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Abstract

Much work has been done on developing algorithms for automated surface defect

detection. However, comparisons between these models and human perception are

rarely carried out. This thesis aims to investigate how well human observers can

�nd defects in textured surfaces, over a wide range of task di�culties. Stimuli for

experiments will be generated using texture synthesis methods and human search

strategies will be captured by use of an eye tracker. Two di�erent modelling ap-

proaches will be explored. A computational LNL-based model will be developed

and compared to human performance in terms of the number of �xations required

to �nd the target. Secondly, a stochastic simulation, based on empirical distributions

of saccades, will be compared to human search strategies.
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List of Symbols

Texture Synthesis

i(x, y) pixel in an image
h height map

n(x, y) unit surface normal
ρ surface albedo
θ elevation of illumination
ϕ azimuth of illumination

1/fβ-noise

f frequency
β frequency roll-o� factor

σRMS RMS Roughness
Near-Regular Surfaces

ρ density - textons per row
σj standard deviation of texton displacement

Table 1: Table of symbols: texture synthesis.



Itti and Koch's Saliency Model

Pyri level i from the Gaussian pyramid
c centre pixel level in centre-surround
s surround level in centre-surround
δ di�erence between levels: s = c+ δ

Cc,s intensity contrast feature map for centre c, surround s.
LNL-based Search Model

G Gabor �lter
S activation map

d(x, y) Euclidean distance from the current �xation location to (x, y)
Fd distance weighted activation map
F distance and IOR weighted activation map
k a constant, k = 0.0013
t �xation number

It(x, y) IOR mask for �xation number t, centred on (x, y)
pi probability of �xating maxima i

Stochastic Search Simulation

p = f(β, r) probability of detecting a defect for given β and r
r distance from current �xation location to target
f linear-regression model
x uniformally distributed random variable, x ∈ [0, 1]
t �xation number

Table 2: Table of symbols: models



Chapter 1

Introduction

Automatic surface defect detection is one of the main applications of computer vision

and many di�erent approaches and methods have been put forward. However, the

ability of the human vision system to detect surface defects has not been studied

in a rigorous way and little e�ort has been made to investigate how well computer

vision algorithms can mimic human behaviour. Hence the aim of this thesis is

to bring together relevant work on visual search, saliency, perception and texture

discrimination for the purpose of analysing modelling human defect detection.

1.1 Motivation

The motivation for this thesis draws on two disparate areas of research: automated

defect detection in computer vision, and visual search in psychology. Previous work

on automated surface defect detection appears to have neglected consideration of

human perception. While many di�erent image processing techniques have been

put forward to tackle the problem, di�erent methods are rarely compared with each

other or against human performance. Therefore we have little way of knowing which

methods are most suitable for a particular task or how they measure up to human

perception. It is common for only the overall accuracy of the proposed algorithm

to be published: details on where and why certain algorithms succeed or fail are

frequently omitted. Generally only a few example images from the test database are

given and there is little indication of how the di�culty of one database of example

defects compares to another.
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In psychology, the study of how human observers search for a target is called

visual search. Most work on visual search has used arrays of discrete, abstract items

as stimuli. By using more naturalistic stimuli we can learn more about how human

observers carry out their searches. One such task, with real-world relevance, is the

problem of �nding a defect in a complex surface.

1.2 Goals

The goal of this thesis is to provide a rigorous framework for investigating defect de-

tection algorithms. This will involve using parameterised synthetic surface textures

for test sets. Psychophysical experiments will be conducted to explore how well hu-

man observers can �nd defects and the use of an eye-tracker will allow for a greater

understanding of human search strategies. A computational model will be developed

and compared against human performance. Finally human search strategies will be

analysed and compared against a stochastic simulation.

1.3 Scope

This thesis is restricted in scope to only considering visual defects on synthetic

(computer generated) surfaces. The use of computer generated stimuli removes

the problem of obtaining a large number of physical samples of defective surfaces.

Perhaps more importantly, as all the synthetic surfaces used in this thesis are fully

parameterised, surface and target properties can be controlled and modi�ed to give a

large range of task di�culties. Critical defects such as hair-line fractures in airplanes

are not considered.

The majority of the modelling work will be evaluated using random phase, 1/fβ-

noise surface textures. These surfaces were chosen because of (a) their simplicity and

(b) 1/fβ-noise processes appear frequently in nature. This is discussed in Chapter 3.

I will examine how well a computational model, and the human visual system, can

�nd small indents in these surfaces over a range of target depths, orientations, and

surface roughnesses. In order to assess the generality of the model, some experiments

using near-regular surface textures will also be used. These surfaces di�er greatly

from the 1/fβ-noise surfaces in that they have a high degree of periodicity and

structural phase information.
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The problem of target identi�cation lies outside the scope of the modelling work

in this thesis. The aim is not to construct an automated defect detection algorithm.

Rather, the aim is to simuluate human search behaviour and develop a computa-

tional visual search model. Therefore, the models investigated in this thesis are not

defect detection algorithms, as they cannot make a decision as to whether a surface

is defective or not.

1.4 Contributions

The main contribution of this thesis is to bring together relevant work on visual

search, saliency, perception, and texture discrimination for the purpose of mod-

elling how human observers detect defects on textured surfaces. This involves the

introduction of synthetic surface textures as stimuli for visual search. To the au-

thor's knowledge, defect detection algorithms have not previously been rigorously

compared to human performance. Speci�c contributions are outlined below:

• A review of the visual search and perception literature which is relevant to the

problem of surface defect detection;

• The introduction of synthetic surfaces as visual search stimuli and an inves-

tigation into how surface properties a�ect the ability of a human observer to

locate a defect;

• A comparison between human observers and a computational saliency model

in a demanding defect detection task;

• The development of an LNL1-based search model which models human per-

ception in terms of how noticeable a surface defect is; and

• An investigation in human search strategies and memory. This involves a com-

parison between human search strategies and a stochastic search simulation.

1.5 Overview

This thesis is organised into eight chapters. Chapter 2 is in two halves and contains

a literature review of the relevant literature from the �elds of computer vision and

1
linear-nonlinear-linear
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perception. The computer vision review is mainly focused on discussing some of the

many di�erent methods that have been used for surface defect detection while the

second half of the chapter gives a general overview of human perception and visual

search for readers unfamiliar with this area.

Chapter 3 is concerned with visual search stimuli and texture synthesis meth-

ods. The chapter starts with a literature survey of the di�erent classes of stimuli

that have been previously used in visusal search experiments. The rest of the chap-

ter gives details of the two classes of surface texture that will be used throughout

this thesis: 1/fβ-noise and near-regular textures.

The key chapters of this thesis are Chapters 4, 6 and 7. Chapter 4 contains

a review of visual saliency, in particular, the computational model developed by

Itti and Koch [2000]. This is followed by an investigation of how human observers

conduct visual searches for defects on textured surfaces. A series of experiments is

carried out exploring how features such as surface roughness, regularity, and the

orientation and contrast of the target a�ect how salient it is. Human performance

is compared with the output from the predominant visual saliency model.

Chapter 5 contains a review of visual search models such as Guided Search,

the Area Activation Model, and the Target Acquisition Model. This is followed by

Chapter 6 which outlines the development of an image processing search model

based on the LNL framework and compares it with human performance in a second

set of visual search experiments.

Search strategies and the role of memory are discussed in Chapter 7. In par-

ticular, human scan-paths are analysed to �nd out how systematic their search

strategies are. Two experiments are carried out. The �rst one uses the moving

target paradigm [Horowitz and Wolfe, 1998] and attempts to assess if memory is

used to guide search. The second experiment invovles a comparison between human

scan-paths and a stochastic search simulation. The simulation is based on a ran-

dom walk which makes saccades from empirically obtained distrubtions. The target

detection part of the stochastic search model is based on empirical results from a

signal-detection experiment.

Finally, Chapter 8 contains the overall conclusions of this thesis and outlines

potential future work.

4



Chapter 2

Literature Review

This chapter contains two literature reviews. Section 2.1 concerns computer vision

and reviews some of the di�erent approaches that have been used to tackle the

problem of automated surface defect detection. The related problem of texture

discrimination is also discussed. The second half of this chapter, Section 2.2, contains

a general overview of the processes behind human perception and introduces the �eld

of visual search.

There are several, more in-depth, literature reviews throughout this thesis. A

discussion of the various stimuli that have been used in search experiments can

be found in Section 3.1 while Section 4.1 introduces models of visual saliency and

examines the role of bottom-up processes in perception. Chapter 5 is given over to

a discussion of models of visual search and Section 7.2 discusses the role of memory

in visual search and how systematic human observers appear to be.

2.1 Machine Vision and Defect Detection

This section is primarily aimed at readers coming from a perception/visual search

background who may not be familiar with many of the concepts used throughout

this thesis. Readers familiar with this area may wish to skip to Section 2.2.

The scope of this thesis only concerns non-critical surface defects. As such,

critical, non-visible, defects such as hair-line fractures in airplanes [Drury, 2002] are

outwith the scope of this work. Instead, I am interested in surface defects on textured
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surfaces and how noticeable they are to human observers. Examples of this would

be defects in textiles and fabric (see Kumar [2008] for a review), fresh produce, such

as apples [Leemans and Destain, 2004, Throop et al., 2005] and oranges [Aleixos

et al., 2002], and ceramic tiles [Boukouvalas et al., 1995, Xie and Mirmehdi, 2005b].

This is important in manufacturing as defects can have a large e�ect on the

price of a good: cosmetic surface defects can decrease the likelihood of consumers

purchasing a piece of fruit [Thompson and Kidwell, 1998] and even minor blemishes

can put consumers o� buying apples [Yue et al., 2009]. A defect in a fabric will

reduce its price by 45% to 65% [Sengottuvelan et al., 2008, Srinivasan et al., 1992].

Another interesting example is facial scarring [Simmons et al., 2009], where the

visibility of the scar can be very important to the patient.

With the exception of Simmons et al. [2009] none of the examples above have

considered how well human observers can identify di�erent surface anomalies and

what features make some defects more noticeable than others. While there has

been some research into how well quality control inspectors can identify defects, a

large range of di�erent �gures have been given. Several studies have claimed skilled

visual inspectors can �nd only 70% of defects [Mak and Peng, 2006, Sari-Sarraf and

Goddard, 1999, Sengottuvelan et al., 2008], although no details on how this �gure

was reached are given. Similarly, Schicktanz [1993] suggests detection rates of 60%-

75% of signi�cant defects while Bodnarova et al. [2000] and Smith [1993] suggested

�gures of 80% and 90% respectively.

Khasawneh et al. [2003] carried out an eye-tracking experiment to investigate

human search strategies in a visual inspection task. However, the task used stimuli

made up of discrete items (letters) and the study is somewhat naive. As we will see

below (see Section 2.2), visual search is a large and complex �eld and Khasawneh

et al. [2003] make no reference to the vast literature on the topic. Their main

conclusion appears to be that there is no correlation between the area searched and

task accuracy.

2.1.1 Supervised and Unsupervised Surface Defect Detection

Automated surface defect detection algorithms can be classi�ed as either supervised

or unsupervised. While these terms do not appear to be consistently used, supervised

detection usually involves training the algorithm on speci�c defect(s) to be found
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[Kumar and Pang, 2002]. Manufacturing methods often produce di�erent defects

that �t into pre-de�ned categories and in these cases, supervised defect detection

works well. An example would be in the manufacturing of ceramic tiles where

Boukouvalas et al. [1995] have identi�ed cracks, bumps, depressions, pin-holes, dirt,

drops, undulations and colour defects. Similarly, in fabric manufacturing certain

defects such as mixed �lling, mispicks, kinky �lling and misreed are common [Kumar

and Pang, 2000].

Unsupervised detection is a more general, and hence di�cult, task where the

properties of the defect are not known in advance. Some studies count training an

algorithm on a defect-free example surface as supervised defect detection [Gururajan

and Sari-Sarraf, 2006], while others count this as unsupervised [Xie and Mirmehdi,

2005a,b].

As we will see later (Section 2.2), these two methods have broad parallels with

human vision: in visual search tasks an observer is typically asked to �nd a pre-

speci�ed target where as the study of bottom-up, visual saliency is more concerned

with �nding image regions that stand out from their surroundings.

Although many di�erent algorithms have been developed and applied to the

problem of automated surface defect detection, most of them fall into one of two

broad categories: �lter based and statistical. (A recent review by Xie [2008] classi�ed

detection methods into four groups: statistical, structural, �lter-based and model-

based, with statistical and �lter-based methods being the most popular.) Some

examples of these methods will be outlined below in Section 2.1.3. Before that

however, there is a short discussion of the related problem of texture discrimination.

2.1.2 Texture Discrimination and LNL-Methods

The problem of automatic defect detection is related to that of texture discrimina-

tion, also referred to as texture segmentation and texture segregation [Bergen and

Julesz, 1983, Bergen and Landy, 1991, Julese, 1981]. Texture discrimination typ-

ically involves separating an image into foreground and background regions. This

problem is almost e�ortless for human observers and researchers have investigated

which image features facilitate this process. (This is an example of a preattentive

process: it can be carried out very quickly, in parallel across the whole visual �eld

and without the need of attention.) Much of the modelling work has made use of
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LNL models (linear-nonlinear-linear; also referred to as �lter-rectify-�lter (FRF) and

the backpocket model [Chubb and Landy, 1991]). These models are based on prop-

erties of the functional architecture of the primary visual cortex [Bovik et al., 1990,

Malik and Perona, 1990, Morrone and Burr, 1988, Randen and Husoy, 1999a,b]. See

Randen [1999] for a comparative study of �lter based approaches to feature extrac-

tion for textures. See Landy and Graham [2004] for an excellent review of the visual

perception of texture.

As the name implies, the basic LNL-model has three stages. The �rst stage is

linear and models the output of simple V1 cells. Several di�erent �lter banks have

been used for this stage, such as Gabor �lters [Daugman, 1980], di�erences of o�set

Gaussians (DOOG) [Young, 1985] and di�erences of o�set di�erences of Gaussians

[Parker and Hawken, 1988]. These three families of linear �lters are very similar

and there is little reason to choose one over another [Malik and Perona, 1990]. (The

modelling work in Chapter 6 of this thesis will make use of Gabor �lters.)

This is followed by a non-linear stage, followed by the second linear �lter [Unser

and Edena, 1990]. Unlike the �rst-order �lter, which is based on properties of

simple V1 cells, less is known about how to go about modelling these stages. A non-

linear stage such as a half- or full-wave recti�er is needed to distinguish textures

with identical spatial averages. While a single recti�er allows the model to match

human performance with many texture pairs, additional non-linearities are required

to distinguish between textures composed of opposing textons [Malik and Perona,

1990]. Some form of adaptation has been put forward as an important mechanism

in human vision [Graham et al., 1989, Sutter et al., 1989]. The second linear �lter

is usually taken to be some sort of energy pooling �lter and is often implemented as

either a Gaussian smoothing �lter or a bandpass �lter [Randen, 1999].

The LNL framework outlined above has proven very successful in modelling pre-

attentive texture discrimination. [Malik and Perona, 1990] have compared an LNL-

mode1 to psychophysical results by Krose [1986] and Gurnsey and Browse [1987].

Furthermore it is �exible, and easily expanded without being computationally in-

tensive.

2.1.3 Filter-Based Defect Detection Methods

While a large variety of methods have been applied to the problem of automated

surface defect detection, (such as statistical, morphological and model based) one
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of the most popular types of tool is �lter based algorithms [Xie, 2008]. Many of the

algorithms share similarities with the LNL-framework discussed above, even if this

connection is not always made explicitly. (For more comprehensive reviews of defect

detection algorithms, see Chin [1988], Kumar [2008], Newman and Jain [1995], Song

et al. [1992], Xie [2008].)

Sometimes a single optimal �lter will be used for a supervised detection task,

tuned to the properties of the defect [Bodnarova et al., 2002, Kumar and Pang,

2002, Mak and Peng, 2006]. Kumar and Pang [2002] have proposed an algorithm

for selecting the optimal Gabor �lter, from a bank of �lters, based on the cost

function used by Tang et al. [1995]. A test image containing a defect is divided into

K non-overlapping squares of size l× l. Each �lter from the �lterbank is applied to

each of these subregions and the average output for the ith �lter in the kth square

is given by:

Di
k =

1

l2

∑
(x,y)∈k

Ii(x, y) (2.1)

whereDi
max andDi

min are de�ned as the maximum and minimum average outputs

among the Di
k for k = 1, . . . , K. These are then used to de�ne the cost function:

J(i) =
Di

max −Di
min

Di
min

(2.2)

The �lter i that gives the biggest J is taken as the best �lter to �nd the defect.

Hou and Parker [2005] propose a similar method which uses Support Vector

Machines to pick an optimal set of Gabor �lters. Another example is Sobral [2005]

who based a detection algorithm on wavelet sub-band decompositions and applied

it to the problem of leather inspection. An alternative method is to represent the

defect-free woven fabric texture with a single optimal Gabor �lter [Mak and Peng,

2006]. This works well for some fabrics as it exploits the highly regular periodic

nature of the textile. The reconstructed image is then compared to the test image

and any large di�erences are assumed to be due to defects. This method makes

use of the highly regular nature of woven fabrics. A similar method has been put

forward by Jasper et al. [1996].
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Unsupervised methods typically use �lter banks and compare feature vectors

between a learnt defect-free surface and the test surface [Escofet et al., 1998, Kumar

and Pang, 2000, 2002]. While providing more �exibility than optimal �lters, �lter-

banks generate large amounts of data and can be computationally intensive. These

methods appear to be common with fabric defect detection as the periodicity of the

yarns provide valuable information [Chan and Pang, 2000].

Kumar and Pang [2000] have used a �lter-bank of real Gabor �lters (four ori-

entations and four spatial scales). They use a nonlinear energy function based on

a recti�ed sigmoidal function [Jain and Farrokhnia, 1991]. The 16 �lter responses

are then compared to the mean values from a defect-free training sample. These are

then combined cross-orientation and then cross-scale using image fusion techniques

[Casasent, 1997], before �nally being binarised to give a segmentation of any defects

in the test surface. The algorithm was tested on small photographs of fabrics, and

simple synthetic images, and was found to perform well. However, no measurements

of how noticeable the defects were was given.

2.1.4 Discussion

In the brief review above we can see that a large range of di�erent approaches have

been put forward for automatic surface defect detection. However, very little work

has been carried out in comparing di�erent computer algorithms to one another, or

to human observers. Similarly, the problem of measuring how noticable, or salient, a

defect is has largely been ignored. Several di�erent performance rates are given for

human performance but the details are not given. What a�ects human performance?

Can we model this?

These questions have real importance in terms of manufacturing and commerce.

People will not pay full price for defective goods, even if the defect is super�cial.

This leads to waste, especially if the goods are perishable. On the other hand,

consumers will buy B grade stock if it is suitably reduced in price. However, it

would be against a retailers interests to discount stock which has super�cial defects

that would go unnoticed by a consumer.
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2.2 Human Perception and Visual Search

In the above section I have given an overview of how computer vision systems carry

out defect detection tasks. The second half of this review chapter will give an

introduction to visual search: how human observers carry out a search for a target.

In this thesis, the target will be a defect on a textured surface. This section is

primarily aimed at readers coming from a computer-vision background who may

not be familiar with many of the concepts used through the rest of this thesis. As

such, readers familiar with this area may wish to skip to Chapter 3.

2.2.1 Foveal Vision, Saccades & Fixations

The centre of our retina, the fovea, has greater acuity than the periphery [Findlay

and Gilchrist, 2003, Chapter 2]. Because of this, we make many eye movements

in order to bring relevant parts of the visual scene into the fovea. There are three

di�erent types of gaze shifting movements: saccadic movements, smooth pursuit and

vergence movements. In this thesis, I will only be considering saccades: they are

fast, ballistic, eye movements in which both eyes move simultaneously. Saccades are

executed in order to �xate new regions of the visual scene. Over the past decade

the use of eye-trackers has become more common. These track an observer's gaze,

�xations and saccades. They have been used to give us a greater understanding of

how vision works during reading [Rayner, 1998] and are increasingly being used in

visual search and scene perception experiments. See Rayner [2009] and Findlay and

Gilchrist [2003] for reviews.

2.2.2 Visual Search

In the psychology of perception, visual search usually involves human observers

searching a display for a designated target. The task is usually to decide if the

target is present in the display or not and observers are instructed to respond as

quickly and accurately as they can. Displays consisting of a collection of discrete

search items - typically letters or abstract shapes - are commonly used as stimuli

and the target will be uniquely de�ned by one or more features such as colour, size

and orientation. See Figure 2.1 for examples.
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Figure 2.1: Examples of the type of stimuli traditionally used in visual search tasks.
The top two images are examples of feature searches : the target is de�ned by a
unique feature, colour and orientation respectively, and can be found with ease. (In
the top left image the target is the green bar, while in the top right image, the target
is the single horizontal bar.) These searches are sometimes referred to as parallel
or pop-out searches. The bottom image is an example of a conjunction search. The
target is de�ned in terms of both colour (green) and orientation (horizontal) and
the search is harder. These are also referred to as serial searches.
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One of the main analytical tools deployed in previous work on visual search is the

gradient of the reaction time (RT) against set size slope. Early work by Treisman

and Gelade [1980] classed visual searches as either feature searches or conjunction

searches. This was based on the observation that if the target is de�ned by a unique

feature (such as searching for a red item among green) then the time taken to �nd it

appears not to be a�ected by adding more distracters. If the target is de�ned by a

combination of features (such as in Figure 2.1) then observer reaction times increase

with the addition of more distracters. Feature searches were said to be carried out

in parallel while conjunction searches required a serial item-by-item search. Further

evidence for this explanation comes from the fact that RT v Set Size slopes typically

show a 2:1 ratio on average between target absent and target present trials [Chun

and Wolfe, 1996, Kwak et al., 1991, Treisman, 1991].

