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ABSTRACT 
In this paper, we introduce a multi-objective optimization 
methodology  under  uncertainty  to  design  office  lighting.  It  is 
aimed at identifying the value ranges of decision variables (i.e. 
physical  properties)  that  realize  the  best  possible  trade-offs 
between various preferences on visual attributes. 
 
 

1.  INTRODUCTION 
The appearance of an object depends on the values of its physical 
properties  (e.g.  reflectance,  specularity,  texture,  etc.). 
Optimization   of   appearance   with   respect   to   various   
visual attributes considered at the same time is an issue that has 
applications in different areas (e.g. aesthetic design in marketing, 
visual performance based-design for road material, street and 
architecture lighting). However, preferences with respect to visual 
attributes are inherently uncertain, since they are collected from 
psychovisual tests conducted with a panel of observers. The aim 
of this study is to introduce a multi-objective optimization 
methodology under uncertainty, in order to identify the value 
ranges of decision variables (i.e. physical properties) featuring the 
best possible trade-offs between various preferences on visual 
attributes. 
 
After presenting the case study and the psychovisual data 
acquisition, the optimization method will be detailed. It relies on 
the use of an Evolutionary Algorithm along with a Monte Carlo 
(MC) process. Then, to overcome the limitations of this initial 
method  in  terms  of computational  cost,  a  Metropolis-
Hastings (MH)  algorithm1    is  implemented.  The  results  of  
the  latter highlight the usefulness of the proposed methodology. 
 
 

2.  CASE STUDY AND PSYCHOVISUAL DATA 
ACQUISITION 
The case study is a single person-office, lit by two light sources: a 
ceiling luminary and an angle-arm desk lamp. 16 stimuli were 
assessed during the subjective experiment (corresponding to 0, 33, 
66 and 100 % of the maximum flux for each lamp). Figures 1 
show two examples of assessed luminous environment. A panel 
of 36 observers was asked to evaluate all the 16 stimuli in terms of 
“suitability to work” and “cosiness”. Two protocols were 
investigated; rating (resp. paired-comparison) protocol was used 
to  collect  the  judgment  of preferences  about  “cosiness”  (resp. 
“suitability”).   Mean   values   and   95%   confidence   interval 
(assuming normal distribution from Central limit theorem) were 
computed for each of the 16 stimuli. Figures 2 present uncertain 
psychovisual  functions  “suitability”  and  “cosiness”  estimated 
from these statistical data. This experiment is described with 
additional details in [1]. 
 
 
 

                                                           
1 MH is based on constructing a Markov Chain. 

3.  MULTIOBJECTIVE OPTIMIZATION 
The genetic algorithm NSGA-II (Non-dominated Sorting Genetic 
Algorithm [2]) was employed with: Two decision variables: 
 

 x1: percentage of ceiling luminous flux; 

 x2 : percentage of desk lamp luminous flux. 

 Two objective functions: 

 f1(x1,x2):  the  opposite  of  the  psychovisual  function 

“suitability”; 

 f2(x1,x2):  the  opposite  of  the  psychovisual  function 

“cosiness”. 
 
Running  the  algorithm  with  the  mean  psychovisual  functions 
leads to a Pareto front (see Figure 3: all non-dominated solutions 
i.e. better than others on at least one objective) which identifies all 
the best possible tradeoffs between “suitability” and “cosiness” 
(see Figures 4(a&b)). Nevertheless, this optimization process does 
not take into account the uncertainties inherent to psychovisual 
functions. 
 
 

4.  MONTE CARLO METHOD (MC)  
Uncertainties  of  psychovisual  functions  are  handled  through  
a Monte  Carlo  process.  For  each  draw,  a  probable  “suitable” 
function and a probable “cosy” function are randomly chosen: for 
each of the 16 sampled stimuli, the values of observer preferences 
are  randomly  drawn  according  to  their  Probability  Density 
Functions (PDF). The corresponding Pareto front is then 
obtained using NSGA-II. After a large number of draws (e.g. 
10000 draws), the set of all Pareto fronts outlines the “uncertain 
Pareto front” (see Figures 5(a&b)). 
 
