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Chapter 6

Modelling The Classifier Tilt Response

6.1 Introduction

This thesis can be broken into two parts: the first describes the development of a

model for rough surface classification, the second part develops techniques to classify

surfaces invariant to illuminant tilt. This chapter represents the transition between the

analytical and the problem solving phases of this thesis. It has two aims: to model the

effect of tilt on the classifier, and to observe the effect of tilt variation on classification

accuracy. We also model the classifier developed in Chapter 5; and are therefore

concerned with the final stage of the model that describes the process of classification

from imaged data set to symbolic representation. We will also measure the effect of tilt

variation on classification accuracy. This can therefore be seen as defining the problem

that the second part of this thesis is designed to confront.

This chapter consists of four sections. In the first, the tilt response of the texture

features will be predicted using theory. The predicted relationships will then be tested

using both simulation and experimentation in the second section. The discriminant part

of the classifier cannot be modelled in general terms since it depends on the second order

interactions between members of the sample set. The next section is designed to extend

our analysis and understanding of the tilt effect at the discriminant stage in the

classification. The third section of this chapter is designed to give an intuitive

understanding of the effect on classification. Using synthetic textures it is possible to

obtain an adequate classification using only two features. By using such a small feature

set, the discrimination process can be observed on a two dimensional scatter plot—

allowing the reader to observe the tilt induced movement of feature clusters across

discriminant boundaries with the associated rise in misclassification. Finally, the full

classifier is applied to three montages of real textures and the accuracy of the classifier
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observed as tilt is varied. This chapter will therefore use theory, simulation and

experimentation to model the relationship of features with tilt; and use experiments to

observe the effect on classification accuracy.

6.2  Modelling The Feature/Tilt Response

In Chapter 5, a classifier was developed. We now set about the formation of an

analytical model which encompasses both the classifier and the illumination model of

Chapter 3. This will enable us to make predictions as to the effect of illuminant tilt on

surface classification.

Chantler made the analogy between the tilt effect and a linear filter

[Chantler94b]. We believe this to be a useful model, and combine it with the Gabor

filters to form a single linear stage (highlighted in Figure 6.2.1), bridging the gap

between surface and measure image. We will model the tilt response of the combined

filter (sub-section 6.2.1), the power spectrum of the resulting measure images (sub-

section 6.2.2), and the first order statistics of the feature images (sub-section 6.2.3).

6.2.1 Combined Filter Tilt Response

The transfer function relating surface spectra to image spectra may be described as a

filter with magnitude response:

R k B( , ) cos( ) ( )ω θ τ ω θ τ ω= − (6.2.1a)

where B(ω) is the transfer function of the imaging device,

Figure 6.2.1 The Signal to Symbol Chain
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The magnitude response of a Gabor filter oriented in direction φ is
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(6.2.1b)

If we combine the rendering response Eq. 6.2.1a with the response of the Gabor filter

Eq. 6.2.1b, we obtain the magnitude response of the combined Gabor and rendering

filter:

Z k B G W Gu v( , , , , , ) cos( ) . ( ). ( , ) . ( , )ω θ τ ω φ σ σ ω θ τ ω ω θ ω θ0 = − + (6.2.1c)

We now numerically integrate equation 6.2.1c over radial frequency, ω, to plot a series

of angular response curves in theta for various values of τ, with ω0=0.125ωs and φ=0°.

ω

ω

ω θ τ ω
=
∫

0

0 5.

( , , )
s

Z d (6.2.1d)

where ωs is the sampling frequency.
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Figure 6.2.2 Angular Transfer Function of Combined Illuminant/Gabor Model

We note three points from this experiment:

1. Firstly, the response of the combined filter is attenuated as the tilt angle τ increases

from 0° to 90°. Consequently, the variance of the measure image associated with the

filter will fall as the tilt angle is varied through this range.

2. Secondly, the direction of peak sensitivity is shifted in the τ =45° and 90° cases. For

an isotropic surface, the directionality of the measure image may no longer be aligned

with the directionality of the filter. In the case of a directional surface, the

directionality of the measure image will be a function of the surface, illuminant and

filter directional properties.

