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Abstract

This thesis is concerned with the 3D estimation of rough surfaces from their
intensity images. A technique which combines Photometric Stereo and frequency
integration is proposed. The combination of these two standard methods for re-
constructing rough surfaces is novel. We refer to this technique as the Benchmark
technique. Two novel recovery algorithms which rely on assumptions about the
linearity of the surface reflectance are also presented. We refer to them as the Opti-
mal Linear Filter and the Linear Photometric Stereo. The proposed methods differ
in the information that they require as well as in the assumptions that they make
about the surface.

The ability of the proposed techniques to estimate rough surfaces is assessed using
simulation and real data. The assessment considers a diverse set of textures including
those that are challenging for the algorithms, such as very rough or specular surfaces.
The most robust estimation is given by the Optimal Linear Filter. However this
technique requires information about the surface topography, which is usually not
available. Between the alternatives, the Benchmark technique gives more accurate
reconstructions.

A post-processing step which can be used to improve the surface estimate is
presented. This minimises the brightness error using an iterative approach. When
the Linear Photometric Stereo method is combined with the post-processing step,
its performance is similar to that of the Benchmark technique, despite requiring
one less image. However the Linear Photometric Stereo algorithm is restricted to
constant albedo surfaces. The choice of the most appropriate method is determined

by the application requirements.



Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with the non-contact recovery of rough test surfaces. Our
aim is to reconstruct an accurate three-dimensional heightmap of the surface. There
are many applications of surface recovery, e.g. surface inspection [1], corrosion mon-
itoring [2], fault detection [3], face recognition [4], segmentation [5] and classification
[6], automated assembly [7].

Several non-contact methods have been proposed for measuring depth [8]. They
can be divided into direct and indirect methods. Direct methods measure range ex-
plicitly [9]. Time-of-flight techniques [10], for instance, measure range by estimating
how long it takes light to reach the target and return to the sensor. A short, intense
pulse, emitted from a laser, travels toward the surface, and a fraction of the signal is
scattered back to the sensor. This approach is known as pulsed laser time-of-flight.
Phase-shift based systems send a modulated optical signal to the surface. Range is
measured by calculating the phase shift of the received signal. Depth information
is the only information available in time-of-flight systems. They are usually compli-
cated and expensive systems that take a long time to measure a 3D surface shape
accurately.

Indirect methods estimate distance by measuring parameters calculated from
intensity images of the illuminated object. Information about the reflectance or the
lighting conditions of the object can also be determined with these systems. We

discuss two categories of indirect approaches: Shape from Shading techniques infer

1



the shape of surface facets [11] from their intensity; the second category estimates
range by measuring how two or more images correspond in terms of focus and spatial
position. Stereo Vision, Optical Flow, Shape from Texture and Shape from Focus
belong to this second category.

Stereo Vision uses triangulation to compute depth [12]. Optical flow calculates
the relative distance to points on the surface of an object by analysing how image
points flow from one frame to the next [13]. The problem with these two algorithms
is that they require a relationship between image points in one frame and the same
points in another frame. This is known as the correspondence problem. The ob-
jective of Shape from Texture is to estimate the orientation of a scene plane from
a perspective image under the assumption that the scene is coated with texture
[14] [15]. Shape from Focus methods use a sequence of images taken by a single
camera at different focus levels to compute depth of objects [16] [17]. These two
techniques are more suitable to recover the shape of objects than the structure of a
rough surface.

Shape from Shading techniques measure the surface shape by analysing the ra-
diometry of image formation [18]. This method requires some control over the
lighting conditions of the scene. However, it is a simple, computationally inexpen-
sive, fast technique that permits an accurate reconstruction of the surface shape.
Its operating range varies from a few millimetres to thousands of meters depending

on the application. It is this category that is the subject of this thesis.

1.2 Scope

This work treats the problem of recovering the three-dimensional structure of a
rough, textured, surface. Among the reviewed non-contact methods, we found Shape
from Shading techniques most suitable. The problem becomes one of estimating the
surface shape from its images.

Although Shape from Shading has been extensively used to recover the 3D struc-

2



ture of a scene, it is been mostly applied to smooth surfaces [18] [19]. In this thesis,

we investigate the less thoroughly researched problem of recovering rough surfaces.

We estimate depth and not gradient. Neither do we seek to recover the reflectance

of the surface nor the lighting conditions.

The observed image is a function of the surface. However, it is also dependent

on other variables. In the case of rough textured surfaces, the observed image is

the perceived texture. This consists of intensity variations in the image plane which

are due to a projected illumination pattern, surface markings!, the interaction of

illumination with a rough surface or any combination of these. Furthermore, the

surface image depends on the geometry of the imaging system and on the imaging

device. In defining the scope of this research it is useful to describe the assumptions

on the imaging process as well as on the characteristics of the test surfaces:

1. The camera is static throughout the imaging process and it is placed directly

above the surface. A Vosskiihler?, 12 bit monochrome camera with constant

gain is used.

The projection of the surface onto the CCD array is assumed to be ortho-
graphic.
The source is a point light source at infinity, so that the illumination incident

on the scene is considered to be uniform in direction and intensity.

The position of the light is controlled so that the surface can be lit from

different directions.

The surface is globally flat, i.e. its local variation is limited and each of its

partial derivative fields sums to approximately zero.

Furthermore, it is continuous and rough with low slope angles. The surface

roughness is due to a lack of correlation amongst neighbouring slopes.

LWe refer to the surface marking as the albedo texture.

2
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7. The surface is assumed to have a uniformly matte or Lambertian [20] re-

flectance, i.e. it contains only topographic texture®.

The perceived texture is due only to surface relief. Thus we refer to texture
meaning surface topography. This is a consequence of assuming a uniform intensity

(point 3) and a constant albedo surface (point 7).

1.3 Contribution
The author believes that the contributions of this thesis are fourfold:

e In this work a problem that has been neglected in the literature of Shape from
Shading is tackled: 3D estimation applied to rough surfaces. The assump-
tions about the surface smoothness adopted by most Shape from Shading
techniques, make them unsuitable for rough surfaces; though some of these
algorithms have been tested on rough surfaces and have shown an acceptable
performance. However it is the author’s belief that an approach which does
not rely on smoothness assumptions provides a better choice for rough surface

reconstruction.

e The combination of Photometric Stereo estimation with global frequency in-

tegration to recover rough surfaces.

e Two novel recovery algorithms are proposed. Both are simple techniques which
require few intensity data to solve for surface height. And, importantly, both

can be applied to rough surfaces.

e Finally, an assessment of the novel recovery algorithms is provided. Their
performance is compared to that of the Benchmark technique on synthetic

and real data.

3Term used to refer to the three-dimensional variation, or relief of a surface.



1.4 Thesis organisation

Chapter two is concerned with the topographic shape of the test surfaces. The
chapter starts by defining relevant terms, such as texture, surface roughness
and surface directionality. The synthetic and real test textures are then intro-
duced. The basic characteristics and assumptions about the textures are high-
lighted. Three well-known synthetic surface models are defined. These models
are parametric and can be used to generate a variety of rough surfaces. A
description of the real data which covers their topographies, reflectance char-
acteristics and degrees of directionality and roughness is introduced. The

validity of the surface assumptions on our real data is investigated.

Chapter three reviews surface-to-image models. First a definition of shadowing is
given, some radiometric terms are defined and the imaging system is described.
Then the background theory of light reflection is reviewed. Existing reflection
models are surveyed. The three most appropriate models for our simulations
are more extensively described. Finally, the described reflection models are

assessed through the use of simulation.

Chapter four surveys the existing literature of Shape from Shading techniques.
Special attention is paid to one of these methods: Photometric Stereo. The
advantages of using this method for the recovery of rough surface are discussed.
Since the aim of this thesis is height estimation, the surface gradient has to be
integrated. Integration techniques are then reviewed concluding that global
integration is more appropriate for our purposes. In this chapter a benchmark
recovery technique is described. It combines a successful Photometric Stereo
technique with a well-known frequency integration algorithm. The combina-
tion of these two standard components make the recovery technique suitable

for rough surfaces.

Chapter five introduces our contribution to shape recovery. The chapter starts



with a survey into 2-light Photometric Stereo techniques. The suitability of
the reviewed techniques for textured surface estimation is discussed. Next
two novel two-light shape estimators are proposed: the Linear Photometric
Stereo technique and the Optimal Linear Filter. Their advantages for height
recovery are reviewed. Several surface assumptions made for the derivation of

our algorithms are summarised.

Chapter six argues the importance of optimising the lighting conditions to im-
prove surface estimation. The aim of this chapter is to find the best lighting
geometry. The optimal number of light sources as well as the best position for
them is investigated in this chapter. The conclusions drawn from this inves-
tigation are justified both by reviewing the literature and through the use of
simulation. An optimised implementation of the novel recovery techniques is

then proposed.

Chapter seven presents an assessment through simulation of our novel surface es-
timators. The assessment compares the performance of the proposed recovery
methods to that of the Benchmark technique. The robustness of our algo-
rithms is tested against the effect of increasing the surface roughness, varying
the surface reflectance, shadowing and noise. The scope of the algorithms and
their expected accuracy is then stated. Some limitations of the simulation are

reviewed and the necessity for a more realistic assessment is highlighted.

Chapter eight presents an assessment of our novel surface estimators on real data.
The Linear Photometric Stereo technique is tested and compared to the Bench-
mark technique. Rendering is presented as a possible approach for assessing
the recovery in the absence of fully calibrated data. Surface recovery is assessed
against surface roughness and surface discontinuities. Furthermore, a range of
textures with different topographies and reflectance is recovered. Some sur-
faces that severely violate the surface assumptions are also estimated to test

the limits of our recovery methods. We argue that the Linear Photometric
6



Stereo technique is not sufficiently accurate.

Chapter nine reviews regularisation techniques to identify an efficient scheme
which improves the Photometric estimate. A simple optimisation technique
to be used with the Linear Photometric Stereo algorithm is presented. The
assessment through rendering of the optimised surface estimates is repeated.
The issues of robustness against surface roughness, discontinuities, surface to-

pography and reflectance are again investigated.

Chapter ten concludes the thesis. The contributions of this research are sum-
marised and the advantages and limitations of the developed methods are

pointed out.



Chapter 2

Topographic Texture

The algorithms proposed in this thesis use image intensity to estimate the surface topog-
raphy. The intensity is a function of the surface slope, its reflectance and the illumination
conditions. We benefit from the effect that varying the illumination has on the image,
to emphasise the surface shape. Furthermore, we want our algorithms to be robust to
the type of surface reflectance. This chapter is concerned with the shape of our test
surfaces and next chapter explores their reflectance and reviews reflectance models.
This chapter is an introduction to the synthetic surface models and the real textures.
We start by defining relevant terms. The basic characteristics and assumptions about our
textures are highlighted. We review three synthetic surface models that are well-known
in the literature. These synthetic models are used to generate data for our simulations.
We describe the real surfaces in terms of their topographies, reflectance characteristics
and degrees of directionality and roughness. The validity of the surface assumptions is

investigated for our real data.



2.1 Definitions

We define the concepts that are important for understanding the problem: we give a
working definition of texture; we describe several measures of surface roughness and

a measure for directionality; we then give examples of smooth and rough surfaces.

Texture is the term we use to characterise the structure and detail of the surface
of a given object. It is an important feature for image processing and pattern
recognition. Texture can be seen in images ranging from satellite data to microscopic
images. Despite its importance and ubiquity in image data, texture lacks a precise
definition. One of the most common definitions describe texture as being generated
by one or more basic local patterns that are repeated in a periodic manner over some
image region. This definition is most applicable to deterministic textures. Images
formed by natural physical processes, such as rocks or aerial photographs, rarely
possess a basic pattern nor a dominant repetition frequency. However, they are not
completely random, although they can be considered stochastic processes. These

are the type of textures that are the scope of this thesis.

Surface roughness Our textures are globally flat rough surfaces with low slope
angles. Thus surface roughness is not due to the presence of high slope facets but
to a lack of correlation amongst neighbouring facets. A single parameter is not a
sufficient description of surface texture, though surface roughness does measure a
characteristic which is relevant. The most common surface statistical parameter is
the standard deviation of the heights of a surface, i.e. root-mean-square roughness

(rms roughness). For a single line of profile data, it can be obtained as follows:

d= = z_: [s(x) - %}2 (2.1)

where s(z) represents the height of a surface at a point = along the profile, s(x)
is the expectation of s(z) and n is the number of discrete, equally spaced, measured

points along the profile [21]. Rms roughness is also designated by R,.
9



Another common parameter to measure roughness is the average roughness R,,.
It is simply the average of the absolute values of the surface height variations mea-
sured from the mean level along a line of profile data [21]. Expressed in equation

form, this is:

> ls(z) = s(o)] (2.2)

We compute rms roughness and average roughness for all points of the 2D tex-
ture. Thus these parameters do not provide information about the surface direction-
ality. We need a parameter to measure directionality. For a continuous surface, the
surface slope in a particular direction can be defined as the tangent to the surface in
that direction, and the rms slope is a unique well-defined quantity [21]. The direc-
tionality of the slope distribution may be parameterised computing the rms slope of

the surface in the direction of the x and y axes, prms and Gry,s:

2

S \ %Z Os(z,y)  0s(z,y) (2.3)

ox ox
1 Zn [0s(z,y)  Ds( )_2
s(z,y s(z,y
rms — - - 2.4
¢ \ny_l I oy oy | (2:4)

Parameters determined from rough surface measurements can often be subject
to artifacts of the measuring process: the measured profile can be affected by mea-
surement variables such as sampling frequency, sample length, discretisation inter-
val, instrument resolutions and sample shape and size. The value of rms slope is
particularly dependent on the measuring process [21]. Rms slope, rms roughness
and average roughness are only defined for surfaces whose power spectra are band-

limited.

Directionality We define a single quantity that combines the directional infor-
mation contained in the vertical and horizontal profiles. We assume that the surface
grain is aligned with one of the axes and we measure the ratio:

10



Figure 2.1: Synthetic surfaces: Sphere (left) and Rock (right)

directionality = d = _ Prms (2.5)
meS + qrms

Smooth and rough surfaces We define and give examples of smooth and rough
surfaces. No measure of roughness can completely describe the surface topography.

Figure 2.1 shows two synthetic surfaces which have the same reflectance char-
acteristics and are imaged under the same lighting. On the left, a hemisphere is
rendered: its surface is smooth. The surface on the right is a globally flat rough
rock. Figure 2.2 (a) shows a line profile of the surfaces. The roughness measures
for both surfaces are shown in Table 2.1. The sphere has higher values of roughness
than the rock. The average roughness and the rms roughness are larger for the
sphere since it presents large height deviation from the mean level. The rms slope
is larger for the sphere because the facets present a wider range of slopes. We only
consider globally flat surfaces to avoid this ambiguity. The surface roughness, that
we refer to in this thesis, is not due to high slopes but to neighbouring facets with

very different low slopes (rapid changes).

Resolution We should also bear in mind that augmenting the resolution of the
observed surface makes it appear rougher. Figure 2.2 (b) shows the impact craters
on the surface of Jupiter’s moon Ganymede. The image was taken by NASA’s
Galileo spacecraft. North is to the top of the image and the Sun illuminates the
surface from the West. The higher resolution images show that even smooth-looking

terrain appears rough at fine scale.
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(a) Profile of the two synthetic surfaces.

Figure 2.2: (a) Surface profiles; (b) Surface of Ganymede

(b) Surface of Ganymede, Jupiter’s moon.

Roughness || Sphere | Fractal
0 22.11 6.39
R, 19.15 4.54
Drms 1.34 0.55
Grims 1.34 0.55

Table 2.1: Roughness measures for the smooth sphere and the rough fractal
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Shape from Shading techniques estimate the surface facet from the image pixel.
The slope of a facet is the average slope of the surface area represented by an image
pixel. To define a rough surface, we should consider the image resolution. This
could be avoided by using rms slope as the roughness measurement. In this thesis,

we are restricted to textures whose rms slope is up to 0.5.

2.2 Description of textures

Most shape recovery techniques are designed for surfaces like the sphere of the
previous example, i.e. smooth objects. We limit our work to the estimation of
globally flat, rough surfaces with low slope angles. Furthermore, the surface s is
a potential function to the gradient field S which we assume is conservative. It is
necessary that the surface can be reconstructed from its gradient field (slopes), i.e.
the gradient field must be integrable.

This implies that the components of S are continuous and have continuous partial

derivatives and that the mixed second derivatives of s are equal:

*s(z,y) _ 0°s(z,y)
ozxdy Oyox

(2.6)

This is analogous to a smoothness constraint since a surface with discontinuities
violates equation 2.6. For the surface to be differentiable into a conservative gra-
dient field, it has to be continuous [22]. Therefore, we restrict our test textures to
continuous surfaces.

Phase rich textures show a structured phase spectrum and are characterised by
step changes in height, i.e. discontinuities. By assuming surfaces with random
phase spectra and band-limited power spectra, we ensure continuity. A further
characteristic of random phase test textures is that their height distribution can
be assumed to be Gaussian. This is a consequence of the central limit theorem
and their broadband spectra. Each frequency component has random phase and its

amplitude is therefore a random variable. The sum of many random variables will
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have a distribution that converges to the Gaussian. Since differentiation is a linear
operation, Gaussian height models give Gaussian slope distributions. The Gaussian
assumption is valid for many natural surfaces which are the result of a large number
of random effects [23]. Surfaces produced by engineering methods are less likely to
possess Gaussian statistics than those arising from natural processes.

Our real test textures are also band-limited. The surface is sampled when it is
imaged, the sampling frequency depending on the CCD array and the camera optics.
Rapid changes in height might not be seen in the surface image. Thus we assume a
surface which is band-limited by Nyquist frequency.

Next we include a description of the synthetic surface models and the real tex-

tures that are used throughout the thesis.

2.3 Synthetic textures

We use three models of surface topography that are defined in terms of power spec-
trum. The Power Spectrum Density function (PSD) does not completely define a
surface: for that we would also need to know its phase spectrum. From our assump-
tions, the phase spectra of our models are realisations of an uncorrelated random
process.

We chose these surface models because they are well known and allow us to easily
modify the surface topography. The software for generating these surface models
was written by Dr. G. McGunnigle and Dr. L. Linnet.

Fractals are very frequently used and referred within the vision literature [24] [25]
[26] [27]. A fractal Brownian process has shown to accurately model a wide range
of natural surfaces [28] [29]. These processes are characterised by their statistical
self-similarity, i.e. they are self-affine. A self similar process has the property that
a piece of the process, 1/n' the size of the original, when scaled by the factor n,
is in all statistical respects the same as the whole process. For a fractal Brownian

process, the scaling factor is not n but nff, with 0 < H < 1. The fractal dimension
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is given by D = E+1— H, where E is the Euclidean dimension of the function. For
a two-dimensional process, like a fractal surface, the fractal dimension is constrained
to lie somewhere between 2 and 3. The higher the fractal dimension, the rougher the
surface. The fractals used in this thesis will have D = 2.15, since a fractal dimension
of 2.15 seems to accurately model many natural surfaces [28]. Importantly, a fractal
Brownian model is Gaussian: it is fully specified by its power spectrum. We can
safely assume a random phase spectrum since non-random fractals are rarely found in
nature [30]. Fractals present a PSD exhibiting an inverse power law with increasing
frequency. Assuming that the fractal is spatially isotropic, then its two-dimensional
power spectrum is given as a function of the radial spatial frequency, or wavenumber,

w by

Where:

e S(w,0) is the power spectrum of the surface.
e ky is a constant.

e [ is the power roll-off factor and § =8 — 2D.

Since D was chosen to be equal to 2.15, the power roll-off factor is 3.7. The
roughness of the surface texture will be easily modified by varying the constant k;.
A rendered fractal with surface roughness equal to 0.25 pixel-width (pw) is shown in
Figure 2.3 (left). It is interesting to note how closely it resembles a natural surface.

A more empirical approach to spectral description is to split the spectrum into
two different fractal dimensions. Mulvaney et al. [31] defined a model for surface
profiles that had a flat spectrum at low frequencies, and a roll-off factor of 3.0 for
high frequencies. The PSD for the two-dimensional realisation of this type of surface

is defined in equation 2.8:

w? —3/2
S, (wb) = ki, (F + 1) (2.8)
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w, is the cut-off frequency where the inverse power starts to occur and £, is a
constant related to surface roughness. We set the cut-off frequency to 32 cycles per
image (cpi). Figure 2.3 (centre) is a rendered Mulvaney surface with roughness of
0.25 pw. This isotropic surface resembles a rough texture which has undergone some
degree of physical processing.

Our third model is described by Ogilvy in her book [23]. She described a direc-
tional surface modelled with different power spectrum characteristics for different
directions. Directionality is expressed in the cut-off frequency at which fractal be-
haviour begins to occur for the vertical and horizontal directions. The PSD for this

texture is expressed by:

k21 1

So(u,v) = Ao (% + u2) (%2 + v2>

Where:

e S(u,v) is the power spectrum of the directional surface.

k, is a constant.

A, Ay ' are the cut-off frequencies for the horizontal and vertical directions.

e 02 is the surface variance.

u, v are the Cartesian frequencies.

The surface height distribution is Gaussian, with zero mean and standard de-
viation of v/2/\; and v/2/), for the z and y directions. The surface roughness as
well as the directionality can be controlled in this model. Figure 2.3 (right) shows
an example of an Ogilvy surface with cut-off frequencies of A\;'=32 cpi and \;'=16
cpi, and surface roughness of 0.25 pw. Since it is an anisotropic surface, the rms
slope varies with the direction, p,m,s and g.,s are 0.13 and 0.10 respectively.

It is necessary here to clarify that either an increase in rms height or a decrease

in surface correlation length leads to an increase in rms gradient. Therefore, the
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Figure 2.3: Synthetic textures: Fractal (left), Mulvaney (centre) and Ogilvy (right)

rms gradient or slope is controlled either by the constants k¢, ky, and k, or by the
roll-off factor and cut-off frequencies.

Ogilvy’s model is incapable of generating isotropic surfaces: if both cut-off fre-
quencies are equal, a bidirectional surface is produced. The model does not allow
a transition between highly directional and isotropic surfaces. Thus we restrict its
use to unidirectional surfaces. We should estimate and avoid the range of cut-off
frequencies that produces bidirectional textures.

For a unidirectional surface the polar plot, the distribution of power over direc-
tion, shows one single peak. In contrast, the polar plot of a bidirectional surface
exhibits two peaks. To assume an unidirectional surface, the lower peak should be
at least 3dB smaller than the peak due to the main directionality. Figure 2.4 shows
the polar plots of two Ogilvy surfaces. The cut-off frequencies of the first surface
are set to the same value (16 cpi) and its polar plot shows two peaks, around 0° and
90°. For the second surface the cut-off frequencies are far apart being A\7' = 512 cpi
and \;' = 16 cpi. Its polar plot exhibits one single peak around 0° and this surface
can be considered unidirectional.

Table 2.2 shows some examples of Ogilvy surfaces which can be considered uni-
directional. The value of d to assume unidirectionality depends on the surface’s
cut-off frequencies. For higher frequencies, the directionality condition is relaxed.
This investigation shows a deficiency of the model that has to be considered when
generating Ogilvy textures. By setting the cut-off frequencies to A; =32 cpi and

A\, '=16 cpi, the directionality d is equal to 0.57. This assures unidirectionality.
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Table 2.2: Description of 6 Ogilvy textures that comply with the unidirectionality

condition
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Figure 2.4: Polar plot of two Ogilvy surfaces

AU Prms | Gems | d

512 | 110 | 0.085 | 0.082 | 0.511
256 | 90 | 0.091 | 0.084 | 0.519
128 | 58 | 0.102 | 0.089 | 0.534
64 32 | 0.115 | 0.094 | 0.549
32 18 | 0.120 | 0.097 | 0.553
16 9 0.127 | 0.099 | 0.560
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The surface models are band-limited above the Nyquist frequency and below
the lowest frequency. For the fractal model to have a finite variance, the surface
is band-limited below the lowest frequency. This is because the fractal model in
nonstationary. The integral of its PSD is infinite and, therefore, its variance is
also infinite. By low pass limiting the surface spectrum, we are making the test
sample small compared to the lowest frequency undulation of the surface. Then
the nonstationary autocorrelation function (ACF) is almost stationary and can be
approximated. The PSD can be derived: it will be stationary except for its apparent

steady value which is proportional to the lowest frequency undulation of the surface

[32].

2.4 Real textures

2.4.1 Description

Our real textures have a variety of topographies and reflectance functions. In this
section we give a description of the surface’s textural characteristics, the processes
that formed them and the materials of which they are composed. Our data includes
several fractures, deposit surfaces, sand-ripples, anaglyptas, sand papers, textiles.
They are imaged under the same lighting conditions in Figure 2.5 and Figure 2.6.

Our database contains five surfaces formed by fracturing large blocks of plaster.
These textures differ in their roughness but all have a matte appearance. The
fractures (a), (b) and (c) are examples of a rough surface, a moderate roughness
surface and a gentle roughness surface. For the fractures (d) and (e) the plaster
blocks were cured resulting in two smooth ceramic type surfaces. Therefore their
appearance is slightly more glossy.

The second group of real textures consists of six deposit surfaces. In Figure 2.5
(f) and (g), two deposit fractures are imaged. Plaster powder was deposited on
a plaster mould. The moulds correspond to a moderate roughness fracture and a

rough fracture. For the surfaces (h), (i), (j) and (k), a flat plaster was used as
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Figure 2.5: Real textures: (a) rough fracture; (b) moderate roughness fracture; (c)
gentle roughness fracture; (d) smooth cured fracture; (e) smooth cured fracture with
fracture patterns; (f) moderate roughness deposit fracture; (g) rough deposit frac-
ture; (h) heavy deposited surface; (i) medium deposited surface; (j) light deposited
surface; (k) sparse deposited surface and (1) textile.
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a base. These textures differ on the amount of deposit, ranging from heavily to
sparsely deposited surfaces. We should bear in mind that while the heavy deposits
are near Gaussian, the more sparsely deposited surfaces are phase-rich [33]. The
deposit surfaces are made of plaster, thus their appearance is matte.

Three sand-ripple surfaces are also part of our collection of real textures. They
were formed by wave action on a plaster surface. The first of these textures is a
low frequency, near Gaussian sand-ripple (Figure 2.6 (a)). In contrast, the texture
in Figure 2.6 (b) is phase rich. The last sand-ripple is made using a different brand
of plaster which appears to contain some quartz-like material (Figure 2.6 (c)). This
resulted in a less directional and less matte surface.

The last set of textures consists of four types of anaglypta wallpaper. These
wallpapers have a plastic-like appearance, thus they are not matte. They resemble
an anaglypta formed by #rreqular stripes Figure 2.6 (d), a net (e), some ripples ()
and some rice grain shapes (g). The first three textures are directional whilst the
last is isotropic.

The textures in this database are relatively smooth and approximately matte.
We should consider surfaces that are either extremely rough or glossy. Also non-
constant albedo surfaces or heavily shadowed images should be considered. This will
provide our database with textures which would be out of the scope of our work,
and allow us find the limits of texture shape recovery. Figure 2.6 shows some of
these exceptional textures. The surface imaged in Figure 2.6 (h) is a sand paper. It
has interesting optical properties, since some facets are highly glossy. As we change
the light azimuth, we observe that individual facets reflect intensity over a narrow
range of angles - corresponding to a sharp intensity lobe in the reflectance function.
Figure 2.6 (i) shows a repetitive primitive texture formed by pearl barley. It is a
phase rich surface (discontinuous), very rough and presents non-constant albedo.
Furthermore, its images are heavily shadowed. Figure 2.5 (1) shows a non-constant
albedo tertile. This is a rough texture with approximately matte reflectance. The

irreqular stripes anaglypta of Figure 2.6 (d) is a very rough surface and its images are
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(h)

Figure 2.6: Real textures: (a) low frequency sand ripple; (b) high frequency sand rip-
ple; (c) less directional sand ripple; (d) irregular stripes anaglypta; (e) net anaglypta;
(f) ripples anaglypta; (g) rice grain shape anaglypta; (h) sand paper; (i) pearl barley
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heavily shadowed. Therefore, this anaglypta is also considered among the special

textures.

2.4.2 Do the real textures comply with the surface assump-
tions?
We assume that:

1. The textures are globally flat.
2. They are rough.
3. They have low slope angles.

4. They have conservative gradient fields.

We estimate some of the characteristics of our textures to assess the validity of
these four assumptions.

A globally flat surface has a gradient field with zero mean. We use a classic
Photometric Stereo technique to estimate the first order surface derivatives from
the surface images (see Section 4.5.1). The mean value of the surface derivatives
is near zero for most textures (Table 2.3). We did not remove the mean value of
the intensity images before estimating the surface gradient. Removing the intensity
mean is approximately like removing the gradient mean without affecting the second
and higher order statistics of the surface (see linear approximation of Lambert’s law
equation 3.12). Thus we could somehow force the surface to be globally flat. For
the smooth cured fracture, the low frequency sand ripple and the smooth sand ripple
the value of g is 0.103, -0.175 and 0.255 respectively. By removing the mean of the
images, ¢ becomes 3.50e-3, 4.27e-4 and -1.68e-4.

We estimate the rms roughness (§) and the average roughness (R, ) in pixels-
width for the real textures (Table 2.3). The gradient fields are integrated into the
surface using a frequency integration algorithm (see Section 4.5.2). The fracture
surfaces are very rough textures. The deposit surfaces decrease in roughness as the

amount of deposit decreases. The sand ripple textures are not rough surfaces. The
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anaglyptas show larger values of roughness then the sand ripples. We should note
that Table 2.3 shows the value of roughness for the estimates of the real surfaces. The
method used for estimating the surface has some limitations (see Section 5.4). The
last four textures, the special surfaces, are not expected to be accurately estimated,
thus the calculated roughness is not reliable.

To validate the low slope angles assumption, we compute the rms slope of the
textures (Table 2.3). The largest measured rms slope is of 0.406, this translates into
an average slope angle of 22°. We can safely assume that the textures present low
slopes.

We use two criteria to test whether our real data is integrable. To ensure
integrability, the mixed second derivatives have to be equal and the surface gradient
must be continuous. A Gaussian gradient distribution corresponds to a surface
whose facets have low slopes. Therefore the surface facets are likely to be seen from
the viewer and the surface gradient is continuous. We assess how Gaussian the
surface gradient distribution is and how similar the mixed second derivatives are.

We compare the distribution of the surface gradient with its best fit Gaussian.
This fitted Gaussian has the same mean and standard deviation as the slope distri-
butions. It is not the optimal Gaussian fit for the data in the least squares sense,
but it allows us to infer how Gaussian the gradient is.

