼ 1 ∼ 1 n/a ∼ 1

illumination and camera controlled positions. They use two

measurement setups: a light arc (quartz halogen or fiber optic

illuminator) and camera mounted on a manually articulated

arm on a tripod. Data sets have either 3 viewing positions and

10 illumination positions or 4 and 8 corresponding positions.

The Light Stage measuring system [15] was designed for

similar application. It consists of a two-axis rotation system

in which a small set of viewpoints are combined with a dense

sampling of incidental illumination.

A similar technique [26] for BTF measurement involves

a set of 5 cameras and a set of 6 lights each affixed to its

own large motorized arc surrounding the object on a turntable.

Additionally a range-scanner is used to capture 3D geometric

data of the measured objects, so the measured samples need

not to be planar. This system provides a relatively coarse

angular sampling.

Another BTF setup presented by Dana and Wang [12] is

based on a parabolic mirror, in whose focal point is placed

the surface of the observed material sample. Illumination

is introduced by a coherent beam spatially positioned into

the mirror by means of a moving aperture, which enables

convenient automated control for illumination. The sample

surface point reflectance for varying viewing directions is

observed as the image captured by a camera sharing the

same optical path with the illumination beam by means of

a beam splitter. This setup provides very dense angular and

spatial resolutions, but has limited maximal elevation angles

and maximal sample height variations; it also requires long

measurement times due to planar translations used to scan the

surface of the sample.

A novel measurement system of the University of Bonn

[70] uses a dense array of digital still cameras uniformly

mounted on a hemispherical structure. Built-in flash lights of

the cameras are used as light sources. The system enables

subpixel registration of measured images by predefined image

transformations of individual fixed cameras, and provides high

angular and spatial resolutions.

A system of similar topology, KULETH, was presented in

[73]. The system is based on a half-hemispherical chassis

containing a spatially uniform array of illumination sources.

The material sample is placed on a turn table and observed by

a camera being positioned using a tilt arm. Resulting BTF data

sets have a very high angular and moderate spatial resolution.

BTF rendering that incorporates underlying geometry mod-

eling, using a mesostructure distance function, is proposed

by Wang et al. [90]. The method enables fast rendering of

mesostructure silhouette in graphics hardware. The setup for

simultaneous measurement of distance function and BTF is

presented as well.

Finally, the acquisition system [75] uses a number of planar

patches of the material pasted onto square backing boards

with known dimensions, which are then positioned to form

a pyramid-like target. This setup provides sparsely sampled

BTF measurements of 13 unaligned views from a variable

manual camera position and the light direction is sampled by

moving a hand-held electronic flash. The entire BTF space

is interpolated from these sparsely-sampled measurements by

means of histogram fitting and interpolation of steerable pyra-

mid parameters and pixel distributions. This system introduces

large interpolation errors and requires manual marking of

image positions.

The surveyed BTF acquisition systems can be divided in
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two categories: systems whose authors enable a wide research

community to use some of measured BTFs are more detailedly

described in Tab. I, while the parameters of the others systems

are shown in Tab. II.

The optimal BTF measurement setup design is a tricky task,

heavily dependent on the required accuracy and the target

application of the resulting BTF data. The highest illumination

and view positioning accuracy requires avoidance of as many

moving parts in the setup as possible. If this cannot be

achieved completely [39], [70], a simple shift and rotation

elements [12], [73], that are convenient for easy calibration and

error compensation, should be preferred instead of complicated

and imprecise robotic arms [11], [50], [80].

Data-consistency-critical applications can benefit from non-

uniform sampling strategies. Such systems should apply more

dense sampling in the areas of expected interest, e.g., near

specular reflection, etc. This approach should avoid missing

specular peaks, etc. due to improper angular quantization

steps. The resulting correct BTF data can be resampled to

a uniform quantization by a global interpolation algorithm

in a postprocessing step if required. A disadvantage of this

approach is a necessity to use moving elements in the setup

due to a variable quantization step, which is dependent on

proximity of view and specular directions. An interesting case

of a continual sampling of view and illumination directions is

shown in [12].

For low-budget applications requiring capture of a reliable

look-and-feel of the material without excessive accuracy de-

mands, such as web presentation of materials, etc., an approxi-

mate acquisition setups using only sparse BTF sampling might

be sufficient [5], [40], [75].

As the rectification and registration of individual images is

one of the main sources of error in BTF data, attention should

be paid to design of proper, unambiguous ground-true registra-

tion marks accompanying the measured material sample [50].

Idealized errorless moving parts or immovable measurement

setups can adopt a predefined rectification transformation for

each view direction, without the need for of an additional

registration procedure [70].

It should be also noted that the larger the sample to be

measured is the farther the light and camera should be placed

to avoid a change of corresponding illumination and viewing

angles over the sample span. Thus the maximum required

size of material samples should be considered prior the setup

design. Similarly, a maximum height of the measured materials

should also be considered when choosing the measurement

setup, since there can be principal limitation connected with

some methods [12]. A type of the acquisition sensor also

influences the results. While current video cameras allow fast

response [12], [73], they cannot deliver resolution and color

representation as well as still cameras can [70], [80].

Individual BTF measurements typically suffer from mu-

tual registration problems. Even relatively well-rectified and

registered data [80] measured with a moving camera contain

registration errors between individual view directions, caused

by inaccurate material sample position, self-occlusion, etc. A

technique to avoid self-occlusion errors is to employ a separate

compression / modeling step for each BTF subset comprehend-

ing all images obtained for a fixed view position. Such a BTF

slice for a view direction ωv is a 5D function called Fixed

View Reflectance Field Rv(r1, r2, r3, θi, φi) , which describes

the radiance of the surface point r = (r1, r2, r3) where r1, r2
are planar coordinates on a sample and r3 is the actual spectral

band.

We used the BTF measurements from Bonn University [4]

as input BTF data for all methods being tested in this article.

Six different BTF materials were used to test individual meth-

ods. Each data set comprises 81 viewing positions nv and 81

illumination positions ni (see Fig. 6) resulting in 6561 images.

Spatial resolution of the rectified original measurements was

M ×N = 800× 800 pixels.

III. DATA REPRESENTATION AND METHODS

CATEGORIZATION

The selection of proper representation of BTF data suitable

to intended application or modeling method prior to any

processing may significantly influence their final performance.

Measured BTF data can be either represented as rectified

original measurements (Fig. 6-left) or in the form of pixel-

wise BRDF (Fig. 6-right), i.e., ABRDFr(θi, φi, θv, φv). This

BRDF is often called apparent because it can violate any

of two basic BRDF properties, i.e., view and illumination

direction reciprocity and energy conservation. This behavior

can be caused by shadowing, occlusions, subsurface scattering

and other complex effects occuring in the material structure.

Fig. 6. Two BTF representations illustrated on [80] measurements.

The first representation enables using methods based on

analysis and synthesis of whole planar texture than can be

extended to cope with texture appearance or its corresponding

parameters change dependently on illumination and viewing

conditions. To this category belong sampling-based approaches

(Section V-A) or probabilistic models (Section V-C).

The second representation (ABRDF) describes in each im-

age dependency of single pixel on illumination/view direction.

Here, individual images describe the variance of light/view

dependent reflectance over the measured surface texture. This

arrangement produces specularities with lower variance in the

images and allows more reliable pixel-to-pixel comparison of

images than the previous arrangement, where the cast shadows

and variable occlusion effects has to be taken into an account

prior to any direct comparison. This representation allows us

to employ a variety of BRDF-based models (Section IV-A).
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On the other hand, linear factorization approaches (e.g.,

PCA, spherical harmonics) and other general statistical meth-

ods can be used regardless the BTF representation (Sec-

tion IV-B).

Surveyed methods using either representation can be princi-

pally categorized into compression and modeling approaches,

based on their inherent or absent spatial enlargement property.

While the compression methods cannot enlarge any BTF

measurements by themselves, and they just create more or

less computationally and visually efficient parametrization of

the original data, the modeling methods allow unconstrained

seamless spatial BTF enlargement to any required size. Apart

from this fundamental utilization feature, they automatically,

and often significantly, compress BTF measurements.

Basic overview of BTF compression and modeling methods

and their mutual relation in the BTF processing pipeline is

shown in Fig. 7. Their principles, advantages, and shortcom-

ings are explained in the following chapters.

