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Chapter 5

A Classification System

5.1 Introduction

The goal of this thesis is the development of a rough surface classifier which

operates on imaged texture, yet is robust to changes in illuminant tilt between training and

classification. The aim of this chapter is to develop a classifier that operates solely on the

basis of image texture and does not apply any domain knowledge of the underlying

physical system.

The first part of this thesis is concerned with modelling the transition from physical

surface to symbolic representation. In the previous chapters we have modelled the

physical processes of image formation and data extraction. In this chapter, we will

develop the classifier. The classifier forms the final link in the surface to symbol chain,

extracting the symbolic representation from the textured image. This task corresponds to

surface classification where the imaging conditions are held constant throughout training

and classification. In the next chapter the classifier developed here will be modelled, and

the effects of varying illuminant tilt considered.

The combination of algorithms, which we describe collectively as a classifier,

consist of: a means of extracting the relevant signal components, a mechanism to process

these components and a discriminatory mechanism to classify on the basis of this

information. In this chapter we will consider all of these components, however, the

emphasis will be on the first stage, that is, of signal extraction. The chapter, consists of

two parts: firstly, a review of feature extraction techniques and the selection of the

technique thought to be most suitable for this thesis, and secondly a description of its

incorporation into a complete classifier.
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5.2 Terms used in this chapter

What we mean by classification.

Ehrich and Foith [Ehrich77] define three tasks associated with texture analysis,

 1. given a textured region, to which of a finite number of classes does the

sample belong;

 2. given a textured region, how can it be described; and

 3. given a scene, how can boundaries between the major textured regions be

established.

Reed and Wechsler [Reed90] quote this analysis and designate the tasks as, classification,

description and segmentation respectively. We are concerned with classification and

segmentation.

Unfortunately various authors give differing definitions of these terms. Tuceryan

and Jain [Tuceryan92] state that "the goal of texture classification is to produce a

classification map of the input image, where each uniform region is identified with the

texture class it belongs to." This seems to imply that segmentation is taking place, if only

implicitly. Chellappa et al. [Chellappa92] on the other hand, use a stricter definition: "..

standard pattern classification techniques may be applied assuming there is only one

texture in the image." Tuceryan and Jain contrast classification with segmentation: "The

goal of texture segmentation is to separate regions in the image which have different

textures and identify boundaries between them. The textures themselves need not be

recognised." [Chen, p237]. Subsequently he enlarges on this, stating that there are two

general approaches; boundary-based approaches which rely on detecting differences in

textures and region-based approaches which grow and merge uniform regions of texture.

Clearly these definitions are incompatible, this is due to the fact that Jain bases his

definitions on methodology, whereas the conflicting definitions are set in terms of

objectives. We believe that all the above definitions have their own merits, but, for clarity

we will adopt terms suited to the subject matter of this thesis.

We will define the purpose of our system to be classification. We define this term

in the context of the hypothetical example given in Chapter 1; consider an inspection

system applied to a rough surface, which may exhibit several different forms of roughness

within the same sample. The inspection system must be able to detect and identify



104

different textures and the boundaries between them. The approach adopted in this thesis is

to calculate the probability that each individual pixel belongs to a certain class, on the

basis of a feature vector, and to label that pixel as belonging to the most likely class.

As with Jain, segmentation of the image is implicit in our definition of

classification. Jain’s definition of segmentation, however, is not relevant to the approach

used in this thesis. We relate the term segmentation to that of classification in the

following sense: classification is an operation applied to a pixel whereas segmentation is

an image wide phenomenon. In this thesis, segmentation is considered to be the global

effect of the classification process occurring at pixel level.

Terms used to describe the classifier’s components.

The mechanism by which pixels are classified and the image segmented will be

described as the classifier. The classifier represents the combination of algorithms which

extract information from the image and segment the image on the basis of that

information. We break this process into three stages: measurement, feature extraction and

discrimination.

Discrimination occurs on the basis of evidence, generally the collection of this

evidence may be broken into two stages. At the first level a measure, d(x,y), is obtained

from the measurement of some signal component or components. This will have a

tractable relationship with the original signal. While the measure is physically meaningful,

it is not in a form suited to numerical discrimination and so further processing is required.

The resulting feature, f(x,y), represents a quality of the image, it will not be tractable in

general, however, it will be in a form which is suitable for the discriminant. In a multiclass

problem it is usual to use more than one feature; several features associated with each

pixel are treated as being orthogonal and grouped together as a feature vector F(x,y). The

discriminant function is then applied to the feature vector associated with each pixel and

will allocate a label for that pixel according to the estimated class. The resulting

segmentation will be described as the label field l(x,y)

5.3 The Choice of a Texture Measure

In this thesis, our agenda is slightly different from that of most texture analysis

researchers. Whereas most researchers are concerned solely with minimising

misclassification, we also aim to develop a model for the classification of rough surfaces.

It follows that our main criterion for the selection of a texture measure should be



105

compatibility with that model, and implicit from this, that the measures should be suitable

for the type of textures considered in this report. It is, however, also essential that the

texture measure be illustrative of those used within the texture analysis community. The

selection of a feature set for this thesis therefore rests on three criteria:

• the existence of a spectral representation of the measure,

• its popularity within the texture analysis community, and

• its suitability for random phase, broadband textures.

In this section we will briefly consider a selection of texture analysis techniques

which can be described in spectral terms. We show an incomplete taxonomy of texture

analysis techniques in Figure 5.3.1. Texture analysis is usually initially divided into

structural and stochastic groups. Structural techniques are generally applied to textures

composed of a number of copies of a primitive placed at various locations in the image

plane. Stochastic techniques are more appropriate for the type of textures—in which there

is no obvious primitive—used in this thesis. We divide the stochastic techniques into those

based on the texture's spectrum and those based on its probabilistic character. This

distinction is not absolute; the probabilistic Gaussian Markov models are closely related to

the spectral autoregressive models [Cohen91]. Furthermore, some techniques such as

fractals e.g. [Linnett91] do not conform to either class.

Figure 5.3.1 An (incomplete) taxonomy of texture analysis techniques.
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Our first criterion is that there exists a spectral representation of the measure. This

thesis is based on spectral models; in consequence we will ignore the probabilistic

techniques. We do, however, note that these probabilistic techniques are often able to

characterise structure which is lost by most spectral techniques. This was shown as an

indirect result of the random phase experiment in section 2.3.2 where structure was

detected in a signal with a whitened spectrum using second order probabilities. We justify

our approach by adopting the maximum entropy phase restriction developed in Chapter 2

and only considering texture types which are described completely—for the purposes of

classification—by their power spectrum.

