# The Classification of Textured Surfaces Under Varying Illuminant Direction

G. McGunnigle B.Eng.

Thesis submitted for the Degree of Doctor of Philosophy

Heriot-Watt University Department of Computing and Electrical Engineering



### June 1998

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that the copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior consent of the author or the University (as may be appropriate).

## Table of Contents

| Table of Contents | i    |
|-------------------|------|
| List of Figures   | viii |
| List of Tables    | xiii |
| Acknowledments    | xiv  |
| Symbols           | XV   |
| Abstract          | xix  |

## Chapter 1 Introduction

| 1.1 | Motivation                         | .1 |
|-----|------------------------------------|----|
| 1.2 | Texture Analysis: A Brief Overview | .3 |
| 1.3 | Scope                              | .5 |
| 1.4 | Original Work                      | .6 |
| 1.5 | Thesis Organisation                | .7 |

## Chapter 2 Modelling Rough Surfaces

| 2.1 | Introduction |                                                  | . 10 |
|-----|--------------|--------------------------------------------------|------|
| 2.2 | Rough        | Surface Description                              |      |
|     | 2.2.1        | A Brief Review of Possible Sources of Models     | 11   |
|     | 2.2.2        | Single Parameter Description                     | . 13 |
|     | 2.2.3        | Histogram Description                            | . 14 |
|     | 2.2.4        | PSD and ACF                                      | . 16 |
|     | 2.2.5        | Relationship between Profile and Surface Spectra | . 18 |
|     | 2.2.6        | Summary                                          | . 20 |
| 2.3 | An Ad        | missibility Criterion Based on Phase             | 20   |
|     | 2.3.1        | A Phase Condition                                |      |
|     | 2.3.2        | A Simple Test for the Condition                  | 22   |
| 2.4 | Model        | s of Surface Roughness                           | 27   |
|     | 2.4.1        | Modelling Roll-Off                               | 27   |

| 2.4.2  | Modelling Directionality                           | . 32                                                                                                                                                                                                                                                                        |
|--------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.4.3  | Assumptions of the Models                          | . 35                                                                                                                                                                                                                                                                        |
| 2.4.4  | Summary of the Models                              | . 36                                                                                                                                                                                                                                                                        |
| Summ   | ary of Surface Description and Modelling           | . 36                                                                                                                                                                                                                                                                        |
| 2.5.1  | Relevance of this Chapter to subsequent chapters   | . 37                                                                                                                                                                                                                                                                        |
| Conclu | usions                                             | . 38                                                                                                                                                                                                                                                                        |
|        | 2.4.2<br>2.4.3<br>2.4.4<br>Summ<br>2.5.1<br>Conclu | <ul> <li>2.4.2 Modelling Directionality</li> <li>2.4.3 Assumptions of the Models</li> <li>2.4.4 Summary of the Models</li> <li>Summary of Surface Description and Modelling</li> <li>2.5.1 Relevance of this Chapter to subsequent chapters</li> <li>Conclusions</li> </ul> |

## Chapter 3 Image Formation

| 3.1 | Introd | uction                                                     |
|-----|--------|------------------------------------------------------------|
| 3.2 | Model  | ling the Reflectance Function                              |
|     | 3.2.1  | Terms used in this chapter                                 |
|     | 3.2.2  | Underlying Physical Processes                              |
|     | 3.2.3  | Specular Models                                            |
|     | 3.2.4  | Diffuse Models                                             |
|     | 3.2.5  | Summary                                                    |
| 3.3 | An Op  | otimal Linear Model of Image Formation54                   |
|     | 3.3.1  | A Linear Filter                                            |
|     | 3.3.2  | The Signal to Residue Ratio55                              |
|     | 3.3.3  | The Effect of Surface Characteristics                      |
|     | 3.3.4  | Summary                                                    |
| 3.4 | Kube's | s Model                                                    |
|     | 3.4.1  | An Analytical Expression                                   |
|     | 3.4.2  | A Comparison of Kube's Model with the Optimum Linear Model |
|     | 3.4.3  | Summary63                                                  |
| 3.5 | The E  | ffect on Real Textures64                                   |
|     | 3.5.1  | Test Textures and their Spectra                            |
|     | 3.5.2  | The Polar Power Distribution                               |
|     | 3.5.3  | Summary67                                                  |
| 3.6 | Conclu | usions                                                     |

