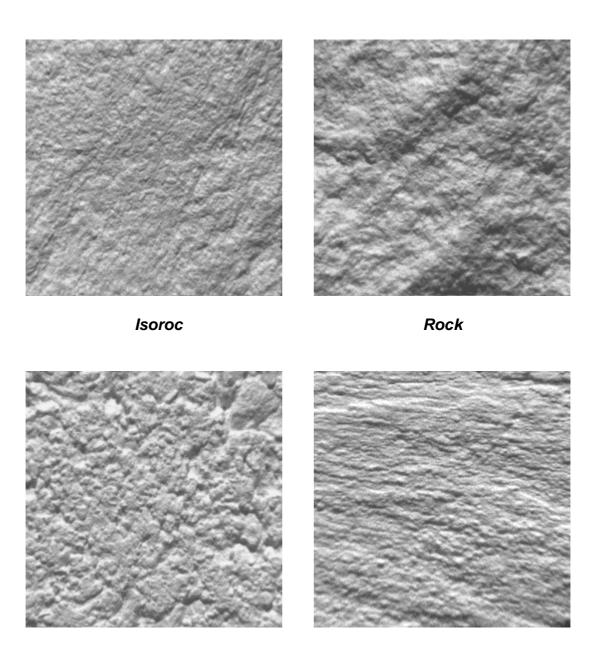
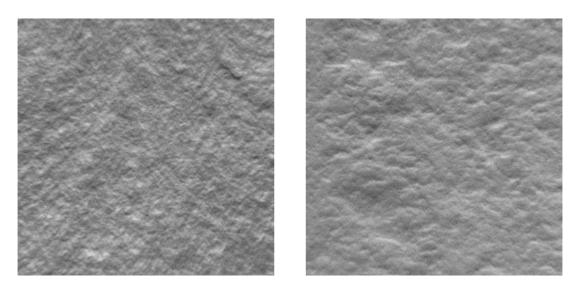
Appendix A: Principal Symbols


β	Power roll-off
ω	Radial frequency
θ	Polar frequency angle
σ	Slant angle
τ	Tilt Angle
φ	Direction of propagation of Gabor Filer
λ_0	Correlation length of an isotropic surface
ω_0	Fundamental frequency
λ_1	Correlation length in the x-direction
λ_2	Correlation length in the y-direction
σ_{b}	Blur
$\gamma_{ m b}$	Exponent of camera amplification.
ω _c	Cut-off frequency
$\sigma_{\text{disparity}}$	Standard deviation of the difference between two images
$\sigma_{\rm m}$	Standard deviation of measure image.
σ_{n}	Standard deviation of overall noise process.
$\Sigma_{\rm n}$	Covariance matrix of class n
σ_{p}	Measured polar bandwidth
σ_{p}	Standard deviation of the Gabor filter spectrum in the x-direction.
$\mu_{\rm r}$	Mean of Feature image
$\sigma_{\rm r}$	Standard deviation of Feature image.
σ_{s}	Rms roughness
σ_t	Standard deviation of temporal noise.
σ_{x}	Standard deviation of the Gabor filter envelope in the x-direction.
σ_{y}	Standard deviation of the Gabor filter envelope in the y-direction.
σ_{y}	Standard deviation of the Gabor filter spectrum in the y-direction.
а	Parameter of feature/tilt model.
a b c	Parameters of optimal linear model.
b	Parameter of feature/tilt model.
\mathbf{B}_{ϕ}	Polar bandwidth of the filter.
B(u,v)	Blur function
B _r	Radial frequency bandwidth of the filter.

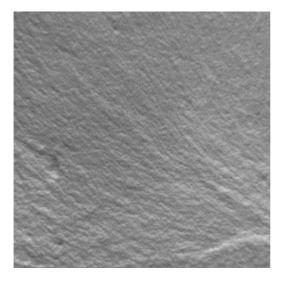
c(t)	Autocovariance function
$\begin{array}{l} d(x,y) \\ D(x,y) \\ d_{f\phi}(x,y) \\ e(x,y) \\ F(x,y) \\ f_{f\phi}(x,y) \\ G_{\omega\phi}(u,v) \end{array}$	Measured image data set Filter Outputs Vector Output of Gabor filter f,¢ Residue Process Feature Vector Feature Response derived from filter f,¢ Gabor filter
H(u,v)	Combined filter function
i(x,y) i ₀ ,i ₉₀ ,i ₁₈₀	Incident image images obtained from $\tau = ^{\circ},90^{\circ}$ and 180° respectively.
i _d	Desired image
i_{NL}	Non-linear component of surface to image mapping.
i _p	Image which is a linear function of p-derivative field only.
$\mathbf{i}_{\mathbf{q}}$	Image which is a linear function of qderivative field only.
k	Topothesy
$k(F l_i)$	Probability that a vector x belongs to class n over the entire tilt range.
$k_1 \; k_2 \; k_3$	Parameters of Kube's linear model.
L(x,y) l(x,y) m _{fg}	Illuminant vector Label field f th and g th order statistical moment.
\mathbf{M}_{n}	Mean vector of class n
m _{rms}	Rms Slope
n(x,y) o(p,q)	Noise process Reflectance function
$p_{\mathbf{F} l_i}(\mathbf{F} l_i)$	Probability that a vector x belongs to class n
p	Facet slope in the x-direction
p _{rms}	Rms slope in the x-direction
p _x	Second derivative of surface, in the x-direction.
q	Facet slope in the y-direction
q _{rms}	Rms slope in the y-direction
q _x	Second derivative of surface, in the x-direction.
R	Correlation matrix of the surface
R(u,v)	Illumination function
$r_{c}(t)$	Autocorrelation function
R _{cla}	Centre line average
s(x)	Surface height profile.

s(x,y) S(x,y) t	Surface height Surface derivatives Lag
u	Horizontal frequency index
u ₀	Centre frequency of filter in the x-direction.
V	Vertical frequency index
V[a b c]	Least squares linear model of the illumination process.
\mathbf{v}_0	Centre frequency of filter in the x-direction.

Appendix B


Textures used in Stone 1 Montage

Slab


Striate

Textures used in Stone 2 Montage

Twins

Pitted

Radial

Slate