Up until this point in the thesis, we have considered images and surfaces in which

there is only one type of texture present. In any segmentation scheme this is not a valid

assumption. Instead, the observed image or surface is considered as consisting of distinct

areas of homogeneous texture. These regions, while being stationary, will have different

spectral characteristics and the overall image may no longer be considered stationary. In

consequence classical spectral analysis techniques can no longer be applied. Instead, the

two dimensional equivalents of time/frequency techniques, which attempt to maximise

localisation in both the spatial and the spectral domains, will be considered.

Of the spectral techniques we chose to ignore the parametric models. Although

these models do have spectral representations, and indeed have been used for spectral

estimation [Therrien p.596], the features on which the classification is based are difficult

to relate intuitively to our theoretical models. Whereas the other techniques considered

use features based on image measurements, the model based features are based on the

closeness of the sample to a candidate texture. This is an effective strategy for

classification, but it does not lend itself to the analytical approach of this thesis.

Historically, many texture analysis techniques have concentrated on signal

magnitude or power at the expense of phase. This is not always an appropriate approach

since for many textures the majority of textural information lies in the phase spectrum.

More recently, techniques that utilise phase information have emerged to redress this

imbalance. However, in Chapter 2 we adopted our maximum entropy phase condition and

explicitly stated that no discriminatory information is held in the phase spectra of the

textures used in this thesis. It would be desirable therefore for a candidate technique to

identify the signal's phase component which can then be resolved from magnitude

information and disregarded.
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The second criterion in our selection of a texture measure is that of popularity

within the texture analysis community. In the next chapter we will show that the measure

adopted, and consequently the classifier, are affected by changes in illuminant tilt. For this

result to have any relevance to the wider texture analysis community, the measure must be

widely used within that community.

The third criterion is suitability to broadband, random phase textures. A great deal

of work has been carried out on narrow band textures, e.g.[Bovik96][Weldon96],

however, the development of fractal signal models and multiresolution techniques

promises an equally analytical approach to broadband textures. In the context of this

thesis, the only real effect of stating that the sample textures are broadband is the

exclusion of narrowband techniques.

5.3.1 Wigner Ville Distribution

The application of time/frequency techniques to texture analysis represents an

attempt to resolve the conflicting requirements of accurately localising a non-local

phenomenon. Judged on this criterion, a candidate technique should have high spatial and

spatial-frequency resolution. The Wigner Ville distribution (WVD) has twice the conjoint

resolution of the STFT periodogram and superior resolution to that of the Gabor

transform. It is therefore unsurprising that several authors have used the WVD as the

basis of texture analysis algorithms [Reed90][Christobal91][Song92][Zhu93].

The spatial/spatial-frequency representation of a two dimensional image is a four

dimensional function. For simplicity of notation, and ease of visualisation, we will, in

general, concentrate on the application of the WVD to a one dimensional signal s(x).

The WVD is a member of the large family of time/frequency distributions known

as Cohen’s class. Members of this class conform to a general expression that includes a

kernel function. Members differ in the form of this kernel, and in the case of the WVD the

kernel is constant and equal to unity. The form of the WVD is given below:

( )W x f s x t s x t j ft dt( , ) ( ) ( )exp*= + − −∫
−∞

∞

2 2 2π

Due to the symmetry of the ’lag’, the WVD is always real, however, it does contain phase

information, albeit implicitly, and is an invertible transform.
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The discrete form of the WVD is known as the Pseudo WVD (PWVD), it is shown

below:

W x f s x t s x t w t w t fts
k

[ , ] [ ] [ ] [ ] [ ]exp( )* *= + −∑ − −
=−∞

∞
2 2π

The factor two, present before the summation and in the exponential term, is due to the

fact that in order to evaluate x± t/2, we must sample at twice the Nyquist rate to avoid

aliasing. Christobal et al. [Christobal91] note three methods of satisfying this requirement:

• oversampling the signal, used in [Reed90]

• using the analytical signal, used in [Zhu93] or

• low pass filtering the image, implicit in the windowing function in [Song92].

The PWVD also includes a window, w[t], which reduces the effect of truncation on the

estimate, and acts to suppress high frequencies and reduce the aliasing problem.

The major shortcoming of the WVD is the presence of interference, or cross terms

in the distribution. Due to the intrinsic bilinearity of the distribution, frequency

components interact to introduce spurious components. Zhu et al. identify two classes of

interference:

(a.) interference between positive and negative frequencies, and

(b.) interference between components of different absolute frequency.

In the one dimensional case, the first problem can be avoided by eliminating the

negative frequencies and using the analytical signal [Quian, p.123]. In two dimensions,

Zhu notes that there is more than one possible analytical image for a given real image;

furthermore, each analytical image has its own properties; which analytical image to use

must be decided on the basis of the spectral properties of the original image.

While certain aspects of the second problem can be alleviated by using the

analytical image, it nonetheless remains a significant problem. Quian notes that the cross-

terms oscillate, especially for frequency components which are far apart [Quian p.121].

The cross-terms therefore can be reduced by low pass filtering the spectra with over time

and frequency—at the cost of resolution—to give the smoothed WVD (SWVD).
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Zhu adopts the scheme for the spectral estimation for spectral estimation outlined

in Figure 5.3.2. The first step in the scheme is to suppress negative frequencies by using

the 2D Hilbert transform of the image. The 2D pseudo WVD is then obtained at each

spatial point in the analytic image. The local spectra obtained are then averaged over

space.

Application of the WVD to images results in a 4D function (or a 2D function at

each sample point). Authors adopt various schemes to extract useful information from the

distribution. In the context of crack detection in a textured field, Song et al. first calculate

the average distribution for the image. The average local spectra is then subtracted from

the actual spectra at each image point. Pixels with residues exceeding a threshold are

classified as being possible crack locations.

Other authors have extracted feature measures from the spectra. Reed and

Wechsler use the location of the peak frequency component spectra as a feature, whereas

Zhu used the orientation and radial frequency of the largest spectral peak as features.

