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Abstract—Illumination and view dependent texture provide
ample information on the appearance of real materials at
the cost of enormous data storage requirements. Hence, past
research focused mainly on compression and modelling of
these data, however, few papers have explicitly addressed the
way in which humans perceive these compressed data. We
analyzed human gaze information to determine appropriate
texture statistics. These statistics were then exploited in a pilot
illumination and view direction dependent data compression
algorithm. Our results showed that taking into account local
texture variance can increase compression of current methods
more than twofold, while preserving original realistic appear-
ance and allowing fast data reconstruction.
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I. INTRODUCTION

Advanced applications of texture recognition, classifica-

tion, and visualization, among others, use view and illumi-

nation dependent texture to achieve accurate computational

and visual results. A data structure often representing these

type of textures is called a bidirectional texture function [1]

BTF (x, y, θi, ϕi, θv, ϕv) , (1)

i.e., a function describing the dependence of each pixel

(x, y) on elevation θ and azimuthal ϕ angles specifying

illumination and view direction (i, v). These data provide

ample information about material appearance in the real

world and thus are essential for accurate applications in com-

puter graphics and computer vision. However, for practical

usage the data has to be compressed to avoid storage of

gigabytes per material sample. A number of approaches to

compression of these data have been proposed in the past

(see a survey [2]). They were based on clustering, linear

decomposition methods, pixel-wise reflectance models or on

Markov random fields models. In recent years researchers

have started to investigate human perception of BTF data

and proposed methods using standard [3] or experimentally

derived [4], [5] rules for enhancement of data compression

while still maintaining rapid access to the data.

We build on this research and exploit gaze data analysis

to provide a better understanding of a way humans perceive

different real-world materials, and consequently apply this

knowledge for improvement of BTF data compression. Ap-

proaches exist, e.g. [6], that use visual masking for control

of texture compression, e.g., more intensive compression

of texture regions is employed where the imperfections

are masked by contrast caused by a higher local texture

contrast or object curvature. In our case, we are looking

for feature statistics that correlate well with captured spatial

gaze statistics and which are fast to evaluate on thousands

of BTF images. In contrary to the approach varying com-

pression across a textured plane, we focused on features

controlling compression across different illumination and

view directions, i.e., providing a single value evaluating the

perceptual significance of a texture image.

II. GAZE DATA ANALYSIS

To obtain gaze data for analysis we designed a psy-

chophysical experiment presenting stimuli on a calibrated

LCD screen to a group of eleven naive subjects. Stimuli

comprised two spheres illuminated from left (Fig. 2-a). The

spheres were covered by view and illumination dependent

textures represented by BTFs from the University Bonn

database [7]. We used eight samples shown in Fig. 1-a.

The BTF on one of the spheres is slightly downsampled

across illumination and view angles. The task of the subjects

was to find out whether the textures on both spheres are

identical or different. Subjects had unlimited time for their

decision while their gaze data were recorded using a Tobii

x50 infrared-based binocular eye-tracking device. The device

was calibrated for each subject individually and provided the

locations and durations of fixations at a speed 50 samples/s.

Maximum error is approximately ±0.5o of visual angle,

which corresponds to ±32 pixels for our setup. The shortest

fixation duration to be recorded was set to 100 ms. Average

(a) (b) (c)

Figure 2. (a) Stimulus example. An average distribution of elevation angles
θi, θv (b) all over stimuli, (c) in the fixated locations only.

spatial distributions of gaze fixations of all subjects for front-
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alu corduroy fabric leather d. leather l. tile wood wool

a)

b)

c)

Figure 1. (a) Tested material samples, (b) corresponding normalized distributions of gaze fixations, and (c) an example of image statistic based on a local
variance V.

top illumination are shown in Fig. 1-b. There are obvious

differences across individual samples and the results suggest

that subjects gaze was attracted either by specular highlights

or by object’s center having less perspective distorted surface

texture. Our hypothesis is that the shape of the distribu-

tions depends on the underlying stimuli image, hence our

motivation was to find image statistics that resemble most

closely the captured distributions. We tested seven different

statistics computed over the stimuli. The first two were local

mean (M) and local variance (V) computed in contextual

neighborhood. The size of the neighborhood was estimated

from the highest response of Gabor features to stimuli over

different frequencies. Next we computed local energy (E)

over the image I as an average magnitude of a gradient in

the local neighborhood using

e(x, y) =
√

(∂I/∂x)2 + (∂I/∂y)2 . (2)

Next, the two statistics luminance (L) and chromatic (C)

contrast were estimated from pixel-wise cone responses to

stimuli images (L − M and S − (L + M) cone channels

respectively) according to [8] and [9]. The last two statistics

are based on image salience [10] and describe luminance

(SL) and texture (ST) contrast based on per-pixel spatial

gradients over stimuli luminance represented by a Gaussian-

Laplacian pyramid.

For each statistic we computed the Pearson correlation

coefficient with gaze fixation distribution using

RX,Y =
E[(X − µX)(Y − µY )]

σXσY

, (3)

where X, Y are compared pixels vectors, µ and σ are

their means and variances. The feature images (e.g. Fig. 1-

c) were computed from gamma compensated halves of

stimuli images, and together with the smoothed spatial gaze

distribution images were downsampled to resolution 30×30
pixels prior to correlation, to preserve locality information.