3. Thirdly, even at τ=90°, the filter still gives a significant response due to the

bandwidth of the filter orientation. Since we are using a linear model, there is no

response at θ=0°, however, there is still a response in other directions due to the two

sidelobes present. One consequence of this is that the variance of the measure image

for an isotropic image will always be greater than zero. Even with a linear rendering

model and in the absence of noise, the feature/tilt response will always be greater than

zero.
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6.2.2 Modelling The Measure Images

In Chapters 3 and 4, we developed an expression for the power spectral density

(PSD) of the data set,

I S B W( , ) cos ( )sin . ( , ). ( )ω θ τ ω θ τ σ ω θ ω= − +2 2 2 2 (6.2.2a)

where S(ω,θ) is the surface power spectrum.

Each Gabor filter produces a real and an imaginary output image. The PSD of the real

and imaginary measure images will be identical, and equal to:

D I Gu v( , , , , , ) ( , ). ( , )ω θ τ ω φ σ σ ω θ ω θ0
2=

Expanding the image term:

D k S B G N Gu v( , , , , , ) cos ( ) ( , ). ( ) . ( , ) . ( , )ω θ τ ω φ σ σ ω θ τ ω θ ω ω θ ω θ0
2 2 2 2 2 2= − + (6.2.2b)

Since the operation is linear, and the original image is assumed to be Gaussian,

we may assume the measure images will also have a Gaussian distribution. Integrating

(6.2.2b) over both frequency and angle, we will obtain a quantity, which we will call

signal energy, σm

2 , equivalent to the variance of the measure images.

σ τ ω θ τ ω θ
ωθ

π
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fs

D d d2

00

2

( ) ( , , )=
==
∫∫ (6.2.2c)

If we integrate a two dimensional Gabor function, with the parameters used in

this thesis, over radial frequency, we obtain a polar plot that is approximately Gaussian

with a peak at θ=φ, Figure 6.2.3. We can use this approximation to develop an analytical

expression for σm

2 by integrating the product of the Gaussian polar response of the Gabor

function and the sinusoidal tilt response Eq. 6.2.2d. This is equivalent to the variance of

a measure image calculated from the image of an isotropic 1/f surface in the absence of

imaging artefacts.
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Figure 6.2.3 Comparison of polar response (power) of F25d90 filter with Gaussian
function.
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For the filters used in this thesis σp  is less than 20° and the value of the integral is

negligable beyond the limits used in 6.2.2d. It is therefore permissable to redefine the

range of integration as being from θ=-∞ to ∞.

If we make the substitution λ θ φ
σ

= −
2 p

 then:

θ σ λ φ= +2 p
d
d

p

λ
θ σ

= 1
2

when θ=-∞ then λ=-∞      and when θ=-∞ then λ=∞

Therefore when integrating between θ=-∞ to ∞, the equivalent limits for integration are

λ=-∞ to ∞.
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If we gather the angular variables, we obtain an expression for the variance of the

measure image, which is a function of the filter orientation and the illuminant tilt:

( )σ φ τ φ τm a b2 2( , ) cos= − + (6.2.2e)

where             a and b are constants.

Consequently, we predict that the variance of the measure image will vary with the

square of the cosine of the angle between the illuminant vector and the direction of

maximum sensitivity of the Gabor filter. We can clearly observe this result if we

integrate equation 6.2.2c numerically. The resulting function can then be sampled at

values of φ corresponding to our filter set and plotted as a fuction of tilt, with

ω0=0.125ωs.
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The result of the numerical integration and evaluation are plotted against

cos2(φ−τ) in Figure 6.2.5. In all cases a near linear relationship exists. The function

acos2(φ−τ)+b is also plotted, where the parameters a and b are the fitted using least

squares to give the best fit to the integration results. In the case of the φ=0° and φ=90°

curves, the best fit is visually indistinguishable from the evaluated curves and is not

plotted. In the case of the φ=45° and φ=135° the numerically evaluated curves exhibit a

small amount of hysteresis—presumably due to numerical approximations. The

hysteresis is symmetrical about the best fit curve. The numerical results agree well with

the analytical predictions, (6.2.2e).
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Figure 6.2.4 Numerical estimate of measure variance for an isotropic fractal surface.
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6.2.3 Feature Image Statistics