Christobal et al. developed five feature vectors in their scheme:

• mean of image frequency content

• variance of image frequency content

• mean of image directionality

• variance of image directionality

• variance of image intensity.

We believe these features to be largely arbitrary and, in the context of our

requirement for a tractable measure, none of these techniques is entirely satisfactory.

The WVD has two problems: the most serious of which is intercomponent

interference; this presents a significant problem for signals with a limited number of

harmonic components, it is likely to be an even more serious drawback to application of

the technique to broadband textures. Hlawatsch and Boudreaux-Bartels state that the

Image
2D Hilbert

Transform
2D  PWVD

Spatial

Smoothing

4D Space/

Frequency

Figure 5.3.2 Zhu’s scheme for local spectra estimation
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number of interference terms grows quadratically with the number of signal components

[Hlawatsch92]. The second difficulty is that the WVD implicitly contains phase

information. The fact that there is no clear method stated in the literature for resolving

phase and magnitude components means that the feature images will contain information,

which by our conditions, is redundant.

5.3.2 Higher Order Statistics

Higher order statistics (HOS) have recently been proposed as a means of

discriminating between textures. The power spectrum gives a complete statistical

description of a Gaussian process. It is however, unable to describe either the phase

relations within a process or departures from normality. Hall and Giannakis developed a

test of normality and applied it to nine Brodatz textures. All the test textures were found

to be non-Gaussian to varying degrees—presenting a strong case for the use of HOS

[Hall95b]. Higher order statistical techniques are suited to those textures which we have

been at pains to exclude from the scope of this thesis. Nevertheless, we include a brief

discussion of these methods partly for completeness, but also in order to gain an insight

into the effect of our assumptions about the data set.

Higher order statistics form a natural extension to the second order statistics used

in classical spectral analysis. If we consider the moments of a random process s[x],

Mx
(1) E[s[x]]

Mx
(2)[t] E[s*[x]s[x+t]]

Mx
(3)[t1,t2] E[s*[x]s[x+t1]s[x+t2]]

Mx
(4)[t1,t2,t3] E[s*[x]s*[x+t1]s[x+t2]s[x+t3]

Table 5.3.1 Definition of higher order moments.

Cumulants of order 1 and 2 are identical to the mean and autocorrelation function. The

third and fourth order cumulants for a non-Gaussian process s[x] are defined as

C t t t M t t t M t t ts
K

K s
K

k s
K

K
( ) ( )

’
( )[ , .. ] [ , .. ] [ , .. ]1 2 1 2 1 2= −

K=3,4

where s’ is a Gaussian process with mean and correlation function identical to those of s.

It follows that where s is a Gaussian process, the third and fourth order spectra are zero.

The higher order spectra, or polyspectra, are the Fourier transforms of the third

and fourth order cumulants, and are known as the Bispectrum and the Trispectrum
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respectively. The Bispectrum has been found to be useful in detecting quadratic phase

coupling, i.e. phase relationships between harmonically related components of a random

process.

Several researchers have taken advantage of the properties of higher order spectra

for signal processing applications. Nikias and Mendel [Nikias93] identify four areas where

high order statistics have been used.

• Suppression of additive Gaussian noise of unknown spectra.

• Identification and reconstruction of non-minimum phase systems.

• Recovery of information contained in deviations from a Gaussian process.

• Detection and characterisation of non-linear systems.

Tsatsanis and Giannakis use HOS to classify textures using a bank of filters, where

each filter is matched to one of the candidate textures [Tsatsanis92]. The image is then

filtered and the zeroth lag of the third order cumulant calculated for each filter output. The

filter which gives the highest cumulant is assumed to be matched to the correct texture.

HOS techniques represent an attempt to utilise texture information that has been

largely ignored by most spectral techniques. The proponents of HOS make a convincing

case that the assumption of normality, which underlies most spectral techniques is not safe

for many textures, and allows the loss of valuable discriminatory information. It is our

view that this argument is, in general, justified. However, we have explicitly limited the

scope of this thesis to textures which are near Gaussian and which carry little or no

information in the phase spectrum. It is our belief that by adopting these restrictions we

may justifiably ignore higher order statistics.

5.3.3 Empirical Techniques

The class of techniques we describe as empirical are FIR filters, designed purely

for the purposes of discriminating between textures, either in the general case, or for a

particular set of textures.

The oldest, and best known members of this class are the Laws feature measures

[Laws79]. Despite their simplicity and lack of theoretical background, these form a highly

effective approach, which in many cases have a classification performance comparable

with modern techniques, and very modest computational expense. More recently, several

authors have used Laws features as a testbed for the use of novel classification algorithms.
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Greenhill and Davies used a classifier consisting of Laws filters with a neural network and

mode filter [Greenhill93]. While Chen and Kundu used the Laws features in combination

with a hidden Markov model [Chen95]. Moreover, the simplicity and effectiveness of

Laws filters have made them a popular choice for researchers working on applications

rather than investigating techniques, e.g.[Miller91][Neubauer92].

Other authors have produced schemes with analytically derived filters for a

particular classification task. Ade calculated the eigenvectors of the covariance matrix of

3x3 neighbourhoods of the textures. The nine resulting eigenvectors were convolved with

the image to produce principal component images. Classification is carried out on the

basis of the averaged absolute values of pixels from these images [Ade83]. Randen and

Husoy developed an expression for the statistics of the output of the post-processing

stage of his classifier, this being a function of the texture statistics, the filter mask and an

averaging filter [Randen95]. He then uses this expression as the basis of an algorithm

which adjusts the filter weights as a means of maximising the distance between classes in

feature space. Jain and Karu noted the similarity between the prototypical FIR filter based

system and a neural network [Jain96]. In Jain’s analogy, the filter coefficients correspond

to the input weights of the network, while the non-linearity and averaging stages

correspond to the non-linear summation junction of the neural network. He uses training

data with the Back-propagation algorithm to derive filter coefficients which are optimal

for a given classification task.

The use of empirically defined masks offers an effective, and computationally

efficient, approach to texture classification. Recent advances in developing masks for a

particular task represent a promising area of research for supervised classification. Despite

these advantages, empirical filters will not be used in this thesis. Although, by definition,

the modern empirical techniques will be suited to the discrimination of the test textures,

due to the ad hoc nature of the filters, these techniques fail to meet our two remaining

criteria for the selection of a feature measure:

• A given filter may not be well localised, or have a tractable expression in 

the frequency domain.