Fig. 7. BTF processing scheme with basic taxonomy of compression and
modeling methods.

IV. COMPRESSION METHODS

In contrast to other static planar texture representations BTF

is high-dimensional and massive. To render BTFs on graphics

hardware, their compact representation is needed. The best

currently publicly available raw BTF samples [80] take up

about 5GB of storage space per material sample and their size

can be even greater when saved in high-dynamic range (HDR)

data format. Thus, a BTF database even for simple VR scenes

can easily reach an enormous data-space range of hundreds

of gigabytes; even then, these samples cannot be used in any

practical applications due to their small planar size.

Hence, some compression and seamless enlargement (mod-

eling) method of these huge BTF data sets is inevitable. Such

a method should provide compact parametric representation

and preserve main visual features of the original BTF, while

enabling its fast rendering taking advantage of contemporary

graphics hardware.

Several methods were published for BTF compression based

either on reflectance models, pixel-wise BRDF models, or

using an approach based on standard principle component

analysis (PCA). However, none of these methods enable also

texture synthesis (seamless texture enlargement) without addi-

tional extension, e.g., with the aid of tiling, spatial clustering,

etc. The BTF compression models compared in this section

are described in detail in their corresponding subsections.

A. BTF Compression Based on Pixel-Wise BRDF

The first group of BTF compression methods represents

BTF by means of pixel-wise analytical BRDF models. McAl-

lister et al. [65] represented the ABRDF of each pixel in

BTF using the Lafortune reflectance model [52]. A similar

approach, which consists of additional look-up table scaling

reflectance lobes and handling shadowing and masking, was

published by Daubert et al. [13]. Spatial inconsistency of

individual pixels in BTF for different view directions led to

separate modeling of individual views (so called view re-

flectance fields Rv) in BTF. Malzbender et al. [63] represented

each pixel for a given reflectance field of BTF by means of a

polynomial.

Homomorphic factorization [66], similar to singular value

decomposition (SVD), decomposes pixel-wise ABRDF into

several factors of lower dimensionality; each factor is depen-

dent on a different interpolated geometric parameter. Com-

pared to SVD this technique generates a factorization with

only positive factors, enables control over smoothness of the

result, and works well with scattered, sparse data without

a separate resampling and interpolation algorithm. Efficient

multiple-term BTF approximation was suggested by Suykens

et al. in [83]. This model decomposes ABRDF of each pixel

into a product of three or more two-dimensional positive

factors using a technique called chained matrix factorization.

This technique uses a sequence of matrix decompositions, each

in a different parametrization, allowing us to obtain the mul-

tiple factor approximation. This decomposition enables easier

factor computation than homomorphic factorization [66], and

its factors have lower dynamic range so their quantization into

8-bits for realtime-rendering is much safer. A novel technique

for BTF representation was proposed by Ma et al. [60].

Their approach is based on fitting the Phong model to pixel-

wise ABRDF. Model’s parameters are then averaged and the

difference between original data and results of Phong model,

so called spatial-varying residual function, is approximated by

a delta function whose parameters are obtained from a system

of linear equations. This approach allows good approximation

quality and interactive BTF rendering frame rates.

Meseth et al. [67] represented BTF by several pixel-wise

Lafortune lobes for fixed viewing direction. Due to the ex-

pensive non-linear fitting of its parameters, the number of

Lafortune lobes is practically limited to three lobes. The lobes

are only used for luminance-values fitting, which modulates

an albedo-map of individual color channels. This arrangement

reduces the number of parameters to be stored, but simulta-

neously deteriorates approximation accuracy. In [23] only one

lobe is used per color channel. The obtained results are then

corrected by means of polynomials representing histogram

matching functions between original and restored images.

In [62] a BTF compression method is introduced that sepa-

rates geometric information from the reflectance data combin-

ing a layered volumetric model of material structure and the

Lafortune reflectance model. The pixel-wise surface normal

vector, reflectance model and light attenuation parameters are

computed for individual layers separately. An advantage of the

method is a high compression ratio and easy interpolation of
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BTF data, the number of layers and height of the material have

to be set explicitly.

A method for intuitive editing of spatially varying BRDF

(SVBRDF), i.e. tolerable BTF approximation for flat and

opaque materials, was presented in [53]. This method is

based on BRDF decomposition into a compact tree structure

and allows editing of both reflectance properties specified

by decomposed BRDF and spatial distribution of individual

BRDFs over the material surface. Advanced interactive editing

of SVBRDF was presented in [77], based on the number of

user-defined editing constraints that are smoothly propagated

to the entire dataset performing similar editing effects in areas

of similar appearance. An SVBRDF model based on pixel-

wise Ward reflectance model effectively handling directional,

anisotropic reflections of subsurface fibers to preserve an

appearance of wooden materials is proposed in [64]. These

methods are limited only to flat and opaque materials that can

be represented by means of SVBRDF and cannot be used for

realistic representation of any real-world materials.

An approximation of BTF data by means of a shading map

indexed by a Phong-type BRDF model is presented in [48].

The shading map is acquired as a set of material images

for a fixed viewing direction and a changing elevation of

illumination direction. During rendering, for a given illumi-

nation and viewing direction, the BRDF model is evaluated

and from the shading map an image of the most similar

average value is used as a pixel value for a given planar

position. Authors presented also the shading map compression

based on power functions representing individual illumination-

dependent pixels. This technique provides reasonable results

for small-scale structured and isotropic materials, but cannot

reliably represent the masking effects caused by a rough

material structure.

1) Polynomial Texture Maps (PTM RF): In the Polynomial

Texture Maps approach [63], the BTF images corresponding to

a fixed view direction are approximated by means of per-pixel

polynomials. This method models illumination dependence of

individual pixels using the following pixel-wise bi-quadratic

formula

Rv(r, i) ≈ ao(r)u
2
x + a1(r)u

2
y + a2(r)uxuy + (2)

+a3(r)ux + a4(r)uy + a5(r) ,

where ux, uy are projections of the normalized light vector into

the local coordinate system r = (x, y). The set of ni pixels

is considered as reflectance data, where i = 1, . . . , ni is the

illumination position index and v is the actual view position

index v = 1, . . . , nv . The np = 6 polynomial coefficients

a0 − a5 are fitted in each pixel by means of SVD.

This method enables very fast rendering. However, it as-

sumes that the modeled surfaces are either diffuse or their

specular contribution had been separated in the previous

preprocessing step. This separation can be quite difficult for

reflectance fields obtained as a BTF slice. For such a re-

flectance field the method exhibits considerable errors mainly

for high grazing angles as shown in [67]. For BTF rendering

this method requires six parametric images to be stored per

reflectance field Rv and color channel.

2) Polynomial Extension of Lafortune Reflectance Model

(PLM RF): Single surface reflectance field for a given re-

flectance field can be per-pixel modeled using the generaliza-

tion of the one-lobe Lafortune model (LM) [52]:

Yv(r, i) ≈ ρv(r)[av,1(r)u1 + av,2(r)u2 + av,3(r)u3]
nv(r) ,

(3)

where ωi(θi, φi) = [u1, u2, u3]
T is a unit vector pointing

to light and parameterized by the illumination elevation and

azimuthal angles [θi, φi] respectively (see Fig. 3). For every

planar position and spectral channel in BTF the model param-

eters (ρ, a1, a2, a3, n) are estimated using t = 2 iterations of

the Levenberg-Marquardt non-linear optimization algorithm,

whose performance strongly depends on chosen initial val-

ues. Unfortunately, reflectance values which are clearly and

completely wrong result from the one-lobe LM model for

certain combinations of illumination and viewing angles. The

polynomial extension of one-lobe Lafortune model (3) (PLM

RF) is proposed in [23], [24], which leads to the following

formula

Rv(r, i) ≈

np
∑

j=1

av,i,jYv(r, i)j , (4)

where av,i,j are polynomial parameters specifying the map-

ping function between cumulative histogram values of image

Ŷi,v synthesized from one-lobe LM’s parameters, and the

original BTF image; (np−1) is a rank of this polynomial. For

BTF rendering this method requires np = 5 parametric images

to be stored per Rv and a color channel with an additional

fifteen polynomial coefficients per BTF image.

B. BTF Compression Based on Linear Factorization Methods

The second group of BTF compression methods is based on

linear basis decomposition methods such as PCA or spherical

harmonics.