This classi�cation has been shown to be overly simplistic as there are many

examples of conjunction searches that can be carried out faster than would be ex-

pected by a serial search [Cohen, 1993, Nagy and Sanchez, 1990]. A meta-study by

Wolfe [1997] aggregated trials from 2500 experimental sessions and found no evi-

dence for a bimodal distribution of RT v Set size slopes. This has led to the more

relaxed statement that some searches are e�cient while others are ine�cient and

task di�culty can be located anywhere on a continuous range from one extreme

to the other. See Wolfe [1998] for an overview. Verma and McOwan [2008] have

strengthened this argument by constructing an algorithm to generate stimuli for a

texture discrimination task for a whole range of task di�culties.

Perhaps the most in�uential search model is Wolfe's Guided Search (GSM). This

has been developed over the last 20 years and is now in its 4th version [Cave and

Wolfe, 1990, Wolfe, 1994, 2007, Wolfe and Gancarz, 1996, Wolfe et al., 1989]. While

this model will be discussed in detail in Chapter 5, a brief overview is given here.

As the name implies, the model works on the assumption that search is guided. This

means that the model will direct attention towards search items that have features

in common with the target. So, in the conjunction search example in Figure 2.1 the

model will search among the horizontal and green elements. This is achieved by �rst

creating an activation map from the stimuli: search items that share characteristics

with the target are given larger weights, while lower values are given to items that

are dissimilar to the target. The activation map is assumed to be generated pre-

attentively and is computed in parallel across the whole stimulus. Search items with

high activation are then attended to in a serial manner until the target is identi�ed.

A simple inhibition of return process is used to stop the model repeatedly attending

13



to the same local maximum. In the case of feature (e�cient) searches the target is

very di�erent from distracters and the activation map can give a large response to

the target, allowing the serial attentional mechanism to go straight to the correct

search item.

2.2.3 Serial Search versus Parallel Search and Signal Detec-

tion Theory

Unfortunately the issue of serial versus parallel search has been slightly confused

by a split in methods in the literature. While the reaction time studies outlined

above are typical, there is also a body of work on visual search that applies signal

detection methods to the problem. These studies use short stimulus display times

(typically around 200ms, which is slightly less than the duration of an average

�xation) and measure an observer's accuracy. (See Palmer et al. [2000] and Verghese

[2001] for reviews). Rather than assuming a two stage model (such as GSM), the

signal detection theory (SDT) models propose a parallel stage followed by a decision

rule. While these two camps are not mutually exclusive, the di�erent assumptions

have made comparisons problematic: GSM is geared towards explaining di�erences

in reaction times in search tasks with an unconstrained time limit, whereas SDT

accounts for varying accuracy in search tasks with a very short time limit. In order

to account for reaction times in search with eye movements, SDT needs a number

of additional assumptions.

In SDT models the search items in a display are represented as noisy random

variables. The greater the di�erence between target and distracter the further the

means of the random variables will be from each other, and the smaller the prob-

ability of a sample from the target distribution being smaller than a sample from

the distracter distribution. The e�ect of increasing set size on accuracy elegantly

drops out of this model, as increasing the number of distracters present in a display

means we have to take more samples from the distracter distribution. Hence the

probability of any one of them being greater than the target sample is increased.

Guided search models on the other hand, assume that items (or small subsets of

items) are inspected in a serial manner. On the other hand, SDT accounts clearly

show that target detection can, and does, occur in parallel across the whole stimuli.

However, what is often overlooked by advocates of SDT accounts is that the nature

of foveal vision enforces a serialism on any prolonged search process.
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2.2.4 Overt versus Covert Attention

In a similar way to the split in the literature outlined above, there is also a distinction

between studies investigating covert attention and those looking at overt attention.

Overt visual attention is essentially the act of looking and �xating on a particular

object or region of interest in the visual �eld. Covert attention on the other hand is

the process of directing our mental attention to a region of the visual �eld without

shifting our gaze, i.e., `looking out the corner of the eye' [Findlay and Gilchrist, 2003].

It has been shown that human observer can use covert attention independently from

overt attention, [Posner, 1980, Sperling and Melchner, 1978], and even carry out

visual searches without eye movements [Klein and Farrell, 1989]. Because of these

�ndings there is a large body of literature concerning the deployment of attention,

with little mention of foveal vision or eye movements.

For example, the in�uential Guided Search Model [Cave and Wolfe, 1990, Wolfe

et al., 1989] is only concerned with the deployment of attention and makes no men-

tion of saccades or foveal vision. In fact, Wolfe [2007] argues that modelling covert

attention is more important than eye movements as eye movements are not required

for visual search. Furthermore, once acuity factors have been controlled for, reaction

times are comparable between search with and without eye movements. For reviews

on attention, see Cave and Bichot [1999], Pashler [1998], Reynolds and Chelazzi

[2004], Wright [1998].

However, in their book, Active Vision, Findlay and Gilchrist [2003] argue that

not enough importance has been given to overt attention. (Similar arguments are

also given by Rayner [2009] and Zelinsky [2008]). In most natural visual tasks, a

shift of covert attention is usually followed by a shift of overt attention (a saccade)

to the same region [Henderson, 1993, Irwin and Zelinsky, 2002, Rayner et al., 1978].

Motter and Holsapple [2007] have used a model of visual search to argue that there

is no evidence of multiple shifts of covert attention during a single �xation.

2.2.5 Category Search

Surface defect detection can be thought of as an example of a category search task.

In later chapters of this thesis observers will be asked to �nd a type of defect, such

as an elongated indent, without knowing its exact appearence. It has been shown

that search can be guided in a top-down manner if the observer knows the category,
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but not the exact features, of the target [Bravo and Farid, 2009, Castelhano et al.,

2008, Schmidt and Zelinsky, 2009, Yang and Zelinsky, 2009]. For example, Yang and

Zelinsky [2009] investigated category search using images of teddy bears as targets

and photographs of other common objects as distracters. They compared search

guidance between speci�c searches (when the exact target is previewed) and category

search (when the observer only knew that they were looking for a photograph of a

teddy bear) and found that while speci�c search was faster, the category search still

appeared to be guided. There were fewer �xations on distracters, and more initial

saccades to the target, than would be expected with a random searcher. (Also see

Oliva et al. [2003] and Zelinsky [2003].)

2.2.6 Finding Rare Targets

Finally, it is important to note that the prevalence of di�erent target types has been

shown to in�uence accuracy in visual searches [Fleck and Mitro�, 2007, Rich et al.,

2009, van Wert et al., 2009, Wolfe, 2007, Wolfe et al., 2005]. Although this will not

be discussed further in this thesis, it is important to note as in most real-life defect

detection tasks we would expect the ratio of defective to defect-free surfaces to be

very low. Visual inspection is di�cult in practice because defects are generally rare.

As targets become less common, people miss more. However, the implementation

of a decision rule in a search model is outwith the scope of this thesis.

2.3 Conclusions

In this chapter I have reviewed how both humans and computer vision models search

for defects on textured backgrounds. The main conclusion is, perhaps surprisingly,

that the problem of �nding a defect on an otherwise homogeneously textured surface

has not been looked at in detail in the �eld of visual search: most previous work

has concentrated on �nding a target item amongst discrete distracters or searching

photographic stimuli for a pre-de�ned target. Similarly, despite the fact that most

computer defect detection systems are designed to replace human quality control

inspectors, the issue of human performance in defect detection has been largely

overlooked.
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Chapter 3

Methods: Texture Synthesis

A problem with analysing the performance of various automated surface defect de-

tection methods is that it is often di�cult to �nd suitable surfaces on which to run

the algorithms. For example, Iivarinen [2000] uses one image to train his algorithm,

and only tests it on three examples of defective surfaces. Similarly, Amet et al.

[2000] used a set of 36 fabrics, (256 × 256 pixels) to test an algorithm based on

sub-band domain co-occurrence matrices. Hou and Parker [2005] used 50 images

from the Brodatz [1966] Texture Database and Kumar and Pang [2000] only used

9 images to test their defect detection model. If a small set of test images is used

then the algorithm's accuracy cannot be reliably measured and only a small range

of defects can be tested.

Even if a large set of defective surfaces can be acquired, (such as Gururajan

and Sari-Sarraf [2006], who used a test dataset of 360 fabric images; and Xie and

Mirmehdi [2005b] who used 1500 defective ceramic tiles) there is still an issue with

how an algorithm's performance should be evaluated. Currently defect detection

algorithms are typically assessed by reporting the percentage of defects in the test set

it can successfully �nd (along with the number of false-positives). Little indication

is ever given of how varied the test set is, or how di�cult the defects would be for

a human observer to �nd. With no standards to measure these di�culties against,

it is di�cult to make an informed comparison between di�erent algorithms without

testing them all on the same dataset.

A solution to this problem is to use virtual, synthetic surface textures. This

allows for the creation of a wide variety of test surfaces and defects. As the surfaces
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can be created with a large, yet controlled, range of task di�culties, they have the

potential to also be useful stimuli for the study of human perception and visual

search. A review of stimuli that have previously been used in this �eld is given in

Section 3.1, followed by Section 3.2 which identi�es and speci�es two very di�erent

classes of texture. While synthetic images have been used before to analyse defect

detection algorithms [Kumar and Pang, 2000], previous work has not considered

illumination models: Kumar and Pang simply used a grid as a test image and

created a defect by making one of the lines thicker.

3.1 Stimuli used in Visual Search Experiments

The majority of previous work into visual search has used stimuli consisting of an

array of discrete search items (see Section 2.1, Figure 2.1). However, more complex

stimuli have increasingly been used in an e�ort to understand how search and object

recognition are carried out in more naturalistic tasks. Several studies have used

stimuli in which the abstract geometric shapes traditionally used are replaced with

photographs of objects [Zelinsky, 1999] or simple line drawings [Biederman et al.,

1988, Levin et al., 2001]. Levin et al. investigated which features are used by human

observers when searching for a target from a broad category. To do this they carried

out an experiment which used two categories of line drawings of either animals or

everyday household objects. They found that observers were very good at this task

and were employing some form of guidance. Newell et al. [2004] used rendered 3D

objects in investigate memory processes and found evidence for object based memory

during search.

A more common approach for creating naturalistic stimuli is to use photographs

of scenes. This approach is proving to be increasingly popular [Aks and Enns, 1996,

Biederman, 1973, Brockmole and Henderson, 2006, Henderson et al., 1999, 2008,

McCarley et al., 2004, Neider and Zelinsky, 2006a, Oliva et al., 2004, Pomplun,

2006, Zelinsky, 2001, Zelinsky et al., 1997], However, analysing the results from

experiments with photographic stimuli can prove complicated and the stimuli cannot

be easily controlled or parametrised. Unlike experiments using arrays of search

items, there is no easy way of creating di�erent trials of similar di�culties when

using photographs of scenes.

A related, simpler task is search for a target on a background. Perhaps sur-

prisingly, this task has received comparatively little attention. Wolfe et al. [2002]
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and Neider and Zelinsky [2006b] have investigated how the addition of a complex

background a�ected reaction time versus set size slopes. They concluded that a

complex background might slow the accumulation of information in the object iden-

ti�cation stage, perhaps because the search items were not cleanly segmented from

their surrounding backgrounds in the initial object segmentation phases. Only in

Wolfe et al.'s �nal experiment, when the search items and background were designed

to be very similar to each other was an increase in search slopes observed. Neider

and Zelinsky [2006b] carried on this line of work with a series of experiments us-

ing more complex stimuli designed to investigate the e�ect of target-background

similarity (TBS). They used photographs of children's toys as search items and con-

structed `camou�age backgrounds' from the target item by tiling an n × n pixel

patch from the target item. By increasing n, the TBS can be modi�ed while leav-

ing the distracter-background similarity constant. They carried out a series of eye

tracking experiments but failed to �nd any conclusive results or pattern behind the

scan-paths.

The use of noise has also been fairly common in visual search and psychophysical

experiments [Burgess, 1985, Burgess and Colborne, 1988, Burgess et al., 1981, Levi

et al., 2005, Myers et al., 1985, Najemnik and Geisler, 2005, 2008, 2009, Park et al.,

2005, Rajashekar et al., 2002, 2004, 2006, Swensson and Judy, 1981, Tavassoli et al.,

2007a,b,c, 2009]. The target is typically a simple geometric shape (square, dipole,

Gabor patch) which is embedded in the noise. The task di�culty depends on the

signal to noise level. Visual search in noise will be discussed further in Section 5.3.1.

3.1.1 Conclusion

This literature review provides a survey of the di�erent stimuli that have been used in

previous work on visual search. These stimuli can be broadly placed into two groups:

abstract, synthetic images, and photographic images. While abstract stimuli, such

as arrays of discrete items, have the advantages of being easy to create, control and

analyse, they do not appear naturalistic and can lack the visual complexity that

is present in many real world examples. On the other hand, photographic images

provide rich and varied stimuli but sacri�ce the ease of analysis and control that

parametrised stimuli provide.
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3.2 Texture Synthesis

One way to get round the problem of obtaining suitable stimuli for investigating

surface defect detection is to create synthetic surfaces using computer algorithms.

In order to create images for experiments a two step process is used. First the

surface texture is created, represented as a n× n height map. Then an illumination

model is used to render the image, giving it a naturalistic appearance.

Another advantage of using rendered surface textures as stimuli is that they allow

for an investigation of the control of attention. By using a task that eliminates

the possibility of top-down in�uences on visual search, bottom-up processes are

isolated and can be tested against theoretical models. Finally they possess a natural

appearance, yet have precisely controlled properties, allowing for many stimuli to

be created with a given set of parameters.

Details are given below, �rst for the illumination model, and then for the con-

struction of random-phase noise (Section 3.2.2) and height maps for near-regular

textures (Section 3.2.3). Creating defects is discussed in Section 3.2.4.

3.2.1 Illumination

The three dimensional height maps that represent the surface textures are ren-

dered to generate images of surfaces under a speci�ed illumination. This stage is

important, as a surface can have drastically di�erent appearances under di�erent il-

lumination conditions [Chantler, 1995]. I will use one of the simplest models, known

as Lambert's Cosine Law. This treats the surface as a perfectly di�use re�ector, i.e.

it re�ects the same amount of light in all directions, and it is modelled by the dot

product:

i(x, y) = λρ(x, y)n(x, y).l (3.1)

where i is the image we are creating, n is the unit surface normal to the height

map and l is the unit illumination vector. The albedo, ρ, determines how much light

is re�ected by the surface and the strength of the light source is denoted by λ. The

surface normal, n, is estimated by:
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p(x, y) = h(x, y)− h(x− 1, y) q(x, y) = h(x, y)− h(x, y − 1) (3.2)

n =
1√

1 + p2 + q2
[p, q, 1]T (3.3)

where p and q are discrete estimators of the surface's partial derivatives in x and

y respectively. The illumination vector, l, is given by:

l = (sinθcosϕ, sinθsinϕ, cosθ) (3.4)

where θ = 60◦ and ϕ = 90◦ are the elevation and azimuth of the illumination

direction. These are held constant throughout this thesis. Self-shadowing is imple-

mented by setting all negative values of i to zero. Cast shadows are ignored for

a variety of reasons. Firstly, cast shadows are rarely produced by surfaces with

low relief unless the elevation of illumination is very low. Also, without a more

sophisticated illumination and rendering model (incorperating inter-re�ections, dif-

fuse directional light sources, etc) cast shadows will look unrealistic. Finally, the

inclusion of cast shadows would complicate both the analysis of human performance

and the development of a computational model.

3.2.2 1/f-Noise Textures

The main class of texture that will be considered in this thesis is 1/fβ-noise (where

f is frequency). The process of 1/fβ-noise occurs frequently in nature and provides

a good approximation to the power spectra of many images of natural scenes [Field,

1987, van der Schaaf and van Hateren, 1996, Voss, 1988]. Balboa and Grzywacz

[2003] have measured and compared the power spectra of atmospheric and under-

water natural images and found that they have frequency fall-o�s of around -2 and

-2.5 respectively.

These surface textures are produced by using 1/fβ-noise to model the height

function of surfaces. It is important to emphasise that the stimuli are not created

directly from 1/fβ-noise, as has been done in other studies [Kayser et al., 2006,

Rajashekar et al., 2002] but are instead created by constructing height maps which

are then rendered using a lighting model that implements Lambert's Cosine Law.

See Figure 3.1 for an example of a height map and the corresponding rendered image.
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Early work was by Voss [1985, 1988] was based on the work by Mandelbrot

[1983] and used simple fractal algorithms to generate mountainous landscapes. Al-

though these surfaces will be modelled in the frequency domain, they can also be

implemented in the spatial domain: Perlin noise is a widely used computer graph-

ics technique that is very similar to 1/f -noise processes [Perlin, 2002, Perlin and

Ho�ert, 1989].

These surfaces are speci�ed with two parameters: the spectral roll-o� β and the

RMS-roughness, σRMS. (The RMS-roughness is the root mean squared : σRMS =√
1
n

∑
h(x, y)2.) They can be generated in the Fourier domain with power spectrum

given by:

S(u, v) =
k

(
√
u2 + v2)β

(3.5)

where k is the scaling factor used to give the required σRMS, and u and v are the

Cartesian coordinates of the power spectrum [Linnett, 1991, McGunnigle, 1998].

Padilla et al. [2008] have explored the e�ect these parameters have on the per-

ceived surface roughness of 1/fβ-noise surfaces. Observers were shown pairs of

animated, rendered surfaces and a method of adjustment was used to determine

the relationship between β, σRMS and perceived roughness. This allowed them to

construct an estimator for perceived roughness, based on the variance of a bandpass

�lter speci�ed as a Gaussian in the frequency domain. (Also see Padilla [2008].)

3.2.3 Near-Regular Textures

A second class of surface texture will also be considered in this thesis: near-regular

textures. A regular texture is one which consists of a regularly repeating pattern,

and a near-regular texture is a regular texture with a degree of randomness added.

This can either be in size, shape and/or positions of the texton elements [Liu et al.,

2004a,b]. In contrast with the 1/fβ-noise textures, these surfaces are highly struc-

tured and periodic.

As with the 1/fβ-noise surfaces, these surfaces are created by �rst synthesising

a height map and then rendering it using Lambert's cosine law. The height map is
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created by placing ellipsoidal shaped textons (Equation 3.6) at regular intervals on

a �at surface.

x2

a2
+

y2

b2
+

z2

c2
= 1 (3.6)

Two texton densities were used: ρ = 1.875 and ρ = 2.461 textons per degree

of visual angle. The textons were randomly varied in two ways to give a near-

regular texture: size and σp, the amount of random o�set from the lattice point. To

vary the size, a and b were randomly set to 8,9,10 or 11 pixels in Equation 3.6. A

random o�set was applied to each texton by adding a normally distributed error to

its centre point. By varying the standard deviation of this error, σp ∈ {0, 1/2, 1, 2},
the regularity of the underlying lattice can be varied. Finally, a small amount of

Gaussian noise (std. = 0.25) was added to the phase spectrum in order to make the

images appear more naturalistic. Example textures can be seen in Figure 3.2.

3.2.4 Creating Defects

Given how di�erent the two classes of textures discussed above are from each other,

a di�erent type of defect will be used for each of them. For the near-regular textures,

a simple way of adding a defect to a surface is to remove a texton from it. For the

1/fβ-noise surfaces a small indent will be made in the surface by subtracting a three

dimensional ellipsoid from the height map (See Equation 3.6). To make the indent

appear more realistic it was �rst convolved with a two dimensional smoothing �lter,

B, to soften the hard vertical edges:

B =

 0 1 0

1 2 1

0 1 0


It was then cut out of the three dimensional surface, with the depth being ad-

justed so that a small hole with volume ≈ 10mm3 was created. (Some examples are

given in the following chapter: see Figures 4.1 and 4.2 for an example of a smooth

and rough surface respectively.)

23



3.3 Conclusions

In this chapter I have identi�ed two classes of synthetic surface texture. These will

be used in the following chapters to investigate how human observers search for

surface defects and how computational models perform in comparison. The main

advantage of using synthetic surfaces over photographs of surface textures is one

of control: as the surfaces are fully parametrised, the degree to which the defect is

noticeable can be easily controlled and many di�erent, yet equivalent trials can be

created for any given task di�culty.

In the next chapter I will explore how human observers cope with a series of

defect detection/visual search tasks and will compare human performance with a

popular model of low-level vision [Itti and Koch, 2000].
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Figure 3.1: Examples of 1/fβ-noise surfaces for β ∈ {1.55, 1.60, 1.65, 1.70, 1.75}
(ordered bottom to top) and σRMS = 1. Height maps are shown on the left, while the
right column shows the corresponding rendered images. As β decreases the surface
becomes rougher. As with all stimuli in this thesis, the illumination conditions were
held constant with θ = 60◦ and ϕ = 90◦.
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Figure 3.2: Examples of a near-regular texture for σ ∈ {0, 1/2, 1, 2} (top to bottom)
and ρ = {1.875, 2.461} (left to right).
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Chapter 4

Visual Search for a Defect on a

Homogeneous Surface

In this chapter I will explore how human observers perform in a search task involving

a target on a homogeneous surface texture. I will investigate how surface and target

properties a�ect our ability to �nd a defect in a forced choice target absent/present

task using the two di�erent surface textures described in the previous chapter. For

the 1/fβ-noise surface textures the e�ect of varying surface roughness, along with

the depth and orientation of the target, will be explored, while for the near-regular

surfaces I will vary texton density and the degree of regularity. Altogether, four

experiments will be carried out. The use of an eye-tracker will allow for search

strategies to be investigated and a computational saliency model [Itti and Koch,

2000, Walther and Koch, 2006] will be run on the experimental stimuli and compared

to the results from the psychophysical experiment.