Assuming both the measure images to be zero mean Gaussian with standard deviation σm,

the magnitude image will have a Rayleigh distribution, Eq. 6.2.3a, parameterised by σm:
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Figure 6.2.5 The numerical integration of Eq. 6.2.2c for various values of φ.
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Rayleigh distribution:
p f

f f

m m

( ) exp= −⎛
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⎠⎟σ σ2

2

22

(6.2.3a)

with mean, μ π σf m=
2

(6.2.3b)

and standard deviation, σ π σf m= −2
2

(6.2.3c)

As was noted in the previous chapter, it is necessary to low pass filter the magnitude

image. Due to the earlier non-linear operation of calculating the magnitude image from

the quadrature images, it is not possible to model this in the frequency domain in the

context of the earlier results. Nevertheless, the mean response of the magnitude will be

largely unaffected by the low pass filtering, merely scaled by the sum of the filter

weights. Since the mean of the distribution is a linear function of σm , (Eq. 6.2.3b), we

predict from Eq. 6.2.2e that the feature mean will vary with a relationship of the form:

μ τ φ τf a b( ) cos( )= − +

 Although we cannot predict the value of the standard deviation, we can

hypothesise its relationship with tilt angle. The low pass filter is isotropic, and our

(linear) model of rendering induced directionality is independent of radial frequency (if

we ignore imaging artefacts). Consequently, it would be reasonable to suggest that the

standard deviation of the filter shares the tilt characteristics of the magnitude image,

since the standard deviation of the magnitude image is also a linear function of σm (Eq.

6.2.1k). We therefore hypothesise that both the mean and standard deviation of the

feature follow a relationship of the form:

σ φ τf a b= − +cos( )

We shall now compare this prediction with the filter output obtained from both

simulation and experiment.

6.3 Testing the theoretical predictions

6.3.1 Verification by Simulation

The figure below shows the measured mean and standard deviation of a feature derived

from a single φ=0° filter applied to an synthetic, isotropic, fractal surface. Both the mean
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and the standard deviation are scaled to give a maximum of unity. We also plot two

additional waveforms for comparison, the absolute value of the cosine and the square of

the cosine. The parameters a and b have, in both cases, been estimated using a least

squares fit to the average of the mean and the standard deviation values.
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Figure 6.3.1 The effect of tilt angle variation on feature output

We note several points from the above graph:

 (i) the mean and standard deviation have very similar tilt responses,

 (ii) both have a similar a/b ratio,

 (iii) both the mean and the standard deviation appear to be most successfully 

modelled using the absolute function. This is in agreement with the theoretical 

predictions.

In this thesis we will adopt the a⏐cos(φ−τ)⏐+b relationship as an approximation

for the dependency of both the mean and standard deviation of the feature images on the

illuminant tilt.
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In the previous graph we only considered the case of a single filter, in any

application it would be normal to use a larger feature set. In Figure 6.3.2 we apply all the

filters of the set within a frequency band, each is scaled by the same amount. As was

predicted in Eq. 6.2.2e, the waveforms are effectively phase shifted versions of that

shown in Figure 6.3.1 each of which reaches its maximum when the tilt angle coincides

with the filter orientation, i.e. τ=φ.
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Figure 6.3.2 Tilt effects on the means of features obtained over a range of orientations in

the F25 band.

Since the waveforms are phase shifted versions of each other, varying the

illuminant tilt may be considered as being equivalent to rotation of the image in the case

of an isotropic texture. To demonstrate this point, we plot the mean output of a fifth

feature. This feature is derived from an isotropic, Gaussian bandpass filter1. As expected,

this is almost unaffected by tilt variation.

We now consider the effect on feature output of tilt variation on the directional

Ogilvy surface, again the feature means have been scaled by the maximum value of the

largest waveform.

                                               
1 Developed by T. Wittig
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Directional Surface
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Figure 6.3.3 F25 Filter responses to directional texture with varying tilt.