Koudelka et al. [50] ordered individual BTF images into

vectors forming a matrix. The corresponding symmetric matrix

was created and subsequently decomposed using SVD. The

authors preserved 150 main eigen-images for a satisfactory

BTF reconstruction. Vasilescu et al. [86] decomposed the BTF

space, ordered into a 3D tensor, by means of multi-modal

SVD. This method enables controllable BTF compression

separately in viewing and illumination axes and demonstrates

better performance than the previous approach using same

number of components. Wang et al. [87] further extended this

idea. Instead of using a 3D texel-illumination-view tensor it

stores BTF data directly in a 4D form, i.e., preserving also

spatial relationships in individual BTF images. This help to

significantly decrease the reconstruction error while maintain-

ing the same level of compression as in the previous approach.

Although, these methods enable realistic BTF rendering, they

are not suitable for a fast BTF rendering application since

they require the user to compute linear combinations of

high number of eigen-components. A much faster approach,

applying SVD only on images of separate view reflectance

fields, was presented by Sattler et al. [80].

Another method [42] uses block-wise PCA for scene illu-

mination dependency coding. The coding is performed in Y-

Cr-Cb color space and the resulting eigen-images are further
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compressed using a combination of cosine transformation and

quantization techniques.

Method [93] compresses pixel-wise illumination and view

dependent data by means of spherical harmonics using up to

25 coefficients. The coefficient planes are further coded using

a discrete wavelet transformation and the method exploits

Y-Cr-Cb color space, which allows an even higher color

compression. The authors report better visual results and

compression ratios on image and video data than with standard

compression methods. A very similar approach, applying a

radial basis functions instead of spherical harmonics for pixel-

wise compression was introduced in [56].

Ma et al. [61] presented a method (similar to [59]) for level-

of-details representation of BTF aimed at real-time rendering.

This method is based on BTF data decomposition by means of

a Laplacian pyramid. BRDF vectors corresponding to BTF at

a fixed planar position at individual pyramid levels are further

approximated by PCA. The method enables significant BTF

compression and real-time rendering. The authors computed

PCA for individual reflectance fields instead of the whole

BTF data space. This approach resulted in 16 eigen-images per

one view position, which can easily be interpolated by means

of graphics hardware. Müller et al. [71] exploited a vector

quantization of BTF data space and each resulting cluster was

represented by a local PCA model. Some of these compression

methods are compared in [69].

An approach to generating a full BTF from its spare sam-

pling based on a clustering of underlying surface geometry was

presented by Wang and Dana [88]. This technique estimates a

set of geometric texton patches from example surfaces. These

patches are then used for geometry synthesis of arbitrary view

and illumination conditions and the result is blended with

results of the eigen-analysis method. The method correctly

preserves casted shadows in surface mesostructure, but it

cannot enlarge original BTF data.

While the above-mentioned methods do not solve the BTF

synthesis problem, these methods are all capable of compress-

ing the measured BTF space.

1) Reflectance Field Factorization (PCA RF): Reflectance

Field Factorization [80] is based on computation of no more

than nc principal components per individual reflectance field

instead of the whole BTF space. Individual images corre-

sponding to reflectance field Rv are used as A matrix input

vectors. From matrix AA
T of size ni × ni the eigen-images

Ev,k are computed by means of SVD for each Rv together

with the corresponding weights αv,k and mean image µ. The

reconstruction formula for a reflectance field is

Rv(r, i) ≈

nc
∑

k=1

αv,k(i)Ev,k(r) + µ(r) . (5)

For the following tests the number of components nc for

individual samples was estimated by the psychophysical ex-

periment, so nc + 1 parametric planes have to be stored per

Rv .

2) BTF Space Global Factorization (PCA BTF): In a PCA

based BTF factorization approach, Koudelka et al. [50] ar-

ranged individual color pixels of BTF images of size M×N in

vectors forming matrix A of size 3MN×nvni. The principal

components are the eigen-vectors Ek of the symmetric matrix

AA
T of size ninv×ninv . However, the AA

T computational

time for larger BTF images can be unacceptable unless using

advanced incremental approximate techniques. Computing the

eigen-vectors for spatially non-homogeneous materials (large

samples) often takes several days. BTF reconstruction is

similar to a previous method stated by the following equation

BTF (r, i, v) ≈

nc
∑

k=1

αk(i, v)Ek(r) + µ(r) . (6)

To obtain satisfactory BTF approximation results the num-

ber of preserved eigen-images nc was again set by the

psychophysical experiment. The entire BTF space is thus

represented by nc + 1 parametric planes.

3) BTF Space Local Factorization (LPCA BTF): A BTF

compression method well suited to contemporary graphics

hardware was presented by Müller et al. in [71]. This method

exploits the fact that high-dimensional data sets, in this case

BTF, show a locally linear behavior. The authors propose a

BTF compression algorithm based on combination of iterative

vector quantization and local PCA computed in individual

clusters in BTF data. The BTF space is iteratively divided

into clusters using modified K-means algorithm in the planar

BTF space (t denotes no. of iterations). The squared eigen-

image reconstruction error is used as a distance measure in

the clustering process. Each cluster is represented by means

of local PCA in the form of several eigen-vectors dependent

on illumination and viewing position. The described BTF

factorization can be stated as

BTF (r, i, v) ≈

nc
∑

k=1

αm(r),k(r)Em(r),k(i, v) + µm(r) , (7)

where m(r) is a cluster index look-up table given by planar

coordinates r = (x, y), nc is number of preserved principal

components representing each cluster, αk are PCA weights,

Ek are saved eigen-vectors and µm(r) is the mean vector

for the given cluster m(r). The entire BTF reconstruction

together with the illumination and view interpolation can be

implemented in graphics hardware which enables fast BTF

rendering. This method provides high BTF compression while

ensuring high reconstruction quality and rendering speed [69].

For the following tests the number of clusters c and number

of components per each cluster on nc were set by the psy-

chophysical experiment. For whole BTF space representation,

c cluster index images are stored together with nc + 1 eigen-

vectors of size ninv and nc coefficient matrices of size

nc × dim ci for each cluster i.

V. MODELING METHODS

BTF modeling methods allow seamless enlargement of BTF

measurements to any size required by an application as well

as the reconstruction / estimation of unmeasured parts of

the BTF space. These methods can be divided into three

major groups: sampling based, reflectance models based, and

adaptive probabilistic models based methods.
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A. Sampling Methods

Sampling methods, which are characteristic for computer

graphics applications, are based either on simple texture rep-

etition with edge blending or on more or less sophisticated

image tiling methods [6], [18], [35], [51], [81] and some of

them are suitable for [55] or can be adapted to BTF synthesis,

e.g., [16], [35], [81]. The most successful sampling approaches

[14], [19], [18], [41], [94] rely on sophisticated sampling

from real texture measurements, which have to be stored in

the texture database. The article by Dong and Chantler [16]

presents a survey of several sampling based BTF synthesis

approaches. Based on the amount of copied data the sampling

approaches can be divided into the per-pixel non parametric

sampling [19], [84], [91], [97] and the patch-based sampling

[35], [36], [49], [58], [95], [99]. Given a randomly selected

starting block of texture in the image, they propagate out from

it selecting new texture blocks. For each new block in the

image, all neighboring blocks that have already been generated

are checked and the example image (or images) is searched

for similar textures. The n best such matches are found and

then the corresponding new texture patch is randomly chosen

from among them. The methods [18], [19], [91] all vary in the

way the blocks are represented, how similarity is determined,

and how the search is performed.

A method similar to [89], combining a sparse set of BTF

measurements according to an enlarged material range-map

using the [19] algorithm to generate dense BTF data was

developed by Liu et al. [58]. It starts with BTF sample range

map estimation using the shape-from-shading method. The

enlarged range map is used to guide a block-wise sampling

from BTF measurements. The authors tested the method

performance on CUReT data [10] only. This method is slow,

overlapping blocks can potentially generate visible seams,

mutual separation of analytical and synthesis parts is not

possible, and its data compression is negligible.

A modification of this method similar to [71] appeared

in [59]. This method exploits technique of 3D textons, i.e.,

the smallest repeatable texture elements, introduced in [57].

Only these textons are then approximated using local PCA

and finally used for surface modeling.