• The ad hoc sampling of the frequency domain is unique to the application

-this will reduce the ability of the results to be generalised.
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5.3.4 Wavelets

Wavelets have proved to be an effective and popular tool for texture analysis in

recent years [Livens97]. Introductions to wavelets occur at a variety of conceptual and

mathematical levels. In this section we will give a brief description of the technique at the

two simplest levels to illustrate the significance of the different techniques used in texture

analysis. The first explicitly deals with the wavelet—effectively treating it as an FIR filter

related to the empirical schemes discussed above. The second level does not explicitly

evaluate the wavelet, but uses it as a theoretical construct to describe the result of the

implementation.

Explicitly evaluated wavelets

The trade-off inherent in time/frequency techniques is (in our case) spatial

localisation against spectral localisation. It is desirable that the bandwidth and the spatial

extent of the elementary functions should both be minimised. Unfortunately they are

inversely related and a compromise must be sought.

Given the relationship between spatial and spectral localisation, we may pursue

two distinct strategies for sampling the signal spectrum:

(1.) using elementary functions with bandwidths which are constant throughout the 

signal spectrum, Figure 5.3.3a, and

(2.) sampling with elementary functions each possessing a bandwidth which is constant

relative to the function's central frequency, Figure 5.3.3b.
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Figure 5.3.3 Spectral sampling schemes, (a) constant absolute bandwidth, (b) constant

relative bandwidth.
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The first is the approach undertaken by the Gabor Transform and represents the

spectral dual of a series of analysis functions with envelopes of the same spatial extent.

Spatial localisation is uniform throughout the frequency range, and is therefore limited by

the bandwidth requirements of the analysis function of lowest frequency, Figure 5.3.4a.

-1
00 -9
5

-9
0

-8
5

-8
0

-7
5

-7
0

-6
5

-6
0

-5
5

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

-1
00 -9

5

-9
0

-8
5

-8
0

-7
5

-7
0

-6
5

-6
0

-5
5

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

-1
00 -9

5

-9
0

-8
5

-8
0

-7
5

-7
0

-6
5

-6
0

-5
5

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

(a) Gabor Transform (b.) Wavelet

Figure 5.3.4 Analysis functions of (a) the Gabor Transform and (b) the wavelet

approach, (after Quian p.77).

The second approach, used in wavelet analysis, varies bandwidth with frequency.

In the spatial domain this results in the extent of the envelope function varying with the

wavelength modulating function. As a consequence of this, the number of wavelengths in

an envelope will be constant and the functions will be scaled versions of a single

prototype, Figure 5.3.4b.

The spatial effect of variable bandwidth is that low frequency filters will give good

frequency resolution, but poor spatial resolution, high frequency filters will give poor

frequency resolution and good spatial resolution. Low signal frequencies will be easily

discerned from neighbouring frequencies but will be difficult to localise spatially whereas

the converse will apply to high frequency signals.

Implementation-based explanation

In practice, wavelets are not generally implemented as convolution filters, instead

most implementations are based on Mallat’s multiresolution approach. A brief description

of the technique is given here.
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Define an elementary function:φ( )x k− , known as a scaling function, together with

translated versions of itself, this forms a basis for the space V0. Scaled versions of this

function, i.e. φ φl
l l x k( ) ( )2 2= − each form a basis for a corresponding space space Vl .

Intuitively, as l increases the ability of the function to detect detail also increases.

Furthermore, Vl  is a subspace of Vl+1

and define Wl  to be the complement of Vl  on the space Vl+1 such that,

 Vl+1 = ⊕V Wl l

That is, a signal defined on Vl+1 can be represented in terms of a low detail signal defined

on Vl  and a detail signal defined on Wl

Since Vl  is a subspace of Vl+1 , the elementary function φ l  can be represented as a linear

combination of shifted version of the function φ l+1 , i.e.

φ φl t
t

l
x h x t( ) ( )
2

2 1= −∑ + (5.3.4a)

Expression 5.3.4a is known as the dilation equation. The coefficients ht may be thought of

as the weights of a FIR filter, furthermore it can be shown that this is low pass in

character (Qian p.88). Since Eq. 5.3.4a is the convolution of the coefficients ht and

φ l x t+ −1( ) , we may express it in the frequency domain as the product of the Fourier

transforms of these terms:

( ) ( ) ( )φ ω ω φ ωl lH2 1= + .

or equivalently as:

( ) ( ) ( )φ ω ω φ ω
l lH= +2 21 .

or more generally as

( ) ( )φ ω ω φl k
K

H= ⎛
⎝⎜

⎞
⎠⎟=

∞

∏
2

0
1

φ( )0  is a constant and φ ωl ( ) is a function of H( )ω only.

The low pass filter represents a mechanism to move from a space Vn+1 defined in terms of

φ ωl+1( )  to a less detailed space Vn defined in terms of φ ωl ( ) .

The detail which is residual to this transition is defined in the space Wl . Let

elementary function ψl  form the basis for Wl. The detail signal at level n may be observed

by high pass filtering the image defined in subspace Vn+1.
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The high pass filter should satisfy (5.3.4b)

H G H G( ) ( ) ( ) ( )* *ω ω ω π ω π+ + + = 0 (5.3.4b)

where H(ω) and G(ω) are quadrature filters. One solution of (5.3.4b) is shown below:

G j H( ) exp( ) ( )*ω ω ω π= − − +

The detail image at level l represents the result of the low pass filterings required to reach

level l followed by a high pass filtering. The net effect of which is of a bandpass filter

( ) ( )ψ ω ω φ ω( ) = G
2 2

( )ψ ω ω ω( ) = ⎛
⎝⎜

⎞
⎠⎟∏

=

∞
G H K

K2 22

ψ φ( ) ( )x g x KK
K

= ∑ −2 2

Consequently, the wavelet transform may be evaluated over a range of scales by

repeated low pass filtering followed by high pass filtering, and neither the wavelet, nor the

scaling function need ever be explicitly evaluated.

Directionality

The two dimensional wavelet transform is applied consecutively along the rows

and columns of the data set, in a similar fashion to that of the FFT. The separability of the

two dimensional transform makes its implementation highly efficient. The approach is

shown in Figure 5.3.5, giving four data sets for each level.