Table 2.4 shows the normalised root mean square error between the gradient and
the Gaussian fit computed as:

e = V2l gf)Q (2.10)
Zz(f i f )2

where f is the surface gradient, g is the best Gaussian fit to f and ¢ is a point

of the surface. The first column in Table 2.4 is the rms error for the p derivative

and the second column for the ¢ derivative. The third column shows the rms error

. . . . . 2 . 2 . .
between the mixed second derivatives, i.e. fis (2% ) and ¢ is (22 ) in equation
) oxdy oyor

2.10.
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Texture D q 0 R, Drms | Qrms

Rough fracture 0.015 | -0.072 || 14.268 | 11.865 || 0.323 | 0.328
Moderate roughness fracture || -0.010 | 0.118 || 7.500 | 6.413 || 0.290 | 0.262
Gentle roughness fracture -0.073 | 0.001 || 9.577 | 7.449 | 0.229 | 0.275
Smooth cured fracture -0.054 | 0.103 || 7.920 | 6.772 | 0.158 | 0.241
Smooth patterned fracture -0.086 | 0.012 || 7.199 | 5.700 || 0.242 | 0.217
Moder rough deposit fracture || 0.006 | 0.060 | 3.236 | 2.531 || 0.251 | 0.211
Rough deposited fracture -0.029 | 0.042 || 6.675 | 5.376 | 0.297 | 0.282
Heavy deposited surface -0.092 | -0.026 || 4.115 | 3.533 || 0.293 | 0.305
Medium deposited surface -0.024 | 0.001 || 2.386 | 1.883 || 0.256 | 0.288
Light deposited surface -0.059 | -0.008 || 0.794 | 0.633 | 0.218 | 0.238
Sparse deposited surface 0.034 | -0.040 || 1.194 | 0.982 | 0.231 | 0.253
Low frequency sand-ripple -0.022 | -0.175 || 0.975 | 0.791 || 0.311 | 0.163
High frequency sand-ripple || -0.070 | 0.017 || 0.559 | 0.455 || 0.277 | 0.080
Smooth sand-rippled surface || -0.074 | 0.255 || 1.159 | 0.944 | 0.252 | 0.156
Net anaglypta 0.047 | 0.039 | 2.142 | 1.464 | 0.370 | 0.292
Rippled anaglypta 0.021 | 0.056 || 1.999 | 1.604 | 0.329 | 0.225
Rice grain shaped anaglypta || 0.069 | -0.049 || 1.295 | 1.017 || 0.210 | 0.189
Irregular stripes anaglypta -0.008 | -0.009 || 2.425 | 1.916 | 0.406 | 0.185
Sand paper -0.017 | 0.011 || 1.211 | 1.014 | 0.070 | 0.068
Repetitive primitive surface || -0.001 | 0.012 3.900 | 3.053 || 0.255 | 0.302
Textile -0.044 | -0.071 || 1.373 | 1.106 | 0.252 | 0.237

Table 2.3: Gradient mean and roughness for the real surfaces
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Texture erms(D) | €rms(Q) || €rms (ﬁy = qz)
Rough fracture 6.26% | 17.34% 32.86%
Moderate roughness fracture 9.52% | 5.55% 21.02%
Gentle roughness fracture 9.39% | 4.89% 23.51%
Smooth cured fracture 5.28% | 9.28% 20.56%
Smooth patterned fracture 4.91% | 26.53% 19.98%
Moder rough deposited fracture | 5.56% | 3.85% 22.54%
Rough deposited fracture 6.62% | 9.02% 24.68%
Heavy deposited surface 10.71% | 10.32% 22.68%
Medium deposited surface 829% | 7.711% 23.73%
Light deposited surface 6.01% | 5.30% 20.91%
Sparse deposited surface 4.31% | 4.52% 23.22%
Low frequency sand-ripple 37.50% | 17.61% 42.39%
High frequency sand-ripple 30.76% | 51.16% 34.38%
Smooth sand-rippled surface 13.35% | 17.57% 31.97%
Net anaglypta 14.53% | 35.44% 22.56%
Rippled anaglypta 16.67% | 25.89% 21.32%
Rice grain shaped anaglypta 19.81% | 24.67% 19.25%
Irreqular stripes anaglypta 37.77% | 66.27% 34.45%
Sand paper 16.45% | 16.57% 65.22%
Repetitive primitive surface 16.40% | 13.81% 50.14%
Textile 4.10% | 5.21% 58.42%

Table 2.4: Validity of the integrability assumption for the real textures
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The fractures and the deposit surfaces match a Gaussian distribution quite
closely giving a rms error smaller than 10% in most cases. Although these distri-
butions are not perfectly Gaussian they are bell-shaped and can be approximated.
The textile surface also has a gradient distribution which is roughly Gaussian.

In contrast, the sand ripples, the anaglypta surfaces, the sand paper and the
repetitive primitive texture don’t comply with the Gaussian assumption. The rms
error between the gradient distribution and its best fitted Gaussian is larger than
10%. The surface gradient is likely to be discontinuous, thus the surfaces violate the
integrability condition.

The difference between the mixed second partial derivatives is large for all tex-
tures. This is partly due to the non-ideal central difference derivative operator used
to estimate the second derivatives (see Section 5.3.2). The error is larger for rougher
surfaces, such as the rough fracture and for phase rich surfaces, such as the sand
ripples. We cannot assume that the so-called special textures are integrable, i.e. the
wrreqular stripes anaglypta, the sand paper, the repetitive primitive and the textile.

The gradient distributions of some of the real textures are plotted together with
their Gaussian fit in Figure 2.7. The selected examples are two Gaussian surfaces:
a fracture (Figure 2.5 c¢) and a deposit surface (Figure 2.5 j); and two non-Gaussian
surfaces: a sand ripple (Figure 2.6 a) and an anaglypta (Figure 2.6 ). Appendix A

contains the slope distributions for all the real textures.

2.4.3 Texture sampling

Table 2.5 details the image sampling of our real textures. The fractures, the deposit
surfaces, the sand ripples and the repeating texture are lit under light zeniths of 45°,
60° and 75°. For each zenith angle, 12 images where captured, i.e. the textures were
captured for light azimuth increments of 30°. This gives a total of 36 images per
texture.

The anaglypta surfaces and the sand paper were captured for two zenith angles:

60° and 75°. Similarly, the light azimuth was moved in 30° increments, giving a
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(d) Net anaglypta
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o=45° | 0=60° | o=T75°
Fractures AT =30° | AT =30° | AT =30°
Deposits AT =30° | AT =30° | A7 = 30°
Sand ripples AT =30° | AT =30° | A7 = 30°
Anaglyptas - AT =30° | AT =30°
Sand paper - AT =30° | AT =30°
Repetitive primaitive || AT = 30° | A7 =30° | A7 = 30°
Textile AT =30° | At = 30° -

Table 2.5: Photometric sampling for real textures

total of 24 images per texture.
Finally, the tertile was lit from zeniths of 45° and 60°; azimuth was varied in 30°

increments. Therefore, 24 images were captured for the textile.

2.5 Discussion

In this chapter we introduced the synthetic and real textured surfaces that will
be used in subsequent chapters. Some definitions relevant to the thesis were also
included. The type of surfaces that are within the scope of this work are globally
flat rough textures with low slope angles. They should be band-limited continuous
functions with conservative gradient fields.

We introduced three surface models: Fractal model [30], Mulvaney’s model [31]
and Ogilvy’s model [23]. The models were uniquely described in terms of their
power spectrum, since a random phase spectrum was assumed. They are parametric
models that allow us to control the surface characteristics. Furthermore they are
well known in the literature and extensively used. They are band-limited above
the Nyquist frequency (pixelation) and below the lowest frequency. A limitation of
Ogilvy’s model was pointed out, and the conditions for using it were reported.

We included a description of real data which covered their topographies, re-
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flectance characteristics and degrees of directionality and roughness. Our data base
consists of 21 textures that we divide in five groups: sand ripples, fractures, deposits,
anaglyptas and the special surfaces. Several textures have the same topography and
reflectance, but they differ in surface roughness. Others differ on the surface mate-
rials, thus they show different reflectance characteristics.

The validity of the surface assumptions was assessed for our real textures. The
assessment was four-fold. First, we test whether our real textures are globally flat
concluding that we could force the surface estimates to be globally flat. Secondly,
we measured the surface roughness of our textures. Thirdly, we proved that the
real surfaces have low slope angles. And finally we assessed the validity of the
integrability condition. We concluded that the fractures and the deposits could be
considered Gaussian. Furthermore, their mixed second derivatives matched each
other with a rms error of 20 to 25%. In contrast, the sand ripples and anaglyptas

were not Gaussian and their mixed second derivatives were not similar in most cases.
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Chapter 3

Surface-to-Image Models

In this chapter we try to model the transfer function from the surface to the image.
To understand the nature of this task, some knowledge of the theory of light reflection
is necessary. We start the chapter by defining some relevant terms. Then we review
the background theory of light reflection. Six main phenomena arise from light-object
interaction: reflection, transmission, absorption, diffraction, refraction and interference.
Although all these phenomena have been modelled to some extent, in computer graphics
most attention has been paid to reflection. We survey reflection models from the liter-
ature. The models reviewed in this chapter are local, i.e. only direct, or first, reflection
of light from a surface facet is considered. No global® or indirect illumination (reflection
from another surface facet) is taken into account.

We choose two of the reviewed reflection models as the rendering models to use
in our simulations. In this way, we render matte surfaces using Lambert’'s law and we
simulate surfaces with a plastic-like appearance using Phong’s model. Although, strictly
speaking, it is not a reflection model, Kube's approximation to Lambert’s law is also
described.

In this chapter we use simulation to compare the three reflection models. We first
study the validity of Kube's model. Secondly, we analyse the similarities between Lam-

bert's law and Phong's model in terms of surface appearance.

L Ray tracing and radiosity are established global models that simulate reflection. Ray tracing
approximates specular reflection and light transmission, and excludes other considerations. The

radiosity method models the interaction of diffusely reflecting surfaces [34].
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Figure 3.1: The geometry of the imaging system

3.1 Definitions

Some concepts relevant to this chapter are here introduced. We describe our imaging

system. We also define shadowing as well as some radiometric terms.

Our imaging system is shown in Figure 3.1. The optical axis is aligned with the
z axis of the coordinate system. The reference plane of the surface is perpendicular
to the viewing direction. The origin of the system is at the centre of the surface.
The viewer is far away from the surface relative to the size of the surface, so that
orthographic projection can be assumed. The light source is a point source and is far
away from the surface, so that constant illumination over the scene can be assumed.
The azimuth (7) and the zenith (o) of the light source are also called illuminant tilt

and slant respectively.

Shadowing When speaking about reflection, terms such as masking, cast and self
shadowing often appear.

Masking is used to describe the effect of obstructions in the reflected light (Fig-
ure 3.2 a) and shadowing to describe obstruction in the incident light (Figure 3.2 b).
We can neglect masking effects since the viewer in our imaging system is straight
above a globally flat surface.
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Figure 3.2: Masking (a) and self and cast shadows (b)

Self shadows occur when the difference between the unit vector normal to the
surface facet N and the illuminant unit vector L is larger than 90°. In Figure 3.2
(b), there are two facets that form a V-shaped groove, the facet of the right is self
shadowed.

A facet is cast shadowed when another facet projects a shadow over it. In Fig-
ure 3.2 (b), the lower half of the facet on the left is cast shadowed by the facet on

the right.

The radiometric terminology found in many text books [18] should be intro-
duced before investigating light reflection. Irradiance is the incident light energy per
unit surface area (Wm?). Radiance is the light energy radiated per solid angle in
a particular direction (Wm 2S5t !). The solid angle ) subtended by a small planar
patch of area A at distance r is defined in Figure 3.3 (a). Brightness is determined
by the amount of energy an imaging system receives per unit foreshortened area
(Wm2St™1). The foreshortened area (A.) is the surface facet area (A) times the
cosine of the angle (v) between the surface normal and the radiated light, i.e. the
viewing direction (Figure 3.3 b).

To estimate the scene radiance, we measure the brightness received by the CCD
array. Horn has shown that the image irradiance is proportional to the scene radiance

18].
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Figure 3.3: (a) Solid angle; (b) Foreshortened area

Figure 3.4: A BDRF relates incoming energy (¢;, ;) to outgoing intensity (s, 6y)
3.2 Theory of light reflection

We describe the interaction of light with a surface by relating the incoming and
outgoing radiances at a given point P on the surface. This expression is known as

the Bidirectional Reflectance Distribution Function (BRDF) and is defined as:

Rbd()\,qbiaeia ¢1)50U) (3]‘)

where ) is the wavelength of the incident light, (¢;,6;) is the direction of the
incoming light and (¢,, 6,) is the direction of the outcoming light (Figure 3.4).

In general, light may be reflected in an orientation or wavelength dependent
way; thus, the BRDF may be very complex. Koenderink and van Doorn [35] have
measured the BRDFs for a variety of surfaces. Their measurements indicate that
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BRDFs are fairly well behaved and can be represented using a relatively small (50
or less) number of basis BRDFs. Even 50 parameters makes the problem of surface
estimation from images intolerably hard.

Dana obtained parametric descriptions of the BRDF's compiled on her database
[36]. This consisted of reflectance measurements for over 60 very different sam-
ples, each observed with over 200 different combinations of viewing and source di-
rections. Two attempts were made to fit Koenderink’s representation [37] to the
BRDF measurements. This resulted in a 5 parameter and a 55 parameter represen-
tation, respectively. She concluded that the simpler representation was insufficient
for modelling all samples in the database, unlike the 55 parameter representation.

Recent work attempts to reconstruct the geometry of objects with arbitrary
and possibly anisotropic BRDFs [38]. The proposed methods make no assumption
about the object’s shape, the presence of shadows, or the nature of the BRDF which
may vary over the surface. But again, a large collection of images from the object
is needed (up to 143 images), making this method time and resource consuming,
beyond the scope of this thesis.

Using the BDRF leads to overly complicated models with too many parameters.
However, accurate models of surface BDRFs are simplified into reflectance models
used in computer vision. There are two simplifications we can make to the BRDF.
The first is almost universal in computer graphics and vision: assuming that the
microstructure of the surface facet is isotropic, the two azimuth variables may be
replaced by their difference ¢; — ¢,. The second simplification is due to our use of
a monochrome camera - this integrates irradiance over wavelength and we drop the
wavelength variable.

Reflectance models only consider the reflection and transmission of light. The
degree to which either occurs depends on the electrical characteristics of the mate-
rial. In this way, reflection is dominant in conductors and transmission in dielectrics,
although both exhibit transitional behaviour. The reflection associated with con-

ductors is more directional than the reflection from dielectrics which is due to a
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Figure 3.5: Reflection: (a) mirror-like specular (b) specular+diffuse (c) perfectly
diffuse

different mechanism known as body scattering. For a flat conductor, the light is

reflected in the mirror direction:

Oy = @; 0, = 0; (3.2)

This is known as the specular contribution. The smoother the surface the larger
this contribution. For a perfect mirror, the specular reflection would be the sole
contribution (Figure 3.5 (a)). For a rougher surface, the specular contribution would
be spread over a larger range of angles (Figure 3.5 (b)). This is translated into a
more diffuse reflection which exhibits a specular peak. The ideal diffuse contribution
reflects uniformly in all directions into the hemisphere (Figure 3.5 (c)). It is only

present in dielectric surfaces which we term Lambertian surfaces.

3.3 Lambert’s law

The simplest model, formulated by Lambert in 1760 [20], is the quantitative law for
perfectly diffuse surfaces. Lambert stated that a perfectly diffuse surface appears
equally bright from all viewing directions.

He assumed that the diffuse surface has a homogeneous reflectance function. He
ignored self or cast shadows, as well as any inter-reflection. Under these assumptions
and for a point light source at infinity, the reflected intensity from one point on the
surface is proportional to the angle between the surface normal at that point and

the illuminant direction:

36



I=TIypcosy=Ip(N-L) (3.3)

or in scalar form:

—p(z,y) cosTsino — q(z,y) sinTsino + coso
VP, y) + 2 (w,y) +1

i(z,y) = iop(z,y)

where:

I or i(x,y) is the intensity reflected at the point (x,y).

Iy or iy is the incident intensity.

p(z,y) is the albedo; a coefficient that represents the proportion of light re-

flected from the point (z,y) with respect to the incident light.

N = £ 94 L is the unit vector normal to the surface
V2241 \/p2+a+17 \/p2 g2+l

at (z,y).

e L = (cosTsino,sin7sino, cos o) is the unit vector pointing at the light source.

7,0 are the light azimuth and zenith defined as in Figure 3.1.

v is the angle between the normal to the surface at (z,y) and illuminant

direction.

The partial derivatives of the surface s at the point (z,y) are defined as:

plz,y) = 88(;:6’ v) (3.5)
a(o,9) = 2 (3.5)

Wolff has demonstrated that the Lambertian model only really applies when the
angle of incidence and the angle of reflection are small relative to the surface normal
[39]. Our textures have low slope angles and the viewer is directly above the surface,
thus the angle of reflection is small. In contrast, the angle of incidence is often

large and the Lambertian model would become inaccurate. Wolff has developed a
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simple modification of Lambert’s law that accurately account for all illumination
and viewing directions.

Oren and Nayar propose a generalisation of Lambert’s model to include non-
perfectly diffuse rough surfaces [40]. In their work the surface reflection also depends
on both the incident direction and the viewing direction. This model accounts for
more complex geometric and radiometric phenomena such as masking, shadowing
and inter-reflections between points on the surface, although this last contribution
is almost generally neglected.

Although Lambert’s law was advanced almost 250 years ago, it remains one of
the most widely used models in machine vision. It is used explicity by shape recovery
techniques, such as Shape from Shading and Photometric Stereo (see Chapter 4). It
is also invoked by vision techniques such as binocular stereo and motion detection
to solve the correspondence problem [41] [42]. In the field of remote sensing, the
Lambertian model is often used to apply brightness corrections to images of the
same scene obtained under different illumination conditions [43].

In this thesis Lambert’s law will be often used as our reflectance model. It is a
simple model, well known in the field and the most frequently employed in computer
vision. It does reasonably well in approximating reflection for a wide range of matte

surfaces.

3.4 Modelling specularities: Phong’s

After accounting for diffuse reflection, we now introduce a more complete and more
realistic model [44]. Phong’s model is empirical, but it has found great acceptance
within the computer graphics community and has become the industry standard
[34]. The model is a linear combination of three components: a diffuse, a specular

and an ambient component. Some assumptions by the model are:

e Only primary reflection of light is considered; it is a local model.

e The object imaged has uniform reflectance properties.
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The diffuse and specular terms are modelled as local components.

The viewer and the point light source are at infinity.

Shadows are ignored.

The image irradiance which is not due to the primary reflection is modelled

as a constant, the ambient component.

We don’t consider the ambient component in our implementation of Phong’s
model. The diffuse contribution is the ideal described by Lambert, and it is evaluated

as:

I; = ItKgcosy = I,Kq4(N - L) (3.7)

where K, is a wavelength-dependent empirical reflection coefficient, equivalent
to the albedo p in Lambert’s law. K gives the proportion of light diffusely reflected
by the surface facet. The diffuse reflection is a function of ~, the angle between the
light unit vector L and the unit vector normal to the surface facet N. Similarly, the
specular component will be a function of 1, the angle between the viewing direction

V and the mirror direction R (see Figure 3.5):

I, = IhK cos"n =L K,R-V)" (3.8)

Both V and R are unit vectors. K is an empirical specular reflection coefficient
and denotes the amount of light specularly reflected. The index n simulates surface
roughness, it controls the width of the specular peak. For a perfect mirror n would
be infinite and the reflected light would be constrained to the mirror direction. For
glossy surfaces, the value of n is large; to model the reflection from a smooth surface
the lobe is narrow around the mirror direction. For more diffuse reflection, the value
of n is small, giving a wide reflection lobe.

The vector R is computationally expensive to calculate. Phong proposed a
way to estimate it in [44]. Instead we evaluate the specular term using a common

approximation: H is a normal vector to a hypothetical surface that is oriented in a
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Figure 3.6: Mirror direction for Phong’s model

direction halfway between the light direction and the viewing direction (Figure 3.6).
The specular term now becomes a function of (N - H). The vector H denotes
the required orientation for a surface to reflect light maximally along the viewing
direction and can be estimated as:

L+V)

_(
H =" (3.9)

Since the light source and the viewer are considered to be at infinity, the two
unit vectors L and V are constant throughout the scene, and so is H. The angle (v)
between R and V is twice the angle (¢) between N and H (Figure 3.6). This can
be compensated for by adjusting the value of n. Phong suggested n to vary from 1
to 10, but for our implementation n varies from 1 to 25.

Adding the diffuse and the specular components together gives the model’s ex-

pression:

I = I(K4N-L) + K,(N - H)") (3.10)

where K; + K, = 1.

The reflected intensity is solely a function of the surface normal N and the
wavelength for a particular light source. L, V and H are constant.

Phong’s model presents some limitations. For instance, the dominant effect of
varying n is not to modify the surface ”glossiness”, but to make it look as if the size

of the light varies. Decreasing n makes the source look bigger. Thus facet roughness
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is not well modelled by the specular term.

Phong’s model is unable to model metallic surfaces; rendered surfaces have a
plastic-like appearance.

Another limitation of the model is the neglection of shadows. The absence of cast
shadows makes objects appear to be floating above, instead of resting on, a surface.
The absence of self shadows makes concavities appear erroneously shadowed.

Since this work is limited to fairly diffuse low slope surfaces, we consider Phong’s
model sufficiently good for our rendering purposes. Furthermore, it is popular,

simple to implement and the characteristics of the reflected light are easily controlled.

3.5 Physically based models

This section reviews reflection models that account for specularities in a more phys-
ical way. We survey more recent research in the field and more elaborate models.
This survey is included for completeness: it contributes to the general overview on
reflectance analysis and synthesis.

A reflection model based on geometrical optics was first introduced by Torrance
and Sparrow (T-S) in 1967 [11]. The T-S model is only valid when the surface
roughness is large compared to the radiation wavelength. Roughness is modelled by
considering the surface as a large number of mirror-like microfacets in the form of
symmetric V-shaped grooves. The specular reflection due to the mirror-like facets
is a function of the angles of reflection. The diffuse component originates from
multiple reflections among the facets or internal scattering. The model accounts for
shadowing and masking by adjacent facets.

The T-S model has been widely adopted for modelling specular reflection from
rough surfaces. Healey and Binford [45] used the model for computing object surface
curvature information. Tkeichi and Sato [46] and Solomon and Tkeuchi [47] used it to
estimate surface shape, albedo and roughness. Solomon and Ikeuchi [48] also pro-

posed a non-contact method for measuring surface shape and roughness assuming
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a simplified form of T-S model. Wolff and Boult [49] used the model to develop a
polarisation stereo method. They presented a polarisation reflectance model based
on Fresnel reflection coefficients that accurately predicted the magnitudes of polar-
isation components of reflected light.

Blinn [50] used a more elaborate scheme than the T-S model. This scheme
incorporated a term which accounted for attenuation due to the self-shadowing.

Cook and Torrance’s model [51] is based on Blinn’s model but assumed a dis-
tribution function proposed by [52] that gave the proportionate area of microfacets
oriented at a certain angle to the average normal of the surface. This distribution
depended on the rms slope of the surface.

Nayar et al. [53] proposed a hybrid model which had the simplicity of a geomet-
rical model as well as the completeness of a physical model. They approximated
the diffuse lobe by Lambert’s law, the specular lobe by T-S model and the specular
spike by Beckmann-Spizzichino model [52].

More recently, Lundberg et al. [54] criticised T-S model for being in qualitative
agreement with specular reflection from rough surfaces but quantitatively inaccurate.
They proposed a geometric reflectance model that assumed a microfacet probability
distribution which accounted for self-shadowing.

Cook and Torrance’s model is similar to Phong’s since it is local and divides
reflection into three terms. In contrast, it can render polished metallic surfaces
correctly. Furthermore, it is accurate for illumination at low angles of incidence
unlike Phong’s. The main advantage of Cook and Torrance’s model is the estimation
of colour in the highlight term, but we only consider monochrome images. However,

it is more complex and computationally expensive.

3.6 Modelling shadows

In this section we explain how we model self and cast shadows. Shadows are modelled

and added to the surface image after rendering.
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Figure 3.7: Example of self and cast shadows in a sinusoid

The reviewed reflection models predict a negative intensity for a self shadowed
facet. By clipping at zero we make all shadows have equal intensity (no light).
We make simple geometric calculations to estimate which facets are cast shadowed
by others, and their intensity is set to zero. This is unrealistic since although the
intensity is small in a shadowed area, it varies due to inter-reflections and ambient
illumination. We neglect these two effects, thus shadows are modelled by an absence
of light.

An example of shadowing effects is given graphically in Figure 3.7. We render
a corrugated sinusoid using Lambert’s law. The light has azimuth perpendicular to
the directionality of the sinusoid and zenith of 45°. In Figure 3.7 we plot a profile
of the surface (continuous line) and its image (unconnected points). The facets
from the 14th to the 18th samples are self shadowed and have a negative intensity
((N—L) > 90°). We then plot the same profile after modelling self shadows (dashed
line). The intensity of the mentioned samples is been set to zero. Finally, we model
cast shadows for the profile (dotted line). The intensity samples 19 and 20 are zero
due to the projection of a shadow from some part of the surface over these two

facets.
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3.7 Kube’s model

Kube’s model is not strictly a reflection model, it is an approximation to Lambert’s
law designed to allow frequency domain analysis of the rendering process. We present
this analytical linear surface-to-image model since it is relevant.

Kube and Pentland [55] linearised the expression in equation 3.4 applying a

Taylor’s series about (p,q) = (0,0). This leads to the expression shown below:

1(p2 +¢*) + g(p2 +¢*)%..| (3.11)

i = igp|—pcosTsino—gsinTsino+coso] |1 — 5 2

If the surface slope angles are low then p > p? and ¢ > ¢%, ie. p < 1 and
g < 1. For low slope angles and ¢ > 6° a linear approximation to equation 3.11 can
be made, the second and higher order terms may be discarded. This leaves only the

first three terms:

i =dgp[—pcosTsino — ¢sinTsino + coso| (3.12)

In the frequency domain, the surface derivatives follow the next expressions:

P(w,0) = jwcosBS(w, ) (3.13)

Qw,0) = jwsinfS(w, 9) (3.14)

where j represents a phase shift of 90°, and w, # are the polar coordinates. Ig-
noring the mean term and using expressions 3.13 and 3.14, the intensity function of

equation 3.12 follows

I(w,0) = —jwcosfcosTsinoS(w,l) — jwsinOsin7sinoS(w, 0) (3.15)

in the frequency domain, which using trigonometry simplifies to:
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I(w,0) = —jwsino cos (0 — 7)S(w, #) (3.16)

This linear function relates the spectrum of the image I(w,#) to the spectrum
of the surface S(w,f). The image spectrum is a function of both the illuminant
azimuth 7 and zenith 0. Equation 3.16 shows that the imaging process acts as
a directional high pass filter. We only need to know the illuminant conditions to
recover the surface from its image. Pentland [56] did exactly this using a single image
of the surface. He implemented a Wiener filter to attenuate noise and non-linear
components of the image intensity pattern.

Chantler [57] investigated Kube’s model validity. He divided equation 3.16 in
three components, a surface response component, an azimuth response component
and a zenith response component. He stated that the surface response component
was valid when shadowing occurs and over a range of surface variances. He proposed
a raised cosine function of the form a + bcos (f — 7) as a more accurate estimate for
the azimuth response. Finally, he confirmed that shadowing severely affected the
sin o relationship.

McGunnigle and Chantler [58] also evaluated Kube’s imaging model. The paper
assessed the validity of the linear approximation and compared it to the optimal
linear filter in terms of the image appearance. They confirmed that the model
was valid for surfaces with Lambertian reflection and moderate roughness of rms
slope < 0.3. They argued that by introducing a roughness dependent correction
factor, the model would be extensive to a large class of rough surfaces. The paper
concluded that Kube’s model was not optimal, but still valid for relatively rough

diffuse surfaces.

3.8 Assessment of reflectance models

The assessment is two-fold: first, Lambert’s law is compared to Kube’s model, and

secondly, Lambert’s law is compared to Phong’s model. With the first simulation, we
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investigate the validation of the linear approximation. With the second, we study
the contribution of the specular term to the total reflection in terms of surface
appearance. For this purpose, Phong’s model is interpreted as a Lambertian model
with an added specular term.

In the simulations, we use the synthetic textures described in Chapter 2, i.e.
the fractal, the Mulvaney and the Ogilvy surfaces. We adopt a nominal minimal

accuracy of 10dB which translates into an error of 10%.

3.8.1 Validity of Kube’s model

Introduction

Kube and Pentland [55] stated the conditions to discard second and higher order
terms in the Lambertian equation. In terms of surface roughness, the condition is
Prms < 0.1 and gyms < 0.1. Since the second order term is proportional to p? + ¢°
(equation 3.11), the condition becomes (p* + ¢?) < 0.02. Third and higher order
terms are small relative to the second term, and insignificant relative to the linear
term.

A second condition is stated in terms of the light source position: the light zenith
has to be larger than 6°. In this thesis the illuminant zenith angle is always larger
than 45°. Thus this condition does not need any validation or further investigation.

Chantler [57] studied the validity of Kube’s model by comparing the magnitude
of the linear term to the magnitudes of the non-linear terms. He stated that for
an error of 3.5%, the rms slope had to be less than 15°. This means that for a
signal-to-residue ratio (SRR) of 14.56dB, the rms slope should be less than 0.27.
For the threshold of 10dB the restriction of the rms slope can be relaxed to angles
larger than 15°.

McGunnigle [59] fitted the reflectance function to its optimal linear approxima-
tion. He compared the filter performance for rendering purposes with an empirically

derived reflectance map. Unlike Kube’s prediction, his filter was optimal. Neverthe-
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less his investigation of the validity of the filter is relevant. He concluded that the
SRR was above 10dB, for an isotropic surface with p,,,s < 14°, i.e. prms < 0.25. He
stated that for directional surfaces, the accuracy of the approximation was highly
dependent on angle between the illuminant direction and the surface grain direction.
He argued that for an accurate rendering the azimuth angle had to be at least 15°

apart from the material grain direction.

Experimental method

We too assess Kube’s approximation against surface roughness in the range:

(P® + ¢%) € [0.02,0.45,0.08, 0.125, 0.18, 0.245, 0.32, 0.405, 0.5] (3.17)

We render the surfaces with both Lambert’s law and Kube’s model. The quantity
we measure to assess the approximation validity is the signal-to-residue ratio defined

in equation 3.18:

S

— =10I
Rik o (

var[Irambert] ) (3.18)

var [ILambert - IKube]

where Ipgmpere and Ixpe are Lambert’s and Kube’s images respectively, and
var|x] is the variance of x. Four images are rendered with each reflectance model
for a fixed zenith angle (45°) and azimuth angles in 90° increments. The S/Ry
ratios are then averaged across the four images and the three surfaces to give a

more robust assessment.

Experimental results

The S/ Ry, ratio is computed for each pair of Lambertian-Kube’s images. The signal-
to-residue ratios per surface roughness are averaged and plotted in Figure 3.8.
Following Kube’s prediction, as the surface roughness increases the approxima-
tion diverges from Lambert’s law. The S/Ry ratio is above the 10-dB threshold

for (p? + ¢*) < 0.2. For an isotropic surface that corresponds to a rms slope of
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Figure 3.8: Validity of Kube’s approximation to Lambert’s law. S/R;; between the

intensity images rendered with Lambert’s law and Kube’s model
DPrms = @rms < 0.3. This result is in accordance with Chantler’s investigation and
McGunnigle’s empirical validation. Kube was more strict with his own approxima-
tion, although he did not argue his reasons for the condition on surface roughness.
The novelty of our result is that it is been generalised for anisotropic surfaces, the
condition is in terms of a non-directional quantity (p® + ¢?).