The pyramid matching synthesis [41] was generalized [75]

for sparsely sampled BTF data, but the visual quality of

synthesis results restrict this method to textures without strong

spatial characteristics.

The algorithm [84] performs BTF synthesis based on sur-

face textons, which extract essential information from the

sample BTF to facilitate the synthesis. A 3D texton set is

constructed using the [57] method (BTF space clustering)

and single BTF pixels are assigned texton labels. The paper

uses a general search strategy, called the k-coherent search,

for constructing a neighbor candidate set. The method is

extremely slow and it was tested only on low resolution

CUReT data [10]. Another sampling based BTF synthesis

method was published by Neubeck et al. [74]. The authors

apply smart copy-and-paste smooth texture synthesis to BTF

synthesis. The sampling is restricted to similar neighborhoods

by introducing a reasonable subset of possible candidates

(using the Ashikhmins candidate search [1]) from the example

image. This algorithm is iterative and slow, it is restricted to

small size neighborhoods, it might blur the resulting texture,

and analysis and synthesis cannot be separated from each

other.

A generalization of the image quilting method [18] for

BTF data PCA compressed spherical harmonics expansion was

presented in [49]. This method maintains all disadvantages of

the original image quilting method, most of all in its slowness

due to unseparated analytical and synthetical parts. The image

quilting method was also used in an interactive application

[99] allowing the user to paint BTF patches onto the surface

such that the painted patches seamlessly integrate with the

background patterns. This allows introduction of imperfections

and other irregular features into the BTF surface. However, this

method is extremely slow, it needs 20 minutes for synthesis

of a small texture.

The BTF roller synthesis method [35], [36], is based on

the fully automatic detection of one or several optimal double

toroidal BTF patches per fixed view angle. These BTF patches

are seamlessly repeated during the synthesis step. While

the method allows only moderate texture compression it is

extremely fast due to complete separation of the analytical

step of the algorithm from the texture synthesis part, which

has negligible computation complexity. The method is easily

implementable in graphical hardware for purpose of real-time

rendering of any type of static textures.

In [55], BTF tiling method based on Wang tiles [6] is

proposed. The method cuts the tiles in spherical harmonics

BTF representation and allows real-time rendering on an

arbitrary surface. The method also allows users to interactively

edit the created BTF tiles.

All these methods are based on some sort of original spatial

sampling of texture data or its pixel-wise parameters and

the best of them produce very realistic synthetic textures.

However, these methods require storage of the original or

transformed measurements (often thousands of images corre-

sponding to measured combination of viewing and illumina-

tion angles of the original target texture sample), they often

produce visible seams, some of them are computationally

demanding, and they cannot generate textures unseen by the al-

gorithm. Obviously, all texture sampling techniques described

in this section may be pricipally applied for spatial extension

of BTF data or their parametric representation, however, their

computational costs may vary significantly and only a few of

them can perform texture rendering or relighting in real time.

B. Spatial Enlargement of BTF Reflectance Models

BTF reflectance models are pixel-wise generalizations of

BRDF compression models, and as such they represent a

compact representation / compression of BTF measurements

only. However, they can possibly be extended with the aid

of a parametric space modeling method to allow BTF spatial

enlargement.

A BTF synthesis approach based on combination of image

tiling and a pixel-wise reflectance model was introduced in

[95]. This approach involves BTF compression based on
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polynomial texture maps [63]. Estimated resulting parametric

images containing polynomial coefficients are subsequently

enlarged by means of the Efros image quilting algorithm [18].

In [16] a survey of several BTF compression approaches

is presented. The authors have tested an image based re-

lighting method [17] based on BTF image reconstruction

from several known BTF images according to Lambertian

reflectance function, over-determined photometric stereo based

on SVD of 36 images, polynomial texture maps [63], and

finally PCA analysis of all BTF images. BTF enlargement in

all of these methods is accomplished again by means of the

tiling algorithm [18].

The polynomially extended Lafortune reflectance model

(PLM RF) [23], [24] was completed with the tiling method

[81] applied to its parametric planes which enables arbitrary

and high quality enlargement of BTF measurements.

C. Probabilistic Models

Texture synthesis based on probabilistic models [2], [3],

[27], [28], [34], [37], [46], [100], requires no trifling multi-

dimensional models (from 3D for static color textures up to

7D for static BTFs). If such an nD texture space can be

factorized then these data can be modeled using a set of lower-

dimensional (e.g.,(n− 1)D) random field models, but in any

case such models are uncommon and they suffer from several

unsolved theoretical problems, which have to be circumvented.

Unfortunately, real data space can be decorrelated only ap-

proximately, hence the independent spectral component mod-

eling approach causes a loss of image information. Alternative

full nD models allow unrestricted spatial-spectral correlation

modeling, but their main drawback is a large amount of

parameters to be estimated, and in the case of Markov random

field models (MRF) also the necessity to estimate all these

parameters simultaneously. Model-based methods published

so far are mostly too difficult to be implemented in current

graphics hardware.

Gaussian mixtures (or their neural-networks equivalent,

Radial Basis Function) were used for monospectral texture

synthesis [98]. Although they are able to model non linear

spatial interactions, their parameter estimation and synthesis

require computationally demanding numerical methods - the

EM algorithm and Markov Chain Monte Carlo methods. Dis-

crete distribution mixtures of product components applied to

color texture synthesis (with straightforward generalization to

BTF) were proposed in [27]. The texture synthesis is based on

an easy computation of arbitrary conditional distributions from

the model, however, the model requires a large training data

set, powerful computing resources, and its data compression

is much lower than that of the subsequent models.

Methods based on different Markov random fields [31],

[29], [32], [30] combine an estimated range map with syn-

thetic multiscale smooth texture. These methods (except [32])

estimate a BTF texture’s range map followed by the spectral

and spatial factorization of selected BTF texture images. Due

to the stochastic nature of MRF models, they do not reproduce

well regular or near-regular structures in BTF samples, hence

this regular information was introduced into them by means of

combination of synthesized spectral data with a relighted range

map. The range map is estimated using the over-determined

photometric stereo from mutually aligned BTF images. The

overall BTF texture visual appearance during changes of

viewing and illumination conditions is simulated using either

bump or displacement mapping technique. The next step of

these methods is BTF illumination / view (θi, φi/θv, φv)
space segmentation into c subspace images (the closest BTF

images to cluster centers) using the K-means algorithm. Eigen-

analysis of BTF data has shown that c = 20 is sufficient

to represent its reflectance correctly for most of the samples.

The color cumulative histograms of individual BTF images, in

perceptually uniform CIE Lab color-space, are used as the data

features. These subspace images are then spectrally [29], [30]

and spatially [29], [30], [32] decomposed into band-limited

monospectral factors, which are independently modeled by

their dedicated 2D ( [29], [30]) or 3D MRF ( [32]) models.

All statistics in the models are solved analytically in the

form of robust and numerically efficient Bayesian estima-

tors resulting in a very compact set of parameters. Sin-

gle band-limited factors (monospectral or multispectral) are

subsequently synthesized using this compact parametric set

and interpolated into fine resolution, smooth texture images.

Finally, the required visual appearance of BTF is created by

combining both multispectral and range information in a bump

mapping or a displacement mapping filter of the rendering

hardware.

1) Gaussian Markov Random Field Model (GMRF): This

method [29] models the BTF subspace images by a set of ded-

icated 2D GMRF models and performs spectral decorrelation

of individual sub-space images using Karhunen-Loeve (KL)

transformation. The resulting monospectral factors are further

spatially decomposed by means of a Gaussian-Laplacian (GL)

pyramid with p levels. Individual sub-band factors are ana-

lyzed using a Gaussian Markov random field model (GMRF),

which can be expressed as a stationary non-causal correlated

noise driven, 2D auto-regressive process (AR) on image grid:

Yr = γXr + er , (8)

where γ is the parameter vector, Xr is the corresponding

data vector Yr−s containing data from a symmetric contextual

neighborhood (CN) of dimensionality np and er is a ran-

dom variable with zero mean and a constant but unknown

variance σ2. If individual pixel values in CN are assumed

to be conditionally independent the parameters γ and σ2

can be approximated analytically. The toroidal image lattice

is assumed to enable fast subspace factor synthesis from

model parameters using inverse fast Fourier transformation

(FFT). In the remaining part of sub-space image synthesis

the monospectral factors are obtained by the GL pyramid

collapse and inverse KL transformation whose matrix has to be

stored together with GMRF model parameters. The analysis

and synthesis of BTF data-space using this method is very

fast, however, use of FFT somewhat restricts this method’s

hardware implementation.