This chapter starts with a discussion of the concept of visual saliency, computed

by bottom-up visual processes (Section 4.1). This review is centred around Itti

and Koch's [2000] saliency model and the extent to which it can explain visual

search paths. This is followed by a methods section in which the procedures for

the experiments in this, and Chapter 6, are given (Section 4.2). The core of this

chapter contains a series of four experiments designed to investigate how well human

observers can carry out a visual search task on the textural stimuli discussed in

the preceding chapter (Section 4.3). Finally, results from the human observers are

compared to the performance of the saliency model in Section 4.4.
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4.1 Literature Review: Visual Saliency

Models of visual saliency attempt to capture the e�ect of bottom-up processes on

the allocation of visual attention, and hence �xations and saccades. The concept of

a saliency map was introduced by Koch and Ullman [1985] and further developed by

Itti et al. [1998] and Itti and Koch [2000]. In a review of computational modelling

of visual attention Itti and Koch [2001] identi�ed �ve components deemed essential

for such models: the computation of visual features pre-attentively across the entire

visual scene; the integration of these feature maps resulting in a single attentional

control command; generating attentional scan-paths; the interaction between covert

and overt attentional deployment; and the interplay between scene perception and

attention. However, much of the work on visual saliency has equated covert with

overt attention (either implicitly or explicitly) and the relationship between scene

perception and attention has frequently been overlooked in preference for studying

the e�ects of low level, bottom-up features such as contrast, orientation and colour

(although see Tatler [2009] for recent developments).

There have been several attempts to formalise the concept of saliency in terms

of theoretical computational principles: for example, Itti and Baldi [2006, 2009] pro-

pose a de�nition of saliency in terms of Bayesian surprise and suggest that attention

is attracted to visually surprising signals. An alternative approach has been taken

by Bruce and Tsotsos [2006, 2009] who explore the hypothesis that saliency compu-

tation aims to maximise the amount of information available to the visual system

while a third hypothesis is based on the idea that saliency should be optimal in a

decision-theoretic sense. This idea was put forward by Gao and Vasconcelos [2005],

who called it discriminant saliency, and further developed by Gao et al. [2008].

4.1.1 Saliency in Search: Attentional Capture

Although visual search is a top-down task, as we are looking for a prede�ned target,

most theoretical search models contain a signi�cant bottom-up contribution. (This

is discussed in greater detail in Chapter 5.) Furthermore, in some ways defect

detection can be thought of as a bottom-up task: a surface defect is not necessarily

pre-de�ned. Rather, we are given some homogeneous surface and we want to know

if there is a conspicuous anomaly present.
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The e�ect of task irrelevant bottom-up information, such as a non-target sin-

gleton in an array of search items, is referred to as attentional capture (see Egeth

and Yantis [1997], Rauschenberger [2003], Theeuwes [1993] for reviews). For exam-

ple, Theeuwes et al. [1998] have shown that a highly salient coloured singleton will

capture attention in a search unless the colour of both the singleton and target are

known in advance. However the degree to which top-down processing can override

stimulus driven saliency is still an open question and an active research area [Hickey

et al., 2006, Lamy and Zoarisa, 2009, Sawaki and Katayama, 2008].

4.1.2 Itti and Koch's Visual Saliency Model

Itti and Koch's [2000] saliency model has been widely used since publication and it

has been the foundation for many other models [Frintrop, 2006, Gao et al., 2008,

Navalpakkam and Itti, 2007, Peters et al., 2005]. The model works on the assumption

that our attention is attracted to regions in the visual �eld which are salient, i.e.

they di�er from their surrounds in terms of low-level features such as luminance

and orientation. There are many examples of this theory in action in the natural

world such as animals using bright colours to attract mates. In urban environments

tra�c lights and emergency exit signs are brightly coloured to stand out from their

backgrounds.

The model is based on three visual features - luminance contrast, orientation

and colour- with each feature computed over a multi-scale Gaussian pyramid, Pyrs,

where s is a scale level of the pyramid [Burt and Adelson, 1983]. These features

are assumed to be computed pre-attentively and when normalised and combined

give the resulting saliency map which is then used to control shifts of attention and

saccades.

In order to mimic biological vision each feature is computed in a centre-surround

structure. In practice this involves computing di�erences between �ne and coarse

scale feature responses. If the centre pixel is at scale c then the surround scales are

taken to be s = c+δ with c ∈ {2, 3, 4} and δ ∈ {3, 4}. (Note: in the implementation

used below I take c ∈ {1, 2, 3, 4} and δ ∈ {1, 2, 3} - see Section 4.2.4) Seven fea-

tures are computed in total: one for intensity (luminance) contrast, four orientation

contrast channels and two for red/green and blue/yellow double-opponent channels.

There is a variety of evidence for each of these: see Leventhal [1991] for intensity
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contrast; DeValois et al. [1983], Tootell et al. [1988] for orientation and Engel et al.

[1997], Luschow and Nothdurft [1983] for detail on colour channels.

The simplest feature is intensity contrast which is de�ned as the absolute dif-

ference between pixels in pyramid levels: Cc,s = |Pyrc − Pyrs|,∀c, s. While this

is conceptually the same as a di�erence of Gaussian bandpass �lter, the imple-

mentation in the Matlab version developed by Walther and Koch [2006] relies on

interpolation due to the sub-sampling introduced by the Gaussian pyramid. Local

orientation is computed by simply applying Gabor �lters to the di�erent levels of

the Gaussian pyramid, orientated at 0◦, 90◦, 180◦ and 270◦. The use of colour is

outwith the scope of this thesis so the colour channels will not be discussed.

The model now faces a large signal-to-noise problem with 42 feature maps po-

tentially containing information on salient signals. (1 contrast + 4 orientations +

2 opponent-colours = 7 feature channels, and 6 spatial scales were used, giving a

total of 42 maps.) Simply normalising each feature map before summing has been

shown to perform poorly [Itti and Koch, 1999]. The saliency model deals with this

problem by means of a within feature spatial competition scheme. In practise this

entails iteratively convolving each feature map with a large di�erence of Gaussian

�lter to simulate excitation and inhibition, adding the result to the original feature

map and setting negative values to zero. This has the e�ect of reducing the weight

of feature maps with numerous local maxima while exciting maps with only a few

isolated peaks.

After this normalisation process has been applied to each feature map, a cross-

scale summation is carried out resulting in three conspicuity maps, which are further

normalised before being summed to give the �nal saliency map. The focus of atten-

tion (FOC) is assumed to be directed towards the most salient image location, which

corresponds to the maximum of the saliency map, as determined by a winner-takes-

all neural network (WTA) [Koch and Ullman, 1985]. In order to allow for shifts of

attention, an inhibitory feedback from the WTA array to the saliency map is intro-

duced. Excitatory lobes (half width of four times the radius of the FOA) are also

included in order to model the visual system's tendancy to favour the closer of two

equally conspicuous objects. A sequence of attentional shifts can be generated by

repeated application of the WTA and inhibition of return (IOR) algorithms. Note,

while the saliency algorithm is initially described as modelling visual attention it

has frequently been taken as a model of saccades and �xations. It also fails to take

foveal vision into account.
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4.1.3 What behaviour can the model explain?

Since the publication of the model it has been implemented and compared to human

performance on a wide variety of visual stimuli. Itti and Koch [2000] showed that it

responded to visual search arrays (red/green, horizontal/vertical bars) in the same

manner as a human observer with pop-out search exhibited in feature searches while

conjunction searches required serially stepping through search items. Itti and Koch

also carried out an experiment comparing human and model performance in a visual

search task involving landscape photographs with a military vehicle acting as the

target. In order to compare the model's performance with human reaction times the

model was assumed to make three saccades a second. However there the correlation

between human and model performance was poor with the model outperforming

human observers in the majority of trials.

Parkhurst et al. [2002] carried out a more extensive comparison using a very sim-

ilar model. The scan-paths of human observers were recorded during free-viewing of

stimuli consisting of photographs of home interiors, natural landscapes, cityscapes

and computer generated fractals.(Note: they used highly structured fractal iamges,

such as the Mandelbrot Set 1983, rather than the random phase, noise-based meth-

ods used in this thesis.) They found that the saliency at �xation locations was

signi�cantly above chance and that saliency had a stronger e�ect on the initial �x-

ations. Furthermore, the e�ect was strongest for the fractal images and weakest

with the photographs of home interiors. A separate study, by Einhäuser and Koing

[2003], challenged the role of luminance contrast in saliency. Photographs of outdoor

scenes were used as stimuli and image regions were modi�ed to increase or decrease

luminance contrast in order to investigate what e�ect contrast has on attracting

attention. The results found that while there was a correlation between initial �xa-

tion locations and luminance contrast, moderate modi�cations of the contrast had

no signi�cant e�ect on attracting or repelling �xations. These �ndings were rebut-

ted by Parkhurst and Niebur [2004] who cited several methodological problems in

Einhäuser and Koing's study and went on to describe a model based on luminance

contrast and texture contrast that could account for the empirical data in the earlier

paper.

A more recent study by Elazary and Itti [2008] looked at the correlation between

salient regions in the visual �eld and interesting objects. This involved running the

model on thousands of images from the LabelMe database [Russell et al., 2005].

This is a dynamic dataset containing over 150000 images with over 250000 labelled
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objects of interest. The results from running the saliency algorithm on this dataset

showed the most salient image region, as de�ned by the model, correlated with an

interesting object 43% of the time, and one of the three most salient regions was an

object 76% of the time. Both these values are higher than the chance levels, of 21%

and 43% repectively.

4.1.4 Further Development

There are a number of aspects of human vision that are not represented in the

saliency model. Peters et al. [2005] investigated non-linear interactions between ori-

entation features at short range (for clutter reduction) and long range (for contour

facilitation) along with the addition of a detailed model for eccentricity dependent

processing which takes the foveal structure of the retina into account. They found

that all three modi�cations signi�cantly improved the model's performance, al-

though interestingly there was no di�erence between the full eccentricity-dependent

processing model (where higher frequencies fall o� faster with eccentricity) and a

simple approximation which is applied to the �nal saliency map. Walther and Koch

[2006] developed a Matlab implementation for the algorithm and outlined a proto-

object recognition algorithm which allows object-based inhibition of return to be

implemented. This involves �nding the feature map which contributes most to the

current focus of attention in the saliency map. The model has also been modi�ed to

include some top-down elements based on a prespeci�ed target [Navalpakkam and

Itti, 2005, 2007].

While these related visual saliency algorithms have been widely used in the

past decade they have also been criticised. Henderson et al. [2007] argues that the

model does a very poor job of accounting for attention and that top-down factors

are far more important than the basic bottom-up features that are used by the

model. Especially during visual search, scan-paths are often very task dependant

and observers will search in di�erent regions of the scene depending on what they

are looking for [Neider and Zelinsky, 2006a].

Additionally, several di�erent systematic tendencies have been shown to be

present in scan-paths which can not be explained using bottom-up saliency models.

For example, human observers have been shown to make more horizontal saccades

than vertical, even when isotropic, structureless stimuli are used [Gilchrist and Har-

vey, 2006]. Dragoi and Sur [2004] examined the eye movements of rhesus monkeys
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free-viewing natural scenes and found relationships between the image structure (in

terms of local orientation) at successive �xation locations: a �xation on an image

region is likely to be followed by a �xation on a near by region with similar orienta-

tion or a further away region with a di�erent orientation. However Dorr et al. [2009]

have challenged this claim. They carried out an experiment using dynamic scenes

(videos) and human observers and examined the relationship between local features

(colour, orientation, motion and geometric invariants) at successive �xations. While

there were di�erences between natural and arti�cial (random) scan-paths, Dorr et

al. argue that these can be attributed to spatio-temporal correlations in natural

scenes and a target selection bias.

Observers have also been shown to prefer making �xations in the centre of an

image [Tatler, 2007, Tatler and Vincent, 2008]. Interestingly, this bias appears not to

be an artefact of the central placement of interesting objects in most photographic

stimuli, but is present even when the object of interest is away from the centre.

Theoretical criticisms of saliency models [Baddeley and Tatler, 2006, Vincent et al.,

2007] have argued that their internal structure is only loosely based on properties

of the primary visual cortex and that most of the design choices are fairly arbitrary.

Baddeley and Tatler [2006] claimed that high frequency edges, rather than contrast,

provide the important information in such models and that including other features

does not provide any additional bene�t. Similarly, Yanulevskaya et al. [2008] found

di�erences between �xated and non-�xated regions in terms of edges.

4.1.5 Conclusions

This literature survey has reviewed previous work on computational visual salency.

In particular, one of the most widely used saliency models has been detailed and

discussed. While its success in explaining human behaviour is mixed it has been

shown to work well with simple stimuli which contain little in the way of high level

information. Therefore, we would expect the model to cope well with the task of

�nding an anomaly on an otherwise homogeneous surface texture.

33



4.2 Experimental Methods

The experiments described below are designed to investigate how well human ob-

servers can �nd a defect in a textured surface. Two types of surface texture will

be used and a variety of parameters will be investigated. I will then compare the

performance of the observers with that of the Matlab implementation of Itti and

Koch's visual saliency algorithm. I expect human observers and the saliency model

to �nd the defect more easily on a smooth 1/fβ-noise surface than on a rough one.

For the near-regular surfaces, I expect that increasing the regularity will make the

search task easier.

4.2.1 Set-up

A Tobii x50 eye-tracker was used to record observers' gaze patterns. The Tobii is

based on PCCR (pupil centre corneal re�ection), which involves illuminating the eye

with near infrared light and recording the resulting refelections from the cornea and

the pupil. The �xation �lter was set to count only those �xations lasting longer than

100ms within an area of 30 pixels. This means that a �xation was only registered

if an observer's gaze stayed within a circle with radius 30 pixels, for at least 100ms.

The accuracy of the eye-tracker was 0.5◦ - 0.7◦ and the spatial resolution was 0.35◦.

Each trial started with a central �xation cross, which was displayed for 2 seconds,

followed by the stimuli, which was displayed until the observer responded via a

keypress, pressing 'd' for a target present response, 'k' for target absent.

4.2.2 Stimuli

Stimuli were created as described in Section 3.2.2. All stimuli were 1024 × 1024

pixels in size and displayed on a calibrated NEC LCD2090UXi monitor. The pixel

dimensions were 0.255mm by 0.255mm resulting in images with physical dimensions

261mm by 262mm. The monitor was linearly calibrated, gamma = 1, with a Gretag-

MacBeth Eye-One, with the maximum luminance set at 120cd/m2. This resulted in

the rendered images appearing as if they were being lit under bright room lighting

conditions.

Stimulus presentation was controlled by Clearview (Tobii Technology Inc). The

viewing distance was controlled by use of a chin rest, placed 0.87m away from the
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display monitor. At this distance one pixel is approximately 1′ of visual angle and the

stimuli were 16.7◦ across. A target was added to half the images at a random location

between 6◦ and 7.5◦ from the centre. The targets in the 1/fβ experiments, and the

textons in the near-regular experiment, subtended approximately 0.66◦ of visual

angle. The surface roughness, target depth and near-regular experiments comprised

of 300 trials while the target orientation experiment contained 240 trials.

4.2.3 Observers

Five observers were used for each experiment: all had normal or corrected to normal

vision and were between 21 and 30 years old. Some observers participated in multiple

experiments. Observers were given several practice trials. They were told that the

target would be present on half the trials and for the 1/β-noise surfaces it would

always be an indent in the surface of the same size and shape, while for the near-

regular surface it would be a missing texton. They were instructed to decide whether

the target was present or not and to respond with a key press for target present or

absent as quickly and accurately as they could. No time limit was imposed on the

task. Observers were allowed to take a short rest every hundred trials (120 trials for

the target orientation experiment).

4.2.4 Visual Saliency Model

The Matlab Saliency Toolbox [Walther and Koch, 2006] (an implementation of Itti

and Koch's model) was used with only minor changes made to the default parameters

specifying the resolutions of the Gaussian pyramid. Since the model was originally

designed and tested on photographs containing macroscopic objects the resolution

settings are quite low, i.e. the image is blurred and reduced in size a lot. While this

works well with photographs (where we measure average contrast over fairly large

areas) the stimuli used in the following experiments contain a lot of very �ne, high

frequency information.

In order to accommodate this level of detail I have changed parameters relating

to the levels of the Gaussian pyramid to be used: c ∈ {1, 2, 3, 4} and δ ∈ {1, 2, 3} (see
Section 4.1.2). This corresponds to the following constants in the Matlab toolbox:

35



params.minLevel = 1;

params.maxLevel = 4;

params.minDelta = 1;

params.maxDelta = 3;

params.mapLevel = 2;

I will use the same method of comparison with human observers as used by Itti

and Koch [2000], and consider the number of �xations required to �nd the target. A

maximum limit for the number of �xations was set as equal to the inter-subject mean

number of �xations taken on target absent trials for a given set of parameters. These

data can be seen in Figure 4.13, Figure 4.14, and 4.15. This provides a measure

of how many �xations a human is prepared to make before giving up a search and

making a negative response, and allows for the model's accuracy to be expressed as

the proportion of trials in which it �xates the target before the maximum number

of �xations is reached.

Comparing the number of �xations made by the model and human observers is

reliable as long as accuracy rates are high, as in the surface roughness experiment.

Where they are lower, in the target depth and orientation experiments, we also

use accuracy rate (the proportion of trials on which an observer �nds a target, or

the model �xates it within the maximum number of �xations) as a comparison.

A common means of comparing human �xation data with model predictions is to

compare �xation locations [Parkhurst et al., 2002, Peters et al., 2005, Tatler, 2007,

Tatler et al., 2005]. However, this method is not appropriate with the stimuli used

here, because the statistics of the image vary little across the background and are

only distinct at the target. There would therefore be no reason to expect any

correlation in the locations of �xations on the background texture made by observers

and by the model.

4.3 Results From Experiments 1 - 4

4.3.1 Experiment 1: 1/fβ-noise: Surface Roughness

This initial experiment is designed to investigate how varying surface roughness can

cause a target to become more or less conspicuous. The apparent conspicuity of
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a defect can be measured in terms of reaction times and the number of �xations

required to �nd it. Stimuli were created as detailed in Section 3.2.2 with β ∈
{1.55, 1.6, 1.65, 1.7, 1.76} and σRMS ∈ {0.8, 1.0, 1.2}. The target was an ellipsoid

with a = b = 10, c = 2, and was subtracted from the surface texture so that it

created a hole with volume 10mm3. These parameters were selected to provide a

good range of task di�culties, based on data from a pilot experiment. Example

stimuli are shown in Figures 4.1 and 4.2.

Results and Discussion

Overall, observers' accuracy was high, and for the target absent trials 99.5% of

responses were correct. This suggests that the search target was well de�ned and

easily identi�able: observers had no trouble in rejecting background patches. The

few false positives that did occur can likely be attributed to observers accidentally

pressing the wrong response key. There was no indication that increasing surface

roughness had any e�ect on the number of false positives. Table 4.1 shows overall

accuracy for each observer on the target present trials, and Figure 4.4 (left) the e�ect

of the two surface roughness parameters on accuracy in these trials. A two way

repeated measures ANOVA (analysis of variance) gives signi�cant e�ects (p < 0.05)

of β, (F (4, 16) = 79), σRMS, (F (2, 8) = 58), and the interaction (F (8, 32) = 13) on

the mean inter-subject accuracy.

Participant GW HW LM JF PS Overall
Accuracy for target present trials 87% 78% 81% 87% 83% 83%
Accuracy for target absent trials 98% 99% 100% 100% 100% 99%

Table 4.1: Table showing accuracy for each observer in Experiment 1. Observers
clearly had no di�culty in rejecting patches of the background as there are very few
false positives.

Figure 4.3 shows the mean reaction time data on correct trials for each individual

observer while Figure 4.4 (Top Left) shows the inter-subject mean reaction times.

The pattern of variation between individuals suggests speed/accuracy trade-o�s:

comparing Figure 4.3 with Table 4.1 shows that observer 1 (GW) was the slowest

but the (joint) most accurate (12.67% of targets missed) while observers 2 and 3

(HW and LM) were the fastest and also missed a greater number of targets(22% and

19.33%). Despite these di�erences, all observers were a�ected by surface roughness

in the same way, with longer reaction times when searching on rougher surfaces.

Inter-subject mean reaction time is shown in Figure 4.4 (Top-Right) and a two-way
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Figure 4.1: An example of a smooth 1/fβ-noise surface. In this example β = 1.75
and σRMS = 0.8. The defect can be easily located in the upper left quadrant of the
surface.
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Figure 4.2: An example of a rough 1/fβ-noise surface. In this example β = 1.6 and
σRMS = 1.2. The defect is in the same location as with the previous example, but
is now much harder to identify.
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Figure 4.3: Mean reaction time plotted against surface roughness for each observer
in Experiment 1. When reaction times are compared to the accuracy results (shown
in Table 4.1) we see evidence for a classic speed-accuracy trade-o�.
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trials plotted against surface roughness. (Accuracy for target absent trials was
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repeated measures ANOVA gives a signi�cant e�ect (p < 0.05) of β (F (4, 16) = 8.8),

σRMS, (F (2, 8) = 9.0) and the interaction (F (8, 32) = 4.5). Surprisingly, surface

roughness does not have a signi�cant e�ect on the reaction times in the target absent

trials (F (4, 16) = 2.745, p = 0.065 and F (2, 8) = 0.729, p = 0.512 for β and σRMS

respectively). Results from canonical target present/absent experiments usually �nd

that target absent times are approximately twice those of target present times. Here

however, the di�erence between reaction times for target present and target absent

actually decreases with increasing di�culty. The low accuracy (30%) suggests that

this is due to the di�culty of the search task: when the surface is rough observers

are probably close to responding target absent when they eventually �nd the target.