## Chapter 4 The Imaging Process

| 4.1 | Introduction |                              |      |
|-----|--------------|------------------------------|------|
|     | 4.1.1        | Noise and Texture            | 69   |
|     | 4.1.2        | Organisation of this Chapter | . 70 |

| 4.2 | Litera | ture                                                  | 72 |
|-----|--------|-------------------------------------------------------|----|
|     | 4.2.1  | Overview                                              | 72 |
|     | 4.2.2  | System Optics                                         | 72 |
|     | 4.2.3  | CCD ARRAY                                             | 74 |
|     | 4.2.4  | Framestore                                            | 75 |
|     | 4.2.5  | Conclusions                                           | 77 |
| 4.3 | The C  | ase for Sub-sampling                                  | 78 |
|     | 4.3.1  | Introduction                                          | 78 |
|     | 4.3.2  | Justification of Sub-sampling                         | 79 |
| 4.4 | Exper  | imental Investigation                                 |    |
|     | 4.4.1  | Introduction                                          |    |
|     | 4.4.2  | Transfer Function                                     |    |
|     | 4.4.3  | First Order Statistics of Temporal Noise              |    |
|     | 4.4.4  | Spectral Characteristics of Temporal Noise            |    |
|     | 4.4.5  | Summary                                               |    |
| 4.5 | Use of | f Simulation to Investigate imaging phenomena         |    |
|     | 4.5.1  | Quantization Noise                                    |    |
|     | 4.5.2  | The Effect of Jitter                                  |    |
|     | 4.5.3  | Serial Filtering                                      | 89 |
|     | 4.5.4  | Summary                                               |    |
| 4.6 | Non-Q  | Quantifiable Noise Mechanisms                         | 90 |
|     | 4.6.1  | Camera Non-linearity                                  | 91 |
|     | 4.6.2  | Fixed Pattern Noise                                   |    |
|     | 4.6.3  | Summary                                               |    |
| 4.7 | An Im  | aging Model                                           |    |
|     | 4.7.1  | Integrating noise components                          |    |
|     | 4.7.2  | Development of a Noise Engine                         |    |
| 4.8 | Asses  | sment of the Physically Based Model of Texture Images | 97 |
|     | 4.8.1  | First Order Statistics                                |    |
|     | 4.8.2  | Second Order Statistics                               |    |
| 4.9 | Concl  | usions                                                |    |

## Chapter 5 A Classification System

| 5.1 | Introd | uction                         | 102 |
|-----|--------|--------------------------------|-----|
| 5.2 | Terms  | s used in this chapter         | 103 |
| 5.3 | The C  | hoice of a Texture Measure     | 104 |
|     | 5.3.1  | Wigner Ville Distribution      | 107 |
|     | 5.3.2  | Higher Order Statistics        | 110 |
|     | 5.3.3  | Empirical Techniques           | 111 |
|     | 5.3.4  | Wavelets                       | 113 |
|     | 5.3.5  | Gabor Functions                | 117 |
|     | 5.3.6  | The Selection of a Measure Set | 122 |
| 5.4 | A Cla  | ssification System             | 124 |
|     | 5.4.1  | Overview                       | 124 |
|     | 5.4.2  | Gabor Implementation           | 124 |
|     | 5.4.3  | Post-Processing                | 129 |
|     | 5.4.4  | The Discriminant               | 135 |
| 5.5 | Summ   | nary                           | 138 |
|     |        |                                |     |

## Chapter 6 Modelling the Classifier Tilt Response

| 6.1 | Introd | Introduction                             |    |  |
|-----|--------|------------------------------------------|----|--|
| 6.2 | Mode   | lling The Feature/Tilt Response14        | 40 |  |
|     | 6.2.1  | Combined Filter Tilt Response            | 40 |  |
|     | 6.2.2  | Modelling The Measure Images14           | 43 |  |
|     | 6.2.3  | Feature Image Statistics                 | 47 |  |
| 6.3 | Testin | g the theoretical predictions14          | 48 |  |
|     | 6.3.1  | Verification by Simulation14             | 48 |  |
|     | 6.3.2  | Verification by Experiment15             | 51 |  |
|     | 6.3.3  | Summary of Classifier Modelling15        | 56 |  |
| 6.4 | The E  | ffect on a Classifier15                  | 56 |  |
| 6.5 | Classi | fication Experiments For Real Textures15 | 59 |  |
|     | 6.5.1  | Test Criteria15                          | 59 |  |
|     | 6.5.2  | The Data Set15                           | 59 |  |
|     | 6.5.3  | Experimental Work                        | 51 |  |

|     | 6.5.4 | Summary of results | 54 |
|-----|-------|--------------------|----|
| 6.6 | Summ  | nary               | 55 |

### Chapter 7 Addressing the Problem

| 7.1 | Introd | luction                                     | 166 |
|-----|--------|---------------------------------------------|-----|
| 7.2 | Revie  | w of Chantler's Feature Space Proposals     | 166 |
|     | 7.2.1  | Multiple Training Samples                   | 167 |
|     | 7.2.2  | Multiple Discriminants                      | 169 |
|     | 7.2.3  | Segmentation/Classification                 | 170 |
| 7.3 | Chant  | ler's Filters                               | 170 |
|     | 7.3.1  | Review                                      | 170 |
|     | 7.3.2  | A Texture Specific Filter                   | 174 |
|     | 7.3.3  | A General Filter                            | 176 |
| 7.4 | Single | e Image Shape From Shading Techniques       | 177 |
|     | 7.4.1  | Motivation                                  | 177 |
|     | 7.4.2  | Shape From Shading                          | 178 |
|     | 7.4.3  | Summary                                     | 182 |
| 7.5 | A Mo   | del-Based Approach Using Photometric Stereo | 183 |
|     | 7.5.1  | Model Based Classification                  | 183 |
|     | 7.5.2  | Photometric Techniques                      | 185 |
| 7.6 | Concl  | usions                                      | 187 |