2) 2D Causal Auto-Regressive Model (2D CAR): This

method [30], [31] shares a similar processing pipeline as the
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GMRF model. However, the method uses 2D causal auto-

regressive (CAR) model which can be described as a stationary

causal uncorrelated noise driven 2D AR process:

Yr = γXr + er . (9)

Although the meaning of the above notation is the same as in

the previous GMRF model, all parameters can be estimated

without simplifying approximations, er is contrary to (8)

mutually uncorrelated and CN is restricted to either causal or

unilateral, i.e., all support pixel values are known with respect

to movement on the image grid. Contrary to the previous

model, the parameters γ and σ2 can be precisely estimated

analytically, and the synthesis is extremely fast by means

of subsequent application of (9) on the image grid while

using estimated parameters γ and a white noise generator with

variance σ2. The remaining parts of the synthesis, i.e., spectral

and spatial factorization are the same as in the GRMF model.

3) 3D Causal Auto-Regressive Model (3D CAR): This MRF

based BTF subspace modeling method [32] avoids spectral

decorrelation errors due to approximate BTF spectral space

decorrelation. The 3D CAR model is able to represent all

spectral correlations between individual sub-space images.

Thus the method starts directly with building of the GL

pyramid. The model can be expressed as a stationary causal

uncorrelated noise driven 3D AR process:

Yr = ΘXr + Er , (10)

the CN is restricted to be causal or unilateral, Θ is the

parameter matrix and Er is a Gaussian white noise vector

with zero mean and a constant but unknown covariance matrix

Σ.

The parameters Θ and Σ are estimated analytically and the

synthesis is, for an arbitrary image size, again performed by

subsequent application of (10) on sub-band images’ grid. The

synthesized sub-space images are obtained by interpolation of

GL pyramid levels. The synthesis using this model is very fast.

However, the simultaneous interpolation of all 3×c sub-space

planes is more time-consuming and reduces the speed of fast

hardware implementation.

Methods of Markov random field type are based on the

estimated model in contrast to methods of prevailing intelligent

sampling type, and as such they can only approximate realism

of the original measurement. However, they offer an unbeat-

able data compression ratio (tens of parameters per texture

only), easy simulation of even previously not measured BTF

images, and fast seamless synthesis of any texture size.

D. Hybrid Methods

A hybrid method of color texture modeling based on Gaus-

sian distribution mixtures (GM) was proposed [34] with the

aim to combine advantages of both approaches (sampling and

probabilistic modeling) to basic texture modeling. The hybrid

model can be either used to directly synthesize color textures

or to control sophisticated sampling from the original measure-

ment data. In the latter option the method can be viewed as a

statistically controlled sampling. It allows high visual quality

of synthetic textures while requiring to storage of only small

patches of the original measurements, or even only Gaussian-

mixture parameters in the direct modeling version.

A generalization of the Gaussian distribution mixtures based

method to Bidirectional Texture Function (BTF) modeling

is discussed in [33]. This method estimates local statistical

properties of the monospectral version of a fixed view target

BTF texture in the form of GM of product components.

The synthesized texture is obtained by means of a stepwise

prediction of the whole fixed view BTF texture subspace. In

order to achieve an authentic BTF texture and to avoid possible

loss of high-frequency spatial details optimally chosen pieces

of the original BTF measurements are chosen in the synthesis

phase. Thus this BTF modeling method can be viewed as a

statistically controlled sampling. This method allows moderate

texture compression, high visual quality, synthesis of arbitrary

large seamless texture and fast synthesis, but its drawback is

time consuming analysis and difficult GPU implementation.

An important aspect of the proposed approach is its possible

extension to multispectral or mutually registered BTF texture

images.

The next method [25] performs BTF data clustering in a

spatial domain. Individual clusters (ABRDFs) are stored and

their spatial mapping index/image is enlarged to an arbitrary

size by means of 2D CAR synthesis of pixel-wise normal

vectors estimated using photometric stereo. This technique

allows real-time BTF rendering and compression of about

1:300.

VI. MODELING QUALITY CRITERIA

Verification of BTF data modeling quality is a difficult and

still unsolved problem due to the lack of existing mathematical

criteria capable of approximating the human eye’s perception

of textures. Modeling methods directly approximating single

pixels in their original location (reflectance models without

enlargement, PCA based compression) can be verified using

either similar criteria to those used in image restoration

applications (e.g., L1, L2 norms) or using model of low-

level human vision [9]. However, stochastic models do not

produce an exact pixel-wise copy of an original texture, but

they are intended to preserve the major statistical properties

of the original BTF data. The quality of this representation

depends on a chosen model type, its initial parameters, the

support set shape and size, direction of the image lattice

movement, etc. For this reason any differential metrics based

on pixel-wise image comparison between original and esti-

mated texture image do not make any sense. Unfortunately, no

robust criterion for visual similarity exists. There have been

several attempts at defining texture similarity metrics, e.g.,

the work of Julezs [43], who suggested a similarity measure

based on the second-order statistical moments. However, this

promising method was questioned later by the same author

in [44], [45] since many counterexamples have been shown,

showing failures of the proposed similarity measure. Another

method based on the same assumption but using third-order

statistics was introduced in [96]. Although this method seems

to be more robust, it can only decide whether two texture

images are identical or not. This method does not provide any
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similarity measure. So it is clear that we are still missing an

approach providing an acceptable and applicable measure of

texture similarity.

Currently, the only reliable way is to compare the overall

visual similarity of two textures by independent observers in

a psychophysical experiment. The first published psychophys-

ical experiment using BTF data was conducted in [68] where

authors compared environmentally lit renderings of BTF [71],

flat textures modulated by the Phong BRDF model, and

photographs of a car interior scene. The image sets from

these three techniques were the subject of a psychophysical

study with the group of 22 participants. The authors concluded

that most participants considered the BTF model as identical

to the photographs while the BRDF representation scored

worse. Another experiment with 11 subjects in [22] studied

influence of various uniform BTF data resampling schemes on

perceptual appearance of eight BTF samples. It has shown, that

different materials require different sampling, generally down-

sampling of azimuthal angles ϕ should be preferred instead

of elevation angles θ, and that illumination direction may

be sampled less densely then viewing direction. In [21] was

introduced a psychophysically validated metric for automatic

BTF sample size reduction based on vector quantization of

BTF images controlled by their mean variance.

In the following section we performed psychophysical

experiment to determine optimal parameter settings of the

relevant tested compression methods, to obtain visually in-

discernible results.

VII. SELECTED METHODS COMPARISON

We compared nine different BTF modeling methods. The

categorization of the methods is shown in the overview scheme

in Fig. 7 below the corresponding category blocks. The first

method [81] provides tiling of the original BTF data. The

next five methods are based on pixel-wise modeling. The

first three of them (Polynomial Texture Maps (PTM RF)

Section IV-A1, Polynomial Extension of Lafortune Reflectance

Model (PLM RF) Section IV-A2, and Reflectance Field Fac-

torization (PCA RF) Section IV-B1) model BTF data for

individual surface reflectance fields separately. The remaining

two methods model the whole BTF space at once (BTF Space

Global Factorization (PCA BTF) in Section IV-B2 and BTF

Space Local Factorization (LPCA BTF) in Section IV-B3).

The remaining group of three methods is based on proba-

bilistic modeling (2D Gaussian Markov Random Field Model

(GMRF) in Section V-C1, 2D Causal Auto-Regressive Model

(2DCAR) in Section V-C2, and 3D Causal Auto-Regressive

Model (3DCAR) in Section V-C3).

All of the above-described methods were compared to each

other in terms of objective and subjective visual errors, storage

requirements for their parametric representation, analysis and

synthesis time, and computational complexity.

All the surveyed methods were tested on the Bonn Univer-

sity BTF data set [80]. For considerable reduction of the size of

parametric representation of the tested pixel-wise methods and

simultaneously for enabling seamless covering of arbitrarily

large virtual objects, an image tiling approach was applied.