The relationship between the number of �xations made on each trial and surface

roughness is shown in Figure 4.4 (Bottom). The e�ects of both variables and their

interaction are signi�cant(p < 0.05 for β (F (4, 16) = 8.1), σRMS (F (2, 8) = 8.1) and

their interaction (F (8, 32) = 4.4). The implication that most variance in reaction

time is due to variance in number of �xations, rather than duration, is con�rmed

by signi�cant correlations between reaction time and number of �xations on each

trial (values of r for individual observers range from 0.899 to 0.971, all p < 0.0001).

As with reaction times, surface roughness did not have as large an in�uence on the

number of �xations on target absent trials. A two-way repeated ANOVA gives a

signi�cant e�ect for β with F (4, 16) = 4.131, p = 0.17, but not for σRMS (F (2, 8) =

0.895, p = 0.446) or the interaction (F (8, 32) = 1.423, p = 0.2254).

Do observers have to �xate on the target to be able to identify it? In order to

investigate this I �rst looked at the distance on each trial from the target to the

centre of the �xation when the response key was pressed. Unfortunately these data

is somewhat noisy, due to motor-latencies, and occasional saccades away from the

target after identi�cation but before the key press response is given. Instead, as it

is not possible to de�ne exactly the time at which the decision to press the key is

made, the �nal �xation to target distance is de�ned as the distance from the target

to either the �xation during which the response key was pressed, or the �xation

before it, whichever was smaller. This criterion allowed for some variation in the

time between the decision to respond and initiation of a saccade away from the

target. Speci�cally, it meant that when an observer made a saccade away from the

target after �xating it but before responding with a key press, the shorter distance

was counted provided that the response occurred during the next �xation.

Figure 4.5 (left) shows the distribution of �nal �xation to target distances over
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all trials and observers. (Two trials in which the response key was pressed several

saccades after the target was �xated were removed from the analysis.) It appears

that the distances �t a Poisson distribution, although there is a slight hint that a

bimodal distribution might be present. While the majority of trials, 82%, have a

�nal �xation to target distance of 1◦ or less, there also appears to be a second, smaller

set of trials with a larger �nal �xation to target distance. These account for 5% of

all correct target present trials and indicate that the target was identi�ed without

�xation. it is possible that this behaviour is more common than the data suggests, as

observers may be detecting the target without �xation, and then making a saccade

to the target before making a response. Figure 4.5 (right) shows how the mean �nal

�xation to target distance changes with surface roughness. A two-way repeated

measures ANOVA gives a signi�cant e�ect only of β (F (4, 16) = 3.05, p = 0.048).

As β increases, and the surface appears less rough, mean distance from �nal �xation

to target increases, as identi�cation without �xation becomes more frequent. The

lack of an e�ect of σRMS is probably due to a lack of data for the rougher surfaces,

where the proportion of correct responses is small. This question of the e�ect of

eccentricity on target detectability will be further investigated in Chapter 7, Section

7.5.
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Figure 4.5: Distance from �nal �xation to target in Experiment 1. (Left) shows
the histogram over all trials with �nal �xation to target distance of less than 8◦.
[There were four trials with distances larger than this which are not shown in the
histogram.] (Right) The e�ect of roughness on the mean �nal-�xation-to-target
distance. (Legend as in Figure 4.3.)

The large majority, 82%, of correct responses occurred when �xating within 1◦

of the target. Considering the trials on which the target was present but missed, we
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can use the �gure of 1◦ as a criterion to determine how often the target was �xated

but not identi�ed. This happened in 20% of the target missed trials.

Finally, Figure 4.6 shows the distribution of �xations over all the target absent

trials. As can be seen, the large central bias in �xation placement reported by Tatler

[2007] is not present in this experiment. Overall, the �xations are well spread out

with a slight bias towards the peripheral regions of the stimuli. This suggested that

over the course of the experiment observer learnt that the target was always located

away from the centre of the stimulus. Further details are shown in Figure 4.7.

Figure 4.6: Hotspot map containing �xations from all the target absent trials in
Experiment 1. The initial two �xations in each trial were not included in order to
minimise any bias introduced by the �xation cross which is displayed before the trial
starts.
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Figure 4.7: Histogram showing the distribution of �xations in the horizontal and
vertical directions for target absent trials in the 1/fβ-noise: surface roughness Ex-
periment 1. (x-axis units are in pixels).

4.3.2 Experiment 2: 1/fβ-noise: Target Depth

The previous experiment investigated the e�ects of varying properties of the back-

ground surface on visual search. In the next two experiments I will consider the

e�ects of changing target properties, starting with target depth. As the depth of

the target is reduced, the gradient at its edges, and hence the contrast created by

the illumination process, decreases, and the target should become harder to �nd.

To vary target depth, a target was created in the same way as in the previous ex-

periment, and then its depth was reduced scaling factor, zk. Setting zk = 1 gives

the same depth (and hence level of contrast) as used previously.

Pilot studies showed that people had di�culty in identifying the target for zk =

0.5, even when its location was known. Therefore, the following values of zk were

used: 0.6, 0.7, 0.8, 0.9 and 1.0. The target was placed on a subset of images from

the preceding experiment: β ∈ {1.6, 1.65, 1.7} and σRMS = 1.0. These values were

chosen as they give a range of roughness over which target detection is neither too

hard nor too easy. For each value of β, ten surfaces were created and each surface

was displayed �ve times as a target absent trial, and once as a target present trial

for each of the �ve values of zk. Target locations were determined in the same way

as before.
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Results

Accuracy for each observer is shown in Table 4.2. While the number of false pos-

itives are similar to those seen in the surface roughness experiment, the hit-rate

is noticeably lower. Accuracy of target detection fell as the target was made shal-

lower, to the extent that when zk was 0.6 or 0.7 the level of accuracy fell con-

siderably below those found in the �rst experiment (Figure 4.8). Both surface

roughness β and target depth zk have signi�cant e�ects on accuracy (repeated mea-

sures ANOVA: F (2, 8) = 89.5, p < 0.05 for β; F (4, 16) = 146.6, p < 0.05 for zk;

F (8, 32) = 3.5, p < 0.05 for the interaction).

As there are very few correct target present trials for zk = 0.6 and 0.7, reaction

times and numbers of �xations are unreliable measures for these cases. Therefore,

only the reaction times for zk = 1, 0.9 and 0.8 are shown in 4.8. Over this range,

surface roughness and target depth both have signi�cant e�ects on accuracy (re-

peated measures ANOVA: (F (2, 8) = 7.0, p = 0.049 for β; F (2, 8) = 10.3, p = 0.026

for zk; F (2, 16) = 2.9, N.S. for the interaction). As in Experiment 1a, the results for

numbers of �xations follow a similar pattern to reaction time (see Figure 4.8 below).

Participant MK LM PS LC RL Overall
Accuracy for target present trials 42% 50% 51% 49% 53% 49%
Accuracy for target absent trials 100% 95% 99% 93% 91% 96%

Table 4.2: Table showing accuracy for each observer in Experiment 2. While this
experiment was more di�cult than Experiment 1, the accuracy for the target absent
trials is still very high.

4.3.3 Experiment 3: 1/fβ-noise: Target Orientation

In this experiment an elongated target is used and its appearance can be changed

by varying its orientation. As an elongated target is rotated, the angle that its long

axis makes with the incoming light varies, resulting in variation in the contrast at

its edges (see illustration in Figure 4.9). Therefore as the target is rotated towards

the light source it should become harder to detect.

The target used in this experiment was an ellipse with axes subtending approx-

imately 0.7◦ by 0.2◦. The volume of the indent, its location, and the illumination

conditions were the same as in the �rst experiment. Unlike the previous two exper-

iments, the roughness parameters were kept constant (β and σRMS were 1.65 and
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Figure 4.8: Results from Experiment 2. (Top Left) Mean accuracy for target present
trials, (Top Right) mean reaction times for cases zk = 0.8− 1.0 and (Bottom) inter-
subject mean number of �xations to target. (Note: as target absent trials have no
target, the zk parameter has no e�ect on the surface.)
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1.0 respectively). The variable in this experiment was the orientation of the target.

12 orientations were used: θ ∈ {90◦ ± ϕ|ϕ = 0◦, 5◦, 10◦, 20◦, 30◦, 45◦, 90◦}, where 90◦

corresponds to the direction of illumination and, due to symmetry, 0◦ = 180◦.

Figure 4.9: The e�ect of rotating an elongated target relative to the direction of
illumination (from above). Orientations are in degrees relative to the horizontal.
Note how contrast at the edges of the target changes with the orientation, reaching
a minimum at 90◦

Results

Overall accuracy for each observer is given in Table 4.3 and, interestingly, there is a

signi�cant number of false positives. This is possibly due to the increased uncertainty

about the target's appearance. The relationships between target orientation and

both accuracy and reaction time are shown in Figure 4.10. It is clear that there

is a sharp drop in accuracy rates as target orientation approaches vertical, and all

observers found the search task very di�cult for targets orientated at 90◦±5◦. Again

the number of �xations per trial followed a similar pattern to the reaction times.
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As we would expect, target detection is hardest when it is oriented parallel to the

illumination, but it is important to note that the e�ect is not linear. Instead, there

is a narrow band in which orientation has a strong e�ect on search performance.

Participant LM JF LC HW SP Overall
Accuracy for target present trials 65% 80% 70% 60% 84% 72%
Accuracy for target absent trials 94% 100% 76% 94% 73% 88%

Table 4.3: Table showing accuracy for each observer in Experiment 3.
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Figure 4.10: Results from Experiment 3. (Top Left) Mean accuracy for target present
trials, (Top Right) mean reaction times and (Bottom) inter-subject mean number
of �xations to target. (Note: as target absent trials have no target, the θ parameter
has no e�ect on the surface.)

4.3.4 Experiment 4: Near-Regular Textures

This last experiment is designed to investigate how well human observers can �nd

a missing texton in a near-regular texture. The stimuli are created as described

in Section 3.2.3 with the texton density, ρ ∈ {1.875, 2.461} textons per degree and
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degree of regularity, σj ∈ {0, 0.5, 1, 1.5, 2}. The size of the textons was randomly

varied with a, b ∈ {8, 9, 10, 11} and c = 1.

Results

The overall accuracy of each observer is given in Table 4.4 and the individual results

are shown in Figure 4.11. As can be seen, the accuracy for trials with no defect

is extremely high. There are large di�erences between observers, both in terms of

the number of defects found and the time in which it took to �nd them. However

these are broadly consistent with speed-accuracy trade-o�s. The mean inter-subject

results can be seen in Figure 4.12. Neither σj or ρ had a signi�cant e�ect on accuracy

with F (4, 16) = 2.524 and F (1, 4) = 3.634 respectively. Interestingly though, both

parameters had a signi�cant e�ect on reaction time in the target present trials with

F (4, 16) = 9.702, p < 0.001 for σj and F (1, 4) = 8.256, p = 0.45 for ρ. Reaction

times for target absent trials were also signi�cant (F (4, 16) = 8.2, p = 0.001 and

F (1, 4) = 20.0, p = 0.11 for σj and ρ respectively). There was also a signi�cant

interaction σj × ρ for target absent reaction times with F (4, 16) = 4.331, p = 0.015.

Participant LM MK MY NC FH Overall
Accuracy for target present trials 63% 93% 81% 72% 58% 73%
Accuracy for target absent trials 100% 100% 100% 98% 100% 99%

Table 4.4: Table showing accuracy for each observer in Experiment 4.

4.4 Comparison with Model

A comparison, in terms of the number of saccades needed to �nd the target, between

the model and human performance for the surface roughness experiment is given in

Figure 4.13. Overall the model outperforms human observers, taking fewer saccades

than human subjects in order to �xate the target. This agrees with the results

reported by Itti and Koch [2000]. The graph shows that both humans and the

model respond to increasing roughness in a similar way: more �xations are required

to �nd the target on a rougher surface than on a smoother one.

The results for the target depth experiment can be seen in Figure 4.14. The model

now out-performs human observers, both in terms of accuracy and the number of

�xations required to �nd the target. Figure 4.15 shows the results for the target
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Figure 4.11: Results for each individual observer in Experiment 4. Only correct trials
are shown. As can be seen, the di�erent observers make di�erent speed-accuracy
trade-o�s.
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Figure 4.12: Results from Experiment 4. (Top Left) Accuracy, (Top Right) mean
reaction times and (Bottom) inter-subject mean number of �xations to target.
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Figure 4.13: Comparison between human observers and the saliency model for Ex-
periment 1. (Left) the number of targets found and (Right) the number of �xations
required to �nd the target.
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Figure 4.14: Comparison between human results and the saliency model for Exper-
iment 2. The mean number of �xations on target absent trials was 21.3, 20.0 and
19.4 for β = 1.6, 1.65 and 1.7 respectively. Legend as in Figure 4.8. Dashed line
shows the model's performance.

orientation experiment. As can be seen, the model performs poorly when the target

is near vertical, much worse than the human observers. Furthermore, while humans

had di�culty over 90◦ ± 5◦ the model performed badly over a much wider range,

around 90◦±20◦. These results indicate that the orientation channel in the saliency

model does a poor job of matching human perception for an elongated target.

The results for the near-regular experiment from the saliency model can be seen

in Figure 4.16. As we can see, the model performs poorly in terms of accuracy,

�nding less than 40% of the targets accross the range of parameters used.

4.4.1 Discussion

Comparison between the experimental results and the performance of Itti and Koch's

saliency model suggests that the features used by the model, while capturing some

aspects of human behaviour, are not su�cient to give an adequate simulation of

visual search for a target on a rough surface. The closest match between human

and model search performance occurred with the set of stimuli used in the surface

roughness experiment, where the two parameters of surface roughness were varied.

Although there were discrepancies in the absolute number of �xations by humans

and model, the model reproduced all the e�ects of background roughness parameters.
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Figure 4.15: Comparison between human results and the saliency model for Experi-
ment 3. Solid line shows the human results while the dashed line shows the saliency
algorithm.

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

σp

A
cc

ur
ac

y

−0.5 0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

N
um

be
r 

of
 fi

xa
tio

ns

σp

Figure 4.16: Comparison between human observers and the saliency model for Ex-
periment 4. Legend as in Figure 4.11. Dashed line shows the model's performance.
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This is a surprisingly good match, given that the model was not developed to work

on such stimuli and has not been assessed in such a way before. When search

performance with an elongated target was considered in Section 4.3.3, however,

there was not only a di�erence in absolute levels of performance but also in the

e�ect of target orientation, with the ability of the model to detect the target falling

to low levels over a considerably wider range of orientations than in the case of

human observers.

The model was tested several times with varying numbers of spatial scales and

orientations in the �lter bank and its performance was found to be robust, as long

as the spatial scale which best matches the scale of the target was present. The

conclusion is therefore that there is a clear discrepancy in the case of oriented targets,

with the model unable to match human performance when they are oriented close

to the direction of illumination. What could the cause of this discrepancy be? The

saliency model that I used is likely to diverge from human performance because it

does not incorporate eccentricity dependent processing [Peters et al., 2005, Vincent

et al., 2007]. However this gives the model constant spatial resolution at all distances

from �xation, while human resolution falls, and so the model would be expected to

perform better with all targets. Similarly, the model does not incorporate any

process of extracting solid shape from shading, which is known to contribute to

e�cient detection of targets in human visual search [Braun, 1993], but this feature

would result in poorer model performance across all targets, which is not the case.

Another possible reason for poor performance of the model with elongated targets

is that, when the target is oriented close to the vertical, the contrast decreases. If

the model is generally less sensitive to low contrast than humans, the result would

be poorer performance. However, there is no evidence for such a di�erence in the

target depth experiment, Section 4.3.2, where contrast at the target is reduced by

making it shallower. The two results together cannot be explained by a di�erence

between humans and model in sensitivity to contrast, and imply that the results

arise speci�cally because the saliency model, despite having a dedicated orientation

channel, is failing to take advantage of the directional nature of the elongated targets

in Section 4.3.3.

Despite the shortcomings of the saliency model, it does manage to give a broad

approximation to human performance over a wide variety of di�culties.
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4.5 Conclusions

These initial experiments were designed to investigate human performance in a

search task using computer generated surface textures as stimuli. The e�ects of

roughness on visual search performance in this experiment, as measured both by ac-

curacy and reaction time, are closely similar to the e�ects of set size in conventional

visual search tasks using arrays of discrete items. When σRMS = 0.8, the reaction

time vs β slope is near horizontal implying that search is e�cient. As σRMS in-

creases the magnitude of the gradient increases implying that search is less e�cient.

At the rough end of the range, the task became very di�cult with target hit rates

far lower than those commonly encountered in visual search tasks (see Figure 4.4).

There was a similar pattern of results with the near-regular textures, with both the

density and regularity of textons a�ecting reaction times. While neither parameter

had a signi�cant e�ect on accuracy this is likely to be due to the use of a small

number of human observers with large inter-subject di�erences in terms of speed-

accuracy trade-o�s. One way to get round this problem is to use a target always

present experimental design (as will be done in Chapter 6).

I therefore conclude that it is possible to change the parameters of these contin-

uous, synthetic surface textures in ways that have systematic e�ects on ability to

identify a small anomalous region in the surface. The very small number of false pos-

itives recorded in the experiment indicates that observers did not have any trouble

in identifying the target once they �xated it; rather, the increase in di�culty with

rough surfaces came from an inability to identify the target pre-attentively based on

the contrast information present. Observers have to switch from using pre-attentive

vision to carrying out some sort of serial search strategy, leading to an increase in

both the mean number of �xations and the variation (Figure 4.13).

Analysis of distances between target and �xation when targets are identi�ed

demonstrates two patterns; on the majority of trials, �xation is within 1◦ of the

target when it is recognised, but on others it falls in a higher range centred around

6◦, indicating recognition of the target in peripheral vision. There is some evidence

that the second pattern is more common when surfaces are smoother, which would

be expected as the demands placed by the task on acuity of visual processing will

be lower on smoother surfaces. These data is likely to be biased towards smaller

distances. It is likely, especially for the smoother, easier trials, that the target is

identi�ed while �xation is elsewhere but a saccade is made to the target in the time

it takes to execute a keypress. This hypothesis is followed up and investigated in
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Section 7.5. Fixation of a target does not ensure that it will be recognised; on 20%

of trials when the target was missed, the target was �xated, but not detected, at

some point during the search.

This chapter also contained a comparison between human performance and Itti

and Koch's saliency algorithm, in terms of the number of �xations required to �nd

the target (Section 4.4). The model proved to be a good �t for human data in both

Experiment 1 (surface roughness) and Experiment 2 (target depth) over a wide range

of task di�culties. This is perhaps surprising since the model has been designed to

be a general purpose saliency model and has not been tuned to the task. However,

Experiment 3 shows that the model does not cope with changes in the orientation

as well as human observers and it struggles with some targets which humans can

�nd within a couple of seconds. This suggests that the model's orientation channel

is not functioning in the same way as in human visual search.
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Chapter 5

Models of Visual Search

In the previous chapter I compared Itti and Koch's visual saliency algorithm to

human performance in a series of visual search experiments involving a defect on an

otherwise homogeneous textured surface. While the model proved a good match for

the human data when a circular indent was used, it failed to mimic human behaviour

when an elongated target was used. In this short chapter I will give a comprehensive

review of previous work on modelling visual search before designing my own model

in Chapter 6.

A complete, computational model of visual search should possess three compo-

nents. Firstly some form of image-processing is needed for generating an activation

map. This map should re�ect the foveated nature of human vision (see Section

2.2.1) as the di�culty of a visual search task depends not only on the properties of

the target and background, but also the distance the target is from the point of �xa-

tion and/or centre of the image [Motter and Holsapple, 2007, Najemnik and Geisler,

2008]. Secondly, the model needs to possess a method for generating saccades and

choosing where to �xate next. Finally, a decision rule is needed, which can not only

recognise and identify the target, but also terminate a trial if it cannot �nd the

target. Most work on modelling search has concentrated on the �rst of these three

components. (Note: the design and implementation of decision rules is outwith the

scope of this thesis).

The aim of this review chapter is to identify what work has been done on com-

putational models of visual search. In particular, what approaches are best suited

to modelling human performance in the defect detection task in the previous chap-

ter. This literature review is split into three sections, starting with a discussion of

58



theoretical models and the importance of guidance in search. This is followed by a

discussion of computational models, �rstly for stimuli consisting of arrays of search

items, and then for more general, naturalistic stimuli.

5.1 Theoretical Models

Theoretical models accounting for visual search performance have mainly been con-

cerned with attentional processes rather than eye-movements. However, this has

not stopped these models being used to model �xations and saccades. (See Section

2.2.4 for a discussion of overt and covert attention and arguments for why eye move-

ments should be considered and included in search models). There have been three

main models of visual search: feature integration theory (FIT), its successor, guided

search (GS) and the signal detection theory based model (SDT). FIT and GS are

discussed below, while a discussion on SDT can be found in Section 2.2.3.

Feature integration theory was developed by Treisman and Gelade [1980] and

attempts to explain the apparent distinction between fast parallel and longer serial

searches. Feature searches are typically associated with searches in which the target

is de�ned in terms of a unique feature, such as colour or orientation while targets de-

�ned by a conjunction of features tend to require longer, serial searches. FIT makes

the assumption that only a small set of primitive features can support pre-attentive

parallel search and if these fail then a serial process will take place, searching through

all the items one at a time. The Guided Search Model was developed by Wolfe et al.

