
Predicting Perceptions: Proceedings of the 3rd International Conference on Appearance, pp. 122-124, Edinburgh, UK, ISBN 978-1-4716-6869-2, April 2012. 

Towards Object-Based Saliency 
 

 

 

M. Dziemianko 
Institute for Language,   

Cognition and Computation 
University of Edinburgh 

Edinburgh, UK 
m.dziemianko@sms.ed.ac.uk 

 

A. D. F. Clarke 
Institute for Language,   

Cognition and Computation 
University of Edinburgh 

Edinburgh, UK 
a.clarke@ed.ac.uk 

 

F. Keller 
Institute for Language,  

Cognition and Computation 
University of Edinburgh   

Edinburgh, UK 
keller@ed.ac.uk 

 

 

 
ABSTRACT 
Eye movements during  scene comprehension can be seen as a  
series  of decisions  where  and  when  to look.   There   has been  
substantial work  towards determining likely  fixation locations 
and the best known methods involve the computation  of saliency  
maps  which  assign “interestingness” values to each coordinate 
of analyzed image.  However  these methods are usually  purely 
bottom-up and only consider low-level visual  features.  In this 
paper we present preliminary work towards creating a 
computational framework based  on the alternative cognitive  
relevance hypothesis. 
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1.   INTRODUCTION 
Sequences  of fixations are  important indicators of the pro- 
cessing  performed by attentional systems  and  a number of 
models  have  been  proposed to  predict eye-movements during 
scene comprehension. They  can be broadly divided  into two 
categories.  The  first one consists  of bottom-up models 
exploiting low-level visual  features to predict areas  likely to be  
fixated.   A number of studies   have  shown  that certain features 
and  their statistical unexpectedness attract human attention [1].  
The  best-known example  is Itti and  Koch’s model  [6] which 
builds  saliency  maps  based  on color, orientation, and  scale  
filters  inspired  by  neurobiological results. The  second  group  
of models  assume  the  existence  of top- down  supervision of 
attention which  contributes to the selection  of fixation targets.  
A number of models  have  been proposed to  capture context 
effects  on  visual  attention; a prominent example  is the  
Contextual Guidance Model  [9], which  combines  bottom-up 
saliency  with  a  prior  encoding global  scene information. 
 
On the other end of continuum there is the cognitive relevance 
hypothesis which holds that fixations are directed according to 
the requirements of the current task [4]. Although the attentional 
processing and fixation locations are generated from visual input 
they are assumed not to be ranked on basis of saliency, but rather 
based on their relevance to the current task. There is considerable 
experimental evidence supporting this hypothesis [5, 7]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
These two views – visual salience and cognitive relevance – differ 
in the representation over which attentional selection is made. 
Saliency requires low-level image based representation, while 
cognitive relevance framework needs higher-level object based 
representation. To the best of our best knowledge, there is no 
computational model based on the cognitive relevance hypothesis. 
The closest work is perhaps that of Spain and Perona [8], who 
developed a model for object importance (defined as the 
probability of an object in a scene being named) which includes 
several features derived from saliency maps. Related work [2] 
shows that the location of objects in a scene is a better predictor 
of fixations than low- level (pixel based) saliency. However, it 
seems clear that some objects will naturally attract more fixations 
than others. The aim of this paper is to investigate the feasibility 
of a computational model of attentional selection based on the 
cognitive relevance hypothesis – addressing the question why 
some objects are fixated more than others. 
 
 

2.   MODEL 
Our model is based  on a simplified Factored Shapes  and Ap- 
pearances (FSA)  representation [3]. The central assumption of 
the representation is that the pixels corresponding to each object 
have  been  generated by W  fixed Gaussians in a fea- ture space  
(we  found  Lab  to be  the  most  effective  in  our initial  
experiment). 
 

In first phase  the means  µ and  covariances Σ of these Gaus- 
sians  are  extracted by  fitting  a  Gaussian Mixture Model 
(GMM)  with  W  components  over  all  pixels  in  the  image. At 
this  stage  object  boundaries and  locations  are  ignored. In 
subsequent step,  pixels are clustered into W  clusters ac- cording  
to the associated  GMM  components  by  selecting component 

wˆ that maximizes  probability of a  pixel  being drawn  from  the 

Gaussian distribution with  mean  µw    and covariance Σw : 
 

 
 
 
where  x  is feature vector  representing  a  pixel,  while  k di-
mensionality  of this  vector.  The  value  of W  was chosen  to be 
15 (following  [3]). 
 