It is worth noting that the illuminant direction is a key factor for the validity of
Kube’s linearisation on anisotropic surfaces. This will be investigated in Chapter 6,

Section 6.2.1.

3.8.2 What is the effect of specularities?
Introduction

Our implementation of Phong’s model consists of two terms, a Lambertian com-
ponent and a specular component. We here investigate how the two components
contribute to the surface appearance. We assess the contribution of the specularity

by comparing Phong’s image with a Lambertian image of the same surface.

Experimental method

Two experiments are carried out. With the first experiment, we assess the effect of

increasing the specular contribution. In the second, the nature of the specularity is
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Figure 3.9: Phong’s specular term contribution to total reflection against K, for
n=>5

modified.
The rms roughness of the surfaces is fixed at 0.02 pw. The signal-to-residue ratio

is computed for each texture as:

I amber
§ = 10log var{Inamber
Rlp UGT[ILambert - IPhong]

(3.19)

where Ippong is Phong’s image. To improve the assessment, we render four images
with each reflectance model for a fixed zenith angle and azimuth angles in 90°

increments. We average the S/ Ry, ratios across the three textures.

Experimental results

The strength and shape of the specular peak depend on the values of K; and n
respectively (equation 3.10). For the first test, the S/Ry, ratios are plotted against
the coefficient K, in Figure 3.9 . Decreasing K, is equivalent to increasing the
proportion of specular reflection. The exponent n is set to 5, i.e. the specular peak
is wide but distinguishable.

As K, decreases, Phong’s image diverges from the Lambertian image, and the
S/ Ry, ratio decreases. The contribution of the diffuse reflection has to be larger than
75% for a surface to be considered diffuse (S/R;, >10dB). We only need to render

relatively diffuse surfaces, thus we limit K, to larger values than 75% for n=5.
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Figure 3.10: Phong’s specular term contribution to total reflection against n for

Ky =90%

In a second experiment, we measure the S/Ry, ratio for an increasing n, when
K, is set to 90% (Figure 3.10). For n < 4 the specular peak is very wide, similar to
the diffuse reflection. Phong’s image is similar to Lambert’s image, and the S/Ry,
is high.

As n increases, the specular peak gets narrower. In the range n € [4,12], the
specular reflection is very distinctive from the diffuse reflection and the S/R,, ratio
decreases almost 10dB.

For large values of n (n > 12) the S/ Ry, ratio steadily increases. This is because
the specular peak does not affect the surface appearance. The illuminant zenith is
set to 45° - in subsequent work o > 45°. The specular reflection follows the mirror
direction which is also 45°. Since the peak is very narrow and the viewer is straight
above the surface, almost none of the specular reflection reaches the viewer. Thus
the surface appearance is similar to Lambert’s image, and a higher S/R,, ratio is
measured. We should note that for a near Lambertian surface (K; = 90%), the
S/ Ry, ratio is over 10dB for any shape of the peak.

The factor that mainly alters the surface image is the proportion of specularly
reflected light. The nature of the specularity is less important for the surface ap-

pearance.
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3.9 Discussion

This chapter gave an introduction to the surface reflectance models that will be used
in subsequent chapters. It also included relevant definitions.

We investigated the surface-to-image transfer function. The background theory
of light reflection was reviewed. We surveyed the existing reflectance models and
described in detail the most appropriate models for our simulation. Three reflectance
models, Lambert’s law, Kube’s approximation [55] and Phong’s model [44], were
chosen to be thoroughly studied.

We tested the validity of Kube’s approximation concluding that the second order
term p? + ¢2 had to be less than 0.2. Importantly, we restricted the light zenith
to angles larger than 6°. The contribution of Phong’s specular term to the total
reflection was also analysed. We concluded that the factor which mainly alters the
surface appearance is the proportion of specularly reflected light. It affected the
surface image more obviously than the nature of the specularity or the shape of the

specular peak.
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Chapter 4

Shape Recovery: A Review

We consider the problem of estimating the shape of rough surfaces from their appearance.
This chapter presents a literature survey of existing Shape from Shading techniques. We
pay special attention to one class of methods: Photometric Stereo, and identify the
advantages of this method for texture estimation. This technique estimates the surface
gradient; because our ultimate goal is surface height, we need to integrate the gradient
estimate. Several integration techniques are surveyed in this chapter. We conclude that
global integration is more appropriate for our purposes.

Finally, we describe a shape estimator that overcomes the difficulties of recovering
rough surfaces. It combines a three-light Photometric Stereo algorithm with an efficient
global integration method. The combination of these two standard components into a
recovery technique for rough surfaces is novel. We describe the implementation of the

recovery technique since it is used as a point of comparison in subsequent chapters.
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4.1 Shape from Shading

4.1.1 Introduction

Estimating the shape of a surface from its images is an old problem in computer
vision. Horn [18] expresses this problem mathematically through a first-order partial
differential equation. Assuming that the surface lies on the x —y plane, he seeks the

surface depth s in the direction z that satisfies the image irradiance equation:

R(p(z,y),q(z,y)) = E(z,y) (4.1)

where R(p, q) is the reflectance map and E(z,y) is the image formed by ortho-
graphic projection of light onto a plane parallel to the surface plane. The reflectance
map expresses irradiance, i.e. the measured intensity, as a function of the facet slope
(p and q). Its form depends on the material reflectance characteristics and the illu-
minant conditions.

This expression for image irradiance relies on two assumptions:

1. The scene radiance depends only on the reflectance of the surface, its normals
and the lighting conditions. This implies that the light source is infinitely far

away and the inter-reflections between surface facets are ignored.

2. The image irradiance corresponding to a surface point (z,y) is equal to the

scene radiance (see Chapter 3 for definitions).

An interesting case corresponds to the situation where a distant point source
illuminates a Lambertian surface. Then according to Lambert’s law, the emitted
radiance and the reflectance map are given by the cosine of the angle hold between
the surface normal direction and the source direction. The irradiance equation for

this case takes the form of expression 3.4.
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4.1.2 Review of single-light Shape from Shading techniques

If the surface is recovered from one single image, the problem of surface estima-
tion is ill-posed. Equation 3.4 has to be solved for three unknowns: the surface
derivative fields (p and ¢) and the albedo. Several single-image Shape from Shading
approaches have been proposed. They can be divided into three groups: propa-
gation approaches, minimisation approaches and linear approaches. Propagation
approaches propagate the shape information from a set of surface points (e.g. sin-
gular points) to the whole image. Minimisation approaches rely on constraints on
the shape of the surface. They obtain a solution by minimising an energy term
which is a function of the validity of the constraints for the actual estimate. Linear
approaches compute the solution based on the linearisation of the reflectance map.
In this section we also review the conditions for existence and uniqueness of the

solutions.

Propagation approaches

Horn’s characteristic strip method [18] is essentially a propagation method. A char-
acteristic strip is a line in the image along which the surface depth and orientation
can be computed if these quantities are known at the starting point. Horn’s method
constructs initial curves around the neighbourhood of singular points (points with
maximum intensity). Oliensis and Dupuis [60] [61] presented a propagation scheme
that formulates Shape from Shading as an optimal control problem. They solve for
the surface using numerical methods. Bichsel and Pentland [62] simplified the pre-
vious approach and proposed a minimum downhill approach for rapid convergence.
Similarly, Kimmel and Bruckstein [63] reconstructed the surface through layers of

equal height contours from an initial closed curve.

Minimisation approaches

Minimisation approaches produce the optimal solution in terms of the adopted con-

straints about the surface. Ikeuchi and Horn [64] introduced two constraints: based
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on brightness and smoothness. The brightness constraint requires that the recon-
structed shape produces the same brightness as the input image. The smoothness
constraint ensures an estimated surface which is smooth. The shape of occluding
boundaries was given for the initialisation. Brooks and Horn [65] minimised a term
which was a function of the same two constraints. They optimised the solution in
terms of surface normals instead of height. Frankot and Chellappa [66] enforced
integrability in Brooks and Horn’s algorithm in order to recover surfaces with con-
servative gradient fields. These surfaces have equal mixed second partial derivatives,
i.e. they comply with the integrability constraint. More recently Horn [67] replaced
the smoothness constraint in his approach with an integrability constraint. The
major problem with his method is its slow convergence. Szeliski [68] proposed a
faster technique based on a gradient descent algorithm.

Instead of a smoothness constraint, Zheng and Chellappa [69] introduced an
intensity gradient constraint. This assures that the intensity gradients of the recon-
structed image and the input image are close to each other on both the x and y
directions. Zhang and Shah [70] also used the intensity gradient constraint. They
minimised a function based on the intensity gradient and the smoothness constraints.
Leclerc and Bobick [71] solved directly for depth. They used a discrete formulation
which relies on smoothness and brightness constraints, and a stereo depth map as a
initial estimate. Lee and Kuo [72] also solved for depth using brightness and smooth-
ness constraints without requiring initialisation. They approximated the surface as
a union of triangular patches. Wei and Hirzinger [73] introduced a model of the
surface depth using radial basis functions that deformed by adjusting their centres,
widths and weights to minimise errors in the intensity prediction. They initially
used a smoothness constraint to stabilise the solution. A more recent Shape from
Shading algorithm satisfied the image irradiance equation as a hard constraint [74].
It used curvature information to impose topographic constraints on the needle map
and a robust error function to impose consistency. Cho and Chow [75] proposed an

approach that minimises an error intensity function with respect to the weights of
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a neural network which represents the 3D object.

Linear approaches

Pentland [56] used a linear approximation to the reflectance function in terms of
surface gradient. He applied a Fourier transform to the linear function to get a closed
form solution for the depth. Tsai and Shah [76] employed discrete approximations for
the surface normal using finite difference of depth and then linearised the reflectance
function in depth directly. Their algorithm recovered the depth at each point using
an iterative scheme. They subsequently improved their algorithm and extended its
use to variable albedo surfaces [77]. More recently Kozera and Klette [78] applied a
finite difference-based algorithm to recover the shape of a smooth surface for which
the reflectance map was linear. Lee and Kuo’s minimisation approach also assumed

a linear reflectance of the surface [72].

Existence and uniqueness for single-light Shape from Shading

To estimate the surface gradient from equation 3.4, we need to solve an uncon-
strained problem. This raises issues of the existence and uniqueness of the solutions.
Ezistence depends on whether a given shading pattern is generated by a true Lam-
bertian surface. Uniqueness is whether a shading pattern is due to one and only one
Lambertian shape. In the literature, the existence and uniqueness of the solution
are mostly investigated for the special case of a surface lit by a single source directly
overhead [79], [80], [81], [82] and [83].

One possible solution for the proposed unconstrained nature of the problem is to
use more than one surface image. This approach is called Photometric Stereo and

is the subject of Section 4.2.
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4.2 Photometric Stereo

4.2.1 Introduction

Woodham [84] states that the shape of a Lambertian surface is uniquely determined
by a triplet of images obtained by illuminating a given scene from three different
light-source directions. This technique is known as three-light Photometric Stereo,
and the solution is determined by a system of the three equations with the form of
expression 3.4.

This equation system is solved for three unknowns, the derivative maps of the
surface p(z,y) and ¢(z,y), and the albedo map p(z,y). 3-light Photometric Stereo
techniques don’t rely on smoothness constraints. Thus they present a valid approach

for shape estimation of rough surfaces and should be further studied.

4.2.2 Review of Photometric Stereo techniques

In this section we survey existing Photometric Stereo techniques. We review al-
gorithms that improve Woodham’s estimation for Lambertian surfaces as well as
others that extend the estimation to non-Lambertian surfaces. We also consider
colour Photometric Stereo techniques and active differential approaches. Finally we

review the conditions for existence and uniqueness of the solutions.

Photometric Stereo for Lambertian surfaces

Significant improvements have been made on Woodham’s technique by other re-
searchers. Kulick [85] recovered a Lambertian surface using a three light Photomet-
ric Stereo technique. He proposed a scheme that minimises the error between the
surface normal vectors and the recovered ones. He tested his scheme on synthetic
data concluding that the reconstructed surface converged to the test surface as the
quantisation noise was reduced.

Kim and Park [86] proposed a multi-image Photometric Stereo method that

approximates the surface using Legendre polynomials. Their algorithm assumed
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a linear reflectance and relied on brightness constraints. The performance of this
Photometric Stereo approach was evaluated in terms of brightness, orientation and
height.

Zhang and Shah [87] presented a scheme to estimate shape and surface albedo of
a Lambertian surface using a sequence of n images. Their algorithm was formulated
in the framework of a linear Kalman filter to iteratively refine the surface estima-
tion. They concluded that the proposed algorithm showed a great improvement over

classic Photometric Stereo on noisy images for both surface and albedo estimation.

Photometric Stereo for non-Lambertian surfaces

Although traditional Photometric Stereo is restricted to Lambertian reflectance,
subsequent approaches have extended its use to non-Lambertian surfaces. Coleman
and Jain [8] proposed the use of four light sources to separate the specular and the
Lambertian components in Photometric Stereo. This redundancy in the number
of lights allowed them to detect and remove specularities. If one image pixel was
specular, a valid surface orientation was determined with the remaining three lights.
Solomon and Okeuchi [48] also proposed a four-light technique to extract the shape
and surface roughness of an object that exhibits a specular lobe. They estimated
shape using an algorithm similar to Coleman and Jain’s. The specular pixel and
the shape estimate were fitted into a simplified Torrance and Sparrow’s model to
determine the surface roughness.

McGunnigle and Chantler [88] proposed an algorithm that suppressed the spec-
ular reflection, so that classic Photometric Stereo could be applied. They modelled
the facet reflectance as a function of the illuminant azimuth. To estimate the re-
flectance function for each facet they illuminated the surface from several azimuth
angles. They fitted the measured reflectance into a function which had two terms: a
Lambertian component and a specular residue. By suppressing the specular residue,
they could apply traditional Photometric Stereo to recover the facet orientation.

Ikeuchi [89] used distributed light sources for Photometric Stereo of specular
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surfaces. By using several extended sources he ensured the detection of the specular
reflection. Nayar et al. [90] extended this approach to surfaces whose reflection
is a sum of specular and diffuse components. Since the surface orientation and
reflectance are estimated locally, this method can be applied to non-homogeneous
surfaces. The relative strength of the Lambertian and specular components does
not need to be known a priory, it is estimated.

Tagare and deFigueiredo [91] introduced a Photometric Stereo scheme for a large
class of non-Lambertian surfaces. They proposed a reflectance model for diffuse
homogeneous surfaces, called m-lobed reflectance map. They compared the perfor-
mance of their approach to that of the standard Photometric Stereo for a non-
Lambertian sphere. They found that the reconstruction from using his m-lobed
reflectance map was superior to that from using the Lambertian reflectance map.

Kay and Caelli’s method [92] simultaneously measured the surface normals and
reflectance parameters. They assumed fairly general reflectance properties but em-
ploy a large number of images for the recovery. Although using a simplified Torrance-
Sparrow model was sufficient for simulation, it did not give accurate reconstruction
of real objects.

Among the more advanced methods are those that use local confidence measures
to account for surface inter-reflections and shadowing [93] [94]. These methods use
three or more images, and exploited this redundancy to detect shadows and inter-

reflections.

Colour Photometric Stereo

Colour information can improve the photometric recovery. With Lambertian reflec-
tion the colour components are dependent. Therefore, the information in a colour
image (blue, green and red components) is equivalent to three grey-scale images of
the same resolution. In contrast for non-Lambertian reflection, the information in
the colour components supplement each other. The specular and diffuse components

usually have different colour, and peaks in different directions. This helps separat-
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ing specular and diffuse reflection as well as determining the surface orientation.
Photometric Stereo approaches that take advantage of colour images are [95] [96]

[97] [98] [99] [100].

Active differential approaches

Classical Photometric Stereo techniques assume that the light source is at infinity.
Differential Photometric Stereo assumes a point light source which is relatively close
to the surface and the camera [101] [102] [103] [104]. The algorithm relies on the
controlled motion of the light to solve for height. It only requires the solution of a

linear equation and holds for a very general class of reflectance models.

Existence and uniqueness

Recently, Okatani and Deguchi [105] investigated the issue of uniqueness for the
three-light Photometric Stereo. They stated the conditions on the lighting configu-
ration according to the surface reflectance for a unique solution. Previously, Tagare
and deFigueiro [91] obtained constraints on the position of three light sources to
ensure uniqueness of the solution. They restricted their investigation to a class of
diffuse non-Lambertian surfaces.

Shape from Shading techniques recover the surface in terms of gradient. Our
purpose is to recover the surface height function, therefore an integration step is

required.

4.3 Integration techniques

The integration of the surface normals to provide depth may be performed using
either local or global approaches [106]. Local path integration techniques are easy
to implement and computationally efficient. However, the local nature of the cal-
culations and the propagation of errors means that accurate data is required. Fur-

thermore, they do not exploit any assumptions about the integrability condition.
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Surface integration is treated as an optimisation problem in global techniques.
They are more robust to noise than local approaches since the surface gradient data

is considered globally during the solution process.

Local integration

Coleman and Jain’s local approach [8] was a scan algorithm that passed through all
points of the image grid. Starting with an initial depth this algorithm can be used
to propagate depth values according to a local approximation rule. They estimated
the depth of a point P by considering the normal vectors of two points adjacent to
P, computing the average tangent lines through P and interpolating.

Instead, Healey and Jain [107] considered the eight points surrounding P for
more precise depth information. This method is computationally expensive and
relies on the two-point method to find relative depth for irregular borders.

Wu and Li [108] exploited Green’s theorem and used multiple path-independent
line integrals to compute relative depth. This method is powerful, simple to imple-
ment and valid for discontinuous surfaces. However its precision is lower than that

of the two-point and eight-point methods.

Global integration

Tkeuchi [109] presented a least squares technique for estimating surface shape from
a needle map. His algorithm minimises the mean squared error between the sur-
face derivatives and the surface orientation. Boundary conditions are necessary to
generate an absolute depth map.

Horn [67] solved for both gradient and height simultaneously. He formulated
the estimation problem as one of finding a surface that minimises a function which
accounts for the brightness and the integrability constraints. He implemented this
algorithm assuming a linear surface reflectance. He initially incorporated a departure
from smoothness term in the function to minimise. This term is only necessary to

prevent instability when far from the solution. It can be dropped as we get close
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to the solution, so that we assure convergence to the exact reconstruction. The
algorithm was applied to synthetic and real images proving to successfully recover
complex wrinkled surfaces, even surfaces with discontinuities in the gradient.

Frankot and Chellappa [66] assumed that the unknown surface function satisfied
the integrability condition. Furthermore, they assumed a Fourier coefficient repre-
sentation for the surface and proved a theorem allowing the reconstruction in the
Fourier domain. Thus an inverse Fourier transform leads to the desired data. This
algorithm is explained in detail in Section 4.5.2.

Simchony et al. [110] presented a direct method for solving Shape from Shad-
ing whilst enforcing integrability. This method reduces to an algorithm similar
to Frankot and Chellappa’s when using Fourier transform and periodic boundary
conditions. Since this method uses a central difference derivative operator, the es-
timated surface does not suffer from high frequency oscillation as in Frankot and
Chellappa’s case. They assessed the new algorithm by recovering a synthetically
generated Lambertian sphere. Although this assessment is limited and initial con-
ditions were necessary, the algorithm was shown to successfully recover the surface.

Petrovic et al. [111] enforced integrability via belief propagation across graphi-
cal models. The graphical model represented the joint probability density function
of all unknown surface gradients given their initial noisy estimates and indicators
whether the integrability constraint was satisfied for the whole surface. The al-
gorithm exploited the manner in which the given function factored as a product
of ”local” functions, each of which depended on a subset of the random variables.
Such a factorisation was visualised as a bipartite graph and was called a factor graph.
This scheme utilised the surface integrability constraint to produce the maximum
a-posteriori estimate of a valid surface. The algorithm was implemented as a Shape
from Shading scheme and a Photometric Stereo technique. Good results were shown
for real and synthetic images.

Direct approaches are global algorithms that solve directly for height [56] [60]

[71]. This means that integrability problems are avoided. Also the problem of
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finding a consistent surface height for the estimated gradient is avoided.

Harris [112] proposed a coupled depth /slope model for surface reconstruction. He
also avoided consistency problems by simultaneously estimating height and gradient.
His algorithm can handle constraints and discontinuities of any order of derivative.

This approach is not strictly a global method but a surface interpolation method.

4.4 Discussion

In Section 4.2 and Section 4.3, we reviewed Photometric Stereo techniques and
Integration techniques. We argued that Photometric Stereo is the algorithm most
suited to this thesis since it can be applied to rough surfaces. We also highlighted
that global integration methods are more robust to noise than local path algorithms.

In Section 4.5, we describe a benchmark shape recovery technique which com-

bines a Photometric Stereo algorithm and a global integration method.

4.5 Benchmark photometric recovery technique

We present a surface recovery technique which comprises two standard components:
a 3-light Photometric Stereo algorithm and a global integration method. The 3-light
Photometric Stereo algorithm is been successfully used for rough surfaces estimation
[59] [113] [114]. Similarly, the global integration method is well known in the liter-
ature [106] [115] [116]. This makes the proposed surface recovery technique a good
choice as a benchmark technique which is used for comparison purposes in the rest
of the thesis. The so-called Benchmark technique is an efficient shape estimator of
rough surfaces [117] [118] [119]. Next we describe the two components of the shape

estimator.
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4.5.1 Simple Photometric Stereo scheme

This classic Photometric Stereo algorithm avoids inverse matrix calculations by plac-
ing the lights with the same zenith angle and azimuth angles in 90° increments [59].
It assumes Lambertian reflectance of the surface. It is expected to be inferior to the
schemes discussed in the previous survey which assume more realistic reflectance
models. However, in the context of this thesis the surfaces are nearly Lambertian
with constant albedo. Furthermore, their main characteristic is that they are rough
textures. We argued that Photometric Stereo is suitable for rough surface estima-
tion.

For a Lambertian surface illuminated with azimuth 7 and zenith o, the intensity
follows the expression of equation 3.4. Taking three images of the surface under the

described lighting conditions:

—p(z,y) cosTy sino — q(z,y) sinTy sino + cos o

N R S 42)

'il (.I, y) = ’io,O(.T, y)

—p(z,y) cos (11 +7/2)sino — q(x,y) sin (r, + 7/2)sino + coso
VP (@, y) + ¢ (z,y) +1

io(x,y) = iop(z, y)
(4.3)

—p(z,y) cos (11 + 7) sino — g(x,y) sin (1, + 7) sino + cos o

VP, y) + (2, y) + 1 4

is(2,y) = iop

Adding the equations 4.2 and 4.4 will produce a non-linear function of the surface

derivatives:

inp(z,y) =01 (z is(z,y) = 2igp(w,y) c050 .
il ) =) isley) = ZEBUEET

now dividing equations 4.2 and 4.3 by 4.5 we have two linear equations which

are independent of albedo, p, and incident intensity, 7y:
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i1(z,y) —p(z,y) costy sino — ¢(z,y) sinTy sino + coso

i (2,9) = i(z,y) +is(z,y) 2cos o

(4.6)
(2 9) ia(z,y) —p(z,y)sinT sino — ¢(x,y) cos 1y sino + cos o
ig(z,y) = =
Y i1(z,y) + i3z, y) 2coso

(4.7)

The equation system linearly maps surface slope to image intensity, therefore the

gradient can be computed as:

1—22 1—22
p(z,y) = L= 2(,y) sinTy + 1= 2(z,y) COS Ty (4.8)
tano tan o
1—22 1—22
q(z,y) = 1= 2ip(2,y) cos Ty + L= 2i(@,y) sin 7 (4.9)
tano tan o

The system only needs the capture of three images at azimuth angles of 90°
increments and the application of equations 4.8 and 4.9 to provide the estimates of
the gradient field. We should bear in mind that this scheme ignores self- and cast
shadows as well as inter-reflections. Nevertheless, it is fast and simple to implement.
It is expected to have good behaviour for almost Lambertian surfaces of low slope

angles where the effect of shadows and inter-reflections is small.

4.5.2 Frequency integration

We enforce integrability using Frankot and Chellappa’s approach [66]. They rep-
resented the (possibly non-integrable) estimate of surface slopes with a finite set
of basis functions. Then they enforced integrability by calculating the orthogonal
projection of the estimated slopes onto a set of integrable slopes. Their algorithm
provides a least squares fit of integrable slopes to non-integrable slopes where the
integrability constraint is minimised.

We implement their algorithm using the Fourier basis functions to represent the

surface. This frequency domain interpretation of the shape from gradient problem
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provides a computationally efficient implementation. Consider a surface s which is

continuous and has a Fourier coefficient representation

1 +oo  pHto0 ]
s(z,y) = %/ S(u,v) - e 3 wetvy)dy dy (4.10)

where

1 —+o0 “+oc )
S(u,v) = —/ / s(z,y) - e @TFY dr dy (4.11)
27T —0oQ —0oQ
denote the Fourier coefficients of s.

The spectra of the surface derivative fields are related to the surface height

spectrum by

P(u,v) = juS(u,v) (4.12)

Q(u,v) = jvS(u,v) (4.13)

It follows that the surface height spectrum can be calculated from the derivatives

spectra

uP(u,v) +vQ(u,v)
J(u? + v?)

S(u,v) = (4.14)

Equation 4.14 is not defined at the point (u,v) = (0,0): we cannot recover the
average value of s, i.e. the absolute distance from the viewer to the surface.

Equations 4.12 and 4.13 show that the low-frequency components of the sur-
face are attenuated in the image formation process. Thus the reconstructed surface
inevitably suffers from low-frequency distortion, the severity depending on observa-
tion noise characteristics. Expression 4.14 shows that the Fourier coefficients of the
estimated derivatives are combined in proportion to their frequencies. This reduces
the amplification of low-frequency noise during integration.

Frankot and Chellappa implemented this algorithm as part of an iterative scheme.

They enforced integrability at the cost of over-smoothing the surface estimate. We
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implement Frankot and Chellappa’s technique in a non-iterative manner, so that
the surface is not over-smoothed. This implementation provides a least-squares fit

of non-integrable slopes to integrable slopes in one pass of the algorithm.

4.6 Summary and discussion

In this chapter we reviewed single-image Shape from Shading techniques as well
as Photometric Stereo algorithms. We identified Photometric Stereo as a possible
candidate for the recovery of rough surfaces since it does not rely on smoothness con-
straints. We then reviewed several integration methods and concluded that global
integration was the most appropriate approach.

In the last part of this chapter we described a 3-light shape recovery technique
which combined Photometric Stereo estimation with global integration. Both the
components of the proposed shape estimator are well-known in the literature and
have been successfully used. Very little work has been carried out on the shape
recovery of rough surfaces. In Chapter 5 we present two novel recovery techniques

that are not restricted to smooth surfaces.
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Chapter 5

Shape Recovery: Two Novel
Methods

Although Shape from Shading is been extensively used to estimate the surface structure,
it is been mostly applied to smooth surfaces. Recovery techniques that use less than
three images rely on assumption about the shape or smoothness of the surface. Examples
are the single-image Shape from Shading algorithms surveyed in Chapter 3 and most of
the two-image methods reviewed in this chapter. The height recovery of rough surfaces,
such as textures, has not been properly addressed before.

In Chapter 4 we presented a benchmark shape recovery method that combines a
3-light Photometric Stereo technique with frequency integration. The two components
of the Benchmark technique have been recovered from the literature.

In this chapter we review 2-light Photometric Stereo methods. We discuss the con-
ditions for a unique solution when two surface images are available. We find that by
assuming a linear surface reflectance function, no smoothness constraints are needed.
Rough surfaces can be recovered using only two images, thus more efficient algorithms
can be proposed. Subsequently we present two novel techniques that can be applied
to rough surfaces. We finally summarise the assumptions about the surface properties

made for the derivation of our algorithms.
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Technique Assumptions
shape reflectance | other constraints
Onn Smoothness Integrability
Kozera Smoothness Integrability
Lee € Kuo Small slopes Linear Triangular facet
Hansson € Johansson Small slopes Linear > ¥i=0
Torreao & Fernandes Smoothness Linear Close lights
Yand et al. Smoothness Convexity
Caver & Schalkoff Prototypical surface
Kim & Park Linear Brightness

Table 5.1: Two-light Photometric Stereo techniques

5.1 Two-light Photometric Stereo techniques

5.1.1 Review of the algorithms

In Chapter 4, we reviewed several techniques for shape estimation from shading
information. We surveyed single and multiple image (Photometric) Shape from
Shading methods [18] [84]. Conventional Photometric Stereo requires at least 3
images but several researchers have developed schemes that need only two images.
The reported 2-light schemes are reviewed in this section.

Assuming a Lambertian surface we have to consider a system formed by two
equations like expression 3.4. This system has to be solved for three unknowns: the
two surface derivative maps and the albedo map. By assuming that the surface has
constant albedo, the local surface normals can be determined up to a constant.

Work has been done to try to investigate the existence and uniqueness of the
solutions. Table 5.1 summarises the approaches surveyed in this section and the
assumptions that they make to find a unique solution. All the reviewed approaches
assume a Lambertian surface with constant albedo. Other assumptions about the

surface shape, its integrability or its reflectance are included in the table.
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Onn [120] stated that for smooth surfaces, the local integrability constraints
usually resolved the problem of deciding between the two possibilities. Kozera [121]
argued that generally this system had, up to a constant, a unique solution for a
smooth Lambertian surface. He also examined exceptional cases where there was no
such unique solution. He used smoothness constraints and integrability conditions
to resolve the ambiguity.

Lee and Kuo [122] generalised an iterative Shape from Shading algorithm to
a two-light Photometric Stereo algorithm. They assumed linear reflectance of the
surface. They approximated the reflectance map R(p,q) by the first term of its
Taylor series expansion about a certain reference point (pg, ¢o). This point could be
either fixed or varying for different values of (p,q). By assuming constant albedo
of the surface and a linear reflectance, they established a framework where one
single solution exists for the estimation problem. Their method implied the use
of a triangular-element surface model. The accuracy of the surface estimation was
affected by the type of triangulation scheme and by the level of resolution chosen.

A two-light Photometric Stereo technique developed by Hansson and Johansson
[116] was presented as an application for estimating paper reflectance and topog-
raphy. The two images of the surface were lit from the left and right respectively.
Only one of the derivative maps was estimated, p(z,y), i.e. only the inclination
of the surface elements was determined. They assumed that the mean height in
the y-direction was zero. They also approximated the surface reflectance to a lin-
ear function around (p,q) = (0,0). This approximation was valid for small slopes.
The inclinations were integrated to give a surface height function with the help of
a Wiener filter, which suppressed frequencies that have a poor signal-to-noise ratio.
The main characteristic of this method is that two images with opposite azimuth
are enough to solve for one of the derivative fields when the reflectance is a linear
function.