## Chapter 8: A Simulation-based Approach to Tilt Effects

| 8.1 | Introd | uction                                          |  |
|-----|--------|-------------------------------------------------|--|
| 8.2 | Struct | ure of This Chapter                             |  |
| 8.3 | A Pho  | tometric Implementation                         |  |
|     | 8.3.1  | A Review of Developments in Photometric Stereo  |  |
|     | 8.3.2  | A Simple Photometric Scheme                     |  |
| 8.4 | Simul  | ation based evaluation                          |  |
|     | 8.4.1  | Experimental Criterion                          |  |
|     | 8.4.2  | Non-ideal reflectance                           |  |
|     | 8.4.3  | The Effect of Blur                              |  |
|     | 8.4.4  | The Effect of Temporally Varying Additive Noise |  |
|     | 8.4.5  | Discussion                                      |  |

| 8.5 | How v  | vell does the technique work on real data? | . 212 |
|-----|--------|--------------------------------------------|-------|
|     | 8.5.1  | Surface Recovery                           | . 212 |
|     | 8.5.2  | Image Prediction                           | . 213 |
|     | 8.5.3  | Accuracy in the Feature Domain             | . 218 |
|     | 8.5.4  | Discussion                                 | . 221 |
| 8.6 | The A  | ccuracy of Classification                  | . 222 |
| 8.7 | Discus | sion                                       | . 227 |
| 8.8 | Conclu | isions                                     | . 228 |

## Chapter 9: Summary and Conclusions

| 9.1 Summary                                   |  |
|-----------------------------------------------|--|
| 9.2 Future Work                               |  |
| 9.3 Conclusions                               |  |
| Appendix A: Symbols (arranged alphabetically) |  |
| Appendix B: Test Textures                     |  |
|                                               |  |

| References | 243 | ; |
|------------|-----|---|
|            |     |   |

| Figure 1.1.1 An ammonite (190MYA)                                                  | 1  |
|------------------------------------------------------------------------------------|----|
| Figure 1.1.2 Illuminant tilt and slant angles                                      | 2  |
| Figure 1.1.3 Classification of a trilobite                                         | 3  |
| Figure 1.3.1 The classification system                                             | 6  |
|                                                                                    |    |
| Figure 2.2.1 Stone's taxonomy of roughness models                                  | 15 |
| Figure 2.2.2 The 1D ACF for various surfaces                                       | 17 |
| Figure 2.2.3 Synthetic ripple(a) and fractal (b) textures                          | 17 |
| Figure 2.2.4 Calculation of profile spectrum of 2D spectrum                        | 19 |
| Figure 2.3.1 Two Test Textures                                                     | 22 |
| Figure 2.3.2 Recovery of Phase Information                                         | 22 |
| Figure 2.3.3 'Phase-only' Images of the Test Textures                              | 23 |
| Figure 2.3.4 Chi Square Statistic/ Displacement Vector Histogram                   | 24 |
| Figure 2.3.5 Histograms of Beans and Rock Test Textures                            | 25 |
| Figure 2.3.6 Histogram of Chi Square Statistic for various textures                | 26 |
| Figure 2.3.7 Phase rich textures.                                                  | 26 |
| Figure 2.4.1 Power Spectra of Ogilvy and Fractal Surfaces                          | 29 |
| Figure 2.4.2 Isotropic fractal and Mulvaney surfaces                               | 29 |
| Figure 2.4.3 Comparison of Surface Derivative Spectra                              | 31 |
| Figure 2.4.4 Overhead and isometric views of directional Ogilvy surface            | 34 |
| Figure 2.4.5 Contour Plots for Ogilvy Surface Spectra                              | 34 |
| Figure 2.5.1 Assumptions developed in this chapter and their use in later chapters | 38 |
|                                                                                    |    |
| Figure 3.2.1 Fresnel Function                                                      | 44 |
| Figure 3.2.2 The Lambertian Reflectance Function                                   | 46 |
| Figure 3.2.3 Oren's reflectance function for various degrees of surface roughness  | 47 |
| Figure 3.2.4 Healey's reflectance function for various surface roughnesses         | 49 |
| Figure 3.2.5 Spheres rendered with Lambertian (a), Oren(b) and Healey Models (c)   | 50 |
| Figure 3.2.6 Reflectance Maps for Lambert's, Orens's and Healey's Models           | 50 |
| Figure 3.2.7 Comparison of Reflectance Function                                    | 51 |
| Figure 3.3.1 Calculation of residue image.                                         | 56 |
| Figure 3.3.2 The effect of surface slope on the accuracy of an optimal filter      | 57 |
| Figure 3.3.3 The accuracy of image prediction for a directional surface            | 57 |
| Figure 3.4.1 The components of image formation                                     | 59 |
| Figure 3.4.2 The variation of LS parameters for isotropic fractal surface to       |    |
| Kube's predictions                                                                 | 62 |
|                                                                                    |    |