[1989] and improves on FIT by allowed the serial process to be guided. Wolfe et al.

argue that the existence of conjunction searches with shallow search slopes cause

a problem for FIT. To solve this problem, GS allows the serial search mechanism

access to the pre-attentive feature maps in order to facilitate guided search. For

example, Figure 5.1 shows a classic example of a conjunction search. Neither the

colour or orientation feature maps can locate the green, horizontal, target on their

own, but they can help the serial component of search, allowing all the horizontal

and green items to be picked out, reducing the number of items that need to be

inspected.

Guided Search has continued to be developed over the last two decades [Cave

and Wolfe, 1990, Wolfe, 1994, Wolfe and Gancarz, 1996, Wolfe et al., 1989] and is

currently in its 4th incarnation, GS4 [Wolfe, 2007]. While equations and parameters
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Figure 5.1: Exampe of a conjunction search. The search target is the green hori-
zontal bar.

have been put forward for some aspects of the model's behaviour, it's computational

aspect is still very limited in scope. Wolfe admits that the model is still limited to

object based search (such as in Figure 5.1) and has no mechanisms for partitioning

a continuous image into objects of interest [Wolfe, 2007].

GS4 allows both top-down and bottom-up information to in�uence the deploy-

ment of attention. In search, the bottom-up, saliency aspect is also referred to as

attentional capture. See Egeth and Yantis [1997], Yantis [2000] and Rauschenberger

[2003] for reviews. In GS, saliency is calculated by comparing the orientation and

colour between di�erent elements. If a search item di�ers in these dimensions from

other nearby items it it considered to be salient, while di�erences between further

apart items are considered less important. The top-down, guided, part of the model

is assumed to work on broad categorical representations. For example, if the target

is near horizontal, then attention will be directed towards search items with shallow

slopes, while near-vertical slopes will be neglected. The e�ects of top-down guidance

and bottom-up saliency are computed for each feature (colour and orientation) and

then combined to give an activation map.

Despite Wolfe's stated preference for studying and modelling covert attention

over scan-paths (see Section 2.2.4), saccadic selectivity has become a common way

of assessing the degree to which searches are guided [Findlay, 1997, Hooge and

Erkelens, 1999, Motter and Belky, 1998, Pomplun et al., 2001, 2003, Scialfa and

Jo�e, 1998, Shen et al., 2000, Tavassoli et al., 2009, Williams and Reingold, 2001,

Williams, 1967]. This involves assigning the endpoint of each saccade to a display

item. If search is guided then we would expect to see more saccades assigned to
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display items which share features with the target. For example, Motter and Belky

[1998] carried out an an analysis of scan-paths from rhesus monkeys during a search

task and found that they used colour to guide their search. Similarly, Shen et al.

[2000] carried out an experiment looking at saccadic selectivity during a conjunction

search. Their target was a red X, among red O's and green X's. They varied the

ratio of the two types of distracters and found that as the number of distracters

sharing the same colour as the target decreased, saccadic selectivity, in terms of

colour, increased.

There are some alternative ways to implement the concept of guidance. For

example, top-down processes could modulate the search features to maximise the

target's response, or to maximise the signal-to-noise ratio [Navalpakkam and Itti,

2005, 2007, Rutishauser and Koch, 2007]. Furthermore, although GS only considers

guidance in terms of top-down, low-level processing, other types of guidance can

in�uence search. For example Neider and Zelinsky [2006a] have shown that high-

level factors such as scene gist and context can in�uence search. They carried out

an experiment in which observers searched a photograph for either a jeep, blimp or

a helicopter and found that more �xations were directed towards the ground when

searching for the jeep, the sky when looking for a blimp and helicopter. Eckstein

et al. [2006] have produced similar results.

5.2 Computational Models of GS

In the previous section Wolfe's Guided Search model was discussed. This section is

concerned with computational implementations of GS. While GS is often taken as

the starting point for computational models, many details vary from model to model.

Two examples of computational models are the Area Activation Model [Pomplun

et al., 2000, 2003] and the Probabilistic Model [Rutishauser and Koch, 2007]. Both

of these models simulate human gaze patterns while searching for a target among

distracters. As abstract stimuli are used the feature extraction stage of these models

is fairly trivial as simple category labels (such as "`red"' and "`vertical"') are used.

However, both models diverge in their saccade selection algorithms and the analysis

used to compare the model to human performance.

Pomplun's Area Activation Model is based on the assumption that observers will

direct saccades towards regions of the stimuli that will give them maximum task
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relevant information. This means that not only are an individual item's features

important, but also its spatial location in relation to other task relevant items. The

model achieves this by applying a large Gaussian �lter (referred to as the �xation

�eld) to the feature responses to generate the activation map. Fixation locations

are assumed to correspond to the local maxima of the activation map and the size

of the �xation �eld is iteratively �tted to pilot data so that the model matches the

same number of �xations as human observers. The model uses a deterministic "local

minimisation of scan path length" algorithm [Pomplun, 1998, Zelinsky, 1996]: make

a saccade to the nearest local maxima that has not already been visited.

Target detection mechanisms are not considered and the model is only compared

to human observers on target absent trials. Furthermore, the Area Activation Model

does not allow for inhibition of return to decay over time and hence the model is

not capable of making re�xations: once it has �xated each local maxima in the acti-

vation map the search terminates. Because of this, only the �rst �ve saccades made

by human observers where analysed, in terms of saccade amplitude and saccadic

selectivity. The model was found to be a good approximation to human behaviour

under both measures.

While Rutishauser and Koch's [2007] model is also based on Guided Search, it is

di�erent to the Area Activation model in several respects: saccades are assumed to

be made to individual objects rather than centres of gravity and the saccade target

is determined in a more sophisticated way. Rather than use a deterministic rule, an

element of randomness is introduced and the activation values for each search item

are taken as the mean values for a Poisson process. For each saccade, the following

is computed for each search item x:

F (x) = λ(x) + E(r)k1 + δ (5.1)

where λ(x) is a sample from the associated Poisson process, and r is the distance

from the currently �xated item to x. The function E is set so that the model is

more likely to make saccades of a similar length to those made by human observers.

Finally, δ makes the model more likely to make a saccade in roughly the direction

as the previous saccade. The model chooses to make a saccade to the item which

gives the largest value for F . A simple inhibition of return mechanism means that

the last n �xated search items are not considered as potential saccade targets. Also,

unlike Pomplun's model, target detection is considered: on each �xation the model
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considers a set number of search items with the highest activation within D◦ of the

currently �xated target. The e�ect of varying the di�erent parameters is investigated

and the model is �tted to human data. It does a good job of matching human

behaviour in terms of the number of saccades required to �nd the target, saccadic

selectivity and saccade amplitudes.

5.3 Naturalistic Stimuli

The search models discussed so far have been limited in scope to discrete item

search. However, modelling visual search in naturalistic stimuli is a more di�cult

problem. While abstract displays contain clearly de�ned sets of search items, more

general stimuli do not. Even when photographic stimuli contain clear distinctions

between search items and backgrounds, we do not yet understand the relationship

between target-distracter and background similarities and how they a�ect task di�-

culty [Wolfe et al., 2002, Zelinsky et al., 1997]. The problem becomes more di�cult

when we consider camou�age backgrounds [Neider and Zelinsky, 2006b] where the

distracter items are salient but the target is not.

Furthermore, when we move to the task of modelling search on more naturalistic

stimuli we encounter the problem of deciding what features to use, and importantly,

how to measure them. From visual search experiments using discrete items we know

that a target's saliency is governed by factors such as target-distracter similarity

and the heterogeneity of the distracters in terms of basic features such as colour,

orientation and size. However, while it is easy to measure these properties for sets of

discrete search items, transferring them over to image-based stimuli is not a trivial

matter. In these, even simple low level features such as local contrast, colour and

orientation can be measured in many di�erent ways. Zelinsky [2008] sums it up well:

Complicating the extension of a search theory to realistic contexts is

the selection of an appropriate representational space. The problem is

that the dimensions of this space are largely unknown. Although most

people would agree that a co�ee cup consists of more visual features than

a coloured bar, it is not apparent what these features are.
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5.3.1 Guidance and Saccadic Selectivity in Natuarlistic Stim-

uli

Pomplun [2006] investigated how top-down knowledge about the target in�uenced

�xation locations in a visual search task using greyscale photographs of natural

scenes (landscapes, gardens, city scenes, buildings, and home interiors). On each

trial, participants were shown a di�erent target region to �nd in a photograph.

Hotspot maps, referred to as attentional landscapes by Pomplun, were constructed

for each image by centring two dimensional Gaussian distributions, with standard

deviations of one degree of visual angle, on each �xation location, normalising, and

summing across all �xations and observers. Intensity, contrast, orientation and spa-

tial frequency features were constructed and the target's features were compared to

the image regions �xated using the attentional landscape. Signi�cant interactions

between target and �xated features were found for all four features, however, only

the intensity feature provided a strong main e�ect for the target's feature indicating

top-down guidance. The other three features all exhibited signi�cant main e�ects on

the �xation regions indicating a bottom-up component. Chen and Zelinsky [2006]

carried out a similar experiment using photographs of everyday items as stimuli.

They used colour saturation as a way of controlling the items' saliency and com-

pared reaction times and saccadic behaviour between trials with and without target

preview. They found that when a preview was available observers' reaction times

were faster. Additionally, a higher percentage of initial saccades were directed to-

wards the target and the salient colour singleton only attracted attention when a

target preview was not given.

Saccadic selectivity has also been investigated in 1/f -noise stimuli [Rajashekar

et al., 2002, 2004, 2006, Tavassoli et al., 2007a,b,c, 2009]. The classi�cation image

(CI) paradigm is commonly used in visual discrimination tasks [Ahumada, 1996,

Beard and Ahumada, 1998] and Rajashekar et al. [2002] applied it to the analysis

of �xations made during visual search. This involves calculating the mean local

neighbourhood across all �xations made during a search for a simple geometric shape

(a circle, triangle, dipole) embedded in 1/f noise. With this stimuli the classi�cation

images resemble the search target [Rajashekar et al., 2002, 2004, 2006]. A simple

predictive model was implemented which involved �ltering the search stimuli with

the relevant CI. A k-means clustering algorithm was then applied to the empirical

�xations and the cluster centres were found to correspond to local maxima in the

prediction map. This method will be discussed further in 7.7.
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Tavassoli et al. [2007a] carried out a variant of this procedure that involved divid-

ing the 1/f stimuli into discrete subregions, with the target centred, and occupying

most of a region. The new method was found to be more e�cient than Rajashekar

et al. [2004]'s, requiring fewer empirical �xations to give target-like classi�cation im-

ages. It has also been used to investigate orientation anisotropies at �xated regions

in 1/f -noise [Tavassoli et al., 2007b]. A further study [Tavassoli et al., 2009] used

Gabor patches as the target and used spectral analysis to investigate �xated image

regions. They found evidence for both top-down and bottom-up guidance.

Najemnik and Geisler have taken a di�erent approach and have derived the

Ideal Observer for a search task involving a target embedded on noise Najemnik

and Geisler [2005, 2008, 2009] . This model is based on a detection rule, empirically

obtained from a signal detection experiment. The authors point out that the model

is theoretical and while it can make predications about human behaviour, it is not

a computational, image-processing model. It will be discussed in more detail in

Chapter 7.

5.3.2 Modelling Search with Naturalistic Stimuli

A possible starting point for a visual search model is to use a saliency algorithm

[Gao et al., 2008, Itti and Koch, 2000] (see Section 4.1). Unlike Guided Search

these saliency models are computational, in that they can be used to generate a

saliency map for any given image. Pre-attentive feature maps (colour, illumination

contrast and local orientation) are computed over several spatial scales. A sequence

of iterative inhibition algorithms and summations (cross-scale and cross-feature) are

used to combine these maps, resulting in a two dimensional saliency map.

Saliency algorithms can be easily used as visual search models: in fact the ini-

tial empirical tests of Itti and Koch's model were visual searches. Their model has

been shown to exhibit human-like behaviour for feature and conjunction searches

using red/green and horizontally/vertically orientated bars [Itti and Koch, 2000].

The model was also compared to human performance in a search task involving

photographs of landscapes. As an eye-tracker was not employed, a conservative es-

timate of three saccades per second was used to compare human performance with

the model. Itti and Koch found a poor correlation between human and computer

performance with the model outperforming the human observers on the majority

of the trials. A recent study [Navalpakkam and Itti, 2007] used Itti and Koch's
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algorithm to investigate di�erent top-down feature weighting mechanisms. They

concluded that features should be weighted in order to maximise the target to dis-

tracter signal to noise ratio. This di�ers from most other models which weight

features based on their similarity to the target.

A di�erent approach was taken by Rao et al. [2002]. They used a Gaussian

�lter and its orientated derivatives to construct feature vectors for every location on

the stimulus image. These vectors were compared to the response vector from the

target and the L2 di�erence between the two was used as a saliency map. In order to

simulate the human behaviour reported in Zelinsky et al. [1997], the model accesses

successively �ner spatial scales on each �xation. This mechanism allows the model

to generate scan-paths very similar to those seen in the human data. However, the

task used by Zelinsky et al. [1997] was relatively easy for participants to carry out:

they typically only needed to make 3 �xations to �nd the target. Furthermore, the

search items where arranged on an semicircle, with the �xation cross placed below

the items. This arrangement of search items appears to have encouraged observers

to show much less variation in their scan-paths than is typically seen in more general

visual search tasks and the �rst �xation was directed towards the centre of the semi-

circle in most cases. These two factors encouraged the human observer to behave

systematically. While this model shares some similarities with the saliency model

discussed above, the fact that it incorporates information about the search target is

a crucial di�erence.

More recently, Zelinsky [2008] has introduced his Target Acquisition Model

(TAM), which builds on the earlier work by Rao et al. [2002]. TAM is a computa-

tional model and has been designed to ful�l three criteria that Zelinsky suggests a

general search theory should meet. Firstly, Zelinsky argues that a model should be

computationally explicit. The model should also be able to operate over di�erent

classes of stimuli without needing di�erent parameters and should be able to work

on stimuli of di�erent complexities. Finally, any model of eye-movements should

incorporate a model of the foveated retina, as without one, eye-movements would

not be needed. In order to meet this last condition Zelinsky uses Geisler and Perry's

model [Geisler and Perry, 1998, 2002, Perry and Geisler, 2002].

TAM is an image based model and as inputs it is given an image of the target

(taken from the search stimulus) along with the search stimulus. It uses three

channels: luminance and two opponent colour channels. Each of these channels are

convolved with a bank of 1st and 2nd order Gaussian derivatives resulting in a 72
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dimensional feature vector for every pixel location in the retina-transformed search

image. A feature vector is also taken from one pixel in the target image, and this

is correlated with the feature vectors from the search image to give a target map.

An inhibition map is added to the target map in order to inhibit rejected distracter

objects. (The inhibition does not decay with time but this is suggested for future

work.) TAM includes a simple target detection rule which reports the target as

found if the maximum of the target map is greater than 0.995. If the target is not

found then the model makes a saccade, either to the current maxima (if it is not

already �xating it), or the spatial average of the target map.

Another recent computational model has been developed by Hwang et al. [2009],

which builds on earlier work by Hwang et al. [2007], Pomplun [2006] and the Area

Activation Model. The model used eight features: two opponent colour channels,

luminance, intensity, two features for direction, and two features for complexity.

Feature vectors from the target and the image were compared using the Histogram

Interaction Similarity Method [Swain and Ballard, 1991] and used to create simi-

larity landscapes and compared to the attentional landscapes obtained empirically.

These similarity landscapes are combined, although Hwang et al. argue that a

weighted product is more suitable for modelling top-down guidance than the more

commonly used weighted sum. They found that their model predicated �xation

locations of an observer as well as another observer's scan-path.

Finally, the computer vision community has also developed some models of visual

search. These models are slightly di�erent from the ones discussed above in that

they are not trying to model human behaviour and experiments are rarely carried

out. An example is VOCUS, developed by Frintrop et al. [2005] (also see Frintrop

[2006]). The model builds on earlier work by Backer et al. [2001] and Itti et al.

[1998] and applies a top-down modulation of feature maps. VOCUS has been shown

to work well in a variety of search tasks , successfully �nding the target in three or

fewer �xations.

5.4 Conclusions

In this chapter I have given an overview of the di�erent approaches that have been

used to design computational visual search models. As I have shown, these models

can be broadly split into two categories: those which are designed for stimuli con-

sisting of discrete search items and those which use image processing techniques and
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can be applied to more general (photographic) stimuli. The �rst group of models

[Pomplun et al., 2003, Rutishauser and Koch, 2007] will not work with the textural

stimuli used in this thesis as they contain no well de�ned search items.

A common feature of the search models that work on naturalistic stimuli [Hwang

et al., 2009, Rao et al., 2002, Zelinsky, 2008] is that they generate a feature vector

from a pre-de�ned target, and use this to weight the activation map. This require-

ment of having a perfect copy of the target as an input, without which the model

can not generate a valid feature vector for the target, does not hold for the surfaces

and defect targets considered in this thesis. Even the relatively small changes be-

tween circular indents can cause large changes in �lter responses. However as the

previous chapter showed, human observers are quite capable of �nding the defect

under a wide range of conditions. To get around this problem, I will use a similar

approach as Itti and Koch's visual saliency model and search for image regions which

di�er from their surroundings, rather than regions which are similar to a pre-de�ned

target.
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Chapter 6

An LNL-Based Search Model

6.1 Introduction

In Chapter 4 I investigated how human performance in a defect detection task

varies with surface and target properties such as regularity and orientation. Human

performance was also compared to a bottom-up visual saliency algorithm [Itti and

Koch, 2000, Walther and Koch, 2006]. The results showed that the model only

partially �tted the human data: in particular there is a discrepancy between the

performance of the model and human observers when searching for an elongated

defect (Experiment 3).

Chapter 5 contained a comprehensive review of how the problem of modelling

visual search has been tackled in the past and in this chapter I will attempt to

construct a search model which can simulate human behaviour in an unsupervised

surface defect detection task. The model is based on an LNL-framework (see Sec-

tion 2.1.2) and will be compared to human performance in a series of experiments,

using a target always present design. This will remove the need for considering

speed/accuracy trade-o�s. Furthermore, it avoids the problem of de�ning a decision

rule for the model for target absent trials. Instead, the model is assumed to �nd the

defect when it �xates on it and only one measure, the number of saccades needed

to �nd the target, needs to be used in order to compare performance between the

search model and the human observers.
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6.2 Texture Discrimination and LNL Models

The problem of texture segregation, segmentation and discrimination has been tack-

led by both the �elds of computer vision and perception [Bergen and Julesz, 1983,

Bergen and Landy, 1991, Julese, 1981]. Much of the modelling work has made use

of LNL models (linear-nonlinear-linear, also referred to as FRF1 and the backpocket

model) which are based on properties of the functional architecture of the primary

visual cortex [Bovik et al., 1990, Malik and Perona, 1990, Morrone and Burr, 1988,

Randen and Husoy, 1999a,b]. (See Section 2.1.2 for more details.)

As the LNL framework is both biologically inspired and an e�ective model for

texture segmentation, it will be used as the basis for the construction of a search

model in this chapter. Several other search models also make use of this framework

[Itti and Koch, 2000, Zelinsky, 2008] however they are rarely expliticity described

as such.

6.3 Model Design

The model has two parts. The �rst part takes the form of an LNL (or FRF) process

and is used to generate an activation map, A. One of the principles behind the

implementation of the LNL process is to keep it as simple as possible. For example,

unlike the visual saliency algorithm that was used in Chapter 4, the model detailed

here only contains an orientation channel (as again, colour is outside the scope of

this thesis). The contribution to saliency from image contrast is assumed to be

picked up in the orientation channel: the sum of the Gabor �lters over a single scale

gives an approximation to the bandpass �lters commonly used for contrast features

(see Figure 6.1). Secondly, rather than use an iterative inhibition-excitation process

to weight the individual feature responses, a far simpler non-linear process is used in

which the �lter response map is divided by its mean. Details are given in Sections

6.3.2 to 6.3.4.

The second part of the model is an algorithm for generating saccades. This in-

volved taking foveal vision into account, and including an inhibition of return (IOR)

mechanism so that the model does not immediately re-�xate previously �xated im-

age regions. In order to improve the �t with human observers, the model includes

1�lter-rectify-�lter
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Figure 6.1: The image above shows frequency domain representiations of all eight
Gabor �lters used in the model for a given spatial scale (r = 6). Note how it
approximates a DoG bandpass �lter
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a stochastic component and randomly selects one of the most salient regions in the

activation map to �xate.

6.3.1 Scope

The problem of target identi�cation is not considered here: the model will keep

making saccades until it has �xated on, or near, the target. As is common with

several other models of visual search, search behaviour in target absent trials is not

considered [Rutishauser and Koch, 2007, Zelinsky, 2008].

The model receives the test image, I, and the target's location as inputs, and

it is a guided search model in the sense that it directs saccades to local maxima

of the activation map. This guidance takes place in parallel with the whole stimuli

being considered on each �xation. However, as it is an unsupervised defect detection

model, it is not trained on the target or surface and hence does not incorporate any

top-down information about the properties of the background or target. Although

the model is not given any explicit top-down knowledge of the target's properties,

the defect is assumed to be detectable in terms of bottom-up features alone as it is

a unique anomaly on an otherwise homogeneously textured surface.