Torredo and Fernandes [123] [124] presented a 2-light Photometric Stereo algo-

rithm that also assumed a linear reflectance map. When the illumination directions
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of both images were not far apart, and if the imaged surface was smooth, the linear
approximation to the reflectance function was applicable. The disparities produced
by the matching process can be related to the depth of the imaged surface. To deter-
mine the disparity map between images, they used a constraint which is equivalent
to the optical-flow-constraint equation. They also assumed a constant albedo of the
surface.

Yang et al. [125] proposed an approach that assumed a strictly convex surface
to find the unique solution. Also Caver and Schalkoff [126] solved the ambiguity by
assuming a prototypical surface. The novelty of their work was that the extended
light sources and the imager were close to the surface. They modelled the surface re-
flectance using a linear combination of three components: Lambertian, back-scatter,
and extended-source Phong’s specular reflection.

Kim and Park [127] approximated the surface using Legendre polynomials and
then estimated it with a two-image Photometric Stereo method. Their algorithm
assumed linear reflectance and relied on brightness constraints. They compared
the performance of their algorithm to that of conventional Photometric Stereo for
noiseless/noisy images. The assessment was in terms of brightness error, orientation
error and height error. They concluded that their algorithm gave good performance
comparable to the conventional methods and that it was robust to noise.

The reviewed approaches rely on different assumptions and constraints of the
surface to reach a unique solution. We next discuss the conditions for the uniqueness

and existence of the solution.

5.1.2 Uniqueness and existence

We summarise the conditions that we use to solve for a unique surface. Most of the
discussed two-light methods rely on assumptions about the smoothness or the shape
of the surface. In our investigation, the restrictions of surface properties should not
refer to its topography or roughness. Table 5.1 shows that by assuming a linear

reflectance function, smoothness constraints can be avoided. This is going to be our
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approach. A unique solution is found for a surface with:

1. Lambertian reflectance.
2. Constant albedo map.

3. A surface-to-image transfer function which is accurately modelled by a linear

function.

4. A potential height function to a conservative gradient field.

Assuming a Lambertian surface we simplify the estimation problem to one of
solving the a system of two non-linear equations. For a constant albedo map, only
two unknowns have to be computed, i.e. the derivative fields p(z,y) and q(z,y).
Fitting the surface-to-image model to a linear function makes the equations linear,
and the unique solution can be easily found up to a constant. If the surface gradient
is conservative, the integrability condition is met and the gradient can be integrated
into the surface.

Although this approach restricts the surface characteristics, we adopt it because
the assumptions about the surface are reasonable for our textures. The Lambertian
assumption is common in computer vision [128]. The reflectance function is nearly
linear for a Lambertian surface with low slopes [56]. The surface has to be continuous
for its gradient field to be integrable. A continuous surface consists of a succession
of low slope facets and all can be seen by the viewer (from overhead). It could still
be rough since two consequent facets can differ greatly in their slopes. Therefore
our test surfaces are continuous Lambertian surfaces of low slope angles. The most
severe restriction is assuming a constant albedo.

Traditionally, Photometric Stereo requires three or more images to accurately
estimate rough surfaces. We here argued that two images are sufficient to recover

rough surfaces, thus more efficient algorithms can be proposed.
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5.2 Linear Photometric Stereo

5.2.1 Introduction

The Linear Photometric Stereo technique is a novel two-light method. It is based
on an assumption about the surface reflectance function. This method exploits the
surface-to-image function that was presented by Kube and Pentland in [55]. They
presented a linear transform that relates the spectrum of the surface to the spectrum

of its image (see Section 3.7. for derivation):

I(w,0) = —jwsino cos (0 — 7)S(w, ) (5.1)

Pentland [56] developed a single image Shape from Shading technique that ap-
plies the inverse of the transform to recover the surface from the image. He con-
sidered neither smoothness constraints nor boundary conditions. The illumination
conditions, azimuth (7) and zenith (o), had to be known to calculate the inverse
filter.

Pentland pointed out that, with a linear reflectance, the surface frequency com-
ponents that are exactly perpendicular to the illuminant azimuth could not be seen
in the image. He proposed that these surface frequency components must be either
estimated from other information sources or set to some default value. Boundary
conditions, such as surface shape from contours or singular points, can be used to
compensate for the lack of information and an accurate recovery of the surface can
be achieved. When boundary conditions are not available, he invokes the general
view position assumption and argues that the unseen Fourier components should be
set to zero. He concludes that the use of default values produces good estimates of
shape for complex and irregular surfaces, but not for geometric forms. Zhang com-
pared Pentland’s algorithm to other well-known single-image Shape from Shading
techniques [115]. He concluded that these methods gave poor results and suggested
the use of more images to improve the estimation.

In this section we propose a technique that is designed to overcome the prob-
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lem of estimating the surface polar components at right angles to the illuminant
azimuth. Our approach uses two intensity images that differ in their illuminant
azimuth angles. The light position is known, so the surface can be estimated from
each image. The surface polar components at right angles to the light direction for
the first image can be estimated from the second, and vice versa.

We expect the recovery performance of our technique to be a function of the
applicability of the linear mapping of equation 5.1. This mapping is optimal for a
Gaussian surface with linear reflectance. Our test surfaces are continuous with Gaus-
sian height distributions. Furthermore, they are Lambertian surfaces with low slope
angles, thus the reflectance function is nearly linear (see Section 3.8.1). However,

the recovery performance may deteriorate for rougher surfaces (pPrms, ¢rms > 0.3).

5.2.2 Description of the algorithm

The surface can be estimated by applying the inverse of the linear filter of equation

5.1, i.e.:

S(w,0) = —I(w, )

~ jwsinocos (§ —7)

(5.2)

This estimation process assumes a linear reflectance. We should therefore study
the circumstances under which non-linear order effects are significant.

Non-linear order effects

Chantler [57] investigated the validity of the linear expression (equation 5.1).
He concluded that for a given surface roughness and zenith, the most interesting
non-linear effects occur at # = 7 + (2k + 1)w/2. Here the linear model predicts
that all components will be filtered out. Chantler showed with simulation that for
the Lambertian model, quadratic and higher order terms are significant for those
frequency components.

We want to maximise the ratio between the linear term and the non-linear terms

of the Lambertian equation (equation 3.4). Lambert’s intensity expression after
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taking MacLaurin’s expansion is

1 9
i =|[—pcosTsino —g¢sinTsino + coso] |1 — a(]o2 + %) + I(p2 +¢*)?..| (5.3)

Chantler predicted that the strength of non-linear effects is related to the angle
between the surface frequency component (#) and the illuminant azimuth (7). Thus
we simplify the investigation by considering a corrugated surface rotated by ¢. For
a corrugated surface with ¢(x,y) = 0 — the grain is aligned with y axis — equation

5.3 simplifies to

1
i =[—pcosTsino + cos o] [1 - §p2 + } (5.4)

If we rotate the surface together with the axis system by an angle ¢ without

rotating the light, then equation 5.4 becomes

i = [—pcos (T — @)sino + cos o] [1 — %pQ + } (5.5)

For low slope angle surfaces we can discard third and higher order terms. Rear-
ranging equation 5.5 we get an expression with an offset term, a linear term and a

second order term:

1
i =coso —pcos (T —¢)sino — 5;02 cos o (5.6)

The linear term is proportional to the cosine of (7 — ¢), whilst the quadratic
term is independent on the surface orientation and light azimuth. The linear to

non-linear ratio for the corrugated surface follows:

— log [cos (1 — ¢)sino

R 1/2pcoso } = log[cos (T — ¢) sin o] — log[1/2pcos o] (5.7)

To improve the signal-to-residue ratio, the first logarithmic term has to be max-

imised and the second minimised, i.e.:
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Figure 5.1: Reflectance maps of a Lambertian surface illuminated for increasing
zenith and fixed azimuth.

o The surface derivative, p, tends to zero, we are restricted to low slope angles.

o The illuminant zenith, o, tends to 90°. It’s worth noting that the Lambertian
model neglects shadows. In reality, we have to compromise between max-
imising the linear term (large o) and avoiding shadows (small o). Figure 5.1
shows three reflectance maps of a Lambertian surface illuminated for increas-
ing zenith angles and a fixed azimuth. The shallower the illumination, the

more linear the reflectance map.

o The surface orientation, ¢, and the azimuth angle, T, tend to the same value.
For a fixed zenith, the cosine cos (7 — ¢) should be maximised, i.e. ¢ = 7. In
contrast, if ¢ & 7 + 7/2 the cosine is close to zero and the second logarithmic

term is dominant.

Assuming that the directional components are independent, the image of the
corrugated surface rotated by ¢ can be used to predict the polar component of a
surface image with § = ¢. In this sense, equation 5.6 shows that the second order
term is the same for all polar components, and the linear term varies with the cosine
of (0 — 7).

As an example we render an isotropic texture using both Lambert’s law and
Kube’s model. The surface is a synthetic fractal with a roll-off factor of 5 = 3.7 and
surface roughness p,n,s = 0.25. The light is placed at zenith 45° and azimuth 0° for

both rendering processes. Figure 5.2 shows the polar plots of the spectra of these
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Figure 5.2: Polar plots of the spectra of two images of an isotropic fractal obtained

rendering with Lambert’s law and Kube’s model.
two images, i.e. the sum of the power of the components along a particular radial
frequency. They are different due to secondary and higher order terms. When the
intensity signal is strong, the nonlinear effects can be neglected, i.e. for § ~ 0°. The
relative effect of the non-linearities is larger for 6 = 7+ (2k +1)7/2, since the signal
is poor i.e. for § = 90° and 0 ~ —90°.

The surface components with € in the vicinity of § = 7 + (2k + 1)7/2 cannot be
estimated since the image presents a poor signal-to-residue ratio.

Considering noise

Now considering that noise is added to the intensity image, equation 5.1 takes

the form:

I(w,0) = —jwsino cos (0 — 7)S(w, 0) + N(w, ) (5.8)

If we assume that the dominant noise is due to the camera, then it will be
isotropic and it will be a constant term over 6 like the non-linear contribution. The
Fourier components of the intensity perpendicular to the light direction are due to
noise and non-linear effects. To avoid estimating the surface from the noisy data,
Pentland [56] implements a Wiener filter. Noise and non-linear components of the
image intensity pattern are then removed by filtering. He models the noise N(w, #) to
be proportional to | cos (f — 7) sin o, and the surface as a fractal Brownian function
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whose power spectrum is proportional to w™.

We do not use a Wiener filter to implement our Photometric Stereo algorithm.
We avoid estimating the surface from intensity components with poor signal-to-noise
ratio by using two images with different illuminations.

The algorithm

A given surface frequency component is estimated from the intensity image that
shows the largest signal-to-residue ratio for that component. This is, the image

whose corresponding component is most linear — closest to the azimuth direction:

1(w,0) for [(m+m)/24+7/2] <0 <[(11+T)/2+7]
§(w, 9 = ) :(w,@) for [(m+m)/24+37/2] <0 <[(r+7)/2 (59
9(w,0) for [(m+m)/2|<0<[(n+m)/2+7/2]
So(w,0) for [(m+m)/2+7]<0<|[(r+7)/2+3r/2]

\

where §1 is the surface function estimated from the image I; using equation 5.2.
We assumed that the two images differ in their zenith angle (o1 # 02) and in their
azimuth angle (1, # 73). Considering the same illuminant zenith angle for all the
images simplifies the derivation of our estimator, without loss of generality. The
real restriction about the light source position is in the azimuth angle which has to
be different for each image. The optimal lighting set-up is investigated in Chapter
6.

Extending the algorithm to n images

Since the intensity I, shows the best signal-to-residue ratio for values of 6 in
the vicinity of (7, + k), the way to combine n intensity images for the surface

estimation is:
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Figure 5.3: Surface recovery from 5 intensity images

S for [( )
S for |[( )
Sy for [(m+7)/2 <0 <|(r2+75)/2]
Sy for |( )

Sy for
Sy for

n for [(Ta1+7)/21 <0 <[(Ta+7)/2]

)

\nfor

tensity images is shown in Figure 5.3.
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[(Th1 +70) /2] < 0 <[(7h + Th11)/2]

[(Th_1 +Th)/2+ﬂ'] <0< [(’Th +Th+1)/2+ﬂ']

(T +7)/24+7/2] <0< [(1 +72)/2+ 7]

(T +7)/24+31/2] <0 < [(11 + 72)/2]

(n+7m)/24+7])<0<[(re+73)/2+ 7]

(s + ) /2 + 7] <O < [(T0 +71)/2 + 7]

Again the only restriction is that the images must differ in their azimuth angles.

An example of the combination of five surface estimates obtained from five in-

It is an advantage that this technique can easily incorporate any number of
images for the estimation. The performance is expected to improve as the number

of images increases, but this will be investigated in Chapter 6.




5.2.3 Advantages

We review the main advantages of using the new recovery algorithm for the purpose
of shape estimation. This algorithm is a simple yet effective technique, but its
application is restricted to a certain class of textures (see Section 5.4).

Advantages:

1. The most important advantage of this method is that it can be applied to
textures. No smoothness constraints are used for the estimation of the surface

height.

2. Only two intensity images of the texture are necessary for the estimation. In

contrast traditional Photometric Stereo requires three images.

3. The only restriction on illumination conditions is that the images must be lit
from different azimuth angles. Theoretically, there is little limitation for the

placement of the lights. This topic is investigated in Chapter 6.

4. To improve the estimation accuracy, any number of images can be integrated

in a more efficient manner than using the Benchmark method.

5. Since we directly solve for height, we avoid the problem of finding a surface

consistent with the estimated surface orientation.

Because only two images of the texture are necessary and since there are few

restrictions on the lighting conditions, we argue that this is an efficient approach.

5.3 Optimal Linear Filter

5.3.1 Introduction

The Optimal Linear Filter, like the Linear Photometric Stereo, is a two-light Pho-
tometric Stereo method that assumes linear reflectance. The Linear PS algorithm
is based on a theoretical prediction of the surface-to-image transfer function: the

linear approximation is not optimal. In this section we describe a novel technique
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that models the true reflectance function by its optimal linear approximation for a
given surface. The reflectance assumptions are much weaker than for the Linear PS
algorithm. An important advantage over the Benchmark 3-light recovery technique
is that there is little restriction on the lighting conditions of the images. A further
benefit is that we don’t need to explicitly know those lighting conditions, unlike
with the Linear PS method.

The Optimal Linear Filter parameters have to be trained. We estimate the
linear filter that best matches the gradient-to-image function according to the least
squares criterion. The training data consists of a prior: knowledge about the surface
topography as well as two surface images. An important limitation of this technique
is that information about the surface is necessary for the training process.

Once the filter is calculated, it can be used to estimate the surface function.
This technique is optimal for test surfaces with the same reflectance and first and
second order statistics as the training surface. Furthermore it should be applied to
test images with the same lighting conditions as the training image.

The filter parameters depend on the derivative operator used to compute the
gradients of the training surface. Each derivative field is estimated from the potential
field using a two-point estimator. The two-point estimator is the simplest form of
differentiator, and it should be noted that it underestimates the magnitude of high
frequencies. Nevertheless, we use it due to its simplicity.

Since we assume a linear reflectance, we are presented with a system formed by
two linear equations at each pixel position. It has to be solved for two unknowns,
the derivative fields at that position. Therefore, we need two optimal linear filters
and two surface images for the estimation.

Some work related to the estimation of a linear surface-to-image transfer function
is found in the literature. McGunnigle [59] compared the optimal linear filter with
an empirically derived reflectance map. Although both the form of the filter and the
training method are similar to our algorithm’s, his use of the filter was different. He

estimated an optimal linear filter for two synthetic surfaces to test the validity of
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the linear reflectance assumption. He assessed this validity by comparing the filter’s
performance in rendering terms to a reflectance map measured for a Lambertian
surface. His aim was not surface recovery.

The approach described by Knill in [25] is also related to ours. In this paper an
adaptive approach to solve the inverse mapping problem was proposed. Knill derived
a linear estimation of surface shape from shading using a Widrow-Hoff associative
learning algorithm. Our approach is more efficient since we derive an optimal closed-
form solution for the surface. Knill used one single image for the recovery. This is
an important difference from our work since we implement the optimal linear filter
as part of a Photometric Stereo technique. Knill viewed the problem as one of
statistical estimation and used Bayesian estimation techniques. He learnt the filter
from a large number of synthetic fractal surfaces and their images. He then applied
the filter to these and other fractals as well as to smooth surfaces. For the assessment,
he compared the estimated surface normals to the synthetically generated ones. He
concluded that the linear model performed well for the whole range of test surfaces.
He pointed out that the accuracy of the estimation might be a function of the
applicability of a linear reflectance model. This is also the case for the proposed

algorithm.

5.3.2 Description of the algorithm

In this section we present a more detailed description of the Optimal Linear Filter
implementation. We first describe the two-point derivative operator that is used to
calculate the gradient field from the surface function. Then, the training process
for the filter is detailed. Finally, we explain how the surface estimation process is
carried out.

The derivative operator

The ideal 2D differentiator has a transfer function of the form H(w,) = jw.
For simplicity we use two non-ideal 1D differentiators. The two-point estimator is

one of the most common derivative operators. It calculates the gradient with a
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Figure 5.4: Magnitude of the frequency response for the ideal derivative operator
and the central difference operator

two-neighbourhood function known as the central difference method [129]:

vl ] = 5 (sloesr, 5] — slzi 1, 3] (.11)

alois ) = 56l 1) = sloi = ;1) (5.12)

We compare this practical gradient estimator to the ideal case by comparing
their frequency transforms. Since gradient operators are typically non-causal, we
use a version of the DF'T centred at zero. In general the function for the central

difference method is given by:

1 -1
he(n) = [5,0, 7] n=[-1,0,1] (5.13)
Therefore its frequency response follows:
L onjk/N _omjk/N . k
H.(k) = 5 (e™IFIN — e 2mIkIN) = jsin QWN (5.14)

In Figure 5.4 we plot the magnitude of the frequency response for both the ideal
differentiator and the central difference operator. The amplitude of the DF'T for the
central difference method follows the ideal curve quite closely for low frequencies.

However the magnitude of high frequency components is underestimated.
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The phase response for the ideal derivative operator is:

—m/2 if w<0
ZHi(w) =4 0 if w=0 (5.15)
/2  if w>0

In the case of the central difference operator, the phase response is:

/2 if w<0
ZH (w) =14 0 if w=kn (5.16)
/2 if w>0
The main difference between both responses is for w = kn (k # 0) where the
phase of the central difference operator becomes zero unlike the phase of the ideal
derivative operator.
For a more detailed description of the subject see [129].
How to train the Optimum Linear Filter?
Next, we tackle the problem of developing an optimum filter for a given illu-
mination condition and also for a given surface. Applying the filter to the surface
derivative fields gives an approximation to the image. The filter has the following

general form:

i(z,y) = ST (z,y)V (5.17)

~

where i(z,y) is the image intensity at the point (x,y), S(z,y) is the surface

derivatives vector at the point (z,y) and V is the filter, i.e.

p(z,y)
S(z,y) = | q(z,y) (5.18)

and
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V=1|y (5.19)

p(z,y) and g(z,y) are the surface derivatives estimated from the surface height
using two central difference operators, and a, b and c are the filter weights.

The filter must not be linear, the surface reflectance can also be modelled with
a non-linear function.

To find the optimum values for the filter parameters, the quantity e must be

minimised according to a least squares criterion, where:

e = EBl(ia—1)’] = B[(ia — S"V)’] (5.20)

e is the mean squared error between the desired image 74 and the approximate
image i

The transfer function is approximated by a least squares linear filter in p and q.
The filter weights only depend on the first and second order statistics of the surface,
as well as on its reflectance (equations 5.21, 5.22 and 5.23). The filter is optimal

for surfaces which share the reflectance characteristics and first and second order

statistics with the training surface.

O B Tt AP A e AP G T A ek A G
2p_qﬁq_q21_72_p262+p2(]2—p_q
_‘_.i___'i_+_'_'i___"i_‘_2+i_-_2—i_-_2
b:P(Ip d —Pq dp_ Q_g) dp_q d'D d4 - p aq - p (5‘22)

PP-p2 @ +p*-¢>—Dq
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The surface recovery technique is a two-light Photometric Stereo technique. For

each of the two images, an optimum linear filter is estimated. Therefore,
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ir(z,y) = ST (z,y) V1 = [p(x,y) q(z,y) 1 } by (5.24)
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How to estimate the surface?

Once the filter weights are determined, each filter is applied to the corresponding
test image. The test image is obtained with the same lighting as the training image.
The system of two linear equations in 5.26 has to be solved to estimate the gradient

field.

11(x,y) = ap(z,y) + big(x,y) + ¢
1(z,y) = ap(z,y) + big(z,y) + &1 (5.26)

io(z,y) = aop(z,y) + bag(z,y) + c2

The estimated derivative fields are then integrated to recover the surface function.
More than two images can be used for the estimation: an over-constrained equation
system would have to be solved. The integration technique is the frequency method

used for the Benchmark 3-light Photometric Stereo technique (see Section 4.5.2).

5.3.3 Advantages

The advantages of the Optimum Linear Filter are summarised in this section. The
main drawbacks are related to assumptions about the surface properties and will be
reviewed in Section 5.4.

Advantages:

1. The most important advantage of this method is that it can be used to recover

rough surfaces.

2. Only two images are necessary to find a unique solution for the linear equation

system. The solution for surface gradient exists and it is unique.
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3. The illumination conditions of the two images are not restricted. Although in
theory any position for the lights is possible, there are certain lighting set-ups

that improve the estimation (Chapter 6).

4. The estimation performance may be a function of the applicability of a linear
reflectance model. Although there is no explicit restriction on the surface
reflectance and roughness, the estimator is expected to perform better for

Lambertian surfaces with low slope angles.

5. Shadows are considered by the optimal linear reflectance function, i.e. this

technique can predict, or at least approximate, shadows.

6. The true reflectance function is modelled by its optimal linear approximation.
This is an advantage over the proposed Linear Photometric Stereo technique
which used a linear approximation to a parametric model of the reflectance

function.

Since information about the surface has to be known before the estimation, the
usage of this technique is limited. On the other hand, it is not difficult to imagine
an application where the extra information about the test data is available. For

instance, this method could be implemented as part of a supervised classifier.

5.4 Assumptions

This section presents a summary of the assumptions that were made for the deriva-
tion of the proposed algorithms. We consider the two novel techniques as well as the
Benchmark 3-light Photometric Stereo described in Chapter 4. Table 5.2 includes a
short review of the surface topographic and reflectance characteristics assumed by
each recovery technique.

In terms of surface roughness, both the Linear Photometric Stereo technique
(LPS) and the Optimal Linear Filter (OLF) can only be applied to low slope surfaces.

The 3-light Photometric Stereo technique (3PS) makes no assumptions about
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3PS LPS OLF
Surface roughness no restriction low slope angles low slope angles
Shadows neglected neglected modelled
Surface reflectance Lambertian linear Lambertian linear
Albedo any constant constant
Integrability continuous surface | continuous surface | continuous surface

Table 5.2: Summary of the assumptions made during the derivation of the three
considered techniques

the roughness of the texture. On the other hand, shadows increase with surface
roughness. They are neglected during the estimation. The roughness of the texture
is therefore restricted to avoid shadowing.

Only the Optimal Linear Filter adapts shadows. If the filter is trained on shad-
owed data, the linear approximation to the true reflectance will account for the
shadowing. Although this does not seem to be the case in practice (see Chapter 7).

In terms of surface reflectance, the surface is expected to be linearised Lamber-
tian for the Linear Photometric Stereo technique. The 3-light Photometric Stereo
technique assumes a perfectly Lambertian surface, and the Optimal Linear Filter
assumes a surface with a linear reflectance function.

For the two-image surface recovery techniques, we assumed a constant albedo
surface. For the 3-light Photometric Stereo, we used a third image to solve for a
unique solution. No assumptions about the surface albedo were made.

To avoid integrability problems, we assumed that the surface gradient was inte-
grable into the surface. The surface has to be a potential function to a conservative

gradient field. We restrict the data set to continuous surface functions.

5.5 Summary and discussion

This chapter presented our contribution to two-image textured surface recovery. We

started with a survey on two-light Photometric Stereo techniques. Some of the re-
88



viewed techniques rely on smoothness assumptions which limits their application
to rough surfaces. We then presented two novel two-light Photometric Stereo tech-
niques. They relied on assumptions about the surface reflectance. Their restrictions
on surface topographic properties were less severe, thus they can recover textures.
The assumptions made to derive our techniques represent limitations for their ap-
plication, thus they can be thought of as shortcomings. An assessment to study the
scope of those shortcomings is necessary. This assessment is carried out in Chapter
7, Chapter 8 and Chapter 9 on synthetic and real data.

Chapter 6 is devoted to optimise the conditions for the implementation of the
new recovery methods. The optimal number of images as well as the best lighting

geometry are investigated.
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Chapter 6

Optimal Lighting Conditions

In Chapter 5 we presented two novel surface estimators: the Linear Photometric Stereo
technique and the Optimal Linear Filter. We want to maximise the accuracy of recovery
and minimise the number of images. The accuracy of the algorithms is affected by the
direction from which the surface is lit. The optimal number of light sources as well as
the best position for them are investigated here. The aim of this chapter is to find the
best lighting geometry. This will allow us to implement the proposed recovery methods
in an optimal way.

Most of the conclusions drawn here are specific to the estimation techniques. When-
ever the work can be generalised to any surface recovery method it will be stated. In
contrast, the investigation is not specific for a particular class of textures, it is general.
We justify our assertions both by reviewing the literature and through the use of simula-

tion. Simulation provides the necessary ground truth data and simplifies the assessment.
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6.1 Chapter organisation

First, we investigate the optimal position for the light sources. In Chapter 5, we
argued that only two images were necessary for the recovery using the proposed
estimators. We first concentrate on finding the best source position for these two
images. Then we extend our investigation to n images.

In the second part of our assessment we search for the optimal number of images.
Adding more lights gives a more robust estimation at the cost of having a more
expensive scheme. We try to find a trade-off between the accuracy and the cost of
the estimation.

We summarise the optimal lighting set-up for both of the proposed techniques.
The conditions for the most efficient implementation of our techniques are also

stated.

6.2 Optimal light source position

6.2.1 What is the optimal position for two lights?

To answer this question we first survey the literature. We find an optimal lighting
set-up for two images. Then we use simulation to assess if the proposed set-up is

also optimal for our recovery methods.

Lee and Kuo’s investigation

Lee and Kuo [122] proposed a two-light Photometric Stereo scheme and examined
the optimal illumination condition that leads to the best shape reconstruction. They
investigated the best lighting condition in terms of the reflectance-map function, thus
their study can be generalised to any Photometric Stereo estimation.

Note that the gradient of our surface facets is expected to be concentrated in the
centre region of the gradient space, say —0.5 < p,q < 0.5. Thus, this investigation

is restricted to this region.
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For a Lambertian surface, the image-irradiance equation is defined by:

E(z,y) = R(p(z,y),q(z,y)) (6.1)

where FE(z,y) is the image irradiance and R(p,q) is the reflectance map. To
better understand the problem the characteristics of the reflectance map are studied.
For simplicity, let’s fix the value of ¢ = ¢, and view the reflectance map R(p, ¢,) as
a function of one variable, p. The sensitivity of p with respect to the change in F

can be estimated by means of:

This is inversely proportional to the slope of the reflectance map at p. Thus,

[aR(p, qo)} o (6.2)

Op

for a fixed value of AFE, the value of Ap is smaller for the region where R(p,q,) is
steepest, i.e. where the function changes most rapidly. Therefore, the estimate p is
most accurate for the region where R(p,q,) is steepest. Similar arguments can be

made along the ¢ direction, i.e.

For a given point (p,,q,), the sensitivity defined in equations 6.2 and 6.3 is

[aR(po, )} B (6.3)

0q

greatest along the direction perpendicular to the contour, i.e.

VR(pm QO) = [Rp(pm QO)a Rq(po; QO)] (64)

and lowest along the tangential direction, i.e. [—Ry(Po, o), Rp(Po, @0)]-

The estimator is provided with two images of the scene, lit from different direc-
tions and with distinct reflectance maps. It is desirable to incorporate reflectance
maps that compensate for one another’s weaknesses. The effect of the light position
on the reflectance map has to be studied.

The unit source vector takes the form [122]:
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—Msy T 571 r . . .
L= (=P 26 1) = (cosTsin o, sin 7 sin o, cos o) (6.5)

V1+pi+q

This is,
cosTsino
Py = —————— (6.6)
coso
and
sin 7 sin o
s = ——— (6.7)
coso

In the gradient space, the angle x that the line passing through (0, 0) and (ps, gs)
makes with the p-axis is

s

X = arctan ( ) = arctan (tan7) = 7 (6.8)

Ds

and the distance d between (0,0) and (ps, ¢s) is

d=+/p?+ ¢ =tano. (6.9)

Note that the angle x is exactly the same as the azimuth angle, and the distance
d depends on the zenith angle. The azimuth angle determines the orientation of
the reflectance map around the origin (compare Figure 6.1(a) and (b)). The zenith
angle determines the shape of the reflectance map (compare Figure 6.1(a) and (c)).

Lee and Kuo state that for a zenith angle in the range 30° to 60°, the reflectance
map covers the central region of the gradient space (—0.5 < p,q < 0.5). Thus they
concentrate on finding the optimal lighting condition in terms of the azimuth angles
of the two light sources. The difference of orientation between two reflectance maps
with azimuth angles 7y and 75 is simply |73 — 7»|. It was argued that the reflectance
map gives good sensitivity along the direction perpendicular to the contour but poor
sensitivity along the tangential direction. We want the gradient direction® of one

reflectance map to correspond to the tangential direction of the other reflectance

!Direction of maximum rate of change
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Figure 6.1: Contour plots of Lambertian reflectance maps
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map over the region of interest. This can be achieved by choosing the difference
between the azimuth angles to be 90°. One such example is shown in Figure 6.1(d),
where the contour plots of two perpendicular reflectance maps are shown together.

Lee and Kuo also presented some experimental work on the subject [122]. They
kept one light stationary and varied the azimuth of the second. They captured
images of the surface at 15° increments of azimuth for the second light. The rms
error of the reconstructed surface heights was tabulated against the azimuth angle.
These experimental results confirm that the best lighting conditions occur for a 90°
increment between the azimuth angles of the lights. Although this investigation
is for a particular surface recovery method, it still gives an insight into the best

illumination conditions.

Discussion

After reviewing Lee and Kuo’s best lighting conditions, we study how this relates to
our situation. Since our estimators assume a linear reflectance function, we should
avoid lighting conditions for which non-linear effects are large.

To find the best zenith angle, we should consider shadowing effects as well as non-
linear effects. For raking light the linear approximation to the surface reflectance is
more accurate, but shadows increase (see Section 5.2.2). In contrast, for small zenith
angles non-linear effects are dominant. A range of zenith angles that cover the mid
region seems a good compromise, thus we restrict the lighting to 30° < o < 60°.

We recall that the accuracy of the linear approximation for unidirectional surfaces
varied with azimuth (see Section 3.8.1). Non-linear terms are dominant when an
anisotropic surface is lit from a direction parallel to the surface grain [59]. Although
this effect should be considered, we star our investigation by adopting Lee and Kuo’s
conclusion for the optimal light azimuths.