### **List of Figures**

| Figure 3.4.3 The variation of LS parameters for directional Ogilvy surface to                                       |
|---------------------------------------------------------------------------------------------------------------------|
| Kube's predictions                                                                                                  |
| Figure 3.5.1 Rock Texture                                                                                           |
| Figure 3.5.2 Striate Texture                                                                                        |
| Figure 3.5.3 Magnitude spectra of Rock and Striate textures at $\tau=0^{\circ}$                                     |
| Figure 3.5.4 Magnitude spectra of Rock and Striate textures at $\tau$ =90°                                          |
| Figure 3.5.5 Region of support for polarogram                                                                       |
| Figure 3.5.6 The variation of image magnitude with polar angle                                                      |
| Figure 3.5.7 Polar distribution of image power for Striate texture                                                  |
|                                                                                                                     |
| Figure 4.1.1 The organisation of the noise investigation                                                            |
| Figure 4.2.1 Section approach                                                                                       |
| Figure 4.2.2 Focused and defocused ( $\sigma_{b}=0.04$ ) images                                                     |
| Figure 4.3.1 Spectra of Time averaged image (a) and averaged residual spectra (b)                                   |
| Figure 4.3.2 Key                                                                                                    |
| Figure 4.3.3 Rotated Rock PSD                                                                                       |
| Figure 4.3.4 Rock Image Spectrum                                                                                    |
| Figure 4.3.5 Horizontal Profiles of Residual Power Spectra                                                          |
| Figure 4.3.6 Signal to Temporal Noise Spectrum for Rock Texture                                                     |
| Figure 4.4.1 Synthetic, actual and blurred calibration images                                                       |
| Figure 4.4.2 Comparison of Actual, Synthetic and Blurred Synthetic Calibration Spectra                              |
| Figure 4.4.3 Disparity histogram for rock texture                                                                   |
| Figure 4.4.4 Polar plot of temporal noise spectra of original and sub-sampled images                                |
| Figure 4.4.5 Radial power spectra of temporal noise associated with (sub-sampled)Rock image.85                      |
| Figure 4.4.6 Radial temporal noise spectra                                                                          |
| Figure 4.5.1 Power spectra of original signal and residue signal                                                    |
| Figure 4.5.2 Signal to residue ratio vs. frequency                                                                  |
| Figure 4.5.3 Jitter induced 2D residual spectrum (a) and mean row spectrum (b)                                      |
| Figure 4.5.4 The spectral effects of an anti-aliasing filter                                                        |
| Figure 4.6.1 The generation of harmonics due to camera non-linearity                                                |
| Figure 4.6.2 Fixed Pattern Noise Spectrum                                                                           |
| Figure 4.7.1 The effect of the sigma parameter on the PDF of a linear combination of Gaussian and uniform processes |
| Figure 4.7.2 Estimated distribution of combined temporal and quantisation noise                                     |
| Figure 4.7.3 Noise model for sub-sampled images                                                                     |
| Figure 4.7.4 Original and processed images                                                                          |
| Figure 4.8.1 Histogram distributions of grey levels for most and least Gaussian distributions 98                    |
| Figure 4.8.2 Power spectra of test textures illuminated at $\tau = 0^{\circ}$                                       |

| Figure 4.8.3 Comparison of Rock spectra with the blurred fractal spectra          | . 99 |
|-----------------------------------------------------------------------------------|------|
| Figure 4.8.4 Comparison of original rock surface with modified PSD reconstruction | 100  |