Target detection is assumed to either require a �xation or, alternatively, detecting

the target away from �xation will cause a saccade to be made towards the target: this

distinction is outside the scope of the model. This seems a reasonable assumption

as over 80% of human reponses in Chapter 4, Section 4.3 occured when they were

�xating within 1◦ of the target.

6.3.2 1st Linear Stage

The �rst stage is linear and consists of a bank of Gabor �lters. As the stimuli are

greyscale, colour channels are not considered. A dedicated contrast channel was not

used, as summing the Gabor responses for a given spatial scale approximates the

response of the band-pass �lter, which is commonly used to compute illumination

contrast. (See Figure 6.1 for an example.) Based on the results of pilot studies eight

equally spaced orientation channels were used.

Gabor �lters have parameters σu, σv, u0 and ϕ:

72



G(u, v) = e
− 1

2
(
(u−u0)

2

σ2
u

+ v2

σ2
v
)

(6.1)

where u0 = (60 · 1.8r+3)/1024cpd, σu = σv = 2r and r = 1, . . . , 7 is the spatial

scale. Eight orientation channels were used: ϕ = nπ
8
, where n = 0, . . . , 7.

6.3.3 Non-Linearity

The second stage is non-linear and it has two aims: �rst, it recti�es the negative

responses from the �lters and second, it applies weights to the feature maps to

increase the target's signal against the background noise. (Note: this noise is the

�lter's response to non-defective patches of the surface texture.) This weighting is

achieved by �rst normalising each response map to [0, 2] before then dividing each

map by its median pixel intensity. This means that maps with a small number of

local maxima will have a relatively low median value, < 1, and hence their peaks

will be emphasised relative to maps containing no strong peaks. A simple example

is shown in Figure 6.2.

6.3.4 2nd Linear Stage

The second linear stage consists of a smoothing �lter and response map summa-

tion. If the smoothing �lter is weak then the model will consider local maxima,

corresponding to small salient objects, as saccade targets. If a stronger smoothing

�lter is used then the model will direct its attention towards centres of gravity. This

allows the same model to potentially behave in a similar way to both models which

�xate centres of mass between interesting objects [Pomplun et al., 2000, Rao et al.,

2002] and to models which �xate individual search items, such as Rutishauser and

Koch's, [2007]. A two dimensional Gaussian with σu = σv = 3.75cpd is used for this

task.

Finally, all the feature maps are summed across scales, passed through the non-

linear operator again, before being summed across orientations to give the activation

map, S. Note that if I were to remove the normalisation and the median division

function from the 2nd stage to leave only the square then this would be equivalent

to a simple local energy estimator. However, I am only interested in detecting small
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Figure 6.2: Example of the non-linear step. (Note: this is a simple example with
dummy data to illustrate the non-linear step. No �ltering is applied.) The top three
plots on the left show noisy signals, normalised to [0, 2]. The top �gure contains
no signal, second top has one signal, while third top contains many spikes. The
bottom-left �gure contains the result when these signals are added together. The
corresponding �gures on the right show the result of dividing each signal by its
median. This has the e�ect of giving greater emphasis to signals with a strong peak:
the maximum for three signals, after the non-linear step, are 2.10, 4.77 and 3.18
respectively.
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regions di�ering in energy content from their backgrounds, hence the use of the [0, 2]

scaling and median division.

The end result of this process is the activation map, S(x, y). This gives an indi-

cation of how di�erent a region of texture is from its surroundings. This activation

map is then used to generate a sequence of saccades.

6.3.5 Generating Saccades

The model generates saccades using a three stage process. First a negative expo-

nential mask is used to weight the activation map to take foveal vision into account:

Fd(x, y) = S(x, y) · e−kd (6.2)

where d is the Euclidean distance between (x, y) and the current �xation location

(in pixels), and k is a constant (k = 0.0013). This process is a simple approximation

of foveal vision.

A more rigorous implementation would involve weighting each spatial scale sep-

arately, although work by Peters et al. [2005] suggests this o�ers little improve-

ment over the method used here. They compared a model based on previously

published contrast-detection and orientation-discrimination thresholds [Virsu and

Rovamo, 1979] with simpler approximations based on a two dimensional Gaussian

fall-o� [Parkhurst et al., 2002] and a negative exponential. They found that all three

models o�ered an improvement against a baseline model with no eccentricity e�ects,

and that the simple exponential method works at least as well as the more rigorous

model, which in turn out-performed the Gaussian mask.

Finally, a inhibition of return (IOR) mechanism is applied, implemented as a se-

ries of two dimensional masks centred on the location of previous �xations. Gaussian

masks are used for this, with the strength of inhibition decaying over time:

F (x, y) = Fd(x, y) ·
n∏

t=1

(1− 2

t+ 1
It(x, y)) (6.3)
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where t is the �xation number and It(x, y) is a two dimensional Gaussian mask

(normalised to [0, 1]) centred at (xt, yt) with σ = 45 pixels. This method was chosen

due to its simplicity. For more information on models of inhibition of return see

Klein [2000].

Results from a pilot study suggested, unsurprisingly, that a deterministic model

that �xates the maxima of the feature map (after applying the �xation dependant

processing) performs too well and is not able to respond to the stimuli in the same

way as human subjects; taking too few saccades to locate the target. To tackle this I

will use a similar approach as Rutishauser and Koch [2007] and use a simple stochas-

tic process is used: the k (= 3) largest local maxima in the resulting �xation map

are considered as potential saccade targets, F (xi, yi), and are assigned probabilities:

pi =
F (xi.yi)

k∑
i=1

F (xi, yi)

(6.4)

These are then used to choose which of the k largest maxima will be selected as

the target for the next saccade. The model will continue to make saccades until either

it is �xating within 1◦ of the target or a maximum cut-o� limit, of 300 �xations, is

reached.

6.4 Methods

In order to test the model against human performance a target always present visual

search task was carried out. How long people are prepared to search di�cult target

present/absent trials varies from person to person and depends on factors such

as observer tiredness and the ratio of target present to target absent trials. By

considering only the target present trials the interpersonal variance can be reduced

and the search process can be modelled separately from the decision process. The

experiments were set-up in the same way as Experiments 1-4, see Section 4.2 for

more details.
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6.4.1 Stimuli

The stimuli were created in the same way as those in Experiments 1, 3 and 4.

In addition to looking at surface properties, and target orientation, the target's

eccentricity (distance from the centre of the stimulus) was varied. Speci�c results

are given in Section 6.5.

6.4.2 Observers

Seven subjects were used for each experiment: some subjects took part in more

than one experiment, all had normal or corrected to normal vision, and all were

between 18 and 30 years old. Subjects were given several practice trials and they

were informed that the target would be present in all trials and would always be an

indent in the surface of the same size and shape (or a missing texton, in the case of

the near-regular experiment). They were instructed to respond by pressing the space

bar on the keyboard once they had found the target. No time limit was imposed

on the task. Subjects were told to inform the supervisor if they were having great

di�culty in �nding the target, in which case they were allowed to skip the trial (in

practice this accounted for less than 1% of trials).

6.4.3 Search Model

As the visual search model is stochastic it was run seven times to obtain a measure

for the average number of �xations required to �nd the target. The same stimuli

were used for both the human and computer vision experiments. The maximum

number of saccades allowed for the model was set to 300: this allowed the model to

�nd over 99% of the targets in the experiments detailed below which is comparable

with human performance. This maximum limit is somewhat arbitary and is only

included to stop the model endlessly looping when it can not �nd the target. The

small number of trials on which the model failed were not included in any further

analysis.
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6.5 Results from Experiments 5 - 7

The aim of these experiments is to compare how well human observers and the LNL-

based search model can �nd a small defect in an otherwise homogeneous surface

texture. In each experiment, the observers managed to �nd over 99% of the targets.

In the small number of trials in which they could not locate the target, they had

spent at least 2 minutes searching. These trials were not included in any further

analysis.

6.5.1 Experiment 5: 1/fβ-noise: Surface Roughness

The aim of this experiment was to compare how well human observers and our LNL-

based search model can �nd a small indent over a range of surface roughnesses.

Stimuli

In this experiment the target was a circular indent with a = b = 10, c = 2 pixels,

and a volume of 50 pixels3. The perceived roughness of the surface was varied to

change the di�culty of the search task (β = 1.6, 1.65, 1.7 and σRMS = 0.9, 1.1). For

each trial a target was positioned randomly on a circle, centred on the middle of the

image, with radius 1.7◦ ± 0.7◦, 3.8◦ ± 0.7◦ or 5.9◦ ± 0.7◦ visual angle.

Results

The psychophysical results in this experiment are shown in Figure 6.3. Comparing

these results with those in Section 4.3, Figure 4.4 we see that the mean number

of saccades to �nd the target is larger in the current experiment. This is because

the mean includes some di�cult trials which, if given the option, as in Experiment

One, the observer would likely have responded target absent. However, due to the

di�erent task they had to carry on searching.

All three variables had a signi�cant e�ect on the mean number of saccades: for β,

F (2, 5) = 43.1, p = 0.001; for σRMS, F (1, 6) = 71.8, p < 0.001; and for r, F (2, 5) =

14.6, p = 0.008. Additionally, there was a signi�cant interaction between the two
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parameters that controlled roughness, β and σRMS: F (2, 5) = 30.6, p = 0.002.

There was no signi�cant interaction between target eccentricity and either of the

two roughness parameters. The distributions of saccade amplitudes and orientations

are shown in Figure 6.4 and the distribution of saccade directions shows the same

horizontal bias as reported by Gilchrist and Harvey [2006].

6.5.2 Experiment 6: 1/fβ-noise: Target Orientation

Stimuli

This experiment is similar to Experiment 3, Section 4.3.3 and the target is again

an elongated indent. As observers have to carry on searching for the target and are

not given the choice of giving up and responding target absent , target orientations

close to vertical were not used: θ ∈ {90◦ ± ϕ|ϕ = 10◦, 15◦, 20◦, 30◦, 45◦, 90◦}, where
90◦ corresponds to the direction of illumination and, due to symmetry, 0◦ = 180◦.

Two values of β were used (1.6 and 1.7) and the target was randomly located with

the constraint that it was between 5◦ and 6.7◦ away from the centre of the stimulus.

Results

The results are shown in Figure 6.5 and, again, they agree with those in Chapter

4. Orientation has very little e�ect on the visibility of the target until it is near

vertical. Once the target's orientation is greater than 75◦ there is a rapid rise in the

number of saccades required to �nd the target. The e�ect is greater for the rougher

surface, (β = 1.6), than for the smoother (β = 1.7).

6.5.3 Experiment 7: Near-Regular Textures

Stimuli

In order to test the generality of the model it was also applied to a di�erent defect

detection problem: �nding a missing lattice point in near-regular textures. An

example is shown in Figure 3.2. Two texton densities where used, ρ = 1.875, and

ρ = 2.461 textons per degree. The near regular lattice governing texton placement
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Figure 6.3: Inter-observer mean reaction time (Left) and number of saccades to
target (Right) plotted against surface roughness for Experiment 5.
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Figure 6.4: Saccade amplitude histogram and saccade direction rose plot for Exper-
iment 5.
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Figure 6.5: Inter-observer mean reaction time (Left) and number of saccades to
target (Right) plotted against target orientation for Experiment 6.

was deformed by applying a normally distributed error to the placement of each

texton. By varying the standard deviation of this error, the regularity of the near-

regular texture can be controlled. This experiment used σp ∈ {0, 1/2, 1, 2}. See

Section 3.2.2 for further details. The target was randomly locations with eccentricity

≈ 3.33◦ or ≈ 6.67◦.

Results

The results from the psychophysical experiment are shown in Figure 6.6. All three

parameters a�ect the mean number of �xations required to �nd the target: for

σρ we have F (3, 4) = 41.629, p < 0.001; for r we have F (1, 6) = 28.309, p =

0.002 and �nally for ρ we have F (1, 6) = 25.698, p = 0.002. There is also an

interaction between the two parameters controlling the surface's appearance, σρ and

ρ, with F (3, 4) = 5.890 and p = 0.006. As with the 1/fβ-noise surfaces interactions

involving r are not signi�cant.
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Figure 6.6: Inter-observer mean reaction time (Left) and number of saccades to
target (Right) plotted against surface regularity for Experiment 7. The solid line
shows the results for ρ = 1.875 while the dashed line shows ρ = 2.461.
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Figure 6.7: Saccade amplitude distribution and direction rose plot for human results
on the near-regular textures, Experiment 7.
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Experiment Human Observers (std) LNL-based Model (std)

5: Roughness 7.02 (1.33) 7.80 (0.67)

6: Orientation 5.99 (2.01) 7.71 (0.30)

7: Near-regular 11.25 (2.57) 10.24 (1.01)

Table 6.1: The mean number of �xations required to �nd the target for Experiments
5-7, compared to the mean number of �xations required by the LNL-based model.

6.6 Comparison with Model

6.6.1 Surface Roughness

The mean number of saccades over all trials can be seen in Table 6.1. An independent

t-test comparing the human results with those from running the model seven times

gives t(12) = −1.381, p = 0.192. Therefore, the null hypothesis, that the means

of the human and model populations are not signi�cantly di�erent, is not rejected.

Figure 6.8 shows how the mean number of saccades taken by the human subjects

and the model to �nd the target varies with surface roughness. A four way mixed

model ANOVA was carried out on β, σRMS, r and δ (which distinguishes between

instances of the model and human subjects). As above (Section 6.5.1) the ANOVA

shows signi�cant e�ects for β, σRMS, r. However, δ does not have a signi�cant

e�ect (F (1, 12) = 1.8944, p = 0.194) and neither do its interactions: β × δ has

F (2, 1) = 0.427, p = 0.658; r × δ has F (2, 1) = 0.190, p = 0.829; σRMS × δ has

F (1, 1) = 0.01, p = 0.921. Similarly, three and four way interactions involving δ are

also non-signi�cant. Hence there is no evidence that the human observers and the

model are a�ected di�erently by any of these parameters.

6.6.2 Target Orientation

In Section 4.3.3 it was shown that Itti and Koch's 2000 saliency algorithm does

not give similar performance to human observers in a target absent/present forced

choice task. In particular, it appears to be too sensitive to changes in the elongated

target's orientation. In this section the LNL-based search model is compared to

human results in the target always present experiment.

The overall means are shown in Table 6.1. Again, the means from each run of

the model are close to the human means and an independent t-test does not detect
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Figure 6.8: Comparison between human results (Left) and the LNL-search model
(Right) in terms of the number of saccades required to �nd the target for Experiment
5.

any di�erences between the populations: t(12) = 1.67, p = 0.13. Neither the human

observers nor the computer model are a�ected by changing the target's orientation

until it nears vertical, the direction of the illumination vector (see Figure 6.9).

As the e�ect of θ is not linear, and the variance is not uniform, it is not ap-

propriate to carry out an ANOVA. However, it is clear from Figure 6.9 that both

the model and the human observers perform equally well when the target is easy to

�nd, and both respond to increasing task di�culty in a similar manner. The only

discrepancy between the two occurs when θ = 80◦ at which point the model fails

to match the mean human performance. However, this di�erence is not great and

there is a large amount of variance between the human observers. I conclude that

the model responds to changes in the target's orientation, θ, in a similar way as the

human observers.

6.6.3 Near-Regular Textures

Finally, the search model was tested on near-regular textures and the results showed

that the LNL-based model could successfully identify the target. Given that the

search model was designed and tested for a very di�erent class of stimuli, this is an

encouraging result in itself. Comparing the mean number of saccades required for

the model and human observers over all trials we �nd that there is no statistical
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di�erence, t(12) = 0.826, p = 0.372. (See Table 6.1.) However as can be seen from

Figure 6.10 the model's behaviour is di�erent as σρ is varied. While a four way,

between subjects ANOVA does not detect a signi�cant main e�ect for δ, F (1, 4) =

2.702, p = 0.131, the δ × σρ interaction is signi�cant (p < 0.001).

With both the model and the human observers, there is a large increase in the

number of �xations when high texton density is combined with high variability in

texton placement. However, there are also di�erences in performance as the task

parameters are varied; in particular, the observers were sensitive to the eccentric-

ity of the target, requiring more �xations to �nd a more eccentric target, whereas

this parameter does not a�ect the model. If we compare the saccade amplitude

histograms for the 1/fβ-noise experiment with the near-regular texture experiment,

we see that the human observers are somehow changing their search behaviour and

are making far more saccades with amplitude 0.5◦ − 1◦ (compare Figures 6.4 and

6.7). This di�erence appears to be independent of the parameters σρ, r, ρ, and is ex-

hibited by all subjects. This suggests that some feature of the stimuli not captured

in the activation map is causing a change in search patterns, shown as an increased

number of very short saccades. This pattern of search may be responsible for the

e�ect of target eccentricity on human performance.

6.6.4 Saccade Statistics

While the LNL-based search model succeeds in modelling human performance (in

terms of the number of saccades required to �nd the target), it does not account

for the selection of individual �xation points on each saccade, in trials where more

than one or two saccades were required to �nd the target. There was no apparent

relationship between human �xation locations and (non-target) local maxima in the

activation map (see Figure 6.11 for an example). As the example shows, human

observers often make long saccades that cannot be explained using the eccentric-

ity dependant exponential fall-o�. While one possibility would be that the fall-o�

function is too strong, this suggestion can be discarded as weakening the activation

fall-o� function would cause the model to diverge from human performance in terms

of number of saccades to targets at high eccentricities.

To explore whether Figure 6.11 is typical of the model's behaviour the saccade

targets for the model are compared with those chosen by human observers in Exper-

iment 5, (Section 6.5.1). Over all the trials and all non-target �xations, only 22% of
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Figure 6.9: Comparison between human results (Left) and the LNL-search model
(Right) in terms of the number of saccades required to �nd the target for Experiment
6.
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Figure 6.10: The results from Experiment 7 for (Left) ρ = 1.875 textons per degree
and (Right) ρ = 2.461 textons per degree.
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the saccades made by human observers were directed to within 1◦ of one of the three

saccade targets considered by the model. Furthermore, over 25% fell more than 4.3◦

(equivalent to a quarter of the display's length) away from the nearest point con-

sidered by the model. The LNL model is therefore able to predict the locations of

only a small proportion of non-target �xations during visual search. Furthermore,

most of the successful cases can be accounted for by chance. For example, let us

assume (a) that all (both the model's and human) saccades are no more than r in

amplitude, and (b) the three potential �xations considered by the model are sepa-

rated from each other by at least 2◦. In this case the �xations will occur somewhere

within a circle with area A = r2 and hence the probability of the human saccade

landing within 1◦ of one of the model's saccades is:

p =
3π

A
=

3

r2
(6.5)

If we take r = 4◦ (over half of the human saccades are under 4◦ in amplitude)

then human observers would be expected to �xate within 1◦ of one of the �xation

locations considered by the model 19% of the time. This is close to the 22% obtained

from the empirical comparison.

This analysis suggests that the LNL-based search model, while o�ering a good

prediction of the di�culty of the search task, does not succeed in modelling saccade

selections any better than if it did not possess an activation map.

6.7 General Discussion

The results from the three psychophysical experiments above agree with those from

Chapter 4. As well as investigating human search on 1/fβ-noise surfaces the ear-

lier chapter also compared human performance with Itti and Koch's saliency model

(Section 4.4) and found that the saliency model responded to increasing roughness

in a similar manner to the human participants, although the absolute number of

saccades did not match. However, in the orientation experiment the performance

saliency model fell steeply before that of humans as the target's orientation ap-

proached vertical.

The results presented in this chapter suggest that a simple LNL-based model,

using a Gabor �lter bank, o�ers a better match with human performance in this
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Figure 6.11: Comparison between model and human saccade selection. The red line
shows the saccade made by a human observer while the blue lines show the three
saccades considered by the LNL search model.
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search task. The �rst experiment involved searching for an indent on a rough, 1/fβ-

noise surface (Section 6.5.1). In this case the model was able to �nd the target

in the same number of saccades as human observers over a wide range of task

di�culties. The model also responded to changes in background roughness and in

target orientation (with respect to the illumination direction) in the same way as

the human observers (Section 6.5.2) Finally the model was evaluated with a quite

di�erent surface-target combination: a near-regular texture with a missing lattice

point (Section 6.5.3). Here, there were di�erences in the way observers and model

responded to some parameters of the task, particularly the eccentricity of the target,

but the mean number of �xations to �nd the target, across all conditions, was the

same in both cases.

6.7.1 Discrete Item Visual Search Stimuli

While the LNL-based search model was designed to �nd targets in naturalistic im-

ages it can also be applied to search tasks where the targets and distractors are

discrete items. Figure 6.12 shows an example of a standard pop-out e�ect in vi-

sual search where the target di�ers from the distracters in a simple feature. The

activation map generated by the model from this image shows a strong peak at the

location of the target. This demonstrates that the search model is not limited to

�nding targets in surface textures.

Most models that simulate search tasks among discrete items [Pomplun et al.,

2003, Rutishauser and Koch, 2007] depend on feature labels such as red/green, or

horizontal/vertical, rather than using statistics measured directly from the stimulus.

While the LNL-based search model has been primarily designed to �nd a single

target on a continuous, textured background, it can also be used as a model of

discrete item search. In this context, the LNL model has the advantage that by

varying the second linear �lter it can be made to carry out either an item-wise

search or it can �xate on centres of gravity, in a similar way to the Area Activation

model [Pomplun et al., 2003]. As human observers make �xations on both items

and centres of gravity, a model of visual search should incorporate both types of

behaviour. Since the parameters of the LNL-based search model were identical in

both the texture experiments, and in the search for a discrete item, (Figure 6.12),

these results suggest a generality beyond the context of 1/fβ-noise surfaces in which

the model was developed.
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6.7.2 Comparison with other Search Models

The model also compares well with other computational search models. Itti and

Koch's saliency model has been shown to provide a poor correlation with human

performance in search tasks using both landscape photographs [Itti and Koch, 2000]

and the 1/fβ-noise stimuli used here (Chapter 4). Although Rao et al.'s [2002] model

o�ers a very good simulation of human search, both in the number of saccades and

the locations of �xations, it has only been tested for one speci�c search task, in

which human observers needed only three saccades to �xate on the target. The

search task used to assess the LNL-based search model covers a much wider range of

task di�culty, with easy trials requiring only one or two �xations while the di�cult

trials need over 40.