Figure 5.3.5 Two dimensional wavelet implementation.
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While the above approach is used in almost all schemes, it gives poor polar

resolution—which is particularly relevant to this thesis. Antoine [Antoine93] has applied a

directional Morlet wavelet, though this is implemented in the two dimensional frequency

domain and will lack the computational efficiency of the separable scheme. Freeman and

Adelson propose the use of a steerable pyramid [Freeman91]. This approach uses basis

filters oriented at 0°, 45°,90° and 135° which can be combined to allow the image to be

filtered in any arbitrary direction. The filters are themselves separable, allowing an

efficient implementation.

Summary

Wavelets have become highly popular in the literature over recent years, they offer

a computationally efficient method of localising spectral components in the frequency

domain. Unfortunately, most implementations are separable, being applied to rows and

columns in turn. The result of this is a rather crude sampling in the polar frequency

domain. Given the importance of directionality in this thesis, this is a rather more serious

drawback than in most applications.

5.3.5 Gabor Functions

Definition of 1D Gabor function
The Gabor filter is defined as consisting of a Gaussian envelope modulated by a

complex exponential. The one dimensional spatial and spectral forms are expressed in

equations (5.3.5a) and (5.3.5b) respectively. The function's real part and its frequency

domain description are shown in Figure 5.3.6.

[ ]g x x j x
f

( ) exp exp ( )= −⎡

⎣
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⎥ +

2
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πω ϕ (5.3.5a)

[ ] [ ]G f f( ) exp ( ) exp ( )ω πσ ω ω πσ ω ω= − − + − −2 22
0

2 2
0

2 (5.3.5b)

where x is the spatial variable

σf parameterises the extent of the Gaussian envelope

ω0 is the centre frequency of the filter

ϕ is the phase displacement.
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Figure 5.3.6 Real spatial part and frequency domain representation of Gabor function.

Bandwidth Characteristics of the Gabor Function

The spectral location of the bandpass region of a Gabor filter is governed by the

modulating function. The bandwidth, however, is governed by the standard deviation of

the Gaussian envelope, regardless of the frequency modulating function. A filter with a

large spatial variance (Figure 5.3.7a) will have a relatively localised spectral

representation (Figure 5.3.7b). Decreasing the extent of the spatial envelope, i.e.

increasing its spatial localisation(Figure 5.3.7c), will decrease the spectral selectivity of

the filter(Figure 5.3.7d). A large variance will increase the spectral resolution at the cost

of decreased spatial resolution.

Gabor as a wavelet

By linking envelope extent to the sinusoid’s wavelength, we may define a series of

functions which are scaled versions of each other. A family of Gabor functions may be

described as a series of dilated forms of a single prototype, and a transform may be

defined in terms of equation 5.3.5c [Lee96].

g a x y x y a g
x x

a
y y

ad d
d d

( , , , , ) ,0 0

1 0 0=
− −⎛

⎝⎜
⎞
⎠⎟

−
 (5.3.5c)

where x0 and y0 are the spatial co-ordinates of the filter at a given time,

and ad is the dilation parameter (typically a power of two).

In this sense, a Gabor function may be treated as a wavelet, albeit lacking in the usual

requirements for admissibility and orthogonality.
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Figure 5.3.7 The effect of decreasing the extent of the Gaussian envelope on the 

frequency domain representation.

The admissibility condition requires that a wavelet function has zero mean. While

the imaginary part of the function is admissible, the real part has a non zero mean. Lee

develops an additional term to the carrier function to eliminate the mean response and

satisfy the admissibility criterion, the modified expression is shown below.

exp[ ( )] expj xCos ySinω φ φ κ
0

2

2
+ − −⎡

⎣⎢
⎤
⎦⎥

where φ is the orientation of the filter.

and κ=π for a 1 octave bandwidth filter.

Navarro et al. report that the mean component is very small [Navarro95].

The orthogonality condition is clearly of relevance to coding schemes, but how

relevant is it to pattern recognition? Non-orthogonal filters will certainly exhibit a degree

of redundancy, but Navarro et al. argues that with their use, there will be an increase in

the robustness of classification: "Biological vision...lacks orthogonality, producing a
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redundancy that is highly expensive, this being the price of robustness." This implies that

a degree of redundancy is desirable to our application, and that orthogonality is not a

prerequisite for a classifier.

Although classifying the Gabor function as a wavelet is debatable, it is certainly

wavelet-like. As the number of terms in the dilation function of a wavelet increases (Eq.

5.3.4a) the smoothness of the wavelet and its spectral compactness increase. For t large,

many families of wavelets resemble windowed sinusoids similar in appearance to Gabor

functions. In fact, the relationship of several wavelets is even more closely established;

Unser et al. have shown that wavelets based on a B-spline scaling function converge to

the Gabor function as the power of the spline increases [Unser92]. Antoine et al. describe

the Morlet wavelet as a Gabor function with an additional term to ensure admissibility,

furthermore, this term tends to zero for high frequencies [Antoine93].

Definition of the two-dimensional Gabor Function

The two dimensional form of the Gabor filter was first defined by Daugman

[Daugman85]. The filter can be described as an elliptical Gaussian modulated by a

complex sinusoid with direction of propagation φ. The spatial and spectral forms are

shown in equations 5.3.5d and 5.3.5e respectively. For consistency, we use the notation

described in [Jain91].
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where

σ πσu
x

= 1
2

 σ πσv
y

= 1
2

g(x,y) is the filter impulse response.

G(u,v) is the spectral transfer function.

u is the component of frequency in the direction of the x-axis.

v is the component of frequency in the direction of the y-axis.

v0 is the centre frequency of the filter along the y-axis.
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u0 is the centre frequency of the filter along the x-axis.

σx is the standard deviation of the Gaussian envelope in the direction of the 

x axis in the spatial domain.

σy  is the standard deviation of the Gaussian envelope in the direction of the y 

axis in the spatial domain.

σu represents the extent of the Gaussian envelope in the spectral domain in the

direction of the x-axis.

σv represents the extent of the Gaussian envelope in the spectral domain in the

direction of the y-axis.

Daugman also introduced the concept of orientation bandwidth. While the

direction of maximum sensitivity is defined by φ, the degree to which adjacent directions

are attenuated is governed by the extent of the Gaussian in the direction perpendicular to

propagation. In Figure 5.3.8 three Gabor filters, which have identical spatial parameters

save σy, are shown. If we apply these filters to an isotropic field we obtain the polar plot

shown in Figure 5.3.9.