| Figure 5.3.1 An (incomplete) taxonomy of texture analysis techniques                                                | 105            |
|---------------------------------------------------------------------------------------------------------------------|----------------|
| Figure 5.3.2 Zhu's scheme for local spectra estimation                                                              | 109            |
| Figure 5.3.3 Spectral sampling schemes, (a) constant absolute bandwidth, (b) constant r bandwidth.                  | elative<br>113 |
| Figure 5.3.4 Analysis functions of the Gabor Transform and wavelet approach                                         | 114            |
| Figure 5.3.5 Two dimensional wavelet implementation.                                                                | 116            |
| Figure 5.3.6 Real spatial part and frequency domain representation of Gabor function                                | 118            |
| Figure 5.3.7 The effect of decreasing the extent of the Gaussian envelope on the frequendomain representation.      | ıcy<br>119     |
| Figure 5.3.8 Gabor filters with various $\sigma_{y}$ parameters                                                     | 121            |
| Figure 5.3.9 Polar plot of Gabor filters angular magnitude responses for various $\sigma_{\gamma}$                  | 122            |
| Figure 5.4.1 The Gabor-based Classifier                                                                             | 124            |
| Figure 5.4.2 Filter parameters.                                                                                     | 125            |
| Figure 5.4.3 Polar Spectra of Rock and Striate Surfaces illuminated from Tau 0° and a 6 filter orientated at Tau 0° | Gabor<br>126   |
| Figure 5.4.4 Radial Responses of Filters with Texture Spectra                                                       | 127            |
| Figure 5.4.5 The Rock and Striate exemplar textures and their feature set coding                                    | 128            |
| Figure 5.4.6 Taxonomy of post-processing techniques                                                                 | 129            |
| Figure 5.4.7 General form of feature based on channel power measurement                                             | 131            |
| Figure 5.4.8 Unser's scheme.                                                                                        | 131            |
| Figure 5.4.9 Magnitude estimation using quadrature filtering                                                        | 132            |
| Figure 5.4.10 Magnitude estimation using ABS approximation                                                          | 132            |
| Figure 5.4.11 Pdf of modulus of quadrature filter outputs                                                           | 134            |
| Figure 5.4.12 PDF of Feature Image                                                                                  | 134            |
| Figure 5.4.13 Post Processing                                                                                       | 135            |
| Figure 6.2.1 The Signal to Symbol Chain                                                                             | 140            |
| Figure 6.2.2 Angular Transfer Function of Combined Illuminant/Gabor Model                                           | 142            |
| Figure 6.2.3 Comparison of polar response (power) of F25d90 filter with Gaussian                                    |                |
| function                                                                                                            | 144            |
| Figure 6.2.4 Numerical estimate of measure variance for an isotropic fractal surface                                | 146            |
| Figure 6.2.5 The numerical integration of Eq. 6.2.2c for various values of Phi                                      | 147            |
| Figure 6.3.1 The effect of tilt angle variation on feature output                                                   | 149            |
| Figure 6.3.2 Tilt effects on the means of features obtained over a range of                                         |                |
| orientations in the F25 band                                                                                        | 150            |
| Figure 6.3.3 F25 Filter responses to directional texture with varying tilt                                          | 151            |
| Figure 6.3.4 Filter responses to 'Rock' surface illuminated from various tilt angles                                | 152            |

| Figure 6.3.5 Filter responses to 'Striate' texture                    | 152 |
|-----------------------------------------------------------------------|-----|
| Figure 6.3.6 Variation of Rock feature statistic with tilt angle      | 153 |
| Figure 6.3.7 Variation of Striate feature statistics with tilt angle  |     |
| Figure 6.4.1 Feature Meant Derived from F64d0 and F64d90Filter        | 157 |
| Figure 6.4.2 Cluster Plots                                            | 158 |
| Figure 6.5.1 Test montages of surfaces, illuminated at Tau 0° and 90° |     |
| Figure 6.5.2 Montages trained and classified at Tau 0°.               |     |
| Figure 6.5.3 Misclassification rates for Anaglypta montage            |     |
| Figure 6.5.4 Misclassification rates for Stones 1 Montage             | 163 |
| Figure 6.5.5 Misclassification rates for Stone2 montage               | 163 |

### Figure 7.2.1 Feature means for Rock and Striate textures calulated from F25

| filters oriented at 0° and 90°                                              |     |
|-----------------------------------------------------------------------------|-----|
| Figure 7.2.2 The use of three discriminants with the anaglypta montage      |     |
| Figure 7.2.3 The use of three discriminants with Stone montages             |     |
| Figure 7.3.1 Isotropic texture montage.                                     |     |
| Figure 7.3.2 Spectra of isotropic surfaces                                  |     |
| Figure 7.3. Frequency dependency of filter parameters for test textures     | 175 |
| Figure 7.3.4 Uncompensated and compensated F64d0 feature means.             | 175 |
| Figure 7.3.5 Uncompensated and compensated F64d90 feature means.            |     |
| Figure 7.3.6 'General' filter parameters                                    |     |
| Figure 7.3.7 Feature means compensated using 'general' filter               |     |
| Figure 7.3.8 Misclassification rate of original and compensated montage.    | 177 |
| Figure 7.4.1 General form of the reflectance map                            | 179 |
| Figure 7.4.2 Deriving surface recovery filters                              |     |
| Figure 7.5.1 Simulation Based Classification                                |     |
| Figure 7.5.1 Reflectance Maps $r(p,q)$ at $\tau 0^{\circ}$ and $90^{\circ}$ |     |
|                                                                             |     |

| Figure 8.4.1 Experimental approach of section 8.4                               | 196 |
|---------------------------------------------------------------------------------|-----|
| Figure 8.4.2 The Accuracy of Estimation of Facet p-derivative and q-derivative  | 198 |
| Figure 8.4.3 The accuracy of reconstruction with varying tilt.                  | 199 |
| Figure 8.4.4 Lamina Texture Illuminated from Tau 90° and Tau 270°               | 200 |
| Figure 8.4.5 Simulated Lamina texture illuminated from Tau 90° and 270°         | 200 |
| Figure 8.4.6 The effect of slope on the degree of shadowing of an isotropic     |     |
| fractal surface                                                                 | 201 |
| Figure 8.4.7 The relationship between estimated and actual derivative fields of |     |
| an isotropic fractal surface.                                                   | 202 |
| Figure 8.4.8 The Effect of Surface Roughness on Surface and Image Prediction    | 203 |
| Figure 8.4.9 Scatter plot of actual and estimated p and q-derivatives estimated |     |