The final step of the first phase  consists  of computing global 
histograms H of the pixel assignments wˆ. Each  histogram is 
then normalized, dividing each bucket count by total number of 
pixels,  so that it represents proportions of pixels belonging to 
each  cluster  rather than absolute counts.  The  whole process  is 
shown  in Figure  1. 
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Table 1:   Results of  a preliminary evaluation.  Our model, 
object based saliency, and the mean saliency value of  [9]  
clearly outperform the baseline (cross- trial reference).  The 
average area occupied by the top five  objects is  indicated 
next to each model. 
 
 

 
 
 
 
The saliency map is created in the second phase. At this stage the 
model assumes that the image is fully annotated (i.e., boundaries 
for each object within the scene are provided). For each of the 
objects oi an additional histogram hi is computed considering only 
the pixels and their assignments wˆ within the boundaries of the 
object. The histogram hi is also normalized by the total number of 
pixels within the object. Histograms computed this way are 
distributions over the different pixel types present in the scene. 
 
In the following step an interestingness value Ii is assigned to each 
object oi. In preliminary experiments, we assigned the Kullback-
Leibler (KL) divergence between local (object) pixel distribution 
hi and the global distribution H: 
 

 
 
The KL divergence measures the expected number of extra bits 
required to encode samples from hi when using a code based on 
H; intuitively, it represents how different the object is from its 
surroundings (and thus interesting), with a larger value meaning 
more interesting. The saliency map is constructed by filling the 
area corresponding to each object with the interestingness value Ii 
assigned to it. 
 
 

3.   EVALUATION 
Our   initial  experiment  was  conducted  using  eye-tracking data.  
Our  dataset consisted of 100 fully  annotated photo realistic 
scenes.  The  eye-movements of 17 participants were recorded 
using  an  Eyelink  II eye-tracker in an  object naming task.  Each  
participant was presented with  72 different scenes from the 
dataset and an additional 64 fillers, totalling 1088 trials  usable  for 
evaluation. In our experiment we considered  only first five 
fixations  (except for the initial  fixation on the center cross),  
resulting in 5937 fixations. 
 
For  evaluation, we selected the five objects  with  the highest 
interestingness value  in each  scene.   The  results  calculated per 
subject were analysed with an ANOVA.  Table  1 presents the 
average  fraction of fixations  falling onto the selected regions 
calculated on per-participant basis. 
 
For comparison we constructed “object-based” saliency maps 
using  the formulation of salience  proposed  by [9]. We com- 
bined the pixel saliency values by calculating the mean,  max or 
median  value  over the object area.  The  mean  performed best, 
with median  slightly worse,  and  max  unusable due to large  
areas  being  assigned  the maximum possible  value.  As a 
baseline we cross-applied selected areas to other  trials with an 
average  result of just under  7% over 100 rounds. 

 
The  model  performs  clearly  above  chance  with  over 14% of 
fixations falling onto selected regions. This is significantly better 
than the baseline (F (1, 16) = 281.30, p < 0.001), and not 
significantly different from the performance of transformed pixel-
based saliency (F (1, 16) = 2.21, p = 0.147). 
 
The analysis of the results obtained with the two methods shows 
that, despite the similar performance, the set of predicted fixation 
locations is different for the two models. Only about 35.72% of 
the fixations found by object-based saliency were also found with 
transformed pixel saliency. It is important to note that the object-
based saliency measure presented in this paper only uses color 
information, while traditional salience measures make extensive 
use of contrast and orientation features. 
 
 

4.   CONCLUSION  AND FURTHER WORK 
In this paper  we presented an initial attempts at building  a 
computational model  of cognitive  relevance.  The  results  of a 
preliminary evaluation are encouraging, although they do not yet  
match the performance of a bottom-up approach. 
 
Future work will focuses on completing the model by introducing 
a more appropriate pixel vector representation and interestingness 
metric. We will also work towards resolving problems arising 
from the relations between the objects in a scene such as 
inclusion, occlusion, crowding, and from the compound structure 
of the objects themselves. Note that we do not discount bottom-
up approaches, aim towards a combined model that takes into 
account both object-level features and low-level visual cues. 
Finally we want to incorporate semantic and contextual 
information and explore the interaction between scene gist and 
object importance in the proposed framework. 
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Figure 1:   Calculation of  the global histogram H :  from left  to right:  original image, clustering of  pixels to different  Gaussian 

components, histogram of  the assignments, and objects interestingness map 