(a.) σy=3.54 (b)σy=7.07 (c)σy=14.14

Figure 5.3.8 Gabor filters with various σy parameters.

As with radial frequency where there exists a trade-off between spectral and

spatial resolution, there is an analogous trade-off between directionality and spatial

resolution: a highly directional filter will not be well spatially localised perpendicular to

propagation, Figure 5.3.8 & Figure 5.3.9.
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From Jain and Farrokhnia, the radial and orientation bandwidths of the filter, Br

and Bθ, are defined by equations 5.3.5f and 5.3.5g respectively. Kiernan has criticised the

accuracy of these expressions on the basis of geometric arguments [Kiernan95]. However,

in the context of this thesis, these inaccuracies are not critical and we will continue to use

these expressions due to their accessibility and popularity in the literature.
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5.3.6 The Selection of a Measure Set
At the beginning of this section we stated three criteria for the selection of a

texture measure:

• the existence of a spectral representation of the feature,

• its popularity in the texture analysis community, and

• its suitability for random phase, broadband textures.

The scope of this review was largely dictated by the first two criteria, we must

therefore choose an algorithm on the basis of the third. The rationale behind HOS

techniques is to utilise phase information. The random phase condition developed in

Chapter 2 removes this justification for the type of textures used in this thesis. We
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Figure 5.3.9 Polar plot of Gabor filters angular magnitude responses for various σy.
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concluded that the Wigner Ville distribution was not suitable for broadband textures due

to the interference of components, and the distribution’s implicit treatment of phase

information made it difficult to decorrelate useful power information from the random

phase. Empirical techniques were considered, however, their ad hoc nature was

considered to be incompatible with the analytical approach of this thesis. Wavelets

represent a promising feature measure, however, their lack of polar resolution is a serious

handicap to their application in the context of this thesis.

The related, though non-orthogonal and non-separable, two dimensional Gabor

wavelet is much more versatile in the polar domain. Though this versatility is gained at the

expense of the computational efficiency associated with a separable transform. In our

assessment, of all the measures considered in this thesis, Gabor functions are closest to

fulfilling our three criteria.

Gabor filters are defined explicitly both in the spatial domain and in the polar

frequency domain and therefore can be easily integrated into our model. They may be

used to extract and resolve magnitude and phase components of the image [Bovik90]. The

magnitude information allows us to relate the output of the Gabor filters to the surface

and image descriptions developed in the earlier chapters.

 Besides being suited to the model used in this thesis, Gabor filters also represent

an important and popular area of research within texture analysis. This is due to two

properties of the Gabor filters: the space/frequency characteristics of the filter, and the

similarity to the operation of the early human visual system. The complex form of the

Gabor filter represents the optimum space-frequency resolution and is therefore of interest

to analysts attempting to localise textures in the spatial domain using their spectral

characteristics. Furthermore, the early stages of the human visual system can be accurately

modelled using Gabor filters. These properties have popularised the Gabor function, and

by establishing the tilt dependency of the Gabor based classifier, we will demonstrate the

relevance of this work to a wide area of texture research.

In Chapters 2 and 3 we concluded that the surface types considered in this thesis

(and their images) could be described as being broadband and having random phase.

Gabor filters have been used to measure narrowband signals, however, their use for

broadband textures is equally valid. Reduction in the spectral resolution corresponds to an

increase in the spatial resolution. Therefore Gabor filters can be applied to accurately

locate broadband textures. From our random phase condition we regard the phase



124

information as being redundant. Gabor filters provide a set of features in which this

redundant information can be decorrelated from the relevant information and discarded.

These filters are therefore suited to both the nature of the classification task, and to the

characteristics of the test textures.

5.4 A Classification System

5.4.1 Overview
In this section we develop a classifier that is tailored to the task of classifying

rough surfaces. We do not, however, make any claim of optimality. We base our classifier

on the generic form shown in Figure 5.4.1. A textured image is processed using Gabor

filters; the resulting measures are passed through a non-linear post-processing stage. The

features extracted are passed to a statistical classifier which labels each pixel as belonging

to a certain class on the basis of its feature vector and the a priori probability of that

vector being a member of each class. In the following sub-sections we shall discuss each

of these stages.

5.4.2 The Implementation of Gabor Filters

Design vs. Systematic Structure

The generally accepted definition of an n-dimensional Gabor function is that of a

Gaussian function modulated by a complex exponential. The generality of this statement is

striking. The two dimensional expression of this statement, Eq. 5.3.5a, has four

independent parameters. This lack of structure has, on balance, been beneficial: the most

important characteristic of the Gabor filter, the space-frequency optimality, is

encapsulated in its definition. Furthermore, the looseness of the definition allows the filter

design algorithms the necessary latitude to be worthwhile.

While a great deal of work has been devoted to the algorithmic design of optimal

Gabor filters for a particular task (e.g. [Dunn95],[Kiernan95], [Weldon96]), in this thesis

Figure 5.4.1 The Gabor-based Classifier

Image
Gabor

Filtering
Post-

Processing
Discriminant Label

Field
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we shall use a more standard, less ad hoc, filter implementation. This is less

computationally efficient than that produced by the design techniques, and will almost

certainly give a poorer classification. Nevertheless we adopt this approach for two

reasons:

• A uniform sampling of a particular frequency range is more compatible with our

analytical approach. It allows us to draw conclusions not only about which 

features are most affected but also to analyse the effect on features using the same 

analytical framework used to model the earlier stages in the process 

considered in previous chapters.

• Generality; illustrating the effect with a small number of irregularly placed filters 

is less convincing proof that any irregularity is due to our predicted effect than a 

much wider polar frequency sampling.

If we opt for a systematic sampling of the image spectrum we must decide on the

location and bandwidth of the filters in polar and radial space Figure 5.4.2.

Several parameter schemes have emerged [Jain91][Lee96]. These are mostly based

on biological justifications that constrain the parameters and which have been adopted by

most non-design researchers. The most commonly used constraints are those adopted by

Jain and Farrokhnia [Jain91]. Jain uses real filters with frequency and angular (half peak

magnitude) bandwidth of 1 octave and 45° respectively. The polar frequency domain is

sampled at intervals of 1 octave and 45°, giving a total of 32 filters for a 512x512 image.