The search task used by Najemnik and Geisler [2008] is similar to the one con-

sidered here, although they used 1/f -noise directly whereas here, a rendering model

was used to produce naturalistic images of textured surfaces. Their aim was to de-

rive the theoretical ideal observer, in terms of search strategies, and compare it to

human behaviour. While their model gives a good account of human search strate-

gies they do not propose what image features or �lters should be used to generate

the activation map. More importantly, they only consider a �nite number of pos-

sible target locations which has the e�ect of simplifying the derivation of the Ideal

Observer. While this gives a more elegant model, it means that their search strategy

can not easily be applied to my stimuli in which the target can be located at any

location (down to pixel level): Najemnik and Geisler consider 85 potential target

locations while we have 1024 × 1024 pixels to consider. Not only does the large

increase in potential target locations create computational problems, moving to the

pixel level causes some of the underlying assumptions of the model break down. In

particular, the activation at a particular pixel cannot be assumed to be independent

from its neighbours. In fact, due to the 2nd order linear smoothing �lter used in the

LNL model, every pixel will be correlated to some extent with its neighbours. For

this reason, the LNL model cannot be used directly as a front end to Najemnik and

Geisler's ideal search strategy. The same conclusion applies to any image processing

model that generates an activation map (such as those of Itti and Koch [2000], Rao

et al. [2002]). Additional processing would be required in order to reduce the infor-

mation present in the activation map to a small number of independent potential

target locations.
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6.7.3 Conclusions

I have shown that a model based on an LNL �lter bank can successfully model

human performance, in terms of the number of �xations required to �nd the target,

in a visual search task involving a target on a complex background. These stimuli

are naturalistic and allow us to create trials with a large range of task di�culties,

from easy (1-2 �xations to target) to di�cult (30+ �xations). Two di�erent classes of

surfaces were used as stimuli and the model gave a good account of human behaviour

over a range of surface roughnesses, regularities and target orientations. The aim

was to determine whether the information extracted from stimuli by the model

is su�cient to account for human search, and, to this end, the search strategy was

modelled as a simple stochastic process constrained by inhibition of return. However,

the model does not scan the stimulus in the same was as the human observers.

The following chapter investigates human search strategies on these homogeneous

surfaces in greater detail.
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Figure 6.12: Performance of the LNL-based search model on a discrete item search.
Left: array of search items. Right: Activation map. As can be seen, the target
produces a large response in the activation map and the model's �rst saccade is
directed towards the target.
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Chapter 7

Stochastic Search Strategies

7.1 Introduction

In the previous chapter a LNL-based search model was shown to provide a good

prediction of the di�culty of �nding a defect in a rough surface. The model was

tested over a wide range of perceived surface roughnesses and task di�culties and

made a similar number of saccades to human observers in all cases. However, the

model did a poor job of accounting for human scan-paths and search strategies and

only predicted human �xation locations at chance levels. This suggests that signal-

to-noise ratio in the activation map generated by the LNL-based model is a good

model for human performance, but the local maxima in the activation map do not

provide a good predication of �xation locations.

In this chapter I will explore search strategies and how much of a role visual

memory has in determining search performance. The �rst experiment (Section 7.3)

will investigate memory using a moving target paradigm [Horowitz and Wolfe, 1998].

This is followed by a comparison between human performance and a stochastic search

simulation. Unlike the previous model which was concerned with feature extraction,

the stochastic search simulation only attempts to model search strategy and saccade

choice. The model is outlined in Section 7.4 and uses the results of a signal detection

experiment (Section 7.5) for the target detection model. The model is compared with

human observers in Section 7.6.
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7.2 Literature Review

A complete computational visual search model contains two parts: a feature ex-

traction mechanism and a search strategy. In the previous chapter we explored the

feature extraction stage and modelled it using an LNL algorithm. While this model

provided a good �t with human data in terms of task di�culty (the number of �x-

ations required to �nd the target), it does a poor job of making human-like scan

paths.

The search strategy part of a model typically uses an activation map to generate

successive saccades. While a number of di�erent mechanisms for this have been

put forward, the most commonly implemented is the MAP Observer [Najemnik and

Geisler, 2005]. This strategy directs saccades to the local maxima of the activation

map, and a simple inhibition of return mechanism is used to stop the model return-

ing to previously �xated maxima. As most previous computational models have

primarily been interested in the feature extraction stage of search, the MAP (maxi-

mum a posteriori) strategy has often been assumed for simplicity [Clarke et al., 2009,

Itti and Koch, 2000, Pomplun et al., 2003, Rao et al., 2002, Rutishauser and Koch,

2007, Wolfe, 2007]. Memory is usually only implemented as an inhibition of return

process, and is frequently assumed to be perfect [Pomplun et al., 2003] in which

case the model never makes re-�xations. Wolfe [2007] suggests a more sophisticated

model for IOR but it is still tied to individual, discrete search items.

7.2.1 Systematic Search

Many models assume that search is systematic, or guided, in some sense. For ex-

ample, the Area Activation Model [Pomplun et al., 2003] visits local maxima in its

activation map using the rule `make a saccade to the nearest maxima that has not

been visited yet'. While the guided search hypothesis has been shown to be valid

for many kinds of search, due to the homogeneous nature of the stimuli considered

in this thesis it is unlikely to have as strong a role to play. (See Section 5.3.1 for a

discussion of guided search.)

Several general tendencies have been taken to be indicative of systematic search

strategies. For example, Gilchrist and Harvey [2006] argue that the presence of

horizontal bias in saccade directions indicates a systematic component in visual
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search. They suggest that systematic tendencies can be hard to detect in scan-

paths because of the interaction with salience-based object selection. Aks et al have

argued that the presence of 1/f dynamics in saccade-time series is evidence of a

systematic component in visual search that relies on memory of previous �xation

locations [Aks, 2006, Aks et al., 2002]. They carried out the same time-series analysis

on a random walk and found that it did not exhibit the same properties. However

the details of the precise nature of the random walk and the following comparison

were not included in the paper. Furthermore, it is possible that Aks' result is an

artifact of studying the compound time-series of large number of visual searches, one

after another. It has been shown that a coarse-to-�ne dynamic is often present in

saccade patterns during search [Over et al., 2007]. If we were to look at the saccade

amplitude time-series of a continuous sequence of individual searches, each with its

own coarse-to-�ne dynamic, then we would expect to see a strong low frequency

component which could, at least partially, explain Aks et al.'s result.

An alternative to the MAP searcher is the Bayesian Ideal Observer. Najemnik

and Geisler [2005, 2008] have derived the ideal observer for search for a small Gabor

patch, at one of 85 pre-determined locations in 1/f -noise. Unlike the MAP Observer

which makes a saccade to where it calculates that the target is currently most likely

to be, the Ideal Observer makes saccades in order to maximise its chance of being

able to �nd the target with the next �xation. Najemnik and Geisler conducted a

signal detection experiment and derived visibility maps from the empirical results.

These visibility maps were used to determine the probability of identifying the target

for given signal-to-noise levels and the distance from the current �xation location

to the target. These were then used to construct the Bayesian Ideal Observer for a

search with eye movements. The model was compared to human observers and was

found to o�er a good match in terms of the number of saccades to �nd the target,

saccade direction and �xation distribution. However, the Ideal Observer makes a

number of assumptions, such as the potential target locations being independent,

and it cannot be applied to search stimuli in the same way as the computational

search models discussed above [Hwang et al., 2009, Zelinsky, 2008]. Najemnik and

Geisler describe it as:

...complementary to existing computational models of visual search.

Unlike these previous approaches, it is not a heuristic model that can be

applied to arbitrary stimuli but a formal, parameter-free analysis for a

particular class of naturalistic stimuli. The ideal observer is not meant

to be a plausible model of human visual search...
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7.2.2 Memory in Search

A related issue to the question of guidance is that of the importance of memory in

visual search. Do observers remember the regions of the stimuli which they have

already searched? Do they remember what, and where they have previously �xated?

Again, as the stimuli under consideration here are homogeneous there are no salient

visual landmarks which can be used as a reference point by memory. Of course, the

boundaries of the stimuli can still be used as reference points.

Search can be systematic without relying on visual memory. For example, an

observer might decide to search for the target in a left-right, top-bottom manner.

In doing so, assuming a perfect target detection mechanism, the observer will visit

each image location at most once, without needing any memory of where she has

already searched.

Separating the e�ects of a search strategy from memory is di�cult. It is further

complicated by the fact that the human visual system is far from perfect and can

quite easily miss salient visual cues. For example, most of us have learnt from

experience that it is worth double checking places you have previously searched

when searching for a missing item. Eye-tracking data does not distinguish between

saccades made to previously visited areas that we remember searching earlier, and

those that we do not remember searching.

In the literature it appears that visual memory only has a weak role to play in

visual search [Boot et al., 2004, Horowitz and Wolfe, 1998, 2001, 2003, Kunar et al.,

2008, Wolfe et al., 2000]. This is not to say that we do not have a memory of where

we have previously searched, but that we do not utilise that knowledge to search

more e�ciently. Much of the recent research on memory in search stems from a

paper by Horowitz and Wolfe [1998] which suggested that visual search appears to

be amnesic. They carried out a visual search experiment using discrete search items

which were randomly relocated every 111ms. Perhaps surprisingly, they found no

di�erence in search e�ciency (RT v set size slopes) between this task and (normal)

static search. Although reaction times were slightly longer in the dynamic case

this was ascribed to decreased observer con�dence. This conclusion was further

supported by Gilchrist and Harvey [2000] who analysed scan-paths and compared

the number of re-�xations in the human data to the number predicted by simple

sampling with, and sampling without replacement models. They found that except
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for a short lived inhibition of return e�ect, there was little evidence of a memory

process.

McCarley et al. [2003] have found similar results using a gaze-contingent display.

In their search task observers were forced to choose between making a saccade to

either of two search items: one which had been previously inspected, and one that

had not. They found that while the re-�xation rate was tied to the number of

�xations since the item had last been �xated, there was only an e�ect for the �rst

4 search items after which the re-�xation rate was close to chance levels. Another

study by Horowitz and Wolfe [2001] employed a multiple-target search paradigm

(using normal, static displays). They found that a memory-free model gave a better

explanation of the data than a memory-driven model.

Wolfe et al. [2000] investigated `post-attentive vision' by carrying out a visual

search experiment in which the same search array was used from one trial to the

next. For each trial the observers were asked if a given letter was absent or present.

The results showed that search was no more e�cient in the repeated stimulus search

than when a di�erent stimulus was used for each trial. A similar experiment was

carried out by Körner and Gilchrist [2007] who asked observers to search for two

successive targets in the same display. They found that reaction times were shorter

in the second task, but only if the second target had been �xated recently during

the �rst search. This was further investigated by Kunar et al. [2008] who tried to

�nd out why observers do not use their memory of the search display to guide search

and if they can be encouraged to do just this under certain conditions. They found

that, although search performance was relatively ine�cient, it was more e�cient to

carry it out visually than to do a memory recall search. However, if only a subset of

the search items are ever relevant, observers can learn this and use it to guide their

search. However, search within this subgroup is still ine�cient.

Horowitz and Wolfe's [1998] conclusion was challenged by Kristjansson [2000]

who repeated their experiment, but instead of randomly relocating all search items,

the location of the target was swapped with that of a randomly determined distracter

every 110ms. Kristjansson found that under this condition, there was a signi�cant

di�erence between the dynamic and static conditions. He also carried out a second

experiment using the same random relocation paradigm as Horowitz but with a

larger range of set sizes: as set size increases, the proportion of search items that are

randomly relocated to a location that was previously occupied by an item increases.

The results showed that as the number of search items increased search became less
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e�cient in the dynamic case, while staying the same for the static trials. Kristjansson

concludes that memory process in search are tied to location. This interpretation

is supported by Beck et al. [2006b] who carried out a similar experiment using a

gaze-contingent display and found that changing the features of the distarcter items

had little e�ect on search, but changing their location did. A review by Shore and

Klein [2000] also supports the hypothesis that visual search makes use of several

memory processes: perceptual learning across blocks of trials, trial-to-trial priming,

and within trial tagging (IOR). They argue that Horowitz and Wolfe's conclusion,

that search is anemsiac, depends on two assumptions: that the same search strategy

is used in both the dynamic and static case and that search e�ciency is equivalent

in the two conditions.

7.2.3 Stochastic Search

Perhaps surprisingly, there does not appear to be a lot of literature on stochastic

search processes. Morawski et al. [1980] and Arani et al. [1984] derived a series

of models with varying degrees of systematicness and randomness. However, no

visual search experiments were carried out and the models were not �tted to human

behaviour. (Also see Melloy et al. [2006] for a similar study.) More recently Motter

and Holsapple [2001] used saccade distributions to calculate the probability that an

observer �xates on a target by chance. While this probability decreases with the

number of discrete search items, it continues to account for a sizeable fraction of

search performance. Greene [2008] used a random walk to investigate the distance

to target dynamics reported by Tseng and Li [2004] (who suggested that scan-paths

could be split into an ine�ective and e�ective stage, where the e�ective stage was

characterised by a monotonically decreasing distance to target). Greene's results

showed that an unguided random walk exhibited the same behaviour.

7.2.4 Conclusions

The above literature review suggests that the evidence for systematic search in

homogeneous stimuli is mixed. Memory for previously �xated locations does not

appear to play a strong role in search strategies. Evidence for systematic search

patterns is limited to statistical regularities, such as the horizontal bias in saccade
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direction [Gilchrist and Harvey, 2006] and the coarse-to-�ne dynamic in saccade

amplitude [Over et al., 2007].

These ideas are explored in the rest of this chapter. First, in Section 7.3, the

moving target paradigm is used with the 1/fβ surfaces. This is followed by a devel-

opment of a Stochastic Search Simulation which is compared against human search

strategies. This model is based on empirical saccade distributions and hence incor-

porates the horizontal bias and coarse-to-�ne dynamics described above.

7.3 Experiment 8: Moving Target

The aim of this experiment is to use the defect detection task developed here to test

Horowitz and Wolfe's conclusion that visual search has no, or little, memory with

the defect detection task considered here [Horowitz and Wolfe, 1998, 2001, 2003]. If

this holds true then we would expect that frequently changing the location of the

target would have little e�ect on search times.

7.3.1 Methods

Six participants took part and they were asked to locate a target as quickly and

accurately as possible. No maximum time limit was imposed on the task. The

experiment consisted of 225 trials, split into three blocks of 75. Three di�erent

surface roughnesses were used, β ∈ {1./59, 1.62, 1.65}, σRMS = 1.1. The Matlab

Psychophysical Toolbox [Brainard, 1997, Pelli, 1997] was used to display stimuli as

the software for the Tobii eye-tracker (Clearview and Tobii Studio) is not currently

capable of running more sophisticated experiments. This means that the eye-tracker

was not used in this experiment.

The target was located randomly on a lattice with spacing 0.84◦, although not

within 1.88◦ of the stimulus edge. Additionally, the target was not allowed to be at

one of the central nine locations at the start of a trial. Figure 7.1 shows all possible

target locations.

There were two dynamic �ash (moving target) conditions, s ∈ {0.75, 1.25}, where
s denotes the display time for each target location. After the image had been
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Figure 7.1: All the potential target locations for Experiment 8. Note: The target
was not allowed to start located in one of the nine central locations, but it could
however move there during a trial.
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displayed for s seconds, there was a brief mask (100ms) and then a new image

was shown, with the target at a new, randomly determined location on the same

background.

For each value of s there was a set of control trials. These were identical to

the dynamic trials except that the target did not move after each �ash. There are

referred to as static �ash. Finally, there was a static control case in which the target

did not move, and there were no �ashes.

Once the observers had pressed a button to indicate that they had found the

target and the reaction time was saved by the computer. A static image was then

shown with two targets - one at the current target location and one at the previous

target location. The observers were required to mouse click on the target to con�rm

they had indeed found it. Two targets were displayed to get around the problem

of observers identifying the target just before it moved, and responding with a key

press just after it had moved.

7.3.2 Results

The mean and median reaction times for each of the six observers are shown in

Figure 7.2. There does not appear to be any consistent di�erence between the

control, static and dynamic conditions. This is similarly true for the inter-subject

mean and median (see Figure 7.3).

7.3.3 Discussion

The results show that moving the target every ≈ 1000ms does not increase the

di�culty of the search. This suggests that the search process is not led by a memory-

based process. If it were then we would expect observers to �nd the static targets

more easily than the dynamic ones which can move to a location that has already

been searched.

However, it seems more likely that there are some problems with the design of

the experiment. Sudden stimulus onsets are known to be salient [Theeuwes, 2004,

Tsotsos et al., 1995, Yantis and Jonides, 1984] and the masking �ash may have

encouraged the observers to change their search strategy. Rather than searching
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Figure 7.2: Mean and median reaction times for each of the �ve individual observers
in Experiment 8. As can be seen, there are large inter-personal di�erences.
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Figure 7.3: Inter-personal mean and median across all six observers in Experiment 8.
There do not appear to be any di�erences between the �ve experimental conditions.

around the stimuli, observers might instead keep their attention directed towards

the centre of the stimuli and wait for the target to appear in their �eld of view

[Shore and Klein, 2000]. Unfortunately, as it was not possible to use an eye-tracker

in this experiment (due to software limitations and the lack of support for the

Tobii eyetracker in the Matlab Psychophysical Toolbox), this hypothesis cannot be

investigated further.

7.4 Stochastic Scan-Path Simulation

While the literature reviewed above (Section 7.2.2) is mixed, the overall picture,

together with the above experiment (Section 7.3) suggests that memory plays, at

best, a limited role in visual search. As there are no discrete search items, the

locational memory processes described by Kristjansson [2000] and Beck et al. [2006a]

have no search items to be based on: there are not previous items to remember

having visited, so observers only have a memory of `where' has been previously

searched to guide them. Similarly, while the LNL-model in the previous Chapter

took the same number of saccades to �nd the target, the results from 6.6.4 suggest

that human �xations are not correlated with maxima in the activation map.

If human search strategies are not heavily dependant on memory processes, or

guided by image statistics, then perhaps a random walk will provide a good expla-
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nation of human performance and scan-paths. To explore this further, the scan-path

data collected in Chapter 6 will be further analysed and compared with a stochastic

process.

As in Chapter 6, simplicity will be a guiding principle for the design of this

model. The simulation will use a target detection model based on the results from

a signal-detection experiment (see Section 7.5, below). This will provide us with

a model for the probability of an observer detecting a defect for a given surface

roughness and target eccentricity.

If the target is not detected in a given �xation, a saccade will be chosen from

the empirical data collected in Experiment 5, Section 6.5.1. This is done as it is

the simplest way to to make the stochastic simulation make human-like saccade

distributions. Separate distributions are used for di�erent �xation numbers and

location. The aim is to investigate if a model which does not incorporate any

explicit memory of previously �xated regions can mimic human search behaviour.

The resulting, randomised scan-paths will then be analysed in terms of performance

(number of saccades required to �nd the target), hotspot maps (how well distributed

are the �xation locations), re-�xations (is there evidence for inhibition of return in

surface search?), and Voronoi cells (how well distributed are the �xations on each

trial, and how e�ciently is the search conducted with time?)

7.4.1 Scope of the Search Simulation

Unlike the LNL-based model, the stochastic search simulation is not based on image

processing methods and is not given the image as an input. Instead, it is simply

given N = 1024 pixels (the size of the search area), the roughness of the surface, β

(used to determine the likelihood of detecting the target), and the target's location

(chosen randomly for a given eccentricity r). The initial �xation is set to the centre

of the search area.

7.4.2 Target Detection

On each �xation the probability that the model detects the target is given by p =

f(β, r) where r is the distance from the current �xation to the target and β governs

how rough the surface is. f is a linear regression model (Equation 7.1 below) based
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Figure 7.4: Saccade distributions from Experiment 5. (Left) A histogram showing
the distribution of saccade amplitudes, over all observers and trials. (Right) A rose
plot of saccade directions.

on the results from the Signal Detection experiment detailed below (Section 7.5).

For each �xation a random number x ∈ [0, 1] is generated. If x ≤ p then the

simulation detects the target, makes a saccade to the target's location, and the

search is terminated. If the simulation does not detect the target (i.e. x > p) then

a random saccade is made to a new location.

7.4.3 Generating Saccades

Version One

Empirical distributions of saccade directions and amplitudes obtained from Exper-

iment 5, Section 6.5, will be used to generate human-like scan paths. These are

shown in Figure 7.4 (see Section 6.5.1 for details of the experiment). The relation-

ship between saccade amplitude and direction is shown in Figure 7.5. As saccades

are not evenly distributed, in terms of direction, the data for this �gure has been

normalised in terms of saccade direction. As can be seen, there does not appear to

be a strong dependence between saccade amplitude and direction and hence version

one of the stochastic search simulation treated the two as independent distributions.

Figure 7.6 shows how mean saccade amplitude decreases with �xation number.