The approach [81] finds sub-optimal paths in the original data

to cut the required set of arbitrarily contactable BTF tiles. The

size of tiles nr×nc (see Tab. VII) depends strongly on the type

of the underlying materials’ structure, regularity, etc. All of the

pixel-wise BTF models compared in this paper were further

applied only on these BTF tiles. Six different BTF samples

were tested: knitted wool, fabric-dark, fabric-light, synthetic

leather, leather, and lacquered wood (see Fig. 11).

A. Psychophysical Experiment

For fair comparison of the pixel-wise modeling methods we

performed psychophysical experiment. The goal of the exper-

iment was to determine optimal methods’ parameter settings

in order to achieve a visual appearance indistinguishable from

the original BTF measurements. As the first two methods

(PTM RF, PLM RF) do not allow straightforward change

of parameters we were able to control visual appearance by

changing the parameters only for the remaining PCA-based

methods (PCA RF, PCA BTF, and LPCA BTF).

1) Experimental Data: As experimental stimuli we used

pairs of static images of size 800 × 800 pixels showing

BTF rendered on a sphere for point-light positioned slightly

above a camera. Each pair consisted of a rendering using the

original BTF dataset and one using its model in random order.

For different models we used different parameter quantization

to obtain a subjectively similar range of visual degradation.

The PCA RF method was used with the following numbers

of principal components per each view direction: 2, 4, 6, 8,

10, and 12. For the PCA BTF method, the quantization of

principal components representing the whole BTF was chosen

as: 10, 20, 30, 40, 50, and 60. And finally for LPCA BTF,

the same parameter per cluster was quantized to: 5, 8, 11, 14,

17, and 20. Moreover, the number of clusters in LPCA BTF

method was chosen according to the recommendation of the

authors [71], i.e., 32 clusters per BTF size 256×256 pixels.

This number of clusters was recomputed for individual tested

samples respectively, depending on tile size (i.e., knitted wool

3, fabric dark 2, fabric light 3, synth. leather 6, leather 8,

and lacquered wood 19). In addition to these three methods,

we also added to the experimental stimuli pairs containing

renderings of the methods PTM RF, PLM RF, and original-

to-original data. The described configuration resulted in 156

stimuli. The background of the stimuli was set to dark gray.

An example stimulus is shown in Fig. 8.

Fig. 8. Example of stimulus showing original (left) and improperly
parametrized sample (right) synthetic leather.

2) Participants: Twenty-two observers in two countries

participated in the experiment. All were either postgraduate
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Fig. 9. Fitted psychometric functions to data obtained from the psychophysical experiment for six different BTF samples and three different compression
methods PCA RF (left), PCA BTF (middle), and LPCA BTF (right).

students or academic employees working in different research

fields. All had normal or corrected to normal vision and all of

them were naive with respect to the purpose and the design

of the experiment.

3) Experimental Procedure: Each participant was presented

156 stimuli in random order and asked a yes-no question: Can

you detect any difference in the texture covering the objects?

Participants were given as much time as they needed for their

decision. There was a one-second pause between the stimuli,

and the average participant finished the whole experiment in 30

minutes. All stimuli were presented on calibrated 20.1” LCD

displays NEC 2090UXi and NEC 2170Nx (60Hz, resolution

1600×1200, color temperature 6500K, gamma 2.2, luminance

120 cd/m2). The experiment was performed in controlled dim

office lighting and participants were seated 0.8m from the dis-

play and each sphere in the stimulus occupied approximately

10o of their visual angle.

4) Fitting the Psychometric Data: When participants re-

ported a difference between the rendered images their response

was assigned value of 1, and otherwise 0. By averaging the

responses of all participants, we obtained psychometric data

relating average response to variable parameter of BTF model.

There are six such datasets (one for each tested sample), for

each tested method (PCA RF, PCA BTF, LPCA BTF).

The obtained psychophysical data can be represented by

psychometric function ψ(x) [92], which specifies the relation-

ship between the underlying probability ψ of positive response

and the stimulus intensity x:

ψ(x;α, β, γ, λ) = γ + (1− γ − λ)F (x;α, β) , (11)

where F is a function with parameters (α, β) fitting the data,

γ specifies guess rate (i.e., response to zero stimulus), and λ
miss rate (i.e., incorrect response for large stimulus).

Psychometric functions were fitted to the measured data us-

ing the psignifit package [92], based on bootstrap Monte Carlo

resampling technique for confidence interval estimation of data

fitting. As F we have used Weibull cumulative distribution,

which is most commonly used in life data analysis due to its

flexibility

F (x, α, β) = 1− exp

[

−

(x

α

)β
]

, (12)

for x ≥ 0, where β > 0 is the shape parameter and α > 0 is

the scale parameter of the distribution.

The resulting fitted psychometric functions with original

data points for all three tested methods are shown in Fig. 9.

The graphs also include estimated fitting confidence intervals

of individual functions at a response level 0.5. The function

averaging the data over of all samples is shown as a solid

black outline.

5) Results: To estimate the models’ parameters giving a

visual appearance indiscernible from original BTF renderings,

we used the value of the parameter at which a difference

between rendered images is detected by 50% of observers.

Parameter value k can be estimated using

kp=0.5 = α β

√

ln

(

1− γ − λ

1− 0.5− λ

)

, (13)

where α, β are estimated parameters of the Weibull distribution

and γ and λ are estimated guess and miss rates. The estimated

parameter values for all of the tested methods, samples and

they average values are summarized in Tab. III. These values

should guarantee the same visual appearance of the renderings

using the tested methods as those using original BTF data.

These values for individual samples were used throughout the

following section comparing efficiency of individual methods.

The results in this table confirm the assumption that different

BTF samples require dedicated settings of the tested method

to provide results visually indiscernible from the original

data. This fact is justified by distinct underlying structure and

surface roughness of the tested samples.

TABLE III
ESTIMATED NUMBERS OF PCA COMPONENTS FOR SIX DIFFERENT BTF

SAMPLES WITH THEIR AVERAGE AND THREE DIFFERENT TESTED

COMPRESSION METHODS.

Optimal No. of PCA components k
method knitted

wool

fabric

dark

fabric

light

synth.

leather

leather lacq.

wood

AVG

PCA RF 6 10 9 11 7 4 8
PCA BTF 21 21 13 29 18 14 19
LPCA BTF 61 51 26 52 25 28 41

The remaining tested pixel-wise methods (PTM RF, PLM

RF) do not provide any dependent parameter so only their

average observers’ responses for individual samples are shown

in the first two lines of Tab. IV. The high values for PTM RF

suggest its poor performance for all of the tested samples,

while the values of PLM RF are also often above average
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Fig. 10. The comparison of individual pixel-wise BTF modeling methods for six different material samples in terms of MAE in CIE Lab color space
dependent on viewing direction change (see Fig. 4) 0-the top, 81-the bottom of the hemisphere.

TABLE IV
OBSERVERS RESPONSES ON PTM RF AND PLM RF METHODS AND GUESS

RATES γ FOR ALL TESTED BTF SAMPLES.

Response for stimuli < 0, 1 > and the guess rate γ
method knitted

wool

fabric

dark

fabric

light

synth.

leather

leather lacq.

wood

AVG

PTM RF 0.86 1.00 1.00 0.95 0.95 1.00 0.96
PLM RF 0.27 0.73 0.68 0.91 0.91 0.68 0.70

γ 0.09 0.09 0.32 0.14 0.14 0.14 0.15

values of the other tested PCA-based methods. The last row in

Tab. IV shows measured guess rates γ for individual samples

and their averages. These values were obtained as incorrect

responses to identical renderings, both using original data, and

were used for initialization of the psignifit algorithm.

B. Computational and Visual Quality Comparison

Pixel-wise computational comparison is possible only for

methods which preserve pixel-wise structure of the original

BTF tiles. For this reason a fair comparison of probabilistic

models results is not possible to be achieved in this way. For

all other methods the pixel-wise error between original and

synthesized BTF images was computed using Mean Average

Error (MAE) in perceptually uniform CIE Lab color space.

Comparison of MAE dependence on all 81 view directions

for all tested pixel-wise methods and six different material

samples is illustrated in Fig. 10.

Comparison of averaged MAE values for all view directions,

all tested pixel-wise methods and material samples is presented

in Tab. V. From the graphs and the table we can see a

considerable difference between PTM RF, PLM RF methods

and the PCA-based methods, whose parameters were tuned

specifically for each sample by means of the psychophysical

experiment.