| from blurred images                                                                       | 204 |
|-------------------------------------------------------------------------------------------|-----|
| Figure 8.4.10 Relationship between actual and estimated rms slope from blurred images     | 205 |
| Figure 8.4.11 The effect of blurring on surface and image prediction.                     | 206 |
| Figure 8.4.12 The effect of image blur on surface reconstruction                          | 206 |
| Figure 8.4.13 Comparison of statistics of a low pass filtered (intermediate) surface      |     |
| with those of a surface estimated from blurred images.                                    | 207 |
| Figure 8.4.14 Scatter plots for derivative fields estimated from images with additive     |     |
| noise. (Blur suspended)                                                                   | 209 |
| Figure 8.4.15 Accuracy of Image Estimation in Additive White Noise (9.62dB)               | 209 |
| Figure 8.4.16 The effect of noise associated with the recovery image on the accuracy      |     |
| of prediction.                                                                            | 210 |
| Figure 8.5.1 Accuracy of derivative estimation from real data                             | 212 |
| Figure 8.5.2 Accuracy of Image Prediction for Anaglypta                                   | 213 |
| Figure 8.5.3 Real(a) and model(b) anaglypta montages illuminated from $\tau = 50^{\circ}$ | 214 |
| Figure 8.5.4 Stone1(a) and Stone2(b) Montages                                             | 214 |
| Figure 8.5.5 Prediction accuracy for Stone 1 textures                                     | 215 |
| Figure 8.5.6 Comparison of real and simulated Stone 1 montages at $\tau$ =50°             | 216 |
| Figure 8.5.7 The Accuracy of Image Prediction for Rock Textures (Recovered                | 217 |
| Figure 8.5.8 Comparison of real and simulated Stone2 montages                             | 217 |
| Figure 8.5.9 Montage comprising real (left) and simulated(right) 'Twins' textures         | 218 |
| Figure 8.5.10 Classification accuracy for two class anaglypta montages                    | 219 |
| Figure 8.5.11 Classification accuracy for 2 class Stone1 texture montages                 | 220 |
| Figure 8.5.12 Classification accuracy for Stone 2 two class montages                      | 220 |
| Figure 8.5.13 Degree of overlap required to cause a 30% misclassification rate            | 221 |
| Figure 8.6.1 Classification of Anaglypta Textures                                         | 223 |
| Figure 8.6.2 Comparison of Model Based and Best Case Classification For Anaglypta         |     |
| Montage                                                                                   | 224 |
| Figure 8.6.3 Classification of Stone1 Montage                                             | 225 |
| Figure 8.6.4 Classification of Rock 2 Montage                                             | 225 |
| Figure 8.6.5 Comparison of model-based classifier with best case classifier               | 226 |
| Figure 8.6.6 Comparison of the 'grounded' and 'difference' error rates                    |     |
| Figure 9.2.1 A proposed scheme integrating classification with surface recovery           | 233 |

### List of Tables

| Table 1.5.1 Aims and objectives of first chapter grouping                |     |
|--------------------------------------------------------------------------|-----|
| Table 2.3.1 Chi Statistics                                               |     |
| Table 2.4.1 Estimated fractal dimensions in various directions           | 33  |
| Table 3.2.1 The accuracy of image prediction from isotropic surfaces of  |     |
| various roughnesses                                                      | 52  |
| Table 3.2.2The accuracy of image prediction for directional surfaces,    |     |
| illuminant perpendicular to surface grain                                | 52  |
| Table 3.2.3 Accuracy of prediction for directional surface illuminated   |     |
| in the direction of surface grain                                        | 53  |
| Table 3.4.1 The relationship of LS parameters to Kube's predictions      | 62  |
| Table 3.4.2 The relationship of LS parameters for directional surface to |     |
| Kube's predictions                                                       | 63  |
| Table 4.2.1 Noise categories                                             |     |
| Table 4.4.1 Table of image disparities                                   | 83  |
| Table 4.4.2 Signal to temporal noise levels for the test textures        | 84  |
| Table 4.5.1 Effective quantisations of data sets                         | 87  |
| Table 4.7.1 Summary of noise mechanisms and their effects                |     |
| Table 4.8.1 Degree of 'normality' in grey level distribution             |     |
| Table 5.4.1 Definition of higher order moments                           | 110 |
| Table 5.4.2 Covariance matrices for Gabor features obtained from Ogilvy  |     |
| and Fractal textures                                                     |     |
| Table 6.3.1 Feature statistics for Striate surface                       | 155 |
| Table 6.3.2 Feature statistics for Rock surface                          | 155 |
| Table 6.5.1 Misclassification rates                                      |     |
| Table 7.3.1 RMS Slopes of test surfaces                                  | 173 |
| Table 8.5.1 Signal to temporal residue ratios for captured images        | 215 |

#### Acknowledgements

I would like to thank my supervisor Dr Mike Chantler, firstly for the opportunity to conduct research, and secondly for his encouragement as well as his willingness to ask awkward questions. I would also like to express my gratitude to Dr. Laurie Linnett whose earlier work fundamentally influenced the approach of this thesis and whose software was critical to this work.