To summarise, the optimal lighting conditions can be written as:

A7 = |71 — 75| = 90° and o € [30°, 60°]
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Validation through simulation

Simulation is used to find the best lighting conditions for two lights. Two different
experiments are carried out. In the first, we test the predictions of optimal azimuth
positions. In the second experiment, we assess the effect of varying the azimuth

angle on the recovery of very directional surfaces.

Is A7 = 90° optimal?

Method The relative position between the azimuth angles of the two lights is
varied. The zenith is fixed to 45° throughout the experiment. The surface is then
estimated using both methods.

We do not consider the position of the lights relative to the surface directionality.
Thus we only use isotropic surfaces. The test textures are the fractal and the
Mulvaney surfaces. Their roughness is set t0 prms = ¢rms = 0.3 and their reflectance
follows Lambert’s law.

In this assessment, we fix one of the lights to azimuth 7, = 0°, whilst we vary the
second light’s azimuth in 10° increments within the range 50° < 75 < 130°. Thus
the recovery performance is assessed for a range of illuminations such as 50° < A7 <
130°. This is, A7 is varied around the value that was predicted to be the optimum.

The quantity used to measure the estimation accuracy is the signal-to-residue

ratio defined by:

5 10log (L[S]> (6.10)

R var[s — 9]
where s is the generated surface function, 5'is the estimated surface function and
var|x] is the variance of the process x. For ease of discussion we set a threshold of
10 dB for an accurate estimate.
The S/R ratio is measured and averaged across the fractal and the Mulvaney
estimations. Then, the averaged S/R ratio is plotted for both techniques against
AT.
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Figure 6.2: LPS estimation accuracy against the position of the lights for isotropic
synthetic textures.
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Figure 6.3: OLF estimation accuracy against the position of the lights for isotropic

synthetic textures.
Results and discussion The effect of varying A7 is shown for the Linear Photo-
metric Stereo technique in Figure 6.2 and for the Optimal Linear Filter in Figure 6.3.

As predicted the surface is estimated most accurately when the lighting directions
are perpendicular to each other. The surface recovery performance is very sensitive
to the relative position of the lights. The accuracy of the Optimal Linear Filter
drops off rapidly compared to that of the Linear Photometric Stereo. Although it
is accurate for the range 80° < A7 < 100°. This restricts its use to lighting set-
ups where both lights are separated nearly 90°. For the Linear Photometric Stereo
technique, the range of possible lighting directions is wider, 65° < A7 < 120°. It

does not require a set of near perpendicular lights for an accurate estimation.
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What is the optimal lighting direction for anisotropic surfaces?

Method The performance of the proposed methods deteriorates when non-linear
effects dominate the reflectance function. This happens when a very anisotropic
surface is lit from a direction parallel to the surface grain. Next we assess the
robustness of our techniques against this effect.

The test surfaces should be strongly anisotropic, so that they can be considered
unidirectional. We use an Ogilvy surface with cut-off frequencies of 32 cpi and 16
cpi for the horizontal and vertical directions respectively. The directionality of the
surface is set to d = 0.57 to ensure unidirectionality. The surface roughness is set to
Prms = 0.30 and ¢,,,s = 0.17 and the reflectance is Lambertian. The surface grain is
aligned to the y axis (90° direction).

In this experiment we fix the relative position between lights to the value that
was predicted and measured to be optimum, i.e. A7 = 90°. We simultaneously
move both lights with respect to the surface in 5° azimuth increments. The first
light’s azimuth is varied from 0° to 90°, 0° < 71 < 90°. Thus the second light is
moved in the range 90° < 7, < 180°. The zenith angles of the lights are fixed and
equal, 0y = 09 = 45°.

The performance is measured for the two surface recovery methods in terms of

signal-to-residue ratio (equation 6.10). The results are plotted against 7.

Results and discussion Figure 6.4 shows the recovery performance of the Linear
Photometric Stereo technique. We measure an increase in accuracy of estimation
for m; = 45° and 75 = 135°. This is when the distance between both the lights’
azimuths and the grain direction is maximum. When 71 = 0° (12 = 90°) then the
second light is parallel to the grain and the estimation deteriorates. Similarly, for
71 = 90° (12 = 180°), the fist light is parallel to the surface directionality and the
estimation loses accuracy. When one of the lights is aligned to the surface grain,
the SRR drops by almost 1 dB. The effect is noticeable but it is not as strong as the

measured effect for relative position between lights (previous section). Although the

98



2PS
13dB

125dBr

12 dBr

SIR

11.5dBr

11dB
0

10 20 30 40 50 60 70 80 90
1

Figure 6.4: LPS estimation accuracy against the position of the lights relative to
the surface grain of an unidirectional synthetic texture
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Figure 6.5: OLF estimation accuracy against the position of the lights relative to

the surface grain of an unidirectional synthetic texture
estimation is not very sensitive to this effect, it is not convenient to lit an anisotropic
surface from a direction parallel to its grain.

Figure 6.5 shows the sensitivity of the Optimal Linear Filter to the light position.
Again when one of the two lights is parallel to the surface grain, i.e. 731 = 0° or
71 = 90°, the estimation deteriorates by almost 0.5 dB. When neither of the light
azimuths is aligned with the surface directionality (71 = 45° and 7, = 135°), the
SRR is largest. The Optimal Linear Filter performance is quite robust to this effect.

We conclude that the difference in the direction of lights has a larger effect on
surface estimation than the position of lights relative to the surface. As long as

the two lights are 90° apart, the surface estimation can be assumed to be robust to
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surface directionality.

6.2.2 What are the best azimuths for n lights?

For two lights, estimating the surface with the Optimal Linear Filter means solving
a system of two linear equations for two unknowns. When using more than two
images the set of equations is over-constrained. We could solve the over-constrained
system using for instance a least squares technique. Instead we choose a simpler
approach where we average the surface estimates. This means that the constrained
system is solved for each pair of images to give n/2 estimates. Then the surface
estimates are averaged. The Optimal Linear Filter is always applied to two images.
Since, the best azimuth positions for these two images were found to be A7 = 90°,
they don’t need further investigation.

In contrast, the Linear Photometric Stereo technique can readily incorporate
more than two images into the recovery process. In Section 5.2.2, we saw how to
combine the information of several images to obtain more accurate estimates of the
surface. By controlling the lighting conditions of the images, the estimation can be
further improved.

Kube predicts that the intensity dependency on the zenith angle is constant and
equal to sino [55]. We choose the same zenith angle for the n images, i.e. they are
scaled by the same constant. Zenith must be within the range 30° < ¢ < 60°, here
we set it to 45°.

The surface information contained in two images with the same zenith and op-
posite azimuths is approximately the same. This approximation is only valid in
the absence of shadows. Since our test textures have low slope angles, shadows are
small and the approximation is accurate. Furthermore, shadows are neglected by
our surface estimator, so this approximation does not imply extra assumptions. We
can limit the investigation into the optimal light position to azimuth angles in the
range 0° < 7 < 180°.

The surface reflectance is assumed to be linear, so we search for the light position
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that makes the linear term dominant. The image spectrum is near linear for those
polar components that are close to the light azimuth direction, i.e. when 8 is in
the vicinity of 7 (see Section 5.2.2). We do not assume any particular distribution
of the facet azimuths. If we place the lights evenly distributed over the considered
azimuth range, the near linear intensity components are evenly distributed over the

polar angle. The rule to assign the illuminant azimuth angles to n images is:

=T
n=T+n/n+ (2k+ 1)

3=T+2r/n+ 2k+1)7

{ (6.11)
=7+ 0—1)7r/n+ 2k+ D)7

| =T+ —-D71/n+ (2k+ )7

Each component of the surface spectrum is estimated from the corresponding
component of the image spectrum. Since we have n images, for each surface compo-
nent we have n intensity components. We estimate the surface using the intensity
component that is best approximated by the linear term, i.e. the one that is closest
to the light azimuth direction.

When two images are used for surface estimation the even sampling condition
implies that the difference between both azimuth angles is 90°. We drew the same
conclusion when the optimal azimuth angles for two lights were investigated.

In Figure 6.6(a) we plot the approximately linear reflectance function against
(0 — 7). For (8 —7) = 0,7 and 27, the linear term is large. Noise and non-
linearities are expected to be small compared to the linear term (see Section 5.2.2).
Thus the linear approximation is valid. For (# — 7) = 7 /2 and 37/2, the signal
vanishes. At these angles, we expect non-linearities and noise to be larger than

the signal, so the linear approximation is not valid (see Figure 5.2). Figure 6.6(b)

shows how two images with evenly sampled illumination (7; = 0° and 7, = 90°)
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Figure 6.6: Dependency of intensity with (8 — 7) for (a) one image, (b) two images,

(c) three images and (d) four images. The lights are evenly placed within the range

0° <71 <180°.
compensate for one another’s weaknesses by presenting the near linear components
in different parts of the spectrum. In Figure 6.6(c) and (d) the intensity is plotted
against (0 — 7) for three and four images whose azimuth angles are evenly placed
throughout the considered range. Similarly, the near linear intensity components are

evenly distributed throughout the polar spectrum, so that the surface can always

be accurately estimated from one of the images.
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6.3 Trade-off on the number of lights

6.3.1 Introduction

There is no restriction on the amount of images that we can use to estimate shape.
The larger the number of images the more accurate the estimation but the more
expensive the recovery. Here we use simulation to search for a compromise.

In theory two images are enough to find a unique solution for the surface. But,
is this solution accurate? Is it necessary to improve the estimation by using more
data?

Most surface recovery techniques only use three lights. The Benchmark 3-light
Photometric Stereo uses three images for the estimation under no assumptions about
surface albedo or the linearity of the reflectance function. It is therefore more
expensive than our estimators, but it can be applied to a wider range of problems.
Using four or more images implies an expensive estimation, although it may be

justified depending on the application.

6.3.2 Simulation
Experimental method

We described how to integrate the information from n images when using the Lin-
ear Photometric Stereo (equation 5.10). Similarly, we stated that for the Optimal
Linear Filter the n images were combined in groups of two images. The surface was
estimated for each pair of images and the estimates were then averaged.

In this experiment, several synthetic surfaces are recovered with both methods
using two, three and four images per texture. The generated surfaces consist of
three fractal Brownian textures with surface roughness of p,,,s = 0.1,0.2 and 0.3.
We assume Lambertian surfaces. The signal-to-residue ratio defined in equation
6.10 is measured for each estimate. Then the measured SRR are averaged across

the three generated surface types for a more robust assessment.
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Technique || 2 images | 8 images | 4 images
LPS 28.96 dB | 29.37 dB | 29.68 dB
OLF 28.84 dB | 30.35 dB | 34.20 dB

Table 6.1: Recovery accuracy against number of images

The surfaces are illuminated under the most appropriate conditions for each
recovery. We fix the illuminant zenith angle to o = 45° throughout the experiment.
For the Linear Photometric Stereo estimator, the best illumination conditions occur
for an even sampling. For the Optimal Linear Filter, the most accurate estimation

occurs for light azimuths 90° apart.

Results and discussion

The averaged SRR is presented in the Table 6.1 for both techniques.

Using more than two lights slightly improves the estimation for both methods. It
also makes the schemes more expensive. In our case, the performance improvement
does not justify the use of more than two lights for either estimation. It is for the

reader to decide if the use of extra images is justified depending on the application.

6.4 Summary and discussion

In this chapter we considered the optimal lighting geometry. We investigated the
optimal position of lights for the two novel estimators. We reviewed the literature
and conducted simulation. We also searched for a compromise between number of
images and accuracy of estimation. We concluded that increasing the number of
lights gave a small improvement. This improvement was too small to justify the
extra expense — in most foreseeable applications. The optimal lighting conditions

for two lights were found to be

e Zenith angles within the range 30° < o < 60°.

e Azimuth angles with 90° increment.
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These conclusions should be considered for the implementation of the novel tech-
niques.

Once the optimal implementation for our methods is found, we are ready to assess
their recovery performance. For the assessment, we should consider the limitations
that were identified in Chapter 5. Therefore, the aim of subsequent chapters is to

assess the algorithms on synthetic and real data.
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Chapter 7

Assessment of Surface Estimation:

Simulation

In Chapter 4 we described a benchmark three-light Photometric Stereo approach (3PS)
from the literature [59]. In Chapter 5 we proposed two novel schemes that require fewer
images, the Linear Photometric Stereo (LPS) and the Optimal Linear Filter (OLF). We
also reviewed several assumptions made by our estimators and argued that they could be
interpreted as shortcomings. In this chapter we assess the robustness of our algorithms

to the effect of four experimental conditions related to the reviewed shortcomings:

e The type and roughness of the test surface.
e Surface reflectance.
e Shadowing.

e Noise.

The work described in this chapter allows us to state the expected accuracy and
scope of the algorithms.

We use simulation to assess the performance of the algorithms. Simulation is never
as convincing as experiments that use real data. However it has two critical advantages
for this chapter. First, it provides a ground truthed data set. Thus the accuracy of the
recovery can be measured. Secondly, it allows the experimental conditions to be varied
in a controlled manner. Thus the effects of these conditions can be studied individually,
and in detail, allowing a more analytical approach. By using simulation we are able
to predict the accuracy of the algorithms under specific experimental conditions and to

identify the reasons for that behaviour.
106



7.1 Simulation Framework

All the simulations in this chapter use the same framework. The framework has four

parts which correspond to the experimental conditions:

Surface topography model . Three models from the rough surface literature are
used: a Brownian fractal model [30] and models proposed by Mulvaney [31]
and Ogilvy [23]

Reflectance function model (local) . Phong’s model is used to predict the ap-
pearance of the surface. Ignoring the term of ambient reflection, the model
has three variables, k4 controls the strength of the Lambertian component, k;
controls the strength of the specular component, and n controls the width of

the specular lobe. If k; is set to zero, the model obeys Lambert’s law.

Shadowing (global) . A simple model for self and cast shadowing is used: a facet

that is found to be shadowed is given an intensity of zero.

Noise . We model noise as a random process that is additive, Gaussian, white and
independent of the signal. These assumptions are common in the literature
[130]. Different realisations of the same random process are added to the
photometric images. The amount of noise is specified with respect to the

image as a signal to noise ratio (SNR).

Surface roughness, surface reflectance and shadowing effects are not independent
variables. Thus they should not be considered separately. The effect of increasing
the surface roughness has been considered together with shadowing effects. However,
the reflectance characteristics of the surface are assumed to be independent of its
roughness. This approximation is valid for Lambertian surfaces with low slope facets.

The algorithms under test can be applied to the simulated images. Throughout
this chapter we will assess the accuracy of surface estimation in terms of the signal
to residue ratio (SRR), equation 7.1. For ease of discussion we set a nominal lower
bound of 10dB for an ’accurate’ estimate of the surface.
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Figure 7.1: General scheme for the surface estimation assessment

_ 10log[ var(s(z, y)] }

varls(z,9) - 32,9)] (1)

R
where s(z,y) is the generated height function, 5(z,y) is the estimated height

function and var[z| is the variance of z.

The assessment details are described in the scheme of Figure 7.1

7.2 Effect of Surface Roughness

7.2.1 Motivation

This section investigates the sensitivity of the proposed techniques to changes in sur-
face roughness. Our linear recovery techniques assume an approximate reflectance
which is valid for fairly smooth surfaces. Kube’s approximation is reasonable where
the slope angles of the surface are low p,¢ < 0.3 (see Section 3.8.1). For a rougher
surface, we expect the performance of Linear Photometric Stereo to deteriorate.
Furthermore, the standard deviation of the Gaussian slope distribution is large.
Thus the least squares fitting to the surface-to-image process is less accurate and
the Optimal Linear Filter estimation deteriorates.

Self and cast shadows are modelled and added to the images for a more realistic

rendering. Here we do not study the effects of shadowing, that is the aim of Section
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Tc=To+180

7.3. The Linear PS and the 3-light PS neglect shadowing during the estimation
process. Because the amount of shadowing increase with surface roughness, we
expect these estimations to deteriorate for a rougher surface.

With this simulation, we measure the maximum surface roughness for which our

estimates are accurate.

7.2.2 Method

We carry out an experiment where the surface roughness is systematically increased.
The generated textures are then rendered with Lambert’s law and shadows are
modelled. The three proposed algorithms are fed with these data and the estimation
accuracy is measured.

Surface roughness is parameterised by the rms slope. The rms slope of the
isotropic textures is varied from 0.1 to 0.5 in 0.05 increments. For the anisotropic
Ogilvy, prms € [0.1,0.5] in 0.05 increments, whilst g¢.,s € [0.076,0.385] with an
increment of 0.039.

The S/ R ratio defined as in equation 7.1 is measured for each texture. Then, we
average the S/ R across the three textures for each roughness. Figure 7.2 summarises

the experimental approach.
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Figure 7.3: Surface recovery performance against rms slope for synthetic Lambertian
textures (including shadows)

7.2.3 Results and discussion

The S/R; ratio for the three surface estimates is plotted against roughness in Fig-
ure 7.3.

The Benchmark 3-light Photometric Stereo performance (3PS) is superior over
the whole roughness range. The Lambertian rendering process is fairly well inverted
giving an accuracy of 20 dB for low slope angles (Prms, @rms < 0.3). As the slopes
get steeper, shadows cause the accuracy of the 3-light PS to drop by 5 dB. However,
the signal-to-residue ratio is over 10dB for the considered roughness range.

The performance of both the Linear Photometric Stereo technique (LPS) and
the Optimal Linear Filter (OLF) also deteriorate for increasing roughness. The
estimation accuracy is acceptable for rms slope smaller than 0.35. The causes for
the deterioration with increasing roughness are: a less valid linear approximation
and an increase in shadowing. We should note that both techniques are similarly
sensitive to an increase in surface roughness.

It is difficult to assess to what extent the deteriorating estimations are due to
shadowing or to the reflectance function approximation. Section 7.3. is devoted to

separating the effects of self shadows, cast shadows and surface roughness.
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7.3 Robustness to shadowing

7.3.1 Motivation

Lambert’s law (and consequently the recovery algorithms) neglect both self and
cast shadows as well as inter-reflections. In the computer graphics literature inter-
reflections from diffuse surfaces are modelled using radiosity techniques. Even for
simple scenes the computational cost is prohibitive. We are unaware of any con-
vincing application to rough surfaces and do not model this effect. In this section
we assess the effect shadowing has on the algorithms.

The degree of shadowing of a surface is a function of the roughness of the surface
and of the zenith of the light source. We control the amount of shadowing by varying
the surface roughness; the light zenith will be held constant. The effect of self and
cast shadows is measured by comparing the algorithms’ ability to recover the surface

for three cases:

e No shadowing.
e Self shadowing only.

e Self and cast shadowing.

This incremental approach allows us to isolate the effect of each phenomenon.

7.3.2 Method

We conducted an experiment where the surface recovery is repeated for increasingly
rougher textures. The roughness of the three synthetic textures is varied in the
range prms € [0.1,0.5] as in Section 7.2. The rendering process is divided into three
stages: first the synthetic textures are rendered with Lambert’s law. We feed the
proposed techniques with these shadow-free images and measure the recovery accu-
racy. Secondly, self shadows are modelled and added to the images. The recovery
accuracy is again measured for the self-shadowed data. Finally, cast shadows are

also added to the intensity images and the recovery performance is assessed.
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Figure 7.5: 3-light PS performance against rms slope for synthetic Lambertian
textures

To estimate the recovery accuracy we calculate the S/Rg ratio (equation 7.1).
The S/ Rg ratio is averaged across the fractal, Mulvaney and Ogilvy surfaces for each

roughness. Figure 7.4 presents a scheme detailing the steps for this experiment.

7.3.3 Results and discussion

The performance of the 3-light PS is plotted in Figure 7.5 for the three cases: no
shadows, only self shadows and both self and cast shadows.
The 3-light PS estimation is not dependent on roughness when shadows are not

modelled. This technique assumes a perfect Lambertian surface and therefore it
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Figure 7.6: Linear PS performance against rms slope for synthetic Lambertian
textures

perfectly inverts the rendering process. Since shadows are neglected during the
recovery, the more shadowing effects, the more obvious the deterioration. For the
self-shadowed images, the S/R; ratio drops about 3 dB relative to the no-shadow
case. When considering both self and cast shadows, the S/R; ratio drops by 5 dB.

Figure 7.6 shows the effects of surface roughness and shadows on the Linear PS
estimation. Its performance drops by 0.5 dB when all shadowing effects are taken
into account. This technique is quite robust to shadowing bearing in mind that the
3PS technique deteriorated by 5 dB in the same test. Although this method is more
robust to shadowing, in absolute terms the 3PS performs more accurately over the
roughness range (Figure 7.3).

The performance of the Optimal Linear Filter is plotted against roughness in
Figure 7.7 for different levels of shadowing. When shadows are considered, the
reflectance function approximated by the linear filter models shadows, i.e. the OLF
-in a sense- can predict shadows. However, the true reflectance function becomes
less linear and the estimation deteriorates. The filter’s accuracy drops about 1.5 dB
due to showing effects, i.e. it is relatively robust to shadows. Although for absolute
values, the OLF gave in the worst estimate (Figure 7.3).

The experiments led us to the following conclusions. First, the 3-light PS algo-

rithms is by far the most robust. Paradoxically, its invariance to surface roughness
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Figure 7.7: Optimal Linear Filter (OLF) performance against rms slope for synthetic
Lambertian textures

means that the effects of self and cast shadowing are most apparent with this al-
gorithm. Secondly, although both the Linear PS and the OLF algorithms degrade
significantly with increase roughness, shadowing is relatively a small factor in the
degradation. Thirdly, the effect of cast shadowing is apparent only in 3-light PS and
OLF.

7.4 Effect of surface reflectance

7.4.1 Motivation

The 3-light PS and the Linear PS assume a Lambertian surface. The aim of this
assessment is to study the effect that surface specularities have on the recovery accu-
racy. Phong’s model is used for rendering surfaces that depart from the Lambertian
assumption. The diffuse term in Phong’s model follows Lambert’s law and can be
approximately linear for relatively rough surfaces (prms, @rms < 0.3). The specular
term can be thought of as a non-linear contribution added to the linear term. In
this sense, Phong’s model is also used to render surfaces whose reflectance departs
from the linear function assumed by the OLF.

Two aspects of the specular reflection are taken into account. The first is the
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amount of specularly reflected light relative to the total reflection. We secondly
consider the nature of the specularity. Phong’s model produces different types of
specular surfaces by modifying the shape and strength of the specular peak.

We intuitively expect a worsening of height estimation as the amount of specular
reflection increases. On the other hand, predicting the estimators behaviour against
specular nature is not easy. In Chapter 3, textures rendered with Phong’s model
were compared to the same textures rendered with Lambert’s law (Section 3.8.2).
As expected, Phong’s image departed from Lambert’s image when the specularity
increased (Figure 3.9). We also analysed the differences between these intensity
images when the specular peak shape was modified (Figure 3.10). For a wide low
intensity specular peak, Phong’s intensity image is similar to Lambert’s image. As
the specular peak is narrower and stronger, the similarities between Phong’s and
Lambert’s images are drastically reduced. Finally, for very narrow specular peaks,
the Phong’s image is again fairly similar to the Lambertian image. This is because
most of the narrow specularities are reflected from the surface without reaching the
viewer and do not affect the texture appearance. The illumination zenith is 45°,
so the average mirror direction is also 45°. Since the viewer in the imaging system
is straight above the surface, most of the narrow specularities are not seen. We
expect the Linear PS and the 3-light PS response to specularities to be related to

the similarity between Phong’s and Lambert’s images.

7.4.2 Method

In this section, we carry out two sets of experiments. Two parameters defined
by Phong’s intensity expression (equation 3.10) are key factors for the assessment.
These are the coefficient K, that sets the percentage of diffusely reflected light
relative to the total reflection, and the exponent n that models the specular peak
shape.

With the first experiment we assess the estimation against the proportion of

diffuse-to-specular contribution. For the rendering process, the coefficient K, is
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Figure 7.8: Procedure for assessing surface estimation against surface reflectance

gradually increased from 0 to 1 and the exponent n is fixed to 5.

In a second experiment, the shape of the specular peak is modified and its effect
on surface estimation investigated. Ky is set to 0.9, i.e. the diffuse contribution is
90%. The specular nature is modified by varying n in the range [2, 26] in increments
of 2. We model nearly diffuse surfaces by setting n to small values. Larger exponents
give narrower specular peaks to model glossier surfaces.

In Chapter 3, we noted that varying K, had a larger effect on surface reflectance
than varying n (Section 3.8.2). Varying n mainly gives the impression of changing
the light source size.

The roughness of the synthetic textures is set to pyms = 0.1 throughout the
experiments. For a constant roughness and a fixed illuminant zenith, modelling
shadows is not drastically affecting the techniques performance. Therefore, shadows
are neglected in this case. A more detailed description of the experiments is shown

in the scheme of Figure 7.8.

7.4.3 Results and discussion

First we assess the effect of increasing the surface specularities. As predicted, for
an increasing diffuse contribution the estimation accuracy is improved (Figure 7.9).

Although the improvement for the OLF is also noticeable, its sensitivity to specu-
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larities is weaker.

For the considered range of K, the 3-light PS performance improves by more
than 25 dB! Once the assumption of Lambertian reflectance is violated, the esti-
mation is not accurate. In this particular case with n = 5, we cannot apply this
technique to a surface whose diffuse reflection is smaller than 80% of the total. We
cannot easily generalise this statement since the estimation depends on n as well
as K4. Nevertheless, Figure 7.9 still presents a very intuitive example of this tech-
nique’s sensitivity to specularities. For an accurate recovery with the 3-light PS
technique the surface has to be nearly Lambertian.

The Linear PS performance is similar to that of the 3-light PS. It is less sensitive
to specularities, the S/R; ratio increasing about 20 dB for the range of K;. But
its performance is still clearly unacceptable for relatively specular surfaces. The
measured S/ R, ratio falls below the usual 10-dB threshold for K; < 80% and n = 5.

Although robustness against specularities depends on both K,; and n, we can
conclude that in most cases the specular contribution should be less than 20%. For
nearly Lambertian surfaces (K, ~ 100%) the 3-light PS performance is best. In
contrast, if the test surface has a wider range of reflectance characteristics (K, ~
80%), the Linear PS technique is recommended.

The OLF is comparatively robust to surface reflectance, improving by 4dB as
K, increased. This technique can cope with any amount of specularity since the
estimation is accurate over the K, range. With the OLF, we do not assume a Lam-
bertian surface nor any other reflectance model, but the optimal linear function for
the data. Fitting a linear function to Phong’s model gives more accurate estimates
than fitting Lambert’s law.

Figure 7.10 shows the three estimators performance for a constant K, and a
varying n. The three estimates are accurate and over the 10dB threshold for a 90%
of diffuse reflection. The specular image is close to the Lambertian image when n
is small, thus the recovery is very accurate. As n increases, the surface is glossier

and the techniques performance deteriorates. For large values of n, most of the
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Figure 7.9: Recovery performance against percentage of diffuse reflection for syn-
thetic textures

specularities are reflected by the surface without reaching the viewer. Thus the
image rendered with Phong’s model is again similar to the Lambertian image, and
the estimations are improved. When the specularity takes the form of extremely
narrow peaks, the Linear PS algorithm gives a better performance than the 3-light
PS.

The Linear PS differs from the 3-light PS in the way they deal with non-
linearities. By non-linearities we mean secondary and higher order terms of the
Lambertian function as well as specularities. The 3-light PS algorithm estimates
those non-linearities and compensates for them. Whilst the Linear PS algorithm
neglects those non-linearities and assumes a linear reflectance. This latter approach
proves to be more robust against specularities.

The S/R, ratio for the Optimal Linear Filter increases by about 3dB as the
exponent n increases. The improvement shown by both the Linear PS and the OLF

for a large n may be related to the validity of a linear reflectance function.
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Figure 7.10: Recovery performance against specular peak shape for synthetic tex-
tures

7.5 Robustness against noise

7.5.1 Motivation

Images often contain a certain level of random noise generated either during the
imaging process or due to a noisy communication link. It is important that any
surface recovery technique can operate successfully with a given level of noise. To
test the noise performance of the proposed schemes, various levels of noise were
added to the textured images. Noise is considered to be additive white and Gaussian.

McGunnigle [59] looked for a justification of the form and the amplitude of the
noise model. He found support either in the literature or through experiments and
simulation. He argued that the temporal noise associated with the subsampled image
was reasonably approximated as white noise of variance 1.17. He estimated this
variance for a certain dataset, i.e. his noise model was not general. Temporal noise
was due to mechanisms such as dark noise, shot noise or jitter effects. McGunnigle
also found a justification to model quantisation noise as white noise. To make
our case more general, no specific level of noise is searched for. So its amplitude
is varied throughout the simulations and the maximum acceptable signal-to-noise

ratio is measured.
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Figure 7.11: Fractal (left), Mulvaney (centre) and Ogilvy (right). Top row: no
noise. Second row: S/N = 10dB. Bottom row: S/N = 0dB.

7.5.2 Method

The experimental data are the synthetic surfaces, several realisations of a white
Gaussian process and a Lambertian rendering process. The surface roughness is
fixed to p,ms = 0.1. We render the textures to get noise-free images. Noise is then
added as a white Gaussian process with zero mean and a variance dependent on the
required signal-to-noise ratio. Six levels of noise were used, ranging from a barely
visible 25 dB signal-to-noise ratio to a very obvious 0 dB.

Figure 7.11 shows the images of the three textures with different levels of added
noise. The top row images are free of noise; on the second row the S/N is 10dB;
and on the bottom row, the S/N is 0 dB. The images were rendered under the same

illumination conditions.
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Figure 7.12: Procedure for assessing surface estimation against noise

The experimental procedure is shown in Figure 7.12

7.5.3 Results and discussion

Figure 7.13 shows the performance of our height recovery techniques against noise.
The recovery is almost unaffected for a wide range of SINR of the images. Only
for very noisy images, with SN R smaller than 15 dB, is a deterioration in perfor-
mance really noticeable. The algorithms show similar sensitivity to noise since their
response follows the same curve. The total S/R; ratio fall is less than 9 dB in the
whole SN R range for all methods.

Although all techniques are analogously robust to noise, the 3-light PS perfor-
mance is superior. The measured S/R; ratio for the 3-light PS and the Linear PS is
above the 10 dB threshold for the whole range of SNR. For the OLF, the S/R; ratio
is below the threshold for images with the minimum SN R. Thus this technique can

only cope with images whose SN R is above 5 dB.

7.6 Discussion

In Chapter 5 we identified potential shortcomings in the schemes due to their as-

sumptions about the surface topography and reflectance (Section 5.4). In this chap-
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Figure 7.13: Recovery performance for synthetic textures against noise

ter we measured the effect of violating these assumptions. We applied our algorithms
to textured surfaces with a wide range of different characteristics. Simulation was
necessary since the test surface features had to be closely controlled. For purposes
of comparison, the Benchmark 3-light PS technique was also considered in the as-
sessment. The effect of surface roughness and reflectance and the robustness against
shadowing and noise were investigated.