We note the following points:

 (i)  on visual inspection the ⏐cos (φ−τ)⏐ relationship appears to hold for both textures

and all filters.

 (ii)  the output of the filter (φ=0°) orientated at right angles to the grain of the surface is

much larger than that of the other filters in the band.

 (iii)  the feature mean of the isotropic filter is heavily dependent on the tilt direction.

6.3.2 Verification by Experiment

We now consider the two real test samples Rock and Striate. As with the isotropic

synthetic surface, the feature means for the Rock texture all vary in a cosine manner of

approximately equal amplitude, though with a slightly lower a/b ratio.
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Figure 6.3.4 Filter responses to ’Rock’ surface illuminated from various tilt angles.

The ’Striate’ texture is analogous to the Ogilvy surface. As with the synthetic case

all features vary in an approximately sinusoidal manner. The filter means can all be

approximated by sinusoids of the same amplitude save that feature measured

perpendicularly to the grain, which has a much larger amplitude.
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Figure 6.3.5 Filter responses to ’Striate’ texture.
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Although the feature means are important, in the context of discrimination the

standard deviation of the feature must also be considered. In Figure 6.3.6 and Figure

6.3.7 the means and standard deviations of features derived from filters oriented at φ=0°

and 90° are plotted for the Rock and Striate surfaces respectively. An a⏐cos (φ−τ)⏐+b

curve is also shown in each graph where the a and b parameters have been estimated

using least squares.

In the case of Rock the feature mean fits well to the parameterised curve, though

the minima of the F25d0 graphs are much smoother than predicted. Both the mean and

standard deviation of the F25d0 features derived from Striate appear to be a better fit in

this respect, though there is a small phase disparity between the predicted and the

observed curves in the F25d90 case. Nevertheless, the proposed relationship does appear

to be a reasonable approximation to the experimental findings.
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Figure 6.3.6 Variation of Rock feature statistic with tilt angle.
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In Table 6.3.1 and Table 6.3.2 the estimated parameters for the feature mean/tilt

relationship are tabulated for the Rock and Striate surfaces respectively. It was noted

earlier that the mean curve of the F25d0 feature for the Striate texture is much larger

than the means of the other features in the set. The a (tilt-dependent) parameter reflects

this; the F25d0 feature parameter is almost twice that of the other features. The b

parameter estimate for F25d0 is noticeably larger than for the features, however, the

difference is much less significant than was observed with the a parameter.
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Figure 6.3.7 Variation of Striate feature statistics with tilt angle.
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Striate Mean Standard Deviation

Filter a b a/b a b a/b

F25d0 14.077 5.987 2.35 2.440 1.181 1.348

F25d45 7.702 4.740 1.62 1.608 0.969 1.659

F25d90 6.870 4.125 1.67 1.534 0.938 1.636

F25d135 7.086 4.914 1.44 1.839 1.083 1.698

Table 6.3.1 Feature statistics for Striate surface.

The parameter estimates for the Rock show a significant amount of variation in the b-

parameter, although the variation is small relative to that observed in the Striate

parameters. The a parameter is more consistent for the Rock than for the Striate surface,

and the variation which does exist does not show the same degree of linkage to the b-

parameter as in the Striate estimates.

Rock Mean Standard Deviation

Filter a b a/b a b a/b

F25d0 9.245 5.642 1.64 1.522 1.043 1.46

F25d45 7.606 5.687 1.34 1.321 1.147 1.15

F25d90 7.950 5.642 1.41 1.498 1.235 1.21

F25d135 8.736 5.205 1.68 1.101 1.162 0.947

Table 6.3.2 Feature statistics for Rock surface.

The results obtained are to some degree ambiguous, however, we make the

following conclusions, albeit based on a very limited data set: the a parameter is largely

dependent on the nature of the surface in the direction of the filter—it will therefore vary

widely from surface to surface. The b-parameter also contains an element of dependency

on the surface characteristics within the filter's bandpass region, however, it is largely

invariant to the surface characteristics.
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6.3.3 Summary of Classifier Modelling

In this section we have shown that measures derived from directional Gabor filters vary

with tilt. Both mean and standard deviation vary with a relationship approximated by Eq.