My thanks are also due to Dr. Tariq Khan and Mr Thomas Wyatt whose help in the preparation of this thesis has been invaluable. I am also indebted to the ERASMUS students Tilmann Wittig, Michel Damoiseau and Gregory Delguste for their help and stimulation. I would also like to thank the Chief Technician Alistair Houston who maintained an enthusiastic and helpful attitude to experiments which must have seemed at least slightly bizarre.

Finally, I wish to express my gratitude to my parents whose support, particularly in the last few months, has been vital to the completion of this thesis.

## Principal Symbols

### Signals

| Spatial Quantities  |              | Spectral Quanity | Description                               |
|---------------------|--------------|------------------|-------------------------------------------|
| Scalar Field        | Vector Field |                  |                                           |
| s(x,y)              |              | S(u,v)           | Surface Height                            |
|                     | S(x,y)       | P(u,v) Q(u,v)    | Surface Derivatives                       |
|                     | L(x,y)       |                  | Illuminant Vector                         |
| i(x,y)              |              | I(u,v)           | Incident Image                            |
| d(x,y)              |              | D(u,v)           | Measured Data Set                         |
| $d_{t\phi}(x,y)$    |              | $d_{t\phi}(u,v)$ | Output of filter f,ø                      |
|                     | D(x,y)       |                  | Filter Outputs Vector                     |
| $f_{_{f}\phi}(x,y)$ |              |                  | Feature Response derived from filter f,\$ |
|                     | F(x,y)       |                  | Feature Vector                            |
| l(x,y)              |              |                  | Label field                               |
| n(x,y)              |              | N(u,v)           | Noise process                             |
| e(x,y)              |              | E(u,v)           | Residue Process                           |

Transfer Functions

| Spatial Variable | Spectral<br>Variable   | Input                       | Output                 | Function             |
|------------------|------------------------|-----------------------------|------------------------|----------------------|
| o(p,q)           |                        | Surface derivative<br>field | Image field            | Reflectance function |
|                  | R(u,v)                 | Surface height spectrum     | Image spectrum         | Illumination         |
| b(x,y)           | B(u,v)                 | Image<br>Spectrum           | Data set<br>Spectrum   | Imaging              |
| g(x,y)           | $G_{\omega \phi}(u,v)$ | Data Set<br>Spectrum        | Output of filter<br>ωφ | Gabor filter         |
|                  | H(u,v)                 | Surface spectrum            | Measure<br>Spectrum    | Combined<br>Filter   |

#### Surface Parameters

| σ                       | Rms Roughness                                                 |
|-------------------------|---------------------------------------------------------------|
| R <sub>cla</sub>        | Centre line average                                           |
| m <sub>rms</sub>        | Rms Slope                                                     |
| p <sub>rms</sub>        | Rms slope in the x-direction                                  |
| <b>q</b> <sub>rms</sub> | Rms slope in the y-direction                                  |
| m <sub>fg</sub>         | f <sup>th</sup> and g <sup>th</sup> order statistical moment. |
| β                       | Power Roll-off                                                |
| k                       | Topothesy                                                     |
| λ                       | Correlation length of an isotropic surface                    |
| $\lambda_1$             | Correlation length in the x-direction                         |
| λ <sub>2</sub>          | Correlation length in the y-direction                         |
| ω                       | Fundamental frequency                                         |
| ω <sub>c</sub>          | Cut-off frequency                                             |

#### Surface Variables

| t              | Lag                                               |
|----------------|---------------------------------------------------|
| ω              | Radial frequency                                  |
| θ              | Polar frequency angle                             |
| u              | Horizontal frequency index                        |
| V              | Vertical frequency index                          |
| р              | Facet slope in the x-direction                    |
| q              | Facet slope in the y-direction                    |
| P <sub>x</sub> | Second derivative of surface, in the x-direction. |
| q <sub>x</sub> | Second derivative of surface, in the x-direction. |
| s(x)           | Surface height profile.                           |

| r <sub>c</sub> (t) | Autocorrelation function |
|--------------------|--------------------------|
| c(t)               | Autocovariance function  |