With this, and the polar distribution, in mind we adopt the following filter designation:

(a.) Filter location (b.) Filter bandwidth

Figure 5.4.2 Filter parameters.
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Bθ

ω0

φ
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Fω0 dφ

where ω0 is the centre frequency of the filter in cycles per image

and φ is the filter orientation in degrees.

Polar Properties

Given the directional nature of the tilt effect we believe it is important for the

purposes of analysis that the polar spectrum is uniformly sampled. Therefore, each

frequency band will be sampled by filters each with a bandwidth of 45°, oriented at

0°,45°,90° and 135°, after Jain. In Figure 5.4.3 we show the polar response of a filter

oriented at φ=0° superimposed on the polar spectra of images of the isotropic rock surface

and directional striate surface illuminated from τ=0°. The figure suggests that the 2D

Gabor is able to detect directional information important for discrimination.

Radial Sampling

Several papers such as [Jain91][Nestares96][Namuduri94] adopt a wavelet

approach to the implementation of Gabor filters. Kube and Pentland [Kube88] state that

assuming a linear reflectance function, a fractal surface will give rise to a fractal image

with roll-off βi=βs +1. In Chapter 2, we concluded that most surfaces have roll-off of
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β=3.0 in their fractal region. A multi-resolution approach would seem to be redundant for

textures which are entirely fractal. However, both the Mulvanney and Ogilvy type surfaces

exhibit fractal behaviour over only a range of frequencies. The spectral characteristics

below this range, and the point at which the transition to fractal behaviour occurs, are rich

sources of discriminatory information. Moreover, the radial plots in the previous chapter

show that the data sets are not fractal. A multi-resolution approach is therefore

compatible with our surface models and our measurements, as well as being an efficient

method of sampling the radial spectrum. The image is low pass filtered (lpf) and

decimated before being passed to a set of Gabor filters. The lower the measured

frequency, the more decimations its input data set has undergone. The wavelet

implementation means that the central frequencies of filters will rise in one octave steps.

As with Jain’s implementation, the filters will have a bandwidth of an octave.

This leads to the question of which range of frequencies the filter should be

applied to. In Chapter 2 and 3, we saw that the radial spectra of different surface models

(and consequently of their images) differ most markedly at low frequencies. Furthermore,

in Chapter 4 we noted the attenuation of high frequencies due to blurring, and the

decrease in the S/N ratio with increasing frequency. This would suggest that it is the low

frequencies that should be most closely scrutinised by a classifier. On the other hand, in

this chapter we have noted that low frequency filters have poor spatial resolution. As an

empirical compromise, we will use three sets of filters, which range from the low
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frequencies to the midband, beginning at 25 cycles per image. The responses of the

F25d0, F50d0 and F100d0 filters are shown in Figure 5.4.4, plotted against one

dimensional spectra of the columns of our two exemplar textures Rock and Striate.

Spectral Support

Given the emphasis on low frequencies, and the linear nature of the filters, it is

interesting to discover how much image information is captured by the feature set. to code

the image. The two exemplar textures, Rock and Striate, were filtered by the Gabor filters

on which the classifier is based (the F25,F50 and F100 sets). The sum of the measure

images are shown in Figure 5.4.5c and d. While the combinations of the measure images

do not bear an obvious resemblance to the exemplars, it is noticeable that the

directionality of both textures is captured, and the more pronounced directionality of the

Striate surface is particularly well recorded.

 

(a.) Original Rock image. (b.) Original Striate image.

(c.) Coded Rock image. (d.) Coded Striate image.

Figure 5.4.5 The Rock and Striate exemplar textures and their feature set coding.

5.4.3 Post-Processing

Although the form of the Gabor filter itself is relatively standard, there are several

approaches to the subsequent processing of the signal prior to classification, although

these generally take the form of a non-linearity followed by low pass filtering. Although
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the non-linearity limits our ability to analyse the process, it is clearly central to the scheme.

If it were not (and textures could be classified on the basis of linear operations) then

classification could be carried out by a statistical classifier purely on the basis of grey

levels and their displacements with no need to filter.

In selecting a post-processing approach we must attempt to satisfy certain criteria.

Firstly, the technique must perform well and reliably in conjunction with the discriminant.

Since many classifiers are optimal for Gaussian data only, it is also necessary that the

output of the post-processing stage should have at least an approximately Gaussian

distribution. Specific to the approach of this thesis, it is also desirable that the algorithm

should permit some degree of analysis and have a physically meaningful output. The

schemes may be broadly split into two groups: those based on a biological rationale and

those grounded in signal processing theory. A taxonomy is shown in Figure 5.4.6.

Biologically Based Schemes

Jain and Farrokhnia were the first to suggest the use of a hyperbolic tan function

(tanh) as the non-linearity. Their argument was based on the Julesz texton theory

[Jain91]. This proposed that textures are discriminated on the attributes of elongated

Figure 5.4.6 Taxonomy of post-processing techniques.
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Schemes

Biological
Rationale

Signal
Processing
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blobs or textons. The preattentive visual system cannot determine the location of

terminations but can count their numbers or their first order statistics. Most of Julesz’s

work was conducted with binary images and critics have pointed out that the theory is not

directly applicable to most realistic textures. Jain proposes Gabor filters as the first

element of a mechanism to extend Julesz theory to naturalistic textures. The rapidly

saturating tanh function will force the filtered output into an almost binary form—

effectively composed of blobs. A low pass filter will then be used to measure the density

of the textons. Randen and Husoy [Randen94] as well as Tang et al. [Tang95] also use a

tanh non-linearity, though Tang pushes the biological analogy further by replacing the

averaging filter with non-linear interaction both within and between feature images. He

forms an analogue between feature maps and neurone-fields: pixels in a feature image are

excited by other pixels in a surrounding annulus, and inhibited by pixels from a feature

image of different orientation. This process is stepped through an unspecified number of

generations before finally a dominant feature is declared. The biologically based

techniques are not mathematically tractable. Consequently, we opt for the more tractable

techniques employed by the signal processing based approaches.

Signal Processing Based Schemes

In this section we will consider post-processing techniques that are, or can be,

stated in terms of signal processing terminology. In order to make this discussion as

thorough as possible, we will not confine ourselves to the post-processing of Gabor

filters, but rather to the output of any type of bandpass filter used in texture analysis. The

post-processing algorithms we classify as being signal processing based measure, or

approximate, one of two signal quantities: the signal magnitude or the quantity known as

texture energy.