The benchmark 3-light PS was the most robust to surface roughness, giving a
signal-to-residue ratio greater than 20dB for p,ms, ¢rms < 0.35. The Linear PS and
the OLF are much less robust with SRR greater than 10dB over a similar rage. This
covers a wide range of textures, thus we consider the novel techniques suitable for
rough surface recovery.

The Optimal Linear Filter was found the most robust against specular reflection.
The Linear PS and the 3-light PS were very sensitive to specularities. Whenever
ground truth data is not available, the 3-light PS technique should be applied to
purely Lambertian surfaces. The Linear PS technique is recommended for surfaces
that are not perfectly diffuse and show specular behaviour.

The 3-light PS algorithm was found to be most robust to shadowing. The Linear
PS and OLF algorithms gave similar results, although the Linear PS was slightly
better. The OLF is not good at predicting shadows as expected (see Section 5.3.3).

All the algorithms were able to perform well under very severe levels of noise,
122



the 3-light PS being best.
We should bear in mind some of the limitations that the simulation presents.
These limitations extend to the surface models, the surface-to-image transfer func-

tion and the model for noise.

e For our surface models every pixel corresponds to a surface facet, whilst in real-
ity it corresponds to a small area of the continuous surface function. Moreover

we do not know how representative these models are of real textures.

e The reflectance function is too simple to be realistic. The surface reflectance
is assumed to follow either Lambert’s law or Phong’s model. Shadows are

modelled as complete absence of intensity and inter-reflections are neglected.

e Noise is assumed to follow a random process which is additive, white, Gaussian

and independent of the signal.

Furthermore this assessment is insufficient since we investigated the techniques’
shortcomings individually but some effects are correlated. For real data, these as-
pects are observed simultaneously. In Chapter 8 and Chapter 9, the assessment of

our surface estimators is extended to real textures.
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Chapter 8

Assessment of Surface Estimation:

Experiment

Testing the proposed recovery techniques on real data is essential. With simulation we
made assumptions about the surface models, the noise model and the surface-to-image
transfer function. Assessing our techniques on real data removes these assumptions.
Furthermore, a larger number of surface types are taken into consideration in this chapter.

Because ground truth data is not available, the assessment of our techniques becomes
difficult. The Optimal Linear Filter cannot be assessed on our real textures because it
must be trained on ground truth data. When the OLF is trained on our synthetic models,
the filter weights are equal to those of the LPS method (see Section 5.2.1). Therefore,
only the 3-light Photometric Stereo and the Linear Photometric Stereo are evaluated in
this chapter.

One way to assess the accuracy of recovery is through rendering; the recovered
surface is synthetically rendered, and the resulting image is compared to the original
surface image. The performance of our methods is tested on seventeen real textures.
We assess the scope of the techniques’ shortcomings — identified in Chapter 5. We
study the robustness of the recovery to surface roughness and surface discontinuities for
several surface types and reflectance functions. Four exceptional textures that violate
our assumptions about the surface are also considered.

We study the possibility of using our estimators for image prediction purposes. For
this second experiment the required accuracy is not as high as for surface recovery.
Furthermore, a wider range of lighting conditions is considered. The accuracy of image

prediction to changes in the light azimuth and zenith is investigated.
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8.1 Assessment of the recovery through rendering

This chapter starts by describing the method used to assess the surface recovery
through rendering. The experiment, the data set, the accuracy metric and the
weaknesses of the assessment are detailed. Next the results are presented and dis-

cussed.

8.1.1 Experimental method
Description

We carry out an experiment where the textured surface is recovered from its images
using the proposed algorithms. To assess the recovery we compare the rendered
surface estimate to original intensity images. Ideally, we should render the shape
estimate using the surface reflectance properties. Instead, we assume that the re-
flectance of the test surfaces is perfectly modelled by Lambert’s law. Therefore, any
difference between the synthetic and the real image is assumed to be due to an in-
accurate surface estimate. This assumption is in fact a deficiency of our assessment
procedure. However, estimating the surface reflectance properties is out of the scope
of this thesis.

The surface heightmap is estimated for images lit with the smallest zenith, i.e.
45° or 60° depending on the sampling of the texture, and azimuth angles in 90°
increments (see Section 2.4.3).

The estimate is rendered for the same lighting conditions as the real images.
For a more robust assessment, we consider several different lighting conditions. We
evaluate the recovery for two light zenith angles and azimuths at 30° increments,
i.e. twenty-four images. We do not assess the recovery on the images that were used
for surface estimation. We are therefore evaluating the algorithms’ ability to predict
the surface appearance.

The accuracy of prediction is measured using the signal-to-residue ratio (SRR):
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where i(x,y) is the real image and i(z,y) is the rendered heightmap. The SRR
is estimated for each lighting condition. It is then averaged to give a single mea-

surement of accuracy:
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where 7; is the j™ real image, z/; is the j rendered heightmap and n is the

number of test images considered for the assessment. For ease of discussion, a

surface is considered to be accurately recovered if the SRR of equation 8.2 is over

10dB.

Data

We use the test surfaces described in Section 2.4. The real textures have several
surface height and reflectance functions and differ in their directionality and rough-
ness.

The fracture textures are a collection of Lambertian fractal-like surfaces of in-
creasing roughness (Figure 2.5 (a), (b), (c), (d) and (e)). This set allows us to study
the algorithms’ robustness to surface roughness.

Similarly, we can investigate the effect of violating the Gaussian assumption
using the deposit surfaces (Figure 2.5 (f), (g), (h), (i), (j) and (k)).

The sand-ripple textures have similar topographies but the amplitude and fre-
quency of the waveforms vary (Figure 2.6 (a), (b) and (c)). This translates into a
variation of roughness, but it also means that the surface pattern varies from surface
to surface. Thus we can study the effect that modifying the surface topography has
on the estimation.

The anaglypta textures violate the Lambertian assumption and present several
topographic functions (Figure 2.6 (e), (f) and (g)).
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Four other textures were included in the database because they severely violate
the surface assumptions. The irregular stripes anaglypta is a non-Lambertian rough
surface (Figure 2.6 (d)). The repetitive primitive is phase-rich, and its image is
heavily shadowed (Figure 2.6 (i)). The teztile is a discontinuous surface and does
not have constant albedo (Figure 2.5 (1)). The sand paper shows a very specular

reflection for some surface facets (Figure 2.6 (h)).

Rendering shadows

Our model to render shadows is very simple. We only consider self-shadows, i.e.
no cast shadows are modelled. Furthermore, we assume no ambient illumination
or inter-reflections, so that the shadowed facets have intensity zero. This simple
model is not realistic. For shallow illumination, the amount of shadowing increases
and the rendering inaccuracies become more significant. To minimise the error
introduced during rendering, we do not consider shallow lighting conditions. Only
non-Lambertian smooth surfaces, such as the anaglyptas, are assessed for the largest

zenith (75°).

Constant albedo

Although our surfaces are assumed to have constant albedo, they are likely to present
a small deviation in the albedo map. We do not assume a constant albedo for ren-
dering purposes. Instead, the albedo map is estimated using the 3-light Photometric
Stereo algorithm and accounted for. There are two reasons to incorporate the albedo

information of the real surfaces in the assessment procedure:

e To improve the validity of our assessment we should use the most realistic
rendering process. We should consider all the reflectance information that we

can estimate from the test surface, and its albedo is available to us.

e The 3-light Photometric Stereo algorithm estimates albedo on a pixel by pixel

basis. In contrast, the Linear Photometric Stereo does not allow for variations
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in albedo. The albedo variation, if exists, will be incorporated into the sur-
face estimate. By rendering with constant albedo, we would be favouring the
Linear Photometric Stereo because the surface estimate accounts for albedo
variations. The error due to the rendering process would be larger for the

3-light PS estimate than for the Linear estimate.

However, the estimated albedo is a possible source of errors. The estimation
errors and noise contained in the albedo map are added to the images during ren-
dering. This means that errors due to the 3-light Photometric Stereo estimation
affect the rendered Linear PS estimate.

The accuracy of prediction when using albedo information to render the Linear
estimate is improved by 0.14dB on average (see Appendix B, Section B.1). Thus
we chose to use the albedo map for rendering both the Linear and the 3-light PS
estimates.

It is worth noting that the albedo is only used for rendering during the assessment

procedure. It is not used for improving the estimation in any way.

Incident intensity

When rendering the estimated surface, we simulate the lighting conditions of the
real image. We know the light source position but not the incident intensity value.
This value, Iy, is a constant multiplicative factor in Lambert’s expression (equation
3.3). To calculate the incident intensity, we render the surface heightmap for Iy = 1.
We remove the mean of the synthetic and the real image, and calculate I as:

I var[ﬁ(z, Y)] (8.3)

var|i(z,y)]

The incident intensity for a certain light zenith is the average of the I calculated

for the available test images lit with that zenith.
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Texture pixel-width [mm)]
Fractures, deposits and sand ripples 0.1
Anaglyptas 0.2
Irreqular stripes anaglypta 0.15
Repetitive primitives 0.15
Sand paper and textile 0.1

Table 8.1: Pixel-width of the image of the real textures [mm)]

Height units

The surface estimate is given to us in pixel-width. We estimate the dimensions of a
pixel by measuring the coordinates of two points of known separation on a surface
that lies on a plane parallel to the image plane. Table 8.1 shows the pixel-width for
the textures considered.

In Section 4.5.2, we argued that the absolute distance from the viewer to the
surface cannot be recovered. This is the case with both the Linear PS and the

3-light PS techniques.

8.1.2 Experimental results

The recovery techniques are tested on seventeen real textures which meet the surface
assumptions to varying degrees. Therefore we can separately study the robustness of
our estimates to surface discontinuities, roughness, topography and reflectance. Four
special textures that severely violate the surface assumptions are also considered.
This gives a total of twenty-one real textures. Accuracy of recovery is expressed in
terms of the accuracy of prediction of the surface appearance.

A more detailed description of the assessment results is included in Section B.2

of Appendix B.
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Figure 8.1: Recovery accuracy of the Linear PS and the 3-light PS techniques

Assessment of surface estimation through rendering

Figure 8.1 shows the accuracy of recovery for the real textures using both the Linear
estimate and the 3-light PS estimate. The name that the textures are given in the
graph corresponds to the figure where they are plotted in Chapter 2. For instance,
the texture 5b is the moderate roughness fracture of Figure 2.5 (b).

The performance of the Linear PS technique is inferior to that of the 3-light PS
algorithm for most textures. Only four out of seventeen textures were accurately
recovered with the Linear method. In contrast, the 3-light PS technique accurately
estimates ten of the considered textures.

We argued that the rendering assessment procedure is limited (the surface re-
flectance is assumed to be Lambertian) and it introduces errors (errors in the albedo
map estimate). Therefore, we can infer that the measured accuracy of prediction is
a lower bound on the actual accuracy of recovery.

We conclude that the 3-light PS technique is successful in recovering most test
textures and that the Linear estimate has to be improved.

As an example of an accurate estimation, Figure 8.2 (a) shows a real image, (b)

the rendered 3-light estimate and (c) the rendered Linear estimate. The texture is
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(a) Real image (b) 3PS estimate

Figure 8.2: Moderate roughness fracture imaged for o = 45° and 7 = 300°
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Figure 8.3: Estimated moderate roughness fracture surface

the moderate roughness fracture imaged with a light zenith of 45° and an azimuth of
300°. The accuracy of prediction for this particular image of the texture is 12.51dB
for the 3-light PS technique and 9.97dB for the Linear technique. We can get a
feeling for what 10dB mean by visually comparing the rendered Linear estimate to
the real image: the test image is well approximated by the synthetic prediction.
The estimated heightmap for the moderate roughness fracture is plotted in Fig-
ure 8.3. We selected an area of 50 by 50 pixels from the top left corner of the surface
image (Figure 8.3 (a)). The surface heightmaps recovered with both techniques are
plotted in Figure 8.3 (b) and (c¢). Both estimates are similar to each other and seem

to correctly follow our idea of the surface shape.

Robustness to surface roughness

To assess the robustness of our techniques to roughness we study the recovery per-
formance for the fractures, which cover a wide range of roughnesses. Table 8.2 shows
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Texture Figure | LPS | 3PS

Rough fracture 2.5 (a) || 7.22 | 8.52

Moderate roughness fracture | 2.5 (b) || 9.69 | 13.13

Gentle roughness fracture | 2.5 (¢) || 8.00 | 12.71

Smooth cured fracture 2.5 (d) || 7.60 | 13.37

Smooth patterned fracture | 2.5 (e) || 6.41 | 12.84

Table 8.2: Average accuracy of recovery for fractures [dB]

the algorithms’ ability to predict the appearance of the fracture estimates. We ex-
pect the photometric estimates to deteriorate for rougher surfaces since shadowing
effects increase. Also non-linear effects become dominant further degrading the Lin-
ear PS estimation. For the rough fracture the prediction accuracy is poor, below the
10dB threshold. For smoother surfaces, the rendered 3-light PS estimate is closer to
the test images. The surface is accurately estimated with the 3-light PS. In contrast,
the SRR is never over 10dB for the Linear method. Even for the smoother surfaces,
the Linear PS fails to accurately predict the test images.

The rough fracture of Figure 2.5 (a) is chosen as an example of an inaccurate
estimate. Figure 8.4 shows a test image of the fracture (a), the rendered 3-light es-
timate (b) and the rendered Linear estimate (c). The estimated albedo map mainly
captures shadows and highlights for a constant albedo surface like this (Figure 8.4
(d)). The image prediction accuracy is 7.03dB with the 3-light PS technique and
6.84dB with the Linear technique. The difference between the real image and the
rendered estimates is obvious. However, the residue images — calculated by sub-
tracting the rendered heightmap from the real image — are shown in Figure 8.4
(e) and (f). Shadows and highlights are not properly predicted, although they are
encoded to a certain extent in the albedo. Furthermore, the rendered estimates fail
to show the degree of roughness of the texture.

Figure 8.5 (a) shows the 50x50 pixels at the top left corner of the surface image.

Figure 8.5 (b) and (c) are the estimated heightmaps. These two estimates are
132



(d) Estimated albedo

(e) 3PS residue

(f) LPS residue

Figure 8.4: Rough fracture imaged for o = 45° and 7 = 300°

fairly consistent with each other. Although, considering the poor quality of recovery

measured, they do not seem to accurately model the surface.

Robustness to surface discontinuities

We assume that the test surfaces follow a Gaussian distribution of heights. How is

the recovery affected by a violation of the Gaussian assumption? We test the novel

algorithms on six deposit surfaces (Table 8.3). The lighter the deposit, the less

Gaussian the surface height distribution [33]. Both estimates deteriorate for more
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Figure 8.5: Estimated rough fracture surface
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Texture Figure || LPS | 3PS

Moderate rough deposited fracture | 2.5 (f) || 8.79 | 10.16
Rough deposited fracture 2.5 (g) || 8.86 | 10.36
Heavy deposited surface 2.5 (h) || 8.86 | 9.92
Medium deposited surface 2.5 (1) || 8.36 | 9.14
Light deposited surface 2.5 (j) || 8.28 | 8.67
Sparse deposited surface 2.5 (k) || 7.04 | 7.04

Table 8.3: Average accuracy of recovery for deposited surfaces [dB]

sparsely deposited surfaces. The 3-light PS estimate is accurate for rough deposited
textures and heavily deposited surfaces. The prediction accuracy for the Linear PS
estimate is less than 10dB for all surfaces. However, the 3-light PS estimate is more
sensitive to surface discontinuities than the Linear estimate. The SRR decreases
by 3.32dB from the most accurate estimate (rough deposited fracture) to the least
accurate estimate (sparse deposited surface). This deterioration is only 1.82dB for
the Linear technique.

Figure 8.6 (b) and (c) show the recovered heightmaps of the heavily deposited
texture. The plotted heightmaps correspond to an area of 50x50 pixels at the top
left corner of the surface image (Figure 8.6 (a)). The estimates are similar to each
other and seem to properly reproduce the low frequency undulations of the surface.
However, the high frequency height variation due to most recent deposits are not
rendered.

The 3-light PS technique performs better than the Linear method for these tex-

tures. However, it is more sensitive to surface discontinuities.

Surface estimation for several topographic and reflectance functions

To properly test the robustness of our methods to surface topography and re-
flectance, we would ideally modify the surface topography in a controlled manner

whilst keeping the same reflectance and vice versa. This is possible in simulation
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Figure 8.6: Estimated heavy deposited texture

but not with real data. No set of textures that gradually differ in their topogra-
phy or reflectance was available. Thus, we recover several surfaces with different
topographic and reflectance functions. We cannot generalise the results obtained
for these textures to other textures. However, they give an intuitive idea of the
algorithms’ ability to recover surfaces with similar features to the considered test
surfaces.

Three sand ripples and three anaglypta textures are considered. Table 8.4 shows
the recovery performance for both estimators. The accuracy of prediction when
rendering the Linear PS estimate is very close to 10dB for all surfaces. In contrast,
the 3-light PS estimate is accurate for the Lambertian sand ripples but not for
the non-Lambertian anaglypta surfaces. The 3-light PS estimate is less robust to
specularities than the Linear estimate. We reached the same conclusion when we
assessed our recovery methods through simulation (Chapter 7).

We should note that the directional surfaces have their grain aligned to the 90°
direction. One of the estimation images was lit with an azimuth of 90°, so non-
linear terms are dominant for this image. We would expect the Linear estimate to
deteriorate under these conditions. Table 8.4 shows that the Linear estimation is
poorer than the 3-light estimation for the directional sand ripples. The accuracy of

recovery for directional surfaces is further investigated in Section 8.2.2.
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Texture Figure | LPS | 3PS

Sand-rippled surface 2.6 (a) || 9.53 | 11.75

Sand-rippled surface (higher frequency) | 2.6 (b) || 11.01 | 11.33

Smoothed sand-rippled surface 2.6 (c) || 10.11 | 10.59
Net anaglypta 2.6 (e) || 10.04 | 7.68
Rippled anaglypta 2.6 (f) || 10.34 | 8.82

Rice grain shaped anaglypta 2.6 (g) || 968 | 9.09

Table 8.4: Average accuracy of recovery for sand-rippled and anaglypta surfaces
[dB]

Surface estimation for special textures

In this section we assess our algorithms on textures that severely violate the sur-
face assumptions. The irreqular stripes anaglypta has a hybrid reflectance and the
repetitive primitives surface has many discontinuities. Both are very rough, thus
their images show significant shadowing. Our recovery techniques give poor results
in predicting the image appearance for these textures (Table 8.5). It is worth noting
that shadowing affects the surface estimation as well as the rendering process. The
proposed techniques are not suitable for estimating such rough surfaces.

The textile surface is a discontinuous rough texture with non-constant albedo.
The accuracy of prediction is poor for both recovery algorithms (Table 8.5). The
Linear method assumes constant albedo, thus this estimate is poorer than the 3-light
estimate. For most applications, these results are unacceptable.

The last special case considered is a sand paper surface which has specular re-
flectance. The accuracy of prediction of the texture appearance is very low (Ta-
ble 8.5). The estimation performance deteriorates for specular surfaces since a
Lambertian reflectance is assumed. Furthermore, the Lambertian rendering that
is applied to the surface estimate is an inappropriate model of the real reflectance.

The repetitive primitive terture is used to show the estimation failure (Fig-
ure 8.7). For the test image with zenith 45° and azimuth 330° the accuracy of image
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Texture Figure | LPS | 3PS

Irregular stripes anaglypta | 2.6 (d) || 5.13 | 1.92

Repetitive primitive surface | 2.6 (i) || 3.84 | 5.76

Textile 2.5 (1) || 2.89 | 4.43

Sand paper 2.6 (h) || 0.57 | -1.72

Table 8.5: Average accuracy of recovery for special cases [dB]

'," i
(c) LPS

Figure 8.7: Repetitive primitive terture imaged for o = 45° and 7 = 330°

prediction of the 3-light PS technique is 7.52dB. Similarly, the Linear estimate does
not accurately model the surface appearance (3.59dB). One of the main sources of
error is due to the the absence of shadows in the synthetic images. Furthermore,
the rendered estimates seem to be blurred in comparison to the real image. Apart
from the poor SRR measured for these images, they still resemble the test image.
This means that for the only purpose of image prediction, the SRR threshold could
be relaxed to a lower value than 10dB.

We assess the surface estimates by studying the heightmaps obtained with both
techniques (Figure 8.8). Only a fraction of the test image is recovered: an area of
50x50 pixels belonging to the top left corner. The surface estimates are not as similar
to each other as in previous examples. The heightmaps correspond to a continuous
surface, whilst the real surface is not continuous. In Chapter 7 we concluded that the
3-light PS technique was more robust to surface roughness than the Linear method.
This is also observed when comparing the estimates; the 3-light PS heightmap seems

to follow the barley grains shape more accurately than the Linear estimate.
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Figure 8.8: Estimated repetitive primitive texture

8.2 Surface estimation for image prediction pur-
poses

In many application the only interest is the surface appearance and not the surface
shape. A supervised classifier and an estimator of the light position are examples.
The input data to the classifier is the surface image taken with unknown lighting
conditions. Thus, the surface estimate can be used to predict the surface appearance
for training the classifier or to estimate the source position.

This assessment is different to the one proposed in Section 8.1 since image pre-
diction is the ultimate aim and not an assessment tool. In Section 8.1.2 we argued
that for the only purpose of image prediction the SRR could be relaxed from the
threshold of 10dB. We now assess the accuracy of image prediction for a wider range
of illumination conditions. Importantly, the robustness of our prediction to changes

in the lighting conditions is investigated.

8.2.1 Experimental method
Description

The surface recovered with our photometric methods is rendered and compared to
the test image. We render the surface estimate using Lambert’s law for the same
lighting conditions as the real image. The surface is estimated for images with the

smallest considered zenith and azimuth angles in 90° increments.
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We study the robustness of image prediction when varying the azimuth angle and
for three zenith angles. The reflectance function of a directional Lambertian surface
could be dominated by non-linear terms depending on the light azimuth position.
Thus we investigate separately the accuracy of image prediction in directional and
isotropic surfaces.

For rendering the recovered surface shapes, we use the albedo map estimated with
the 3-light PS technique. We therefore account for the small variation of the surface
albedo. We also use the estimated intensity value for rendering (equation 8.3).

We measure accuracy of image prediction as the SRR for each available image

of the test texture (equation 8.1). The SRR threshold is now set to 6dB.

Data

We use the data set described in Chapter 2. However, we exclude the four textures
that we categorised as being special cases. These textures were included in the
database to test the limits of surface recovery. The recovery techniques showed poor
performance for these surfaces. Therefore, they are not considered for assessing the

accuracy of prediction.

Rendering shadows

When assessing the accuracy of recovery, we avoided those lighting conditions for
which the rendering process was not realistic. In this way, shallow illuminations
were not considered because shadows were not properly modelled. In contrast,
when assessing the prediction of the surface appearance we are somehow assessing
the realism of the rendering process. Although the model to render shadows is very
basic, we should take into account shallow lighting conditions.

The three sampling zenith angles, 45°, 60° and 75° , are considered in this in-
vestigation (see Section 2.4.3). This gives a total of thirty-six images per texture.
We should note that the anaglypta surfaces are imaged with only two zenith angles
(60° and 75°).
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Technique LPS 3PS

Test zenith c=45° |0 =60° | o =75° || 0 =45° | 0 =60° | 0 = 75°

Fractures (5) 8.76 8.28 8.06 14.93 13.02 7.23

Deposits (6) 9.94 8.44 8.36 11.91 9.50 3.18

Table 8.6: Accuracy of the prediction of the surface appearance for isotropic surfaces
[dB]

8.2.2 Results and discussion

Effect of varying the light zenith for isotropic surfaces

Table 8.6 shows the averaged accuracy of image prediction for the fracture and the
deposit surfaces. We consider separately the prediction accuracy for three rendering
zenith angles. A more detailed table with the SRR per texture per zenith angle is
included in Appendix B (Section B.2).

The rendered heightmap is closest to the test images for the estimation zenith
(45°). As the rendering zenith departs from the estimation zenith, the test images
differ from the estimation images. Any inaccuracy in the estimated heightmap is
more noticeable as the rendering conditions differ from the estimation conditions.

We should also take shadowing effects into account. For shallow illumination,
shadowing increases and the prediction deteriorates. For the 3-light PS technique,
the prediction accuracy drops an average of 8 dB as the zenith increases. Why are
shadowing effects not so apparent in the predictions of the Linear technique? In
Section 5.3.2, we argued that the linear term in the Lambertian intensity expression
was dominant for shallower zenith angles. We expect the rendered Linear estimate to
be closer to the near linear test image observed for raking light. The effect of having
a more linear surface image evens out with shadowing effects, and the prediction
accuracy is not so dependent on the light zenith. Although the Linear PS seems
more robust to shadowing effects, this does not necessarily mean a more accurate
surface estimate.

As an example we compare the images of the heavily deposited surface to its
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Figure 8.9: Heavy deposited surface: Real image (left); 3PS estimate (centre); LPS

estimate (right); top row: (o, 7) = (45°,150°); bottom row: (o, 7) = (75°,150°)
estimate rendered with zenith 45° and 75°. Figure 8.9 (a) and (d) are the two test
images. Figure 8.9 (b) and (e) are the two rendered 3-light PS estimates. And
Figure 8.9 (c) and (f) are the rendered Linear estimates. All the images have the
same light azimuth (150°). Both estimates rendered with zenith 45° are very close
to the corresponding test image. In contrast, the Linear PS estimate rendered
for o = 75° is closer to the test image than the 3-light PS estimate. When the
illumination is shallow, the image is predicted more accurately from the Linear
estimate than from the 3-light PS estimate.

The prediction of the appearance of the rough deposited fracture is investigated
for a range of light azimuths and three zeniths. Figure 8.10 shows the performance
for the 3-light PS estimate. The SRR of the three estimation images is over 22dB.
However the prediction deteriorates for an azimuth angle different to the estimation
angles — for an azimuth of 270°, the accuracy drops to 10dB. Similarly, as the
rendering zenith departs from the estimation zenith, the prediction deteriorates

drastically.
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Figure 8.10: Rough deposited fracture: Accuracy of prediction when rendering the

3-light Photometric Stereo estimate

Figure 8.11 shows the accuracy of prediction for the Linear technique. The
estimation images are predicted with a SRR of 12dB. The accuracy is highest for
the estimation zenith curve (o = 45°). The dependency on the zenith angle is not

so strong for this estimation.

Effect of varying the light zenith for directional surfaces

Directional surfaces are especially difficult to recover. When the light azimuth di-
rection is parallel to the surface grain, non-linear order effects are dominant. Under
these conditions the rendered Linear Photometric Stereo estimate may not approx-
imate the test image well. Table 8.7 shows the averaged accuracy of prediction for
the sand-ripples and anaglypta surfaces'. Table B.1 in Appendix B includes a more
detailed description of the assessment results.

The performance of the 3-light PS technique does not deteriorate for shallow
illumination. To better explain this effect we analyse the case of the sand-rippled
surface (Figure 2.6(b)). Figure 8.12 shows the real images and the rendered surface

estimates for two zenith angles: 45° and 75°. The main difference between the

INote that the estimation zenith for the sand ripples is 45° and for the anaglyptas is 60°.
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Figure 8.11: Rough deposited fracture: Accuracy of prediction when rendering the
Linear Photometric Stereo estimate

Technique LPS 3PS

Test zenith 0=45° |0 =60° | o =T75° || 0 =45° | 0 =60° | 0 =T75°
Sand-ripples (3) || 10.93 11.33 11.24 12.36 13.17 9.97
Anaglyptas (3) - 11.84 10.17 - 9.20 10.16

Table 8.7: Accuracy of the prediction of the surface appearance for directional

surfaces [dB]
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Figure 8.12: Sand-rippled surface: Real image (left); 3PS estimate (centre); LPS
estimate (right); top row: (o, 7) = (45°,150°); bottom row: (o, 7) = (75°,150°)

two test images is the mean intensity value (Figure 8.12 (a) and (d)); for shallower
lighting the image looks darker. The shadowed areas in the image with zenith 75°
are the same areas that are shadowed in the image with zenith 45°. Shadows are
estimated for zenith 45° and encoded in the albedo map. Then they are added to the
synthetic images rendered with any zenith angle. Since the shadowed areas remain
almost the same for different light zeniths, the prediction of shadows is reasonably
accurate. Consequently, shadows are better predicted for our directional textures
than for the isotropic surfaces (see Figure 8.9).

The surface grain orientation is 90° for the sand-rippled surface. We investigate
the effect that varying the light azimuth has on the performance of the Linear
method (Figure 8.13). The SRR drops when the light azimuth is parallel to the
surface grain, i.e. 7 = 90° and 270°. Even the estimation image is poorly predicted
(SRR = 5 dB). Although the average accuracy is over 10 dB, the surface appearance
is not accurately predicted in the grain direction.

The 3-light PS estimate does not rely on a linear surface reflectance. Does
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Figure 8.13: Sand-rippled surface: Accuracy of prediction when rendering the Linear
Photometric Stereo estimate

this technique give a better surface estimate? In Figure 8.14 we plot the accuracy
of prediction against light azimuth for this method. The prediction of the three
estimation images is extremely accurate (SRR > 25 dB); even when the azimuth
direction is aligned to the surface grain. However, apart from the estimation image,
the prediction is poor when the light azimuth and the surface grain are parallel.
This technique estimates the surface after removing the non-linearities of the image.
When non-linearities are dominant, the ratio between the surface image and the
non-linear terms is almost one and the surface estimate is not accurate.

Neither algorithm can reliably be used for predicting the appearance of a unidi-

rectional surface lit from the surface grain direction.

8.3 Summary and discussion

In this chapter we assessed the proposed surface recovery method on real data.
Since ground truth data was not available for the real textures, the assessment was
in terms of image prediction. The Optimal Linear Filter was not assessed because

it relies on ground truth data for the filter’s training. Due to the limited number of
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Figure 8.14: Sand-rippled surface: Accuracy of prediction when rendering the 3-light
Photometric Stereo estimate

textures considered for the assessment, the conclusions drawn in this chapter cannot
be generalised. However, the results give us an idea of the scope of the proposed
algorithms.

The 3-light Photometric Stereo technique performs better than the Linear Pho-
tometric Stereo for the test data. An increase on surface roughness or a violation of
the Gaussian assumption degrade both estimations. The 3-light Photometric Stereo
estimate is more robust to surface roughness. In contrast, the Linear Photometric
Stereo is more robust to surface discontinuities. Furthermore, the Linear method
estimates surfaces with a hybrid reflectance more accurately than the 3-light PS
technique.

If our objective is image prediction the following points are relevant. The pre-
diction is more accurate for lighting conditions similar to the lighting conditions of
the estimation. The 3-light Photometric Stereo technique is more robust to changes
in the light azimuth than the Linear technique. This is because the three estimation
images evenly sample half of the azimuth range. In the case of the Linear estimation,
the two necessary images are evenly placed covering just a quarter of the azimuth

range.
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In contrast, the Linear Photometric Stereo technique is more robust to incre-
ments in the light zenith. For raking light the surface image is more linear, thus it
is closer to the rendered Linear estimate. However, shadowing effects increase for
larger zenith angles, causing both estimations to deteriorate.