### Illumination Variables & Parameters

| σ                   | Slant angle                                             |
|---------------------|---------------------------------------------------------|
| τ                   | Tilt Angle                                              |
| R                   | Correlation matrix of the surface                       |
| V[a b c]            | Least squares linear model of the illumination process. |
| i <sub>d</sub>      | Desired image                                           |
| a b c               | Parameters of optimal linear model.                     |
| $k_{1} k_{2} k_{3}$ | Parameters of Kube's linear model.                      |

### **Imaging Parameters**

| $\sigma_{_{b}}$          | Blur                                                    |
|--------------------------|---------------------------------------------------------|
| $\gamma_{\rm b}$         | Exponent of camera amplification.                       |
| $\sigma_{t}$             | Standard deviation of temporal noise.                   |
| $\sigma_{\rm disparity}$ | Standard deviation of the difference between two images |
| $\sigma_{n}$             | Standard deviation of overall noise process.            |

### Gabor Filter Parameters

| ¢              | Direction of propagation                                            |
|----------------|---------------------------------------------------------------------|
| σ              | Standard deviation of the Gabor filter envelope in the x-direction. |
| $\sigma_{y}$   | Standard deviation of the Gabor filter envelope in the y-direction. |
| u <sub>0</sub> | Centre frequency of filter in the x-direction.                      |
| $\mathbf{v}_0$ | Centre frequency of filter in the x-direction.                      |
| $B_{\phi}$     | Polar bandwidth of the filter.                                      |
| B <sub>r</sub> | Radial frequency bandwidth of the filter.                           |
| $\sigma_{p}$   | Measured polar bandwidth                                            |

| $\sigma_{p}$ | Standard deviation of the Gabor filter spectrum in the x-direction. |
|--------------|---------------------------------------------------------------------|
| $\sigma_{y}$ | Standard deviation of the Gabor filter spectrum in the y-direction. |

#### Feature Parameters

| $\sigma_{m}$                         | Standard deviation of measure image.                                                    |
|--------------------------------------|-----------------------------------------------------------------------------------------|
| $\mu_{r}$                            | Mean of Feature image                                                                   |
| σ <sub>r</sub>                       | Standard deviation of Feature image.                                                    |
| a                                    | Parameters of feature/tilt model.                                                       |
| b                                    | " "                                                                                     |
| M <sub>n</sub>                       | Mean vector of class <i>n</i>                                                           |
| $\Sigma_{\rm n}$                     | Covariance matrix of class <i>n</i>                                                     |
| $p_{\mathbf{F} l_i}(\mathbf{F} l_i)$ | Probability that a vector x belongs to class <i>n</i>                                   |
| k(F l <sub>i</sub> )                 | Probability that a vector $\mathbf{x}$ belongs to class $n$ over the entire tilt range. |

### Symbols Associated with Compensation Schemes

| m(w)                                       | Parameters of Chantler' filters.                                           |
|--------------------------------------------|----------------------------------------------------------------------------|
| b(w)                                       | " "                                                                        |
| $\dot{i}_{0}, \dot{i}_{90}, \dot{i}_{180}$ | images obtained from $\tau = 0.90^{\circ}$ and $180^{\circ}$ respectively. |
| i <sub>NL</sub>                            | Non-linear component of surface to image mapping.                          |
| i,                                         | Image which is a linear function of p-derivative field only.               |
| i <sub>q</sub>                             | Image which is a linear function of qderivative field only.                |

### Abstract

This thesis sets texture analysis in a physical context. Models of the system components are obtained from the literature and integrated into a description of the process linking the rough surface to the feature set on which classification is based. The first component is the rough surface, models of the surface topography are selected from the fields of tribology and scattering. Various reflectance models are considered and a spectral model of the surface/image relationship from the literature, is evaluated and discussed. The relationship between the incident image and the captured data set is investigated and described. This model is integrated with the spectral description of the feature measures to form a model of the transition from surface to feature set.

It is clear from this model that the direction of illumination can affect the directionality of an image obtained from a given surface. Changes in the illuminant direction will result in changes in the feature outputs. If the illuminant direction is altered between training and classification, the classification rule may be inappropriate and classification poor. Several schemes are considered to combat this problem. A technique which uses a representation of the physical surface as the basis for the generation of appropriate training data is selected for further evaluation. The surface derivative fields of the training surface are estimated using photometric techniques. A rendering algorithm uses these estimates to simulate the appearance of the training surface when it is illuminated from an arbitrary direction. It is shown that where illuminant direction is varied this system is able to perform significantly better than a naive classifier, and in some cases approaches the level of accuracy obtained from training the classifier under the conditions at which classification is performed.

Texture analysis is a significant area in the field of machine vision, this is in large part due to the important role of texture in the early visual system. It follows from this that texture has been seen as being critical to general visual systems working in unconstrained environments, consequently, less emphasis has been placed on more controlled inspection tasks. In an unconstrained system it is impractical to adopt a modelling approach and most work in texture analysis takes the image as its starting point. This thesis is concerned with the inspection of rough textured surfaces. By making explicit the circumstances under which classification occurs we are able to employ modelling of the system and describe texture classification in the context of the physical system which gives rise to a textured image.