TABLE V
MEAN AVERAGE BTF RECONSTRUCTION ERROR (IN CIE LAB

COLOR-SPACE) OF TESTED PIXEL-WISE METHODS.

Mean Average Error in CIE Lab for the tested samples

method knitted

wool

fabric

dark

fabric

light

synthetic

leather

leather lacquer.

wood

PTM RF 6.13 7.60 5.35 6.04 5.12 13.74
PLM RF 5.03 7.48 3.84 3.01 2.75 9.21
PCA RF 3.16 4.98 2.23 1.81 2.11 5.14
PCA BTF 2.85 4.39 2.19 1.92 2.13 4.53
LPCA BTF 2.42 3.88 1.70 1.81 1.81 3.96

For subjective visual comparison, a 3D object was rendered

using synthetic BTF data obtained by the individual tested

methods. Such renderings are shown in Fig. 11 again for six

different tested material samples. As expected, the visual per-

formance of the tested PCA-based methods was quite similar

due to sample-dedicated parameters set by the experiment. The

PTM RF method apparently misses specular highlights and

PLM RF slightly increases contrast, which is in accordance

with Fig. 10 and Tab. V.

C. Parametric Representation Size and Compression

The size of parametric representation of pixel-wise BTF

modeling methods depends on a number of stored parametric

planes. These planes can represent coefficients of underlying

models, i.e., they can be eigen-images, pixel-wise polynomial

or reflectance model parameters. For more-detailed informa-

tion on parametric representation of tested methods see their

descriptions in Sections IV-A, IV-B, and V-C.
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knitted wool fabric-dark fabric-light synthetic leather leather lacquered wood
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Fig. 11. BTF results of all eight compared methods mapped on a car gearbox console for six different tested materials. Light position: right-back.

Tab. VI provides formulas for computation of the storage

size of parametric representation for the tested methods. The

compression ratio of these methods is obtained by dividing

the storage size of BTF tile by the parameter storage size

of the respective method. Note that we assume all parameter

values as floating-point numbers; hence by means of their

quantization we can achieve even higher compression for most

of the tested methods.

The overall comparison of parameters storage size and

compression ratios of all nine tested methods for different

materials is shown in Tab. VII. The table summarizes para-

metric size and compression ratios of 10 BTF tiles and their

parametric representation using the tested pixel-wise methods.

Note, that these values are dependent on actual size of BTF

tiles (the fourth row). The third line shows the compression

obtained by direct cutting of BTF tiles from the original

TABLE VI
FORMULAS GIVING SIZE OF PARAMETRIC REPRESENTATIONS OF THE

TESTED PIXEL-WISE METHODS.

BTF tile snrncninv

PTM RF 6snrncnv

PLM RF s(5nrnc + 5ni)nv

PCA RF (snrnc(k +1)+kni)nv

PCA BTF snrnc(k + 1) + kninv

LPCA BTF nrnc + scninv(k + 1)

where:

s . . . no. of spectral chan-
nels; nr ×nc . . . spatial size
of the sample; ni/nv . . .
no. of illum./view directions;
k . . . no. of principal compo-
nents; c . . . no. of clusters

BTF data (800×800 pixels). The compression achieved by

probabilistic methods was computed as a ratio of raw BTF data

size and the respective fixed size of that method’s parametric

representation. As expected, the best compression rates were

obtained for smooth (or less rough) samples (e.g., wood and

leathers), while the wool and fabrics, exhibiting more complex

effects, reached lower values for the same visual quality. Note
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TABLE VII
SIZE OF PARAMETRIC REPRESENTATION AND COMPRESSION RATIO OF THE TESTED METHODS COMPARED WITH RAW AND TILED ORIGINAL BTF DATA.

BTF original and parametric representation storage size [MB] / compression ratio [1:x]

method knitted wool fabric dark fabric light synthetic leather leather lacquered wood

raw BTF (PNG) 750.9 / 1.0 6928.7 / 1.0 6004.1 / 1.0 5186.4 / 1.0 5195.9 / 1.0 5205.5 / 1.0

10 BTF tiles (PNG) 103.4 / 102.4 89.2 / 132.5 79.4 / 146.5 540.2 / 10.9 675.5 / 8.5 2462.5 / 3.3
tile size [pixels] 25 × 25 21 × 23 19 × 23 74 × 79 86 × 87 137 × 142
PTM RF 36.5 / 13.5 28.2 / 13.5 25.6 / 13.5 341.0 / 13.5 436.4 / 13.5 1134.6 / 13.5
PLM RF 31.8 / 14.3 24.9 / 13.9 22.7 / 13.7 285.6 / 16.0 365.1 / 16.0 946.9 / 16.1
PCA RF 81.0 / 11.2 76.7 / 7.0 45.1 / 7.7 688.3 / 6.7 585.5 / 10.1 924.7 / 16.2
PCA BTF 20.3 / 23.8 16.2 / 23.2 8.0 / 41.8 49.6 / 90.6 29.3 / 197.0 73.4 / 204.1
LPCA BTF 52.5 / 9.4 35.5 / 10.8 22.5 / 15.4 210.1 / 31.0 176.6 / 47.0 325.4 / 64.9

GMRF BTF 0.12 / 0.610
4 0.09 / 7.710

4 0.06 / 10.010
4 0.17 / 3.110

4 0.18 / 2.910
4 0.07 / 7.410

4

2DCAR BTF 0.09 / 0.810
4 0.12 / 5.810

4 0.09 / 6.710
4 0.15 / 3.510

4 0.20 / 2.610
4 0.07 / 7.410

4

3DCAR BTF 0.75 / 0.110
4 0.54 / 1.310

4 0.44 / 1.410
4 1.07 / 0.510

4 0.35 / 1.510
4 0.27 / 1.910

4

that the total compression of original BTF data achieved by

combination of BTF tiling and one of the tested compression

methods is obtained by multiplication of the two respective

values.

Dependency of the tested PCA-based methods compression

ratio on number of pixels in the analyzed BTF sample,

illumination/view direction sampling quantization, and on the

number of the preserved principal components is shown in

Fig. 12. Note that for PCA-based methods the parameters

obtained from psychophysical experiment, averaged over all of

the tested samples, are used (see last column of Tab. III). From

the first graph it is obvious that for smaller BTF samples / tiles

(less than ∼170×170 pixels) the best compression can be

achieved by PCA BTF, while for larger samples the best suited

method is LPCA BTF. On the other hand, the analysis of such

a large BTF by means of this method can easily take several

days. The second graph shows that by far the best compression

with increasing angular quantization of illumination / view

directions is provided by PCA BTF. When observing the last

graph we should again take into account the average number

of components set by the psychophysical study (last column

of Tab. III).

It is obvious that the size of the parametric representation

is correlated with the size of the original BTF (i.e., the size

of BTF tiles in our case – see the fourth row of Tab. VII),

so for bigger tiles the view reflectance-field based models

(PTM RF, PLM RF, PCA RF) easily reach several hundreds of

megabytes. This is due to storing the parametric planes for all

view directions, i.e., reflectance fields. This huge data can be

further considerably reduced when a certain parametric space

quantization scheme is applied. In Fig. 13 is an example of

the lacquered wood BTF sample rendering using the PLM RF

method without (left) and with quantization (middle) using 256

parametric clusters per color channel. The visual differences

are negligible while the size of parametric representation drops

approximately ten times. The pixel-wise models represent

original BTF tiles by means of a set of parametric tiles

of an some underlying model and these tiles are used for

BTF data enlargement based on this tiling. A completely

different approach is used for BTF models based on Markov

random fields (MRF) (GMRF, 2DCAR, 3DCAR) where only

negligible statistics model parameters are stored in addition

to tiled range and normal-maps. The MRF models enable

seamless synthesis from parameters in an arbitrary size, while

Fig. 13. Example of standard (BTF compression ratio ∼ 1 : 10) and
clustered (BTF compression ratio ∼ 1 : 100) PLM RF model compared
with probabilistic model 2D CAR (BTF compression ratio ∼ 1 : 70000) for
lacquered wood sample.

only the range and normal map is enlarged using the tiling

approach. Please compare performance of the 2DCAR model

on l. wood sample in Fig. 13-right.