Resulting correlation coefficients for all statistics and sam-

ples are shown in Tab. I. Mean correlation coefficient values

Table I
CORRELATION OF THE TESTED STATISTICS WITH GAZE FIXATION

DISTRIBUTIONS.

sample M V E L C SL SC

alu 0.86 0.52 0.35 0.90 0.93 0.46 0.38
cord. 0.48 0.50 0.16 –0.57 0.55 0.31 0.22
fabric 0.53 0.71 0.58 0.39 0.45 0.63 0.57
leath.d. 0.77 0.80 0.77 0.80 0.80 0.89 0.85
leath.l. 0.46 0.52 0.46 0.41 0.53 0.15 -0.04
tile 0.58 0.58 0.58 0.66 0.63 0.32 0.22
wood 0.77 0.61 0.77 0.78 0.87 0.51 0.51
wool 0.48 0.71 0.48 0.52 -0.52 0.58 0.41

AVG 0.62 0.62 0.35 0.29 0.53 0.48 0.39

for individual samples are shown in Fig. 3. Errorbars indicate

twice the standard deviation across samples. The highest

correlation value and the lowest standard deviation across

samples was obtained for local variance (V) statistics showed

in Fig. 1-c.

Figure 3. Average correlations of gaze fixations with the tested statistics.
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III. TEXTURE COMPRESSION APPLICATION

Based on the performance of tested features and their

computational demands we used only the statistics M, V, E,

L, and C in the following validation test. For this purpose

we designed a exemplary BTF data compression method

controlled by the precomputed statistics. The method is

based on data downsampling in the spatial domain. First,

each statistic was computed over local window of each

measured illumination and view dependent texture in BTF

data. Then the histogram of the statistics values was divided

into three parts, each having the same area. The texture

images having feature values within the first area were

downsampled three times, while those falling into middle

area were downsampled two times, and those falling into

the last area were left untouched, i.e., the textures having

the highest values were downsampled the least. This scheme

assumes that a higher valued statistic represents a higher

perceptual importance of underlying texture image, which

should be downsampled less than images having lower

values. Additionally, as oblique views θv are apparently less

important for human observers, as was shown in Fig. 2-bc,

we forced all BTF images having view direction elevation

θv > 70o, to the highest downsampling level regardless to

the feature value. This compression scheme allows us to

store approximately ∼ 38% of the original data. This value

can change slightly dependently on actual balance of feature

values in oblique views of the data.

Performance evaluation of individual features would re-

quire running another psychophysical experiment visually

comparing original and compressed data. Instead of this we

used visual difference predictor (VDP) [11] that simulates

low level human perception for known viewing conditions

(in our case: display size 37×30 cm, resolution 1280×1024

pixels, observer’s distance 0.7 m) and thus is sufficient

for our task of perceptually plausible detection of subtle

downsampling artifacts. Fig. 4 shows renderings of original

and compressed data on a region of a more complex object

shape together with the responses of the VDP. Table II

shows the percentage of different object pixels detected with

probability higher than 75% (green and red pixels in Fig. 4).

Table II
PERCENTAGE OF DIFFERENT PIXELS OF ALL TEXTURED PIXELS.

sample M V E L C

alu 3.67 3.55 4.23 8.40 3.61
corduroy 13.42 14.44 15.12 7.45 13.71
fabric 12.69 8.52 8.07 3.27 12.30
leath.d. 0.34 0.34 0.28 0.79 0.34
leath.l. 2.03 0.17 1.58 0.45 1.97
tile 14.55 9.25 8.57 11.73 14.50
wood 0.45 0.40 0.40 5.58 0.40
wool 16.92 3.84 3.61 19.91 23.41

AVG 8.01 5.06 5.23 7.20 8.78

a)

b)

Figure 5. Average percentage of different pixels across (a) samples, (b)
statistics.

The visual performance differs significantly depending on

both the statistics and the material samples as is shown in

Fig. 5. However, both the lowest distortion and standard

deviations across samples were obtained for local variance

(V) and local energy (E) statistics. This is in accordance

with the gaze correlation results in Section II. As for the

limitations Fig. 5-b suggests that the method is more suitable

for material samples having a less rough surface structure

causing less occlusions and masking.

Although the compression is relatively small compared

with a state of the art [2], it shows a promising way

of making current compression methods more effective

by taking into account observer’s perceptual sensitivity to

illumination and view dependent textures. Moreover, as

the compression was performed in the spatial domain it

can be effectively combined with another compression of

individual downsamling levels, or with compression in space

of illuminations and views.

IV. CONCLUSIONS

In this paper we have proposed an illumination and view

dependent texture compression enhancement scheme moti-

vated by a human gaze data analysis. We have found a local

variance computed in a smallest texture element as the most

appropriate predictor of texture perceptual significance. This

was validated in the exemplary compression experiment. The

proposed technique is able to extend many existing compres-

sion methods, has negligible computational overhead and

can be easily implemented on graphics hardware for purpose

of interactive visualization of materials.
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Figure 4. Compression performance of the statistics (odd rows) evaluated by VDP (even rows).
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