This coarse-to-�ne pattern agrees with previous �ndings [Over et al., 2007] and was

incorporated into the �rst version of the stochastic search model: for each saccade
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number t, 1 ≤ t ≤ 50 an amplitude from the distribution of saccade amplitudes

made by human observers on the tth saccade of a search trial was selected. If

the simulation needs to make more than 50 saccades to �nd the target, it draws

amplitudes from the distribution for t = 50. If the model chose a saccade that

would take it outside the search area, then it simply picked another saccade, until

it chose one that would keep it within the search boundaries.

While this simulation initially look promising it occasionally performed poorly.

In particular, the simulation would sometimes `get stuck in a corner or an edge.' An

example is given in Figure 7.7.

This appears to be caused by the simulation's overly-simplistic behaviour at the

boundary of the search area. The closer the current �xation location is to the search

boundary, the more likely it is that a potential saccade could take it outwith the

search area. In particular, long saccades are more likely to pass over the boundary

than short saccades. This means that the closer the model is to an edge, the more

likely it is to make a short saccade, which means the following �xation will also be

close to the edge. This behaviour does not appear to be present in the human data,

and will be investigated below.
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Version Two

The second version of the stochastic search simulation takes the location of the

current �xation into account by using di�erent saccade amplitude and direction

distributions at the edges and centre of the display. The search area was divided

into 5 × 5 equally sized sub-regions. Figure 7.8 clearly shows that the horizontal

�xation location has an e�ect on saccade amplitude (a similar result was obtained

for the vertical location). In particular, the shortest saccades are made away from

�xations located in the centre of the search stimuli while the longest are made away

from �xations in the corners of the display. This is likely to be at least partly down

to the fact that when we are �xating in the middle of the search area, the longest

saccade we can make, while staying inside the stimulus boundary is just under 12◦.

However, if we are �xating in a corner then it is possible to make a saccade through

22◦ of visual angle and still be within the boundary. As explained above however,

Version 1 of the stochastic search model actually behaved in the opposite way.

Figures 7.9 and give 7.10 more detail of how the saccade amplitudes depend on

both time and �xation location. However, now that we are dividing the data into

a large number of small subsets, it is become somewhat sparse and hence noisy.

To get round this, some of the subsets will be merged together. In particular, the

corner distributions will be merged together, after the equivalent re�ections in the
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horizontal and vertical axis. Likewise, all the edge regions will be merged to give a

distribution of edges from horizontal edges and vertical edges. Finally, the middle

nine subregions will be merged. Additionally, the data for �xation number will be

binned for 1 ≤ t ≤ 5, 5 < t ≤ 10, 10 < t ≤ 15 and t > 15. Contour plots of the �nal

distributions used in the simulation are shown in Figure 7.11.

7.5 Experiment 9: Signal Detection

The aim of this experiment is to measure the probability of target detection for

di�erent eccentricities and surface roughness combinations. This will then give a

visibility map which will give a simple model for the probability of target detection

at di�erent eccentricities and surface roughnesses.

The experimental task is a target present/absent forced choice. This di�ers from

the task used by Najemnik and Geisler [2008], which was a 2IFC (two interval forced

choice) blocked for spatial position. This meant that observers knew in advance

which location the target would appear in, and had to determine whether the �rst

or second stimulus of a pair contained it.

There are advantages and disadvantages of both methods. The target absent or

present approach allows us to determine how well observers can identify the target

when they do not know in which location it will appear, or even whether it is present.

However, this causes a problem with false hits as there is no way of knowing what

the observer incorrectly judged to be the target. This problem is solved using the

2IFC task, as the observer has to make a judgement about a speci�c location on the

stimulus. However, for target present trials we are no longer measuring how well an

observer can identify the target for di�erent roughnesses and eccentricities, but how

well can an observer detect the target if they know where it will appear. As discussed

in Section 2.2.4 it is known that attention can be deployed away from �xation and

in doing so increases our ability to discriminate the target in the visual �eld.

7.5.1 Methods

For the target present trials, the target was located at one of 72 potential loca-

tions: nine di�erent eccentricities were used 0.84◦ ≤ r ≤ 7.5◦, and eight evenly
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Figure 7.9: Each of the 5 × 5 subplots shows the number of �xations made in the
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Figure 7.10: Each of the 5 × 5 subplots shows how the amplitude of the saccades
made from the corresponding stimulus region changes with �xation number.
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are given for the corners (Top Row); horizontal edges,vertical edges, and the cen-
tre region (Bottom Row) of the stimuli. Subplots along each row show how the
distributions change as more saccades are made.
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spaced orientations. The target was made by subtracting an ellipsoid from the three

dimensional surface and subtended 0.66◦ of visual angle. Surface roughness was

controlled by β ∈ {1.6, 1.65, 1.7}.

For each parameter combination, twenty di�erent trials were created (by chang-

ing the random seed used to create the noise we can create di�erent, yet statistically

identical textured surfaces). Additionally, 160 target absent trials were included

for each value of β. This gave a total of 2160 target present trials and 480 target

absent. (The number of target absent trials was based on pilot results and ensured

that observers made roughly equal numbers of positive and negative responses. As

a large number of the target present trials were answered incorrectly we do not need

so many target absent trials.)

Two participants carried out all the trials, split into twenty subgroups, over a

number of days. They were paid ¿50 each. Within each subgroup of 132 trials there

were 33 runs of four trials. During each run the participants were instructed to keep

their eyes �xated on the centre of the image. Each trial consisted of a �xation cross

(500ms), stimulus (200ms), white noise mask (500ms), and �nally a �xation cross

was displayed until a target present or absent response was given.

7.5.2 Results

The observers' gaze location was sampled every 20ms and trials were included in

the analysis only if they satis�ed these conditions:

• The mean distance between the observer's gaze location and the centre of the

stimulus was less than 1◦

• The x and y gaze components had a standard deviation of less than 0.67◦

Trials in which �xation was not held at the centre of the image (14%) were

removed. The results for the two individual participants are shown in Figure 7.12.

For all cases, the accuracy for the target absent trials is > 90%, and hence false

positives will not be included in any further analysis. The directional data were

very noisy and hence all further analysis will assume an isotropic visibility map.
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Figure 7.12: Results from Experiment 9. (Top) Individual results for each observer.
(Bottom) Mean observer accuracy (solid lines) and the multi-linear regression model
(dashed).
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The two subjects performed similarly and the mean target present performance is

shown in Figure 7.12. This will be approximated by a simple multi-linear regression

model:

p(T |β, r) = 4.09β − 0.11r − 5.97 (7.1)

This regression model gives R2 = 0.934. Note: due to the obvious thresholding

e�ects, the data points for β = 1.6, r = 5.86, 6.69, 7.51 and β = 1.65, r = 7.51

where not included in the linear regression. Furthermore, p(T |β) is set to 0 for these
parameter values.

7.5.3 Conclusion

The two observers performed similarly in the task and a linear regression model is

a good �t with the results. This linear regression model will be used in the target

detection part of the Stochastic Search Simulation, as detailed above in Section

7.4.2.

7.6 Evaluating the Stochastic Search Simulation

Now that I have described a target detection mechanism (depending on r and β),

and the saccade distributions (depending on the �xation number, t, and location

(xf , yf )) we will compare the stochastic search simulation with the scan-path data

from the experiment in Section 6.5.1. As the simulation is also based on these data,

it follows that it will have similar saccade statistics to those described in Figures

7.4, 7.5 and 7.11. The interesting questions are:

• will the stochastic search simulation take the same number of �xations to �nd

the target as human observers do?

• will the simulation locate its �xations as e�ciently as human observers, despite

having no concept of memory, including IOR?
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Figure 7.13: (Left) Number of �xations required by the human observers and the
stochastic simulation to �nd the target. (Right) The number of re-�xations per
�xation made by the human observers and the stochastic simulation.

7.6.1 Number of Saccades

Considering �rst the performance of the simulation in terms of numbers of �xations

required to �nd targets, we see that it performs in a similar way to the human

observers in the previous chapter (Figures 7.13 (left)). While it �nds the target

in fewer �xations than the mean human observer, when we compare the individual

observers with the simulation in each condition we see that the model is within the

range we would expect from a person for β = 1.6. For β = 1.65 and β = 1.7 the

model performs slightly worse than human observers. However, if human observers

conducted systematic searches the opposite result would be expected: that the sim-

ulation's performance would become even poorer relative to human performance as

more saccades were required to �nd the target.

7.6.2 How Systematic are People?

Next, I compare how e�ciently human observers and the simulation cover the area

of the stimulus during search. If human search has systematic or memory-based pro-

cesses one would expect the stochastic search simulation to make more re-�xations

than the human observers. Indeed, as discussed above, previous studies have shown

this is the case in discrete item search [Klein, 2000].
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For the current comparison, the concept of a re-�xation is not as well de�ned:

we cannot talk in terms of discrete items, so instead, a re-�xation will be de�ned

as �xating within r = 1/2◦ of one of the previous n �xations. For each trial we

computed the number of re-�xations per �xation with n = 3, in order to investigate

short term IOR processes. This number gives us an indication of how strong inhibi-

tion of return (IOR) is in the search task considered here and the results (see Figure

7.13(Right)) show that humans appear to be no more systematic than a stochastic

process. (A larger value of n would of indicated a longer term memory process.)

This is not to say that there is no IOR in human search in more general, item-

based search tasks. Firstly, as our stimuli contain no search objects, any IOR process

would have to be operating spatially rather than being applied to search objects.

Secondly, the stochastic search model implicitly contains an IOR component as it

draws saccade amplitudes from the empirical distribution. However, it can see from

Figure 7.13 human observers do not appear to re-�xate recently �xated regions any

more or less than we would expect a stochastic, memory-less process to; if anything,

they make more re-�xations than we would expect. Moreover, this di�erence cannot

be attributed to human observers making two successive �xations at the same point,

as by design, the model makes these small saccades as frequently as the human

observers.

Another way to look for di�erences between the human observers and the stochas-

tic search simulation is to look at the overall hotspot maps of �xations (Figure 7.14).

Here we can see that both hotspot maps are similar, although the stochastic model

is slightly more biased towards the centre of the search stimuli, both in the hori-

zontal and vertical directions. Interestingly though, the human hotspot map does

not show the same pattern as Najemnik and Geisler [2008]. They found that hu-

man observers showed a preference for making �xations slightly above and below

the central �xation point. They used this to argue that their Ideal Observer was a

better �t than the MAP model.

Finally I will compare how systematic human observers and the stochastic search

simulation are by using the Voronoi method, proposed by Over et al. [2006]. If

human search has systematic properties, we would expect the proportion of the

stimulus area searched (i.e. falling within some criterion distance of a �xation) to

increase more rapidly over the course of a human search trial than a random walk

made by the model. The Voronoi method allows us to study the uniformity of

�xation density and involves computing the bounded Voronoi cells [Voronoi, 1907]
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Figure 7.14: (Top) Hotspot maps for human observer (Left) and the stochastic
search simulation (Right). Both appear to be well distributed around the search
area. (Bottom) Graphs showing how the density of �xations change in the (Left)
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Figure 7.15: (Top) Example scan paths and related Voronoi plots from human
observers. (Bottom) From the model.

for a set of �xation coordinates and looking at the distribution of cell areas. Some

examples are shown in Figure 7.6.2. In order to compare the stochastic simulation

with human observers for each �xation in each trial the Voronoi cells were computed.

For each �xation ft in a trial, the Voronoi cells made by the �xations fi, 1 ≤ i ≤ t

were created and the area (in pixels) of the largest cell was computed. See Figure

7.16 for an example of the �rst 10 �xations in a trial.

Figure 7.17 (left) shows how the mean maximum Voronoi cell over all trial de-

creases with successive �xations. As can be seen, the data from the human observers

quickly diverges away from the stochastic simulation. This means that the simula-

tion does not direct its attention to unexamined regions of the search area as quickly

as the human observers. However, the gap in performance does not appear to get

larger over time. To investigate this further, the rate of change was calculated, to

give an idea of how quickly the search area is covered. This is shown in Figure 7.17

(Right) and we can see that the di�erence in maximum Voronoi cell size occurs in

the �rst �ve �xations. After that, the human observers reduce the size of the largest

Voronoi cell at the same rate as a random walk.
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Figure 7.16: Example of Voronoi cells for the �rst 10 �xations of a trial.
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Figure 7.17: (Left) How the maximum Voronoi cell area changes with time. The
dotted lines show the seven human observers while the solid line shows the stochastic
model. (Right) This shows the derivative of the graph on the left: a measure of
how quickly the search area is covered. The main di�erence between the model
and human observers occurs during the �rst few �xations. After these initial few
�xations the human observers appear to be no more systematic than the simulation.

121



7.7 General Discussion

The results suggest that for visual searches involving locating a target on an oth-

erwise homogeneous surface texture human behaviour can be modelled closely by a

stochastic process. The random walk simulation �nds the target in a similar number

of �xations as a typical human observer and produces scan-paths that are spatially

distributed in a similar way to human scan-paths. The simulation also makes a

similar number of re-�xations and, except for the initial few �xations, appears to

search as e�ciently as a human observer.

However, this is not to say that the results challenge Guided Search: in fact the

two models could quite easily work together. In fact, the model presented here is

guided. When the target is salient against the textured background then the model is

likely to make a saccade to that location. One could imagine that if there are several

search items that could potentially be the target, as there are in most typical visual

search experiments, then a random walk model could be used to choose which item

should be �xated next. Also, although the stochastic search model did not need

any form of memory or inhibition of return, this does not mean that there is no

inhibition of return in any form of human search. Indeed, as the stimuli used in this

thesis contain no search objects, the results may imply that IOR processes cannot

operate with respect to spatial coordinates de�ned with respect to the stimulus

boundaries, but only with respect to discrete search objects. However, as can see

from Figure 7.13 (Right) human observers do not appear to re-�xate recently �xated

regions any more or less than a stochastic, memory-less process would be expected

to. Further research and experiments would be needed to characterise this behaviour

more thoroughly.

This is a somewhat surprising result given that Najemnik and Geisler [2005, 2008]

have shown that human observers appear to be near optimal in their search strategy.

Najemnik and Geisler also compared the spatial distributions of the �xations chosen

by their ideal observer, a MAP model, and human subjects, and found that both

human subjects and the ideal observer show a clear preference for �xation on small

regions above and below the centre of the image. However, there is no evidence for

this distribution in the experiments presented here: the human observers show no

preferences for �xating any particular regions (see Figure 7.14).

There have been a series of studies using Classi�cation Images to investigate

guidance in a search task involving targets embedded in 1/f -noise [Rajashekar et al.,
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2002, 2006, Tavassoli et al., 2009]. This involves recording all the �xation locations

and computing the mean region that is �xated on. For a search task involving a

geometric shape embedded in 1/f noise, these classi�cation images have been shown

to resemble the target which is being searched for. However these results do not

appear to hold when the analysis methods are applied to the data from Clarke et al.

[2009]. The classi�cation images obtained from the seven observers are shown in

Figure 7.18. This could be because either guidance does not play a signi�cant role

with these stimuli or, due to the small size of the target, there is a larger degree

of variance in �xation placement with respect to the intended point of interest.

This means that even if the observers were directing their attention to regions of

the surface that resembled the target, they would be unlikely to be visible in the

classi�cation images.

7.7.1 Conclusions

As stated above, a complete, computational visual search model should possess

two parts: a feature extraction front end and a search strategy. The aim of this

chapter was to explore to what extent a search strategy based on a random walk

could account for human performance. Previously implemented search strategies

have generally worked in a serial manner, checking items one at a time, with some

form of imperfect memory [Melloy et al., 2006, Rutishauser and Koch, 2007]. One

search model that makes use of parallel target detection over a serial sequence of

�xations is the Ideal Observer. One problem with this approach is that it assumes

that the target will be located at one of a prede�ned independent �nite number

of potential target locations. Unfortunately, this assumption breaks down when

image processing techniques are used, as the activation at any pixel is likely to be

correlated with its neighbours. Hence I have explored an alternative explanation

of human search strategies: a random walk. While the use of a random walk to

explain patterns of �xations is not new [Aks et al., 2002, Greene, 2008, Morawski

et al., 1980], our model is unlike earlier ones as it is based on empirical data. We

�nd that a random walk behaves in a similar way to human observers, both in terms

of the number of saccades required to �nd the target, and the spatial distribution

of �xations.

The results here suggest that inhibition of return, integration of information

across �xations, and more general memory based processes do not have a large role

to play in at least one type of search task (search for an inconspicuous target on
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Figure 7.18: Classi�cations from the experiments performed in Section 6.5.1. Each
classi�cation image shows the mean image patch �xated by each individual observer.
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a continuously textured surface). Future testing of models of visual search should

consider not only possible di�erences between search strategies on di�erent types of

stimuli, but also variation between observers in their strategies. It may be possible

to obtain evidence for more than one model of search strategy depending on the

observers tested.
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Chapter 8

Conclusions

The motivation behind this thesis was to conduct a rigorous investigation into per-

ceptual defect detection. As discussed in Chapter 2, previous work on defect detec-

tion algorithms has neglected comparing human and computer performance. Simi-

larly, the problem of �nding an anomaly on a homogeneous surface has received very

little attention in the �eld of visual search. The main contribution of this thesis is

to bring together relevant work on visual search, saliency, perception and texture

discrimination for the purpose of modelling human defect detection.

8.1 Contributions

8.1.1 A Review of Visual Search Literature Relevant to Sur-

face Defect Detection

This thesis brings together relevant work from the �elds of computer vision and

perception. As stated above, the performance of human observers is rarely consid-

ered when designing visual defect detection systems. A general overview of visual

search is provided in Section 2.2 while more detailed discussions on visual saliency

and computational models of visual search are given in Section 4.1 and Chapter 5

respectively. Finally, Section 7.2 reviews previous work on the role of memory and

systematicness in visual search.
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8.1.2 Synthetic Surfaces as Visual Search Stimuli

I have introduced rendered textured surfaces as novel stimuli for visual search ex-

periments (Chapter 3). These textures have a number of advantages over more

traditional stimuli. Unlike arrays of discrete search items, textured surfaces are

naturalistic in appearance. Unlike photographs of natural scenes, these stimuli are

created on a computer with controlled parameters. By controlling the seed used by

the pseudo-random number generator many di�erent, yet equivalent, textures can

be created for use in psychophysical experiments. Furthermore, they do not contain

high level, semantic information that is often present in photographs and can have

a strong in�uence on scan-paths.

Chapter 4 is given over to an investigation of how well human observers can

�nd surface anomalies and performance is found to vary systematically with sur-

face roughneess and indent depth and orientation (with respect to the illumination

direction). A widely used computational saliency model has been shown to only

o�er a partial explanation of human performance when searching for a defect on a

rough surface (Section 4.4). As discussed in Section 5.3, the nature of these stimuli

- continuous, with a category-de�ned target - means that existing computational

models of visual search can not be readily applied to the problem.

8.1.3 An LNL-based model for Visual Search

I have shown that an LNL-based search model can successfully model the perceived

di�culty of visual search for a small indent on a 1/fβ-noise surface (Chapter 6).

This model has been designed with simplicity in mind and hence only uses a single

bank of Gabor �lters, rather than seperate contrast and orientation �lter banks

(6.3). With the 1/fβ stimuli the model takes a similar number of saccades to �nd

the target as a human observer, and this holds over a range of task di�culties. In

particular, unlike Itti and Koch's sialiency algorithm, the LNL-model can match

human performance for a search for an elongated target over a range of orientations

(Section 6.5.2). The model also copes well with the near-regular surfaces.
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8.1.4 Memory and the Stochastic Search Simulation

To investigate the role of memory in visual searches for a target on a homogeneous

textured surface a Stochastic Search Simulation was designed (Section 7.4). This

simulation uses an empirically based linear-regression model for target detection

(Section 7.5) and uses the saccade distributions from Experiment 5 (Section 6.5.1).

The Stochastic Search Simulation is used to analyse human performance in Section

7.6 and appears to give a good account of human search behaviour in terms of the

number of �xations required to �nd the target; number of re-�xations; hotspot maps

and Voronoi cells. This suggests that memory does not play an important role in

visual searches for a target on a homogeneous textured surface.

8.2 Future Work

This thesis has provided a rigorous framework for investigating automated surface

defect detection and there are numerous ways in which this research could be con-

tinued and expanded. For example, it would be interesting to try and combine the

stochastic search simulation with an image processing model (which would replace

the linear-regression model currently used to model the probability of detecting the

target on a given �xation). Unfortunately the current version of the LNL-based

model is not suitable for this task: as the target is not always the activation map's

global maximum (particularly for rough surfaces) the model cannot distinguish be-

tween the target and false positives. Common image processing methods such as

matched �lters do not appear suitable for this task either as it is unclear how surface

roughness would have an a�ect on task di�culty.

Another important problem, (which has been outside the scope of this thesis) is

modelling why - and when - human observers decide that a surface is defect free.

This is a challenging problem as it can depend on the interpersonal di�erences and

the rarity of defective trials. However it is a vital part of any real-life defect detection

system as most of the samples on a production line will be defect free. Related to

this is the issue of texture homogeneity: by how much can di�erent image statistics

vary before observers decide that there is an anomaly in the surface? Instead of

localised anomalies (defects), texture gradients could be introduced. While texture

discrimination has received a lot of attention in the vision sciences, most work

has investigated what features facilitate pre-attentive texture discrimination. The
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question of modelling attentive discrimination, using tasks as di�cult as the visual

searches in this thesis, has received far less attention.

There is also a wealth of surface textures that can be used to explore how models,

and human observers, cope with di�erent visual stimuli. There are many di�erent

texture features and dimensions [Emrith, 2008] and it would be interesting to at-

tempt to model how the saliency of textural anomalies varies with other surface

features. Illumination conditions can also be changed and are likely to have an

e�ect on performance.
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