For the purposes of image prediction, both techniques are reasonably accurate
at predicting the surface appearance. In contrast, the estimates are not always
sufficiently accurate for the purpose of surface recovery. For most of the textures,
the recovery accuracy of the 3-light Photometric Stereo is close to 10dB. However,
the Linear Photometric Stereo method does not accurately estimate most of the
considered surfaces. We need to improve the estimation, but not at the expense
of requiring more information about the texture. We want a simple technique that
uses the available information in a more efficient manner. This simple technique is

the subject of Chapter 9.
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Chapter 9

Improving the Surface

Reconstruction

In Chapter 8 we assessed the recovery performance of the novel Linear Photometric
Stereo technique and compared it to that of the Benchmark technique. We found that
whilst the Benchmark estimation was sufficiently accurate! for recovering rough surfaces,
the Linear estimate needed to be improved. We argued that an algorithm which uses
the available intensity data in a more efficient manner could be used for this purpose. In
this chapter we review regularisation techniques to find a suitable algorithm. A simple
iterative scheme that does not over-smooth the estimation is presented. The surface
recovery assessment is repeated after implementing the iterative process as part of the
estimation. An improvement in re-lighting performance is measured when the iterative

scheme is used together with the Linear estimator.

IWithin the definition of this PhD. See Section 8.1.1.
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9.1 Chapter organisation

This chapter starts by reviewing regularisation algorithms that have been applied
to Shape from Shading problems. We propose an iterative scheme that improves
the surface estimation. The differences between our simple iterative scheme and
the reviewed regularisation methods are identified. Our recovery techniques are
assessed when using the iterative scheme. We investigate the robustness of the
improved estimates to surface discontinuities, roughness and for several topographic

and reflectance functions. The assessment results are presented and discussed.

9.2 How could the Photometric estimate be im-
proved?

In Section 4.1.2 we reviewed the so-called minimisation Shape from Shading tech-
niques. These approaches are optimisation techniques implemented in an iterative
manner. They rely on certain assumptions about the surface. The surface is es-
timated by minimising an energy term which is a function of the validity of the
surface assumptions.

In this section we review a class of minimisation methods: regularisation tech-
niques. This survey is intended to help us design an algorithm to improve the surface
estimate. Since regularisation techniques aim to optimise the estimate, they seem a

good choice for our purposes.

9.2.1 Regularisation schemes: literature review

A possible solution for single-image Shape from Shading is achieved using regular-
isation. To regularise an ill-posed problem means to convert it into a well-posed
problem. Traditional regularisation relies on assumptions about the smoothness of
the surface. This assumption ensures stability of the approximate solution, but can

be insufficient to preserve the main qualitative characteristics of the function sought
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[131].

In addition to conditions of smoothness, shape constraints on the solution may
exist. Common shape constraints are non-negativity conditions, monotonicity, con-
vexity, etc. These constraints have stabilising properties. Furthermore, the esti-
mated approximate solution has the desired qualitative behaviour. However, they
rely on strong assumptions about the surface shape.

Horn [18] proposed an iterative method which seeks a solution in the form of the
surface gradient. The solution ensured that the image irradiance equation was satis-
fied (expression 4.1). He introduced a smoothness regularisation term to guarantee
stability. This regularisation term penalised rapid changes in the gradient field. The

error function to minimise had the form:

e =e; + ae; (9.1)

where e is the error due to departure from smoothness, e; is the brightness error
and « is the regularisation parameter. This parameter should be large if brightness
measurements are very accurate, and small if they are very noisy. Horn suggested a
discrete iterative implementation of his minimisation scheme.

He later improved his iterative algorithm so that the exact solution was found
even though a regularisation term was included [67]. The smoothness term was only
used to stabilise the iterative scheme when it was far from the correct solution. It
was then turned off as the solution was approached.

Hayakawa et al. [132] separated the surface estimate modification required be-
cause of the brightness error, from that required due to the smoothness constraint.
This allowed the use a simple and fast algorithm for each modification. Using sim-
ulation, their method gave more accurate results with a faster convergence than
Horn’s algorithm. Although it was not proved to give the optimal solution.

Subbarao and Liu [133] used a regularisation scheme to recover shape from de-
focused data. In their algorithm, the similarity function, e;, is the brightness error

used by Horn. In contrast, the regularisation term, ey, is a smoothness constraint
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based on a local blur parameter. The performance of their approach was assessed on
synthetic data. They compared their algorithm to a gradient descent type approach
and a local search approach. They concluded that regularisation performed better.

Ferrie and Lagarde [134] proposed a reconstruction algorithm based on min-
imising the variation of surface curvature. They used the curvature constraint to
stabilise the result of the local shading analysis. Results were presented on synthetic
and real data, showing that the algorithm was robust to image noise and gave ac-
curate estimates. This method was compared to Horn’s and was proved to preserve
peaks that were smoothed with Horn’s estimation.

Worthington and Hancock [135] argued that schemes with a quadratic regulariser
over-smooth the surface estimate. They proposed an algorithm where the smooth-
ness constraint does not dominate the iterative process. Data-closeness was imposed
as a hard constraint. They argued that to satisfy the image irradiance equation,
the surface normals must lie on a cone of ambiguity. At each iteration the updated
surface normal was free, as a result of the smoothing process, to lie outside the cone,
but it was subsequently projected back onto the closest vector lying on the cone.
This framework allowed them to use different regularisation terms and compare
their performance on real and synthetic data. They concluded that curvature and
gradient consistency provided better constraints than quadratic smoothness terms.

They successfully applied this method to face recognition problems [136].

9.2.2 Discussion

In this chapter, we search for a similar approach: to optimise the Photometric
estimate we should adopt some of the constraints reported in the literature. Surface
constraints related to the surface smoothness, its topography, its integrability as
well as brightness constraints have been proposed. We should avoid assumptions
about the smoothness of our textures. We cannot use topographic constraints since
no information about the local surface shape is available. Our recovery methods

enforce integrability using a global algorithm; thus no integrability issues have to
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be considered. Brightness constraints could be an option since surface intensity
information is available. The same test images that are used to estimate the surface
can also be used to improve this estimate. Constraints related to the image intensity

are a good choice in our case.

9.3 A simple iterative method

There are three main differences between our iterative scheme and the ones discussed
in Section 9.2.1. First, our method does not require a regularisation term to stabilise
the solution. Since the system is not ill-posed and the scheme is stable [131]. Second,
the brightness error accounts for all available images. Third, an accurate initial
estimate is provided by the novel recovery methods.

A 7two-step” recovery was first introduced by Ferrie and Lagarde [134]. They
used a single-image Shape from Shading technique to obtain a first estimate of the

surface. They then refined the initial estimate through a minimisation procedure.

9.3.1 Description of the algorithm

Horn’s regularisation scheme [18] influenced the design of our iterative method to
improve the Photometric estimate using the intensity information. Horn’s scheme

in the discrete case takes the form:

n+1 -n
Py =D o . — (9.2)
! Ty +a(I$y —I(p n §
Ty qu))
ot =7 (9.3)

ol 10" BT

where [ is the real image and T is the image cg)?ﬁ%%fted using expression 3.4. The
new values of p and ¢ at each grid point are obtained using the old values of p and
g in evaluating T (p,q), ol /0p and ol /0q. p" and @" are the local averages of p and

q; they are the regularisation terms and account for departure from smoothness.

152



For our method several images are considered to compute the brightness error.
Horn [18] suggested an expression for the brightness error that accounted for more

than one image:

Z%ZZ — Tj(z,y))? (9.4)

where I; is the brightness measured in the % image and f] is the corresponding
reflectance map. The parameter «; weights the errors due to the different images.
They are equal if the images are equally reliable.

We propose an algorithm that omits Horn’s regularisation term and uses equa-
tion 9.4 for the brightness error. The iteration is similarly carried out in terms of

improving the gradient estimates. The resulting equations are 9.5 and 9.6.

n+1 __
Py =D" ~ — (9.5)
Ty + Z O,/] Jizy Ij (p n @j

j=1 Ty’ qzy))

n
1 n T (n
qg?j_ = oy + Z aj(Ij;:vy - Ij (p n 65%7 (9.6)
Jj=1 Ty’ qzcy))
The new values of p and ¢ are not computed using the local averages of the old

values of p and ¢ as in Horn’s algorithm. No regularisation is necessary, thus no

smoothness constraints are imposed. We assume Lambertian reflection to compute

R(p,q), OR/0p and OR/0q, thus:

ol _ cos T sin o (—pcosTsino — gsinTsino + coso) (0.7)
op (P +¢+ 1) (p? +q* +1)%2 '
oI B sinTsino (—pcosTsino — gsinTsino + coso) (9.8)
0 (P*+¢*+ 1)V (P? +¢* +1)3/2 '

Tis computed using equation 3.4 for both recovery techniques. Thus no linearity
of the surface reflectance is assumed when optimising the LPS estimate.

Once the system converges to the optimal solution, the gradient fields are inte-
grated into the surface estimate. We use a global algorithm that enforces integra-

bility (see Section 4.5.2.).
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9.3.2 When to stop iterating?

This is a natural question that arises in most iterative processes. We want the
gradient of the solution to approach that of the surface, but we do not know what
the underlying surface is. Common quantities to test closeness to the correct solution

are [67]:
e The brightness error should be small. This error is not a useful stopping
criteria, since it becomes small just after a few iterations.

e Rate of change of the solution with iterations

[ (2) (2 09

We can keep track of this rate of change and stop iterating when it becomes
small. In most cases it helps to continue for a while after expression 9.9 stops

changing rapidly since the solution often continues to adjust a bit.

e Departure from smoothness errors are common stopping criteria. However

they are not suitable in our case, since we do not assume a smooth surface.
e Measures of lack of integrability are not a good choice. Integrability is consid-

ered once the optimal gradient estimate is found and not during the iteration.

The quantity that we use to stop iterating is the global rate of change of the

brightness error:

> i35, >, (Bj(z,y) — Ri(p,9))?]
dt

(9.10)

We should note that all the estimation images are taken into account when
computing the brightness error. The rate of change of this error rapidly becomes
small after few iterations (typically 7 or 8). Besides we do not stop iterating since
the solution continuous to adjust. We compromise computational cost for a more

accurate estimation; the total number of iterations doubles the initial quantity.
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9.3.3 Summary

In this section we give a brief description of the recovery algorithm:
1. Each of the proposed Photometric Stereo algorithms is applied to real images
to obtain the surface estimate.
2. The Photometric estimate is used as an initial estimate for the iterative scheme.

3. The brightness error is computed (equation 9.4): the estimate is rendered with

Lambert’s law and compared to the real images.
4. The new surface gradient is estimated using equations 9.5 and 9.6.
5. The rate of change of the brightness error is evaluated (equation 9.10).
6. The process is repeated from step 3 until the expression 9.10 is steadily small.
The two phases of the surface recovery are: first the Photometric Stereo esti-
mation (step 1) and second the iterative scheme (steps 2 to 6). We refer to the

new recovery algorithms as the Iterative Linear Photometric Stereo (ILPS) and the

Iterative 3-light Photometric Stereo (I3PS).

9.4 Assessment of the iterative recovery through

rendering

9.4.1 Experimental method
Description

In this section, we apply two-step recovery to real data. We assess the recovery in
terms of image prediction. The surface estimate is rendered for lighting conditions
different from the ones used for the estimation. These rendered estimates are com-
pared to the test images of the surface, and the SRR of equation 8.2 is computed.

The assessment of the Iterative Photometric Stereo recovery methods is four-fold:
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1. We evaluate whether the estimation improvement due to the iterative process

compensates for the extra computation.
2. We assess the recovery performance on real textures.

3. We investigate the robustness of our methods to four surface characteristics:

surface roughness, discontinuities, topography and reflectance.

4. We test our algorithms on the so-called special surfaces, i.e. textures that

violate the surface assumptions.

Data

The two-step recovery algorithms are applied to the real textures described in Chap-
ter 2. Seventeen real surfaces that roughly comply with the surface assumptions are
considered in the assessment. Four textures that severely violate the assumptions

are also estimated.

Rendering shadows

The estimated surface is rendered so that its appearance is closest to the test image.
Since the model for shadows is not realistic, we should avoid shallow illumination.
Nevertheless, the non-Lambertian textures are rendered for 75°, i.e. the anaglypta
surfaces and the sand paper (see Section 2.4.3). For the rest of the data set, large

zenith angles are not considered.

Constant albedo

For the surface recovery assessment carried out in Chapter 8, the estimated surface
albedo was used for rendering. We argued that the albedo should only be used as
part of the assessment procedure, and not as part of the recovery. This distinction
is important since the albedo can only be estimated with the 3-light PS technique.
Therefore, it should not be used to improve the Linear estimate.

The iterative process is part of the estimation. To compute the brightness error
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(step 3 in Section 9.3.3), the rendered surface estimate is compared to the test image.
This rendering process is part of the estimation procedure, thus the albedo is not
used with the Linear estimate. However, for the assessment we measure the accuracy

of prediction and the albedo is used for rendering both Photometric estimates.

9.4.2 Experimental results
Is it worth the extra computation?

The recovery is assessed in terms of accuracy of prediction: we measure the bright-
ness error of images that are not used for the estimation. On the other hand, the
iterative scheme minimises the brightness error of the estimation images. It is pos-
sible that the surface estimate after convergence gives a smaller brightness error of
the estimation images but larger for any other lighting condition. This is the case
for the Iterative 3-light Photometric Stereo scheme. The surface estimate is refined
to minimise the brightness error, but the accuracy of prediction is not improved or
only slightly improved. The mean brightness error averaged across all textures is
19.53 dB for the 3PS and 20.41 dB for the I3PS (Appendix B: Section B.3). How-
ever, the accuracy of prediction is not so clearly improved (Figure 9.1). Only four
out of seventeen textures gave a better accuracy of prediction, whilst two gave the
same result. In most applications, it will be not worth using the iterative scheme to
improve the 3-light Photometric Stereo estimate.

In contrast, the Iterative Linear estimate proves to be more accurate than the
Linear estimate for most of the test textures (Figure 9.2). The average improvement
in terms of image prediction is 1.39 dB. The accuracy of image prediction before
and after iteration for the 3-light and the Linear estimates is included in Appendix

B (Section B.3).
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Figure 9.1: Accuracy of image prediction for the 3-light PS and the Iterative 3-light
PS techniques
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Figure 9.2: Accuracy of image prediction for the Linear PS and the Iterative Linear
PS techniques
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Figure 9.3: Accuracy of recovery for the Iterative Linear and the 3-light PS tech-
niques

Assessment of surface estimation through rendering

Figure 9.3 shows the accuracy of recovery of the real textures. The performance
of Iterative Linear PS technique is very similar to that of the 3-light PS algorithm.
The improvement of the Iterative Linear estimate has made its accuracy comparable
to that of the 3-light PS estimate.

Ten out of the seventeen considered textures were accurately estimated with
both methods, i.e. the recovery accuracy is larger than 10dB. The textures that
have not been properly recovered do not comply with the surface assumptions. The
anaglypta surfaces (Figure 2.6 (e), (f) and (g)) are not Lambertian. The fracture of
Figure 2.5 (a) is very rough and it has heavily shadowed images. The very sparsely
deposited surfaces of Figure 2.5 (i), (j) and (k) cannot be considered Gaussian.

Appendix C includes the 3D plots of the heightmaps estimated with both tech-
niques for each of these textures. Both estimates are also rendered for two different

lighting set-ups and compared to the real images.
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Texture Figure || ILPS | 3PS

Rough fracture 2.5 (a) || 8.69 | 8.52

Moderate roughness fracture | 2.5 (b) || 13.19 || 13.13

Gentle roughness fracture | 2.5 (¢) || 12.56 || 12.71

Smooth cured fracture 2.5 (d) || 11.89 || 13.37

Smooth patterned fracture | 2.5 (e) || 11.81 || 12.84

Table 9.1: Average accuracy of recovery for fractures [dB]

(b)

Figure 9.4: Gentle roughness fracture imaged for o = 45° and 7 = 300°

(a) Real image

Robustness to surface roughness

We compare the robustness of both estimators to surface roughness. Table 9.1
shows that both techniques are similarly affected by an increase in roughness. The
accuracy of prediction for the Iterative Linear estimate is analogous to that of the
3-light PS. Neither method is accurate at predicting the appearance of the roughest
surfaces (for instance the rough fracture).

We study the recovery of the gentle roughness fracture as an example of an
accurate estimation. Figure 9.4 (a) is the test image of the fracture for a zenith of 45°
and an azimuth of 300°. The rendered 3-light PS estimate and the rendered Iterative
Linear estimate are the images of Figure 9.4 (b) and (¢). The SRR is 12.80dB for
the 3-light estimate and 13.24dB for the Iterative Linear estimate. Both synthetic
images are very close to the test image, the main difference is due to shadowing.

Figure 9.5 (a) is a section of the test image: an area of 50x50 pixels from top left
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Figure 9.5: Estimated gentle roughness fracture surface

Texture Figure || ILPS | 3PS

Moderate rough deposited fracture | 2.5 (f) || 10.23 || 10.16
Rough deposited fracture 2.5 (g) || 10.09 || 10.36
Heavy deposited surface 2.5 (h) || 10.21 || 9.92
Medium deposited surface 2.5 (i) || 9.05 || 9.14
Light deposited surface 2.5 (j) || 7.81 8.67
Sparse deposited surface 2.5 (k) || 7.15 7.04

Table 9.2: Average accuracy of recovery for deposited surfaces [dB]

corner. Figure 9.5 (b) and (c) are the heightmaps for that image section estimated
with the 3-light and the Iterative Linear techniques. The estimated heightmaps are
very similar to each other. Considering the high accuracy of image prediction for

this fracture, the estimates appear to closely resemble the surface topography.

Robustness to surface discontinuities

We argued that as the amount of deposit on a globally flat surface increases, the
height distribution is closer to a Gaussian. A Gaussian surface is likely to be contin-
uous. Table 9.2 shows that the proposed recovery techniques are similarly robust to
violation of the Gaussian assumption. For sparsely deposited surfaces, the accuracy
of prediction is not over the 10-dB threshold.

As an example of an unsuccessful recovery, we plot the estimated heightmaps
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Figure 9.6: Sparsely deposited texture imaged for o = 45° and 7 = 300°

and the prediction of one of the images for the sparsely deposited texture. Figure 9.6
(a) is the test image of the texture for a light zenith of 45° and an azimuth of 300°.
Figure 9.6 (b) and (c) are the 3-light PS estimate and the Iterative Linear estimate
rendered for the same lighting conditions. The accuracy of predicting this test image
is 4.04dB for the 3-light PS and 6.37dB for the Iterative Linear method. Although
the SRR is well below the 10dB threshold, the synthetic images are fairly close to
the test image. The synthetic images appear blurred compared to the test image;
this is main source of error.

We recover an area of 50x50 pixels which corresponds to the left top corner of the
image. Figure 9.7 (a) is the considered image section. Figure 9.7 (b) and (c) are the
heightmaps estimated with the 3-light PS technique and the Iterative Linear method.
Although the accuracy of prediction for this texture is the lowest of the whole set
(surface 5k in the graph of Figure 9.3), the two estimates are still consistent with
each other. Furthermore, they seem to properly follow the topographic undulations

that we perceive on the surface image.

Surface estimation for several topographic and reflectance functions

Table 9.3 shows the accuracy of predicting the appearance of textures that differ in
their topography and reflectance. Each texture follows a different surface function,
although the sand ripples show a similar pattern. Furthermore, the sand ripples are

Lambertian whilst the anaglypta surfaces have hybrid reflectance.
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Figure 9.7: Estimated sparsely deposited texture

Texture Figure | ILPS | 3PS

Sand-rippled surface 2.6 (a) || 9.58 | 11.75

Sand-rippled surface (high freq) | 2.6 (b) || 11.19 | 11.33

Smoothed sand-rippled surface | 2.6 (¢) || 9.36 | 10.59

Net anaglypta 2.6 (e) || 9.25 | 7.68

Rippled anaglypta 2.6 (f) || 964 | 8.82

Rice grain shaped anaglypta 2.6 (g) || 9.68 | 9.09

Table 9.3: Average accuracy of recovery for sand-rippled and anaglypta surfaces

[dB]

As expected, both estimates are more accurate for the Lambertian sand ripples
than for the anaglypta surfaces. However, the performance of the Iterative Linear
technique is superior to that of the 3-light PS method for the anaglyptas. The Linear
estimate is more robust to specularities than the 3-light PS estimate. We draw the
same conclusion after the assessment through simulation in Chapter 7 and on real
data in Chapter 8.

In contrast, the performance of the 3-light PS technique is better than that of the
Iterative Linear method for the sand-ripples. It is worth noting that the rippled grain
is aligned to the 90° direction. For light azimuths close to 90°, non-linearities become
dominant and the Iterative Linear estimate deteriorates. Similarly, the Iterative
Linear estimate of the rippled anaglypta would be more accurate for estimation
images with a light azimuth different from 90°.
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Figure 9.8: Estimated high frequency sand ripple surface
As an example we recover a 50x50 pixel section of the high frequency sand ripple.

Figure 9.8 (a) is the image section which belongs to the top left corner of the image

(0 = 45° and 7 = 300°). Figure 9.8 (b) and (c) are the heightmaps estimated with

the 3-light technique and the Iterative Linear method. Both estimates look identical

and they seem to accurately follow the undulations of the surface image. We can

easily distinguish the ripples in the estimated heightmaps.

Surface estimation for special textures

In this section we apply our iterative recovery techniques to textures that severely

violate the surface assumptions. In Chapter 8 we concluded that the recovery tech-

niques were not suitable for recovering such surfaces. We here assess if the iterative

Table 9.4 shows the ac-

process improves the estimation of the special textures.

curacy of image prediction for the recovery techniques before and after iteration.

The surface estimate is not been improved with the iterative process for the test

Furthermore, for an inaccurate initial estimate, the iterative scheme is

textures.

slow to converge to a solution. More than 30 iterations are required for some of

the considered textures. For a larger regularisation parameter, the scheme becomes

The iterative scheme is stable and fast in convergence when the initial

unstable.

estimate is not far from the solution.
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Texture Figure || 3PS | I3PS | LPS | ILPS

Irregular stripes anaglypta | 2.6 (d) || 1.92 | 1.16 | 5.13 | 4.86

Repetitive primitive surface | 2.6 (i) || 5.76 | -2.07 || 3.84 | 2.87

Textile 2.5 (1) || 4.43 | 1.35 || 2.89 | 2.69

Sand paper 2.6 (h) || -1.72 | -7.17 || 0.57 | -0.41

Table 9.4: Average accuracy of recovery for special textures [dB]
9.5 Conclusions

In Chapter 8 we concluded that the Linear PS estimate was not accurate for most of
our textures. In this chapter, we proposed a simple iterative scheme to improve the
estimation of our recovery techniques. This iterative scheme minimised the bright-
ness error of the images used for surface recovery. The estimates obtained with
the proposed Photometric algorithms were used as initial estimates for the minimi-
sation process. Although the brightness error for the iterative 3-light PS method
was decreased, the image prediction was not improved. The extra computation was
not efficient at improving the surface estimate. In contrast, the Iterative Linear PS
method performed better than the Linear PS method. This improvement in the It-
erative Linear technique made its performance comparable to that of the 3-light PS.
Importantly we found that the iterative technique is stable and fast in convergence
partly due to an accurate initial estimate.

We conclude that both recovery techniques give accurate estimates of rough
surfaces. Their performance is similar in terms of accuracy of image prediction. The
Iterative Linear PS requires less data for the recovery than the 3-light PS technique.
In contrast, it requires more computation: the optimisation process. Furthermore,
it is restricted to constant albedo surfaces, whilst the 3-light PS recovers the surface

albedo as well as the surface gradient.
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Chapter 10

Conclusions

10.1 Summary

This thesis has investigated the recovery of the topography of textured surfaces
from their appearance. The texture’s appearance depends on its topography, on its
reflectance characteristics and on the lighting conditions. In Chapter 2 we discussed
models of surface topography. In Chapter 3 we considered models of reflectance. In
Chapter 6 we investigated the optimal lighting conditions. Chapter 4 reviewed the
techniques of the literature that estimate shape from intensity. Chapter 5 presented
the novel work on surface recovery. Chapters 7, 8 and 9 provided an assessment of
the novel recovery techniques on synthetic and real data.

In Chapter 2, we defined the surfaces in terms of their topography. Our test
surfaces are globally flat rough textures with low slope angles. They were assumed
to be mathematically smooth continuous functions with conservative gradient fields.
We presented the synthetic models that were used in the simulations throughout
the thesis. Then we described our real textures and assessed how well they met our
assumptions.

Our objective is to estimate the surface topography from its image. We therefore
need to understand the transfer function from surface to image. In Chapter 3 we
reviewed reflectance models. Lambert’s law and Phong’s model were thoroughly
described since they were used to render diffuse and specular surfaces in our simu-
lation. Kube’s linear approximation to Lambert’s law was reviewed because it can
be inverted and is therefore a useful tool for surface estimation. We tested Kube’s
linear approximation on synthetic data. The conditions for the validity of the linear
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model were extended to anisotropic surfaces. Kube’s model does not account for
specular reflection. We analysed the contribution of Phong’s specular term to the
total reflection using simulation. Phong’s model parameterises specular reflection
using two variables: an exponent that controls the width of the specular lobe, and
a scaling factor that controls its strength. In the case of textured surfaces lit from
large zeniths, the scaling factor is the parameter that most significantly affects the
surface appearance.

In Chapter 4 we reviewed existing surface recovery techniques. First, Shape
from Shading techniques were surveyed. We argued that single-image Shape from
Shading methods often rely on the assumption that the surface is smooth in order
to estimate its gradient. In contrast, Photometric Stereo algorithms can be applied
to rough surfaces. Since our objective is to recover a height field, the estimated
gradient fields had to be integrated. Several integration methods were reviewed and
we concluded that global integration was the most appropriate for our purposes.
We introduced an algorithm that combined a successful 3-light Photometric Stereo
technique with a well-known frequency integration method. We referred to this
algorithm as the Benchmark Photometric Stereo technique.

Having reviewed previous work, in Chapter 5 we presented our contribution. We
sought to recover rough surfaces more efficiently than with the Benchmark tech-
nique. We chose to decrease the number of intensity images without compromising
on recovery accuracy. We surveyed two-light Photometric Stereo algorithms and
investigated the conditions for a unique solution. We found that we could avoid
the requirement of smoothness assumptions about the surface by assuming a linear
reflectance function. Two novel two-light recovery algorithms were then introduced:
the Linear Photometric Stereo technique and the Optimal Linear Filter. The Linear
Photometric Stereo technique relied on Kube’s linear approximation to the surface
reflectance function. The Optimal Linear Filter was trained on the test surface
and its image. The estimated linear reflectance function is optimal for the training

surface in the least squares sense.
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Chapter 6 was devoted to optimising the conditions for the implementation of
the new recovery methods. The optimal lighting geometry was investigated by re-
viewing the literature and conducting simulations. We investigated the optimal
position of lights concluding that perpendicular lighting directions gave most accu-
rate estimates. In terms of light zenith angle, the optimal range was found to be
between 30° and 60°. For a more vertical lighting, the linear term was small relative
to noise and nonlinearities. For shallower angles, shadowing effects were dominant.
Although two images were sufficient to recover the surface, we studied the improve-
ment when using more lights. We searched for a compromise between number of
images and accuracy of estimation. However, we concluded that the improvement
was not sufficient to justify the extra expense.

In Chapter 7 we assessed our novel techniques on synthetic data. The perfor-
mance of our algorithms was compared to that of the Benchmark technique. The
effect of violating the surface assumptions was studied. We tested the robustness of
our estimators to the type and roughness of the test surface as well as its reflectance.
We also assessed our estimators sensitivity to shadowing effects and noise. The
Benchmark Photometric Stereo technique was found to be more robust to surface
roughness than the novel algorithms. Both the Linear Photometric Stereo and the
Optimal Linear Filter were limited to surfaces whose roughness is p,,,s < 0.35. The
Optimal Linear Filter was found to be more robust to surface specularities. The
Linear Photometric Stereo estimate as well as the Benchmark estimate were very
sensitive to specularities. However, the Linear Photometric Stereo estimate was
found to be more accurate at recovering diffuse surfaces which have some specular
contribution. We concluded that the Benchmark technique was the most robust
alternative to shadowing effects. All three algorithms performed well under severe
levels of noise.

In Chapter 8, we identified some of the limitations of using simulation to test our
algorithms and extended the assessment to real data. Since fully calibrated ground

truth data was not available, the assessment was in terms of image prediction.
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The performance of the Linear Photometric Stereo method was compared to that
of the Benchmark technique. The Benchmark technique outperformed the Linear
Photometric Stereo method. Furthermore, we found that, for most of the test
textures, the Linear Photometric Stereo estimate was not sufficiently accurate. The
surface recovery had to be improved. However, both estimators were able to predict
the surface appearance with reasonable good quality. For the purpose of image
prediction, both methods presented valid alternatives.

In Chapter 9 we proposed an iterative technique that improves the Photometric
estimate by minimising the brightness error. This simple iterative method was found
to improve the Linear estimate, but not the Benchmark estimation. The improve-
ment of the Linear Photometric Stereo technique made its performance comparable
to that of the Benchmark technique. We concluded that both techniques are suitable

to recover rough surfaces.

10.2 Conclusions

This thesis has investigated the issue of recovering the 3D structure of rough sur-
faces. In the literature very few estimators can recover the shape of rough surfaces.
A recovery technique was introduced. The novelty was the combination of two
standard components into an algorithm that could be applied to rough surfaces.
These two components were a successful 3-light Photometric Stereo technique and
a well-known global frequency integration method.

We argued that a 2-light Photometric Stereo technique could be used to find a
unique solution of the surface without relying on surface smoothness assumptions.
We proposed two novel recovery algorithms which estimated the shape of rough
surface from only two images: the Linear Photometric Stereo technique and the
Optimal Linear Filter. These algorithms relied on assumptions about the linearity
of the surface reflectance.

The ability of the three proposed recovery methods to estimate rough surfaces
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was assessed using simulation. We concluded that the estimates were accurate for
fairly rough textures (prms, Grms < 0.35) which had a nearly Lambertian reflectance.
The robustness of our estimates to shadowing effects and noise was also demon-
strated.

We carried out an assessment of the Linear and the 3-light Photometric Stereo
techniques on real data. We concluded that whilst the 3-light Photometric Stereo
estimate was sufficiently accurate, the Linear estimate needed to be improved. We
then proposed an iterative technique that improved the Linear estimate by min-
imising the brightness error. Both the improved Linear recovery and the 3-light

Photometric Stereo recovery were found to perform well on real rough surfaces.
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Appendix A

Slope distribution for the real

surfaces

To estimate the gradient fields of our real textures we use the Photometric Stereo
technique presented in Section 4.5.1. Four images per texture are used for the esti-
mation. The lighting conditions of the images correspond to the smallest considered
zenith angle and azimuth angles in 90° increments. Once the surface gradient is
recovered, the mean and variance of the gradient fields are calculated. The slope
distributions are plotted together with a Gaussian distribution which shares the
same mean and variance. Modelling data is a problem in minimisation in many
directions. However, there exist special, more efficient, methods that are specific to
modelling, such as least squares methods or maximum likelihood algorithms. The
Gaussian fit to our data is not optimal in the least squares sense nor it is the most
likely curve. However, we use it because it is a simple but good first approximation.