6.3.3.

a bcos( )φ τ− + (6.3.3a)

 We have shown this using theory, simulation and experiment.

We have also shown that an isotropic filter, applied to the image of an isotropic

surface is unaffected by tilt variations. However, an isotropic filter applied to the image

of a directional texture will be affected by tilt variation. In addition, an isotropic feature

will not, of course be able to capture important directional information.

By demonstrating that tilt affects the output of features, we have shown that there

exists a potential problem for classification. In the following sections we show tilt

induced classification failure occurring for several texture classification tasks.

6.4 The Effect on a Classifier

We shall now consider the effect of tilt variation in terms of classification

accuracy. Due to interdependency of classes associated with classification, any treatment

of this subject is necessarily empirical. We use the controllability of the synthetic

textures to define a relatively simple classification task. This enables us to reduce the

feature set to just two features (Gabor filters orientated to 0° and 90°) and still maintain a

good level of classification. With only two features we may characterise the

classification process with a two dimensional scatter plot. We also plot the feature

measures for each texture in Figure 6.4.1. This section is designed to use this window

into classification to gain an intuitive understanding of how clusters behave during tilt

variation and how this will affect classification.
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Figure 6.4.1 Feature Means derived from F64d0 and F64d90 Filters

The classifier is trained on surfaces illuminated from τ=0°, classification at this

stage being generally good, the most prominent misclassification being mutual confusion

between the isotropic and mildly directional surfaces, (see Figure 6.4.2). The relatively

compact nature of the clusters in the vertical direction reflects the attenuation of the

vertical frequencies.

As the illumination is rotated towards the vertical, the vertical frequencies are

accentuated and the horizontal frequencies attenuated. The cluster centres now begin to

trace out an approximation to simple harmonic motion in feature space whereas the

clusters themselves contract and expand along their feature axis. By the time the

illuminant has reached the vertical, all the clusters lie in the area of feature space

assigned to the surface which displayed most vertical energy at τ=0°, which in this case

is the isotropic surface. Misclassification of the other textures is almost complete.
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Figure 6.4.8
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6.5 Classification Experiments For Real Textures

The thesis of this chapter is that variation in illuminant tilt between training and

classification can cause the classifier to fail catastrophically. In this section, this effect

will be demonstrated experimentally using real data.

6.5.1 Test Criteria

In order to demonstrate this effect, we must show three things:

1. The classifier performs well when the tilt angle is identical for training and 

classification.

2. The misclassification rate increases progressively, though not necessarily 

linearly, with the cosine of the angle between the illuminant vectors of the 

training and classification,

3. Implied from (2) is that the misclassification rate at τ=180° should be 

approximately equal to that at τ=0°.

6.5.2 The Data Set

In this section we will use three texture montages: Anaglypta, Stones1 and

Stones2, shown in Figure 6.5.1. The Anaglypta montage consists of highly directional,

and highly uniform textured surfaces. It consequently represents the easiest classification

task. The Stones1 montage consists of three approximately isotropic rock surfaces and

one highly directional surface, Striate, in which the directionality is aligned

approximately with the Y-axis, (θ=0°). The textures comprising the Stone2 montage are

all directional to some degree. The directionality of the Slate and Pitted surfaces is

aligned with the θ=0° direction. The Twins direction has its most prominent

directionality in the direction θ=90°, while the radial texture is directional at θ=45°.
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Figure 6.5.1 Test montages of surfaces, illuminated at Tau 0° (left) and 90° (right).
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6.5.3 Experimental Work

First Criterion

Our first criterion is that the classifier should be perform classification accurately

for the τ=0° image. Real textures were classified using the same system as the synthetics

in the previous section, though a much larger feature set with twelve members and a

12*12 mode postprocessing filter were used to achieve an acceptable classification

accuracy. Unfortunately the ability of the classifier to cope with the heterogeneous nature

of surface roughness on the samples is poor, and to obtain an acceptable level of

accuracy, it was necessary to use the entire montage for training, this means that we are

only testing the ability of the features to describe the textures and are not testing the

classifiers ability to generalise from the training data. The classified images and the

misclassification rates are shown in Figure 6.4.2.