 

5.  OPTIMIZATION UNDER CONSTRAINTS 
Usually, most of the identified tradeoffs are not of interest. For 
instance, only those that guarantee that the “suitability” and the 
“cosiness”  are  above  two  thresholds  should  be  identified,  i.e. 
f1 < f1max  and f2 < f2max. Figure 6(a) presents an example of such 

constraints, and the corresponding range values of the decision 
variables x1 and x2. These range values are actually the applicative 

results of the method, since they indicate the possible values of 
the decision variables that match the requirements, taking into 
account the uncertainties of both psychovisual functions. For 
example, in order to obtain f1 < -0.75 and f2 < -12.5, x1 should be 

between 45% and 60% and x2  should be between 40% and 80% 

(in fact in this example there are two areas in the decision space 
and Figures 6(b) give more accurate information). 
 
 

6.  METROPOLIS-HASTINGS METHOD  
Monte  Carlo  method  is  time  consuming.  10  000  draws  were 
performed but only 3.4% of them were of interest, i.e. led to a 
Pareto front intersecting the constraint area. In order to decrease 
the computing time while obtaining the same results, we propose 
to  implement  a  Metropolis-Hastings  method  [3]:  it  allows  to 
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sample the uncertain  psychovisual functions in a way that the 
corresponding Pareto fronts do intersect the constraint area. This 
algorithm begins with a period of “burn in” corresponding to the 
search of a first solution for which the Pareto front intercepts the 
constraint  area.  Then,  two  kinds  of  mutations  are  performed, 
depending on the relevance of the sampled psychovisual 
functions (i.e. does the corresponding Pareto front intersect the 
constraint area?): 
 

 in this event, a local mutation occurs: a slight variation 
around  the  previous  psychovisual  functions  is performed; 

 else, a global mutation is performed: two new random 
psychovisual functions are drawn. 
 
The detailed behavior of this algorithm is described in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: The MH algorithm (version 1) 
 
 

7.  RESULTS AND CONCLUSIONS 
Relevance of MH is directly related to the difficulty of finding a 
solution, i.e. to the size of the constraint area. The same result 
reached with MC can be obtained using MH with 29 times fewer 
computation efforts, i.e. 350 draws. The proposed method allows 
to identify the range of the physical properties of an object, so as 
to optimize its appearance against various visual attributes at the 
same   time,   taking   into   account   the   uncertainties   of   the 
psychovisual functions. Moreover, the MH method can be orders 
of magnitude more efficient than the MC method, depending on 
the constraints of the visual attributes. 
 
This framework has many advantages; 
1)    other optimization algorithms (different than NSGA-II) 
can be used; 
2)    it can be applied to other areas, not only lighting design; 
3)   it presents good properties of scalability with respect to the   
number   of   objective   functions   and   decision variables; 
4)   the   risk   that   each   solution   does   not   respect   the 
constraints can be obtained; 
5)    it can be extended to identify robust solutions. 
 
In future work, the probability of each tradeoff will be assessed. 
Figure 8 presents the obtained result with MC, in order to identify 
the most reliable object parameter values. MH algorithm will be 
modified to obtain the same result: the Markov Chain will take 
into account the probability distribution (PDF) of the uncertain 
objective functions in the acceptance ratio. The principle of this 
algorithm is described in Figure 9. 
 

 
 

Figure 8: Probability of tradeoffs (MC method) 
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Figures 3: Illustration of Pareto front concept 

 
 

 
Figure 9: The MH algorithm (version 2) 
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Figures 1: Two examples of lighting solutions assessed during the psychovisual experiment 

 
 
 
 
 
 
 

 
 
 

Figures 2: “Suitable” (a) and “cosiness” (b) uncertain psychovisual functions 
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Figures 4: Example of a Pareto front (a) and corresponding decision variable space (b). 
 
 
 

 
 

Figures 5: “Uncertain Pareto front” (a) and corresponding Decision Variable space (b). Results with 10.000 MC draws. 
 
 
 

 
 

Figures 6: “Uncertain Pareto front” intersecting the constraint area (a) and corresponding decision variable space (b). 