By analysing the shape of the gradient distributions we can infer several relevant
characteristics of the textures. A globally flat surface has zero mean in both gradient
distributions. A large variance translates into a large rms slope, i.e. a rougher
surface. A surface that has a large number of facets with high slopes is likely to be
discontinuous.

We should bear in mind that the plotted distributions are estimates. Thus they
might contain errors due to noise or to the estimation process. The validity of the
conclusions drawn from studying these distributions depends on the quality of the
estimation.

Figures A.1, A.2 and A.3 show the slope distributions for the fractures, the
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deposits and the textile. These textures seem to follow a Gaussian distribution quite
closely. Exception are the ¢ derivative distribution of the rough fracture (Figure A.1
a) and the smooth cured patterned fracture (Figure A.2 a). The rest of the distribu-
tions are not perfectly Gaussian but they are clearly bell shaped. Their mean value
is zero or approximate zero.

The ideal curve is more accurate estimating the number of facets with high
slopes. There is no pattern for an over-estimation or under-estimation of the number
of facets with low slopes.

The roughness of surface determines the distribution shape; rougher surfaces
have wider distributions. Examples are the rough fracture, the moderate roughness
fracture, the moderate roughness deposit fracture, the rough deposit fracture, the and
heavy deposited surface.

It is worth noting that the textile is very well modelled by a Gaussian. This sur-
face is considered among the special textures because it is rough and discontinuous.
However the slope distribution does not show the characteristic shape of a rough
surface. The reason is that the estimation process is not accurate for this surface.

We argued that as the amount of deposit decreases, the Gaussian assumption is
less valid [33]. However, the considered deposit surfaces seem equally Gaussian. The
ideal curve that we are comparing our estimates with is not the optimal Gaussian
fit. For the optimal Gaussian fit and performing a chi square test, we would verify

that the sparsely deposited surfaces are phase rich.

172



Rough fracture Rough fracture
0.014 0.014

— data — data
0.012 Gaussian 0.012 Gaussian

o
o
2
o
o
2

Z0.008 20.008
H H
< <
8 8
£0.006 £0.006
0.004 k) 0.004
0.002 # 0.002 )
0 0 /
-1 ~05 0 05 1 -1 ~05 0 05 1
p-estimate g-estimate

(a) Rough fracture (Figure 2.5 (a))

Moderate roughness fracture Moderate roughness fracture
0.014 . 0.02
0.012 A . - Gaussian Gaussian
0.01 o 0.015
2£0.008 2
= 5
K g 001
£0.006 S
5 s
0.004
0.005
0.002
0; [¢]
-1 -0.5 0 05 1 -1 -0.5 0 05 1
p-estimate g-estimate
(b) Moderate roughness fracture (Figure 2.5 (b))
Gentle roughness fracture Gentle roughness fracture
0.02 0.015
ata it data
- Gaussian ; 5 - Gaussian
0.015
0.01
£ z
z 3
2 001 g
S S
s s
0.005
0.005
[¢] [¢]
-1 -0.5 0 05 1 -1 -0.5 0 05 1
p-estimate g-estimate

(c) Gentle roughness fracture (Figure 2.5 (c))
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(d) Smooth cured fracture (Figure 2.5 (d))

Figure A.1: Slope distributions of real surfaces (real and fitted Gaussian)
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Smooth cured fracture with fracture patterns
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(d) Heavy deposited surface (Figure 2.5 (h))

Figure A.2: Slope distributions of real surfaces (real and fitted Gaussian)
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(d) Textile (Figure 2.5 (1))

Figure A.3: Slope distributions of real surfaces (real and fitted Gaussian)
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The second set of textures considered are the sand ripples, the anaglyptas, the sand
paper and the repetitive primitive surface. Their slope distributions are plotted
together with the ideal Gaussian in Figures A.4, A.5 and A.6.

These textures are phase rich, thus their gradient distributions are not Gaussian.
Furthermore, the distributions of the sand ripples are not zero-mean.

For the sand ripples the surface grain is aligned to the 90° direction. The p derivative
of the low frequency sand ripple captures the rising and falling of the ripples. Thus
the p distribution shows more facets with a slope of 26° than flat facets. However,
the less directional sand ripples do not model the ripples so clearly. As expected
the ¢ derivative distributions are more Gaussian.

The anaglyptas differ in their topographic functions. The wrreqular stripes anaglypta,
the net anaglypta and the ripples anaglypta are rough surfaces showing wide distri-
butions. In contrast, the rice grain shape anaglypta is comparatively smooth.

The sand paper is a rough surface which has some very specular facets. The es-
timated distribution do not show the surface roughness. The Photometric Stereo
technique used to estimate the surface gradient is restricted to near Lambertian sur-
faces. The estimation error for this textures is large, and the estimated distribution
is not approximate to the real distribution.

Finally, the pearl barley surface is a very rough discontinuous texture. All the
surface discontinuities have been smooth out in the estimation process. Thus the
slope distributions do not show a large number of facets with very high slope angles,

close to —1 or 1. However the distributions correspond to a very rough surface.

Low frequency sand ripple Low frequency sand ripple

0.014 0.03
— data — data
0.012 I - Gaussian - Gaussian

probability
probability

-1 -0.5 0 0.5 1 -1 -05 0 05 1
p-estimate g-estimate

(a) Low frequency sand ripple (Figure 2.6 (a))

Figure A.4: Slope distributions of real surfaces (real and fitted Gaussian)
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(d) Net anaglypta (Figure 2.6 (e))

Figure A.5: Slope distributions of real surfaces (real and fitted Gaussian)
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(d) Pearl barley (Figure 2.6 (i))

Figure A.6: Slope distributions of real surfaces (real and fitted Gaussian)
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Appendix B

Result tables

B.1 Should we use albedo for rendering the Lin-
ear estimate?

On the one hand, we should render the surface estimate using a model as realistic
as possible. The albedo can be estimated with the 3-light PS techniques, thus it
is available to us. On the other hand, estimation errors and noise contained in the
albedo are added to the rendered Linear estimate. We here study how the accuracy
of prediction is affected by considering the albedo for rendering.

The test textures — excluding the special surfaces — are estimated with the
Linear PS method. The albedo map of these textures is estimated with the 3-light
PS technique. We then render the Linear estimate with and without albedo and
calculate the accuracy of prediction. In this experiment, we only consider the test
images lit with the estimation zenith angle. There are twelve of these test images
per texture. Two of them are used for recovering the surface, thus they are not
taken into account to compute the accuracy of prediction.

Table B.1 shows the prediction accuracy measured when rendering with and
without the surface albedo. The appearance of fourteen textures was better pre-
dicted when albedo was used for rendering the Linear estimate. The accuracy of
prediction for the other three textures was degraded when considering the albedo.

For these three textures the error contained in the albedo was large.
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Texture without albedo | with albedo

Rough fracture 8.46 8.61
Moderate roughness fracture 10.40 10.45
Gentle roughness fracture 8.95 8.95
Smooth cured fracture 8.08 8.39
Smooth patterned fracture 7.15 7.38
Moder rough deposited fracture 9.79 10.32
Rough deposited fracture 10.09 10.30
Heavy deposited surface 10.41 10.68
Medium deposited surface 9.97 10.11
Light deposited surface 8.79 10.17
Sparse deposited surface 8.24 8.08
Sand-rippled surface 9.19 10.31
Sand-rippled surface (high freq) 11.49 11.63
Smoothed sand-rippled surface 10.37 10.85
Net anaglypta 13.16 12.95

Rippled anaglypta 12.13 12.25
Rice grain shaped anaglypta 10.45 10.32

Table B.1: Accuracy of the predicting the real surface appearance using the Linear
estimate [dB]
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B.2 Assessment of surface estimation through ren-
dering

Table B.2 shows the accuracy of predicting the appearance of our real surfaces when
rendering the 3-light PS and the Linear estimates. This table is complementary to
the results discussed in Chapter 8, Section 8.1.2. The accuracy of prediction is been
broken down for each zenith angle.

The 3-light PS performance for some textures deteriorates under raking light.
Examples are the rough fracture, the two deposited fractures and all the deposited
surfaces. These are surfaces whose roughness is due to rapid step changes of small
amplitude. Furthermore, they are constant albedo surfaces and their estimated
albedo maps mainly recover shadows and highlights. When the surface is lit with
the estimation zenith, no shadows appear. However, for raking light the surface
image is heavily shadowed. Therefore the estimated albedo contains none of the
shadows that appear for raking lightings and the image is not properly predicted.

In contrast, the Linear estimate of these same textures is close to the test im-
age when rendered for large zenith angles. The prediction is so accurate since the
Linear estimator somehow accounts for shadows. The shadowing contained in the
estimation images is "folded” into the Linear estimate. When the it is rendered
using the albedo, shadows are again taken into consideration. Considering shadows
twice makes the surface appearance closer to the test image for raking light.

For the rest of the data set, the accuracy of prediction is not so affected by
changes in zenith. These other textures are fairly smooth surfaces except for some
low frequency trends. Examples are the sand ripples and the anaglyptas. For these
textures the areas that are shadowed remain the same for increasing zenith. How-
ever, a darker image is captured for raking light. The albedo map recovers the
shadows of the estimation images. These shadows are then added to the estimates
when rendering for any zenith. Since the shadowed areas are the same for any zenith,

the prediction is steadily accurate for varying zenith.
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o =45° o = 60° o=175°

Texture LPS | 3PS || LPS | 3PS || LPS | 3PS

Rough fracture 8.61 | 10.91 || 7.27 | 8.85 7.31 | 3.66
Moderate roughness fracture 10.45 | 15.24 || 10.68 | 14.83 || 10.10 | 7.73
Gentle roughness fracture 8.95 | 15.17 || 8.55 | 14.03 || 8.14 | 7.24
Smooth cured fracture 8.39 | 16.16 || 8.20 | 14.63 || 8.29 | 9.09
Smooth patterned fracture 7.38 | 17.19 || 6.68 | 12.78 || 6.46 | 8.41
Moder rough deposited fracture || 10.32 | 12.74 || 8.98 | 10.77 | 8.82 | 5.41
Rough deposited fracture 10.30 | 13.20 || 9.13 | 10.81 || 9.15 | 3.57
Heavy deposited surface 10.68 | 12.87 || 8.81 | 10.19 || 9.01 | 3.24
Medium deposited surface 10.11 | 12.18 || 8.30 | 9.15 || 8.00 | 2.62
Light deposited surface 10.17 | 11.23 || 8.09 | 8.92 || 8.13 | 3.52
Sparse deposited surface 8.08 | 9.25 7.34 | 7.15 7.07 | 0.69
Sand-rippled surface 10.31 | 12.98 || 10.48 | 13.75 || 10.47 | 9.77
Sand-rippled surface (high freq) || 11.63 | 12.29 || 12.32 | 13.43 || 12.15 | 10.92
Smoothed sand-rippled surface || 10.85 | 11.81 || 11.18 | 12.31 || 11.09 | 9.21
Net anaglypta — — 12.95 | 9.31 9.28 | 8.37
Rippled anaglypta — — 12.26 | 9.68 || 10.46 | 10.39
Rice grain shaped anaglypta — — 10.32 | 8.62 || 10.76 | 11.72
Irregular stripes anaglypta — — 3.88 | 5.14 || 0.94 | 5.12
Sand paper — — 0.73 | -0.66 || 0.54 | -2.95
Repetitive primitive surface 4.29 | 7.42 4.11 | 5.95 212 | 2.12
Textile 296 | 6.04 || 3.32 | 4.33 — —

Table B.2: Accuracy of the prediction of real surfaces appearance [dB]
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B.3 Reduction of the brightness error with the
iteration process

Table B.3 shows the brightness error measured for both techniques before and after
iteration. The brightness error is calculated as the average of the SRR for the
estimation images of the texture (equation 8.1). For both techniques the appearance
of the rendered estimates is closer to the estimation images after iteration. The
Iterative Linear estimate gives a brightness error of less than 1% (SRR > 20dB) for
all textures. It shows an average improvement of almost 20dB with respect to the
brightness error before iteration. In contrast, the SRR of the estimation images is
not so drastically increased with the post-processing for the 3-light PS technique.

It gives an average improvement of less than 1dB.

B.4 Accuracy of prediction with the iteration pro-
cess

Although the brightness error is been reduced, the accuracy of prediction might not
be increased. This is the case of the 3-light PS technique (Table B.4). The estimator
performs better for four of the seventeen textures.

In contrast, the performance the Iterative Linear technique is improved compared
to that of the Linear technique. Twelve of the considered textures were more accu-
rately predicted after iteration. Only the anaglypta surfaces and the Light deposited
surface gave a less accurate prediction after iteration.

Figure B.1 plots the accuracy of recovery for the Iterative 3-light PS technique
and the Iterative Linear method. The Iterative Linear estimator outperforms the
Iterative 3-light PS estimator for nine of the seventeen surfaces. For the other eight

surfaces, the accuracy of prediction is similar with both techniques.
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Texture LPS | ILPS 3PS I3PS
Rough fracture 10.21 | 30.46 16.50 17.36
Moderate roughness fracture 10.62 | 29.68 18.75 20.58
Gentle roughness fracture 9.86 | 32.30 19.61 23.33
Smooth cured fracture 8.81 | 32.08 %0°,180° %0°,90°, 180°
Smooth patterned fracture 6.99 | 30.64 *g0° *0°, 90°, 180°
Moder rough deposited fracture || 11.70 | 34.31 18.42 20.19
Rough deposited fracture 11.96 | 29.50 22.30 12.48
Heavy deposited surface 11.97 | 33.57 18.79 19.26
Medium deposited surface 11.86 | 34.47 23.78 25.23
Light deposited surface 11.04 | 29.62 18.16 18.58
Sparse deposited surface 9.91 | 29.74 30.01 30.85
Sand-rippled surface 10.12 | 22.12 || *0°,90°, 180° —
Sand-rippled surface (high freq) || 10.90 | 22.17 27.78 30.11
Smoothed sand-rippled surface || 11.56 | o°,90° 29.50 32.25
Net anaglypta 14.11 | 37.39 9.76 12.71
Rippled anaglypta 13.15 | 31.89 10.21 11.16
Rice grain shaped anaglypta 11.79 | 30.11 9.88 11.65

= Brightness error is zero for the indicated images

— Brightness error is zero for the three estimation images, the iteration cannot be performed

Table B.3: Brightness error before and after iteration for the 3-light PS and the
Linear PS [dB]
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Tezture LPS | ILPS || 8PS | I3PS

Rough fracture 7.22 | 8.69 8.52 8.53
Moderate roughness fracture 9.69 | 13.19 || 13.13 | 13.35
Gentle roughness fracture 8.00 | 12.56 || 12.71 | 11.72
Smooth cured fracture 7.60 | 11.89 || 13.37 | 12.20
Smooth patterned fracture 6.41 | 11.81 || 12.84 | 12.43

Moderate rough deposited fracture || 8.79 | 11.70 || 10.16 | 9.99

Rough deposited fracture 8.86 | 10.09 || 10.36 | 10.37
Heavy deposited surface 8.86 | 10.71 || 9.92 | 10.14
Medium deposited surface 8.36 | 9.05 9.14 | 9.02
Light deposited surface 8.28 | 7.81 8.67 | 8.39
Sparse deposited surface 7.04 | 7.15 7.04 7.60
Sand-rippled surface 9.53 | 9.58 || 11.75 —

Sand-rippled surface (high freq) || 11.01 | 11.19 || 11.33 | 10.61

Smoothed sand-rippled surface 10.11 | 9.36 | 10.59 | 9.89

Net anaglypta 10.01 | 9.25 7.68 | 8.03
Rippled anaglypta 10.34 | 9.64 8.82 7.95
Rice grain shaped anaglypta 9.68 | 9.68 9.09 | 8.27

— Since brightness error is zero for the three estimation images,

the iterative process can not be carried out

Table B.4: Accuracy of prediction before and after iteration for the Linear PS and
the 3-light PS [dB]
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Figure B.1: Accuracy of recovery for the Iterative 3-light PS and the Iterative Linear
PS techniques

B.5 Assessment of the iterative Linear estimate
through rendering

Table B.5 shows the accuracy of the Iterative Linear technique. The measured
accuracy is broken down for the considered zenith angles. In Section B.2 we argued
that the Linear PS kept the same level of accuracy for increasing zenith. This is not
the case after iteration; the Iterative Linear estimate shows a similar behaviour to

the 3-light PS estimate for rough surfaces.
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Texture 45° 60° 75°

Rough fracture 10.54 | 8.60 | 3.33

Moderate roughness fracture 14.41 | 14.37 | 6.90

Gentle roughness fracture 14.39 | 13.13 | 6.25
Smooth cured fracture 12.61 | 13.27 | 8.56
Smooth patterned fracture 14.51 | 11.52 | 8.94

Moderate rough deposited fracture || 12.09 | 10.38 | 5.00

Rough deposited fracture 11.93 | 10.23 | 3.65
Heavy deposited surface 12.49 | 10.01 | 3.12
Medium deposited surface 11.35 | 8.64 | 2.91
Light deposited surface 9.31 | 7.87 | 3.01
Sparse deposited surface 8.64 | 7.11 | -0.22
Sand-rippled surface 10.03 | 10.81 | 11.15

Sand-rippled surface (phase-rich) || 11.75 | 12.58 | 10.71

Smoothed sand-rippled surface 10.41 | 10.04 | 9.31

Net anaglypta — [ 11.34 | 9.06
Rippled anaglypta — | 10.36 | 10.64
Rice grain shaped anaglypta — | 10.18 | 10.87

Table B.5: Accuracy of prediction of the Iterative Linear PS technique against
zenith
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Appendix C

Reconstruction results

In this Appendix we show some reconstruction results for the seventeen real textures.
The surface is estimated using both the 3-light PS technique and the Iterative Linear
technique. These estimates are rendered for two different lighting conditions. We
chose the lighting conditions so that either the zenith or the azimuth is close to the
estimation angles. Thus we expect the rendered estimates to be fairly similar to
the test images. For the fractures, the deposits and the sand ripples, the rendering

lighting condition are:
1. First test image:

e The zenith angle is the estimation zenith, i.e. 45°.

e The azimuth angle is 300°, so it is very different from the estimation

azimuth angles.
2. Second test image:

e The zenith angle is 60°, thus it is different from the estimation zenith.

e The azimuth angle is 30°, so it is close to the estimation azimuth angles.
For the anaglypta surfaces the rendering lighting condition are:
1. First test image:

e The zenith angle is the estimation zenith, i.e. 60°.

e The azimuth angle is 300°, therefore it is very different from the estima-

tion azimuth angles.

2. Second test image:
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e The zenith angle is 75°, thus it is different from the estimation zenith.

e The azimuth angle is 30°, so it is close to the estimation azimuth angles.

The rendered estimates are shown together with the corresponding test image.
In general the main differences between the synthetic and the real images are due
to shadows and highlights. Cast shadows are not modelled during the rendering of
the estimates, thus they are not predicted. For very rough surfaces this effect is
very distinct and it is a source of error. Highlights are not rendered either, thus the
synthetic images differ from the test images whenever highlights occur.

A 3D plot of the estimates is also included per texture. Both the Iterative Linear
estimate and the 3-light PS estimate are plotted. The 3D plots correspond to an
area of 50x50 pixels at the top left corner of the surface sample. The image section
that matches the surface area is magnified and shown together with the 3D plots.
This section belongs to an image with zenith 45° and azimuth 300°. Including
the magnified image section helps the reader to assess the recovery performance by
looking at the 3D plots. It is important to note that the lighting for this image
comes from the 300° direction.

In general both 3D estimates are very similar to each other. Furthermore, both
seem to follow the undulations of the surface that we can infer from its image.
The 3-light PS estimate shows more of the high frequency variation of the surface
topography. When assessing and comparing our recovery techniques (Chapter 9)
we observed that the 3-light PS method was more robust to roughness than the
Iterative Linear method. This is the reason for an Iterative Linear estimate that

looks like a slightly smoothed version of the 3-light estimate.
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Rough fracture

This texture is a good example of a very rough surface. In the test images cast

shadows appear. These cast shadows are not rendered in the synthetic images.

3PS:0 = 45°;7 = 300°

%’1? Y

(f) ILPS:o = 60°;7 = 30°

Figure C.1: Rough fracture: Real image (left); 3PS estimate (centre); ILPS estimate
(right); top row: (o, 7) = (45°,300°); bottom row: (o, 7) = (60°,30°)

The two 3D estimates are very similar. However, the point A is displaced from one
heightmap to the other. For the 3PS estimate A has a height of about 0.6cm. In

the Iterative Linear estimate, the height value for A is about 0.5cm.

Rough fracture (3PS)

Rough fracture (ILPS)

SIS IS
S
SIS

N
N
N
R

pixels 20 30 pixels 20

20 pixels 10
0o 0 0

(a) Image (b) 3PS estimate (c) ILPS estimate

10 20

pixels

Figure C.2: Height recovery for the rough fracture
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Moderate roughness fracture

The synthetic images of the first row are a good quality prediction of the correspond-
ing test image. However, the synthetic images of the second row fail to properly
imitate the shadows. The effect of erroneously shadowed images is that rough sur-

faces appear smoother.

[

A R N

L. U, 8 ¥
3PS:0 = 60°;7 = 30°

Real:c = 60°;7 = 30°

(d) (e) (f) ILPS:0 = 60°;7 = 30°

Figure C.3: Moderate roughness fracture: Real image (left); 3PS estimate (centre);
ILPS estimate (right); top row: (o, 7) = (45°,300°); bottom row: (o, 7) = (60°, 30°)

This is a good example of how the Iterative Linear estimate looks like a flattered

version of the 3-light estimate.

Moderate roughness fracture (3PS) Moderate roughness fracture (ILPS)

height [cm]
height [cm]

pixels 20

50

0 10 pixels

09 10 pixels

0
(a) Image (b) 3PS estimate (c) ILPS estimate

Figure C.4: Height recovery for the Moderate roughness fracture
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Gentle roughness fracture

The second test image is been quite accurately modelled. The rendered estimates

show the roughness of the texture, although cast shadows are not predicted.
v,‘--—_‘ i ,E'(!"‘ dhoin ,‘!-':' ‘-- 5 - “‘ ‘ ‘-- ; = ."“ P

"

(a) Lo = 45°;T

(d) Real:o = 60°;7 = 30° (e) 3PS:0 = 60°;7 = 30° (f) ILPS:0 = 60°;7 = 30°

Figure C.5: Gentle roughness fracture: Real image (left); 3PS estimate (centre);
ILPS estimate (right); top row: (o, 7) = (45°,300°); bottom row: (o,7) = (60°,30°)

Although both estimates are very similar, a difference can be appreciated in the
height of point A. This values is 0.35cm for the 3-light PS estimate and 0.30cm for

the Iterative Linear estimate.

Gentle roughness fracture (3PS) Gentle roughness fracture (ILPS)

height [cm]

=4

© 20 . .
0 10 pixels

0
a) Image b) 3PS estimate ¢) ILPS estimate
g

Figure C.6: Height recovery for the gentle roughness fracture
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Smooth cured fracture

Usually shadows are better predicted for the lighting condition of the second row
images, i.e. (o,7) = (60°,45°). The albedo, which mainly recovers shadows, is
estimated for images with azimuths 0°, 90° and 180°. The test images with azimuths

close to the estimation angles show similar shadowing. This is the case of the second

test image.

-_.'l_:.-',.;.;-dgt,' _ e ey - . = 4';:-':'-'- B
3PS:0 = 45°%7 =300°  (c) ILPS:0 = 45°;7 = 300°

\

(d) Real:o -

Figure C.7: Smooth cured fracture: Real image (left); 3PS estimate (centre); ILPS
estimate (right); top row: (o,7) = (45°,300°); bottom row: (o, 7) = (60°,30°)

The Iterative Linear estimate looks smoother than the 3-light PS estimate.

Smooth cured fracture (3PS) Smooth cured fracture (ILPS)
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b) 3PS estimate (c) ILPS estimate
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(a) Image

Figure C.8: Height recovery for the smooth cured fracture
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Smooth patterned fracture

The appearance of this smooth texture is accurately predicted. The effect of cast
shadowing is not so distinct. It is worth noting the accurate prediction of the low

frequency trend of the texture.

|

{
;7 =30°

Figure C.9: Smooth patterned fracture: Real image (left); 3PS estimate (centre);
ILPS estimate (right); top row: (o, 7) = (45°,300°); bottom row: (o,7) = (60°,30°)

Smooth patterned fracture (3PS) Smooth patterned fracture (ILPS)

50

30 40

0y 10 20 pixels

(a) Image (b) 3PS estimate (c) ILPS estimate

Figure C.10: Height recovery for the smooth patterned fracture
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Moderate roughness deposited fracture

This texture is fairly rough, however its appearance is properly predicted.

(b) 3PS:o = 45%;7 = 300°  (c) ILPSo = 45° i7 = 300°

() ILPS:0 = 60°;7 = 30°

i TN
()3PSG—60°T—30°

(d) Reala = 60°; .7 = 30°

Figure C.11: Moderate roughness deposited fracture: Real image (left); 3PS estimate
(centre); ILPS estimate (right); top row: (o, 7) = (45°,300°); bottom row: (o,7) =
(60°,30°)

Moderate rough deposited fracture (3PS) Moderate rough deposited fracture (ILPS)

height [cm]

20 30 30
0 10 pixels 0 10 plxels

(a) Image (b) 3PS estimate (c) ILPS estimate

Figure C.12: Height recovery for the moderate roughness deposited fracture
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Rough deposited fracture

As the previous texture, this deposit fracture is a rough surface but still accurately

recovered.

Figure C.13: Rough deposited fracture: Real image (left); 3PS estimate (centre);
ILPS estimate (right); top row: (o, 7) = (45°,300°); bottom row: (o,7) = (60°,30°)

Rough deposited fracture (3PS) Rough deposited fracture (ILPS)

height [cm]
height [cm]

20 20
0y 10 pixels 0% 10 pixels

(a) Image (b) 3PS estimate (c) ILPS estimate

Figure C.14: Height recovery for the Rough deposited fracture
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Heavily deposited fracture

As the lighting is shallower, shadowing increases and the synthetic images differ

from the test image.

L : h‘ N b R, L . N
(d) Real:o = 60°;7 = 30° : ; (f) ILPS:o = 60%7 = 30°

Figure C.15: Heavily deposited fracture: Real image (left); 3PS estimate (centre);
ILPS estimate (right); top row: (o, 7) = (45°,300°); bottom row: (o,7) = (60°,30°)

Both estimates show the undulation that are seen in the image. However, high

frequency variation of the surface topography due to the most recent deposits are

not recovered.

Heavy deposited fracture (3PS) Heavy deposited fracture (ILPS)
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(a) Image (b) 3PS estimate (c) ILPS estimate

Figure C.16: Height recovery for the heavily deposited fracture
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Medium deposited fracture

The test images are very accurately predicted with both techniques.

’__ = .-:‘J F S '_‘ . T i P " P+ T i i P
- 7 -

3PS:0 = 45°;7 = 30
AE LT

A ¢

-
ke

Figure C.17: Medium deposited fracture: Real image (left); 3PS estimate (centre);
ILPS estimate (right); top row: (o, 7) = (45°,300°); bottom row: (o,7) = (60°,30°)

Medium deposited fracture (3PS) Medium deposited fracture (ILPS)
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Figure C.18: Height recovery for the medium deposited fracture
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Light deposited fracture

The appearance of this texture is properly predicted with both estimates. The main

difference is that the test image looks darker than the rendered estimates for shallow

(e) = 60°;7 (f) ILPS:0 = 60°7 = 30°
Figure C.19: Light deposited fracture: Real image (left); 3PS estimate (centre);
ILPS estimate (right); top row: (o, 7) = (45°,300°); bottom row: (o, 7) = (60°, 30°)
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Figure C.20: Height recovery for the light deposited fracture
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Sparse deposited fracture

60°:7 = 30°

4 \

(f) IL

Real:o = 60°;7 = 30° 3PS:c PS:o = 60°;7

(d) ()
Figure C.21: Sparse deposited fracture: Real image (left); 3PS estimate (centre);
ILPS estimate (right); top row: (o, 7) = (45°,300°); bottom row: (o,7) = (60°,30°)

The height undulations due to the most recent deposits are properly recovered.

Sparse deposited fracture (3PS) Sparse deposited fracture (ILPS)

height [cm]
height [cm]

30
0 10 29 pixels

(a) Image (b) 3PS estimate (c) ILPS estimate

Figure C.22: Height recovery for the sparse deposited fracture
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Sand-rippled surface

The rendered Iterative Linear estimate is much lighter than the test image for shallow

light PS estimate shows the proper average intensity

lighting. In contrast, the 3-

(c) ILPS:0 = 45°;7

(b) 3PS:o = 45°%7 = 300°

3PS estimate (centre); ILPS

7

(left);

Figure C.23: Sand-rippled surface: Real image

) = (60°,30°)

7

); bottom row: (

estimate (right); top row: (o,

The ripples are clearly appreciated in the 3D heightmaps.
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Figure C.24: Height recovery for the sand-rippled surface
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Sand-rippled surface (high frequency)

T = 300°

bl
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Both rendered estimates are very close to the test image even for shallow lighting.
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Figure C.25
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The high frequency ripples are properly recovered.
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Height recovery for the sand-rippled surface (high frequency)

Figure C.26
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Smoothed sand-rippled surface
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Figure C.28: Height recovery for the smoothed sand-rippled surface

Figure C.27: Smoothed sand-rippled surface: Real image (left); 3PS estimate (cen-
(60°, 30°)

tre); ILPS estimate (right); top row:

heightmap. Apart from to the low frequency trend of the ripple, the heightmap
shows some undulations of higher frequency and lower amplitude. These undula-
tions are not observed in the other sand-ripples. They cause the sense of a blurred

The blurred effect that is observed in the images is also represented in the

surface image.
(a) Image
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Rippled anaglypta

This can be perceived in

The anaglypta surfaces are not perfectly Lambertian.

the test images; some highlights are captured. Highlights are not modelled when

However the synthetic images do not drastically

rendering the surface estimates.
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Figure C.32: Height recovery for the rippled anaglypta
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Rice grain shape anaglypta

This surface’s appearance is properly predicted with the exception of the mean

4

intensity value for the 3-light PS estimate rendered for raking light.

7 Rl vt 7

(c) ILPS:0 = 60°;7 = 30

(d) Real:o = 75°;7 = 30°

(e) 3PS:o = 75°;7 = 30°

(f) ILPS:o = 75%7 = 30°

Figure C.33: Rice grain shape anaglypta: Real image (left); 3PS estimate (centre);
ILPS estimate (right); top row: (o, 7) = (60°,300°); bottom row: (o,7) = (75°,30°)
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Figure C.34: Height recovery for the rice grain shape anaglypta
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