We do not believe the use of the term energy to be physically meaningful in the

sense in which it has been applied and its use in the literature is not consistent. Instead we

prefer to use the term signal power. Schemes which use this technique have the general

form shown in Figure 5.4.7.
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 Laws and Ade both use power measurement (as well as magnitude

approximations) in [Laws79] and [Ade83]. Randen et al. also use power-based features in

[Randen95] and [Randen96]; in the latter paper this allows the derivation of an expression

for signal mean and variance given a description of the bandpass and low pass filters.

Livens et al states that the majority of wavelet schemes also use this approach, [Livens97].

Unser and Eden [Unser90] advocated the use of a second non-linearity, taking

either the log or the square root of the low passed feature, Figure 5.4.8. Their motivation

for doing so was to make features, which have been passed through different non-

linearities more comparable, simplifying subsequent feature reduction and clustering work,

although they do note the tendency towards a Gaussian distribution. We note that this is

equivalent to a power transform where the random variable is raised to a power to

produce a more Gaussian distribution, [Fukunaga p.76]. We have noted a modest

improvement in classification accuracy with a quadratic classifier whose features which

have been subjected to a power transform. While the signal power is an attractive quantity

on which to base a feature, in our experience, the large variance associated with the

approach can introduce problems of stability with some, numerically sensitive,

discriminants. Unser’s approach does avoid these problems, as well as giving a more

Gaussian output. However, it does not relate to any physical concept such as power.

Figure 5.4.7 General form of feature based on channel power measurement.

Figure 5.4.8 Unser’s scheme.
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Like signal power, signal magnitude is a physically meaningful concept, though,

unlike power, it is in a range which is comparable to that of the original image. This means

that numerical stability is less of an issue than for power, and outlying samples are less

significant. Two approaches to the measurement of the signal magnitude have been used

in the literature. The first calculates the magnitude response directly from the quadrature

response of real and imaginary filters, Figure 5.4.9, [Bovik91]. The second method

approximates the magnitude by low pass filtering the absolute value of the output of a real

filter, Figure 5.4.10, [Randen94].

Aach et al. consider an analogue of the rectifier detector with the absolute value of

the feature output being low pass filtered to produce the feature image [Aach95]. They

then compare this approach with the quadrature filtering approach where textures are

classified by magnitude and in some cases also phase from complex feature images. Aach

considered the approximation, common in communications theory, by which the

magnitude of real and imaginary components is approximated by averaging the absolute

output of a real filter only. He notes that low pass filtering the quadrature images

produces a result almost identical to the texture energy technique. He concludes that:

Figure 5.4.9 Magnitude estimation using quadrature filtering.

Figure 5.4.10 Magnitude estimation using ABS approximation.
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1. for edge based techniques where localisation is less of a requirement and 

smoothing is normally carried out the estimation method is sufficient, and

2. for pixel-based classification, which may be adversely affected by smeared 

transitions between areas of different textures caused by low pass filtering, 

quadrature filters are more appropriate.

We adopt the quadrature filtering approach for the following reasons.

1. Our scheme is pixel-based and the optimal space/frequency characteristic of the 

Gabor filter only holds for the complex form of the function.

2. The calculation of magnitude from quadrature filters makes explicit our 

suppression of phase in favour of magnitude information as the basis for 

classification.

3. This thesis is primarily concerned with an analytical approach. Implementation 

efficiency is less important than tractability.

In fact, we have found that even where the texture is filtered in quadrature, the

class feature distributions have unacceptably large variances, presumably due to the

filtered images not being sufficiently narrowband. It is therefore necessary to filter the

magnitude image before classification; this conclusion is, in effect, supported by Kiernan

[Kieran95]. She calculated magnitudes from complex features but used an averaging filter

before classification. In this work we shall adopt a feature set based on the signal

magnitude calculated from quadrature filters. Let us model the output from the Gabor

filters as a zero mean Gaussian process. While the second assumption follows from our

random surface models and the linearity of the transforms up until this stage, the non-

admissibility of the Gabor filters, discussed in the wavelet section (Section 5.3.4), means

that the signal will have a non-zero mean. We justify the assumption on the grounds that

the mean is small relative to the signal [Novarro95].

The pdf of the resultant of two uncorrelated Gaussian processes will follow a

Rayleigh distribution (Couch p.546). Figure 5.4.11 shows the pdf of the modulus of the

response of a complex Gabor filter to an illuminated fractal surface. The theoretical

Rayleigh distribution is superimposed onto the histogram. After low pass filtering,

however, the distribution more closely approximates the Gaussian case (Figure 5.4.12) —

satisfying one of the optimality conditions of the discriminant.
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Figure 5.4.11 Pdf of modulus of quadrature filter outputs.
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To summarise, we shall adopt the post-processing scheme shown in Figure 5.4.13.

5.4.4 The Discriminant

Having developed the evidence upon which the classification is carried out, a

mechanism to perform the actual decision is required.

Choosing The Decision Algorithm

The nature of the problem which this thesis addresses immediately restricts us to

supervised classification, i.e. there exist a priori classified training examples. We therefore

do not consider the important area of unsupervised classification.

Several candidate techniques have been used for supervised classification in the

texture analysis literature. Neural networks have been applied to texture analysis:

Greenspan et al. evaluated a back-propagation network [Greenspan94], while other

investigators have proposed novel networks that incorporate spatial interactions e.g.

[Tang95]. Greenspan et al. also evaluated the K-nearest neighbours algorithm, as did

Ohanian and Dubes [Ohanian92]. Unser applied traditional Bayesian classification

[Unser95] whereas Weldon et al. used a Bayesian classifier modified to model texture

classes as mixture distributions [Weldon96]. Given the application, it is clear that spatial

interaction of pixel labels is an important cue to segmentation. Aach et al. used a region

growing technique [Aach89] while a growing number of authors explicitly incorporate

into their classifiers the effect the labelling of its neighbours has on the label probability of

that pixel [Song92][Raghu96].

Both neural networks and the K-nearest neighbour techniques are widely used,

however, both are largely intractable to analysis. Statistical techniques are much more

responsive to analysis. We therefore adopt the statistical approach to classification due to

its compatibility with the overall approach of this thesis. As mentioned earlier, decision

algorithms incorporating spatial information into the labelling process are becoming

Figure 5.4.13 Post Processing
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