D. Rendering Using Graphics Hardware

To speed up rendering of BTF data (i.e., its reconstruc-

tion from model parameters) the continually growing power

and functionality of contemporary graphics hardware can be

exploited. The reconstruction of BTF data from parameters

of all of the tested pixel-wise compression methods (PTM

RF, PLM RF, PCA RF, PCA BTF, LPCA BTF) can be per-

formed at interactive frame rates (i.e., ∼20–30 frames/s) when

implemented in shaders of low-end programmable graphics

processing units (GPU) [20]. The same cannot be easily said

about the remaining tested BTF modeling methods based

on probabilistic MRF models (GMRF BTF, 2DCAR BTF,

3DCAR BTF). These methods require causal knowledge of

spatially neighboring data during BTF subspaces synthesis,

which is completely orthogonal to contemporary GPU hard-

ware philosophy. This problem can be partially avoided either

by using fragment buffer objects with rendering-to-texture

techniques and by subsequent reading of previously synthe-

sized pixels from a pixel buffer. However, such an operation

can be time consuming and the final computational time can

be similar to standard CPU computation. On the other hand,

this problem can also be circumvented in the near future with

oncoming graphics hardware using faster memory chips.

In the BTF rendering stage for arbitrary illumination/view

i/v directions, the methods PTM RF and PLM RF require

interpolation only for v directions since arbitrary i directions

can be passed as arguments of underlying functions. In con-

trast, all the other methods require simultaneous interpolation

of both i and v directions. Such an interpolation for all
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Fig. 12. The comparison of compression ratios dependent on BTF resolution, number of illumination/view directions, and preserved principal components
respectively, for the tested pixel-wise compression methods.

renderings in this paper was performed by means of the three

closest barycentric weights [7], computed separately for the

three closest i and v directions resulting in nine interpolation

weights. For each triangle of 3D object, nine synthesized BTF

images are combined. Although the interpolation requires extra

computational time its weights can be pre-computed, stored

in a cube map and rapidly accessed in shader programs of

graphics hardware.

E. Speed Comparison

The speed of analysis and synthesis of individual methods

was tested on a small BTF tile of resolution 25 × 25 pixels.

These tests were performed on CPU AMD Athlon 2.2GHz,

3GB RAM and the results are shown in Tab. VIII.

TABLE VIII
TIME DEMANDS AND COMPUTATIONAL COMPLEXITY OF ANALYSIS AND

SYNTHESIS STAGES OF THE TESTED METHODS.

CPU time [s] approximate operations for
BTF 25×25 pix. complexity pixel synthesis

method anal. synth. of BTF analysis ∗ + xy

PTM RF 165 ∼1 O(nvni(n
3
p+n2

p)n) 6 6 0

PLM RF 136 ∼1 O(nvnin
2
ptn) 7 9 1

PCA RF 10 ∼2 O(nv(ni)
2n) 8 8 0

PCA BTF 3862 ∼8 O((ninv)2n) 41 41 0

LPCA BTF 1098 ∼22 O( t
c
ninvn2) 19 19 0

GMRF 600 ∼0.04 - - - -
2DCAR 600 ∼0.01 - - - -
3DCAR 1200 ∼0.02 - - - -

All the methods are supposed to be applicable in real-time

rendering applications, so the corresponding synthesis has to

be very fast, as shown in the third column of the table. For

this reason the time for synthesis of whole BTF space is

more or less similar for all the methods. On the other hand,

there are considerable differences in the analysis time (second

column). The longest time is required by methods modeling all

BTF data at once (PCA BTF, LPCA BTF), so for large BTF

tiles representing less spatially homogeneous materials the

parameters computation can take many hours. The extremely

long analysis time of PCA BTF method is caused mostly by

computation of the data covariance matrix. However, when a

much larger BTF tile is used the longest computational times

belong to LPCA BTF method having polynomial complexity

with respect to the number of tile pixels n. The third column of

Tab. VIII shows estimates of method complexity dependently

on number of pixels n in original BTF tile. There are also

other variables which affect computational complexity for

some methods as ni/nv , i.e., number of illumination/view

directions, np, i.e., number of per-pixel parameters., c, i.e.,

number of clusters and t, i.e., number of method iterations.

Note that the complexity stated for individual methods can

often be improved by means of various approximate methods.

The last three columns of Tab. VIII describe numbers of

basic floating-point operations (addition, subtraction, power)

required by individual pixel-wise methods for reconstruction

of one pixel from its parameters for fixed illumination and

viewing directions. Note that explicit values shown in this

Table for PCA-based methods correspond to psychophysically

set parameters averaged over all samples (the last column of

Tab. III).

F. Discussion

It is apparent from the previous section that different

methods provide different performance, depending on various

aspects. While the pixel-wise based methods (PLM RF, PCA

RF, PCA BTF, and LPCA BTF) have generally good visual

quality and can provide fast rendering, some of them, without

additional quantization algorithm, have huge parameter storage

requirements (PTM RF, PLM RF, PCA RF). The methods

PCA BTF and LPCA BTF approximating whole BTF data

space at once, reach really long BTF analysis times, which are

balanced by their good visual performance and relatively low

size of parametric representation. However, all tested pixel-

wise methods alone only compress original BTF data and

thus, for real modeling they have to be combined with BTF

sampling based algorithms. On the other hand, the MRF based

models (GMRF, 2DCAR, 3DCAR) enable seamless BTF

synthesis of arbitrary size as well as synthesis of previously

unmeasured BTF sub-spaces. Additionally, they provide us

with unbeatable compression ratios unattainable by any pixel-

wise based method. They provide excellent results for samples

with relatively smooth surfaces and irregular random textures

common in natural materials (see Fig. 13-right) while their

performance on considerably rough and translucent surfaces

is not very convincing. Regardless to their visual performance

these models are ideal for BTF recognition or illumination

invariant retrieval tasks as suggested in [38] due to their com-

pact parametric representation. Mutual comparison of various

properties of the compared methods is given in Tab. IX.

VIII. CONCLUSIONS

The BTF modeling approaches published so far can be

categorized into two basic groups – compression and modeling

methods. The modeling group can be further differentiated into
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TABLE IX
ATTRIBUTES ROUGH COMPARISON OF THE IMPLEMENTED BTF MODELS†.

Original Pixel-Wise Models MRF Models
Observed attribute BTF PTM PLM PCA PCA LPCA GMRF 2D CAR 3D CAR

Tiling RF RF RF BTF BTF BTF BTF BTF

seamless enlargement Yes- – – – – – Yes Yes Yes
compression ratio * * * * ** ** **** **** ****
regular samples representation **** **** **** **** **** **** ** ** **
irregular samples representation * * * * * * **** **** ****
pixel-wise features representation **** *** *** *** *** *** * * *
reflectance variations represent. **** * ** *** *** *** *** *** ***
ease of GPU implementation **** *** *** *** ** *** ** ** *
analysis speed *** *** *** **** * ** *** *** **
direct illumination interpolation – Yes Yes – – – – – –
separated analysis and synthesis Yes Yes Yes Yes Yes Yes Yes Yes Yes
unseen data modelling – No No No No No Yes Yes Yes
block-wise processing Yes Yes Yes – – – – Yes Yes

† the more stars the better the model is in that atribute

sampling methods and random-fields-based models. Finally,

a hybrid combination of both basic approaches is possible

as well. Our experience, similarly to other texture analytical

tasks, shows that there is no ideal BTF modeling approach.

Some pixel-wise compression methods produce excellent vi-

sual quality but their compression ratio is only mild, while

random-fields-based models sometimes compromise visual

quality but they offer extreme BTF compression and very fast

analysis as well as synthesis. Several models can be easily

implemented in graphics hardware or can be paralleled. Some

methods even allow us to model / interpolate previously unseen

data (by modification of the corresponding parameters) or

reconstruct parts of an unmeasured BTF space. The results

of selected compression and modeling methods demonstrate

their performance for six tested BTF samples. Furthermore, the

performed psychophysical experiment showed that to obtain

objectively the same visual performance, different BTF sam-

ples require different parametric settings of the tested methods.

Finally, it has to be noted that there is no ideal universal

BTF model and the most suitable one has to be chosen

depending on the intended application (real-time, compact data

representation, fast GPU implementation, visual quality, etc.)

as well as on the specific material sample.
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