Montage Misclassification
(%)

Anaglypta 2.88

Stones1 5.09

Stones2 3.29

Figure 6.5.2 Montages trained and classified at Tau 0°.

As predicted, the anaglypta montage is the easiest classification. Whereas the Stones

montages are classified to a much lower degree of accuracy.
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Second Criterion

The second criterion for our thesis is that the classifier should be progressively

less accurate as tilt angle increasingly differs from the training angle. The classifier was

trained at τ=0° and then tested on images of the surfaces illuminated from τ=0 to 180° in

10° degree increments. The degree of misclassification for this classifier was recorded

for each illumination condition in Figure 6.5.3-5 In addition to the classifier trained at

0°, a classifier retrained for each tilt angle, labeled "Best", was also employed. This acts

as a control in displaying the level of difficulty of classification inherent in a particular

classification, which enables us to resolve the misclassification rate which is due to

inappropriate training data.

In only one of the three cases does the misclassification rate increase in an

approximately monotonic fashion as the cosine of the tilt angle increases—fulfilling our

second criterion. However, deviations from the expected behaviour occur in regions of

high misclassification, and are still of a magintude such that classfication at these tilt

angles, with this classifier, is pointless. In this way we argue that the second criterion has

been fulfilled to a satisfactory degree.
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Figure 6.5.3 Misclassification rates for Anaglypta montage.
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Stone1 Montage
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Figure 6.5.4 Misclassification rates for Stones 1 montage.
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Figure 6.5.5 Misclassification rates for Stone2 montage.

Third Criterion

In order to show that the increased rate of misclassification is due to the effect of

illuminant tilt our third criterion, i.e. an accurate classification at τ=180°, must be met. In
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all cases the classification at τ=180° is significantly poorer than that at 0°, however, in

the context of the classifications at intermediate values of τ, we believe the third criterion

has been fulfilled .

Misclassification

at τ=0°

Misclassification at

τ=180°

Anaglypta 2.88 4.30

Stone1 5.09 10.95

Stone2 3.29 9.19

Table 6.5.1 Comparison of misclassification rates.

6.5.4 Summary of results

 In order to show that classification is dependent on the illuminant tilt angle we set

three criteria:

1. the classifier must be able to classify surfaces imaged under the same illuminantion

conditions as those at which the training data was obtained,

2. the level of misclassification should increase with the cosine of the difference between

the tilt angles at training and classification,

3. the classifier should be able to classify the τ=180° image accurately,

Using experiments on real textures, it was shown that these criteria were fulfilled to a

level that provides strong evidence for the tilt dependency. We therefore argue that

classification is tilt dependent, and, where illuminant tilt cannot be held constant between

training and classification, the naive classifier developed in the previous chapter is not

adequate.

6.6 Summary

At the beginning of this chapter we stated two aims: to model the effect of

illuminant tilt on the classifier, and to observe the effect of tilt on the accuracy of

classification.

Sections 6.2 and 6.3 were concerned with modelling the tilt response of the

features. In the first section, the analytical model of the imaging process was extended to

include the linear stage of the classifier, i.e. Gabor filtering. The analysis allowed the
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prediction that the first order statistics of the feature images would vary with an

a⎜cos(φ−τ)⎜ +b relationship. This was verified approximately by the simulations and

experiments performed in section 6.3.

While the calculation of features is amenable to analysis, the process of

discrimination is inherently non-linear and cannot be integrated into our model. In order

to extend our analysis we used a synthetic classification task to observe the effect of tilt

on the movement of feature clusters across discriminant boundaries. Finally the

degradation in classification accuracy due to tilt variation was shown on three montages

of real textures.

In this chapter, we have shown, using theory, simulation and experiment, that

varying the tilt angle of the illuminant induces the movement of feature clusters. Where

training and classification images are obtained at different tilt angles, this movement may

cause clusters to move across discriminant boundaries. Using simulation and experiment,

it was shown that this may occur to such a degree as to seriously degrade the

performance of the classifier. In the next chapter we will consider several schemes to

mitigate this effect.


