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φ Direction of propagation

σx Standard deviation of the Gabor filter envelope in the x-direction.

σy Standard deviation of the Gabor filter envelope in the y-direction.

u0 Centre frequency of filter in the x-direction.

v0 Centre frequency of filter in the x-direction.

Bφ Polar bandwidth of the filter.

Br Radial frequency bandwidth of the filter.

σp Measured polar bandwidth
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σp Standard deviation of the Gabor filter spectrum in the x-direction.

σy Standard deviation of the Gabor filter spectrum in the y-direction.

Feature Parameters

σm Standard deviation of measure image.

μr Mean of Feature image

σr Standard deviation of Feature image.

a Parameters of feature/tilt model.

b         "                         "

Mn Mean vector of class n

Σn Covariance matrix of class n

p l
l i
iF

F( ) Probability that a vector x belongs to class n

k(F|li) Probability that a vector x belongs to class n over the entire tilt range.

Symbols Associated with Compensation Schemes

m(ω) Parameters of Chantler’ filters.

b(ω)       "                                  "

i0,i90,i180 images obtained from τ=°,90° and 180° respectively.

iNL Non-linear component of surface to image mapping.

ip Image which is a linear function of p-derivative field only.

iq Image which is a linear function of qderivative field only.
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Abstract

This thesis sets texture analysis in a physical context. Models of the system

components are obtained from the literature and integrated into a description of the

process linking the rough surface to the feature set on which classification is based. The

first component is the rough surface, models of the surface topography are selected from

the fields of tribology and scattering. Various reflectance models are considered and a

spectral model of the surface/image relationship from the literature, is evaluated and

discussed. The relationship between the incident image and the captured data set is

investigated and described. This model is integrated with the spectral description of the

feature measures to form a model of the transition from surface to feature set.

It is clear from this model that the direction of illumination can affect the

directionality of an image obtained from a given surface. Changes in the illuminant

direction will result in changes in the feature outputs. If the illuminant direction is altered

between training and classification, the classification rule may be inappropriate and

classification poor. Several schemes are considered to combat this problem. A technique

which uses a representation of the physical surface as the basis for the generation of

appropriate training data is selected for further evaluation. The surface derivative fields of

the training surface are estimated using photometric techniques. A rendering algorithm

uses these estimates to simulate the appearance of the training surface when it is

illuminated from an arbitrary direction. It is shown that where illuminant direction is

varied this system is able to perform significantly better than a naive classifier, and in some

cases approaches the level of accuracy obtained from training the classifier under the

conditions at which classification is performed.
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Texture analysis is a significant area in the field of machine vision, this is in large

part due to the important role of texture in the early visual system. It follows from this

that texture has been seen as being critical to general visual systems working in

unconstrained environments, consequently, less emphasis has been placed on more

controlled inspection tasks. In an unconstrained system it is impractical to adopt a

modelling approach and most work in texture analysis takes the image as its starting point.

This thesis is concerned with the inspection of rough textured surfaces. By making explicit

the circumstances under which classification occurs we are able to employ modelling of

the system and describe texture classification in the context of the physical system which

gives rise to a textured image.
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Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with the application of texture analysis to discriminate

between rough, textured, surfaces. In Figure 1.1.1 we give an example where this ability

is required. A fossilised ammonite is embedded in a rock matrix. Both the ammonite and

the underlying rock surface have their own, distinct, surface structure which are apparent

in the image. This thesis treats the problem of identifying the fossil and isolating it from

the background surface as one of detecting a desired signal buried in noise.

Figure 1.1.1 An ammonite (190MYA) fossilised in rock matrix.

Implicit in this approach is the assumption that the observed image of a surface is a

function of the surface and is either independent of other variables, or that these variables

are constant. In practice, perceived texture may be due to a projected illumination pattern,

surface markings, the interaction of illumination with a rough surface or any combination

of these. This work is concerned with the automated classification of textures belonging

to the third group.

While this type of texture is formed by the interaction of illumination and rough

surface, it is desirable to classify the surface type regardless of illumination conditions.
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Consequently, work has been carried out on texture classification that is invariant to

changes in the illuminant intensity [Thau90] and colour [Healey95]. However, with the

exception of [Chantler94], the effect due to variations in illuminant direction is largely

neglected in the published literature.

The direction of the illuminant with respect to the texture may be defined by two

polar co-ordinates: slant and tilt. Slant is the angle between the camera axis and the

illuminant vector; in this work it shall be held constant at 60°. Tilt refers to the polar angle

of the illuminant on a plane normal to the camera axis, Figure 1.1.2a. The tilt angle (τ) is

also shown in Figure 1.1.2b with the coplanar general orientation parameter θ. The aim of

this work is to maintain consistently accurate classification of textures under changes in

the illuminant tilt angle.

We illustrate the importance of illuminant direction for rough surface

discrimination with the following example. Consider the fossilised trilobite (Elrathia

Kingii, 550 MYA, Utah) shown in Figure 1.1.3a. Here the fossil is illuminated from

tau=90° and there is little texture information that can be used to segment the fossil from

the surrounding matrix. Illuminated from 0° (Figure 1.1.3b), however, the animal's

pleurae become visible as vertical undulations, allowing the fossil's thorax to be identified

using a vertically oriented Gabor filter (Figure 1.1.3c).

Illuminant

Test
Surface

Tilt
Angle (τ)

Slant
Angle (σ)

Illuminant θ

τ

(a.) (b.)

Figure 1.1.2 Illuminant tilt and slant angles.
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Illuminant tilt is evidently important in attenuating or accentuating directional

information that may be critical to classification. As a consequence of this, a shift in the tilt

direction will alter the image texture of a given surface. It follows that a classifier which

has been trained using images of surfaces obtained at a given tilt angle—which classifies

well under these conditions—may not be able to accurately classify the same surfaces

illuminated from different tilt angles. The goal of this thesis is to develop a classifier which

will be able to classify a surface regardless of the illuminant tilt angle at which the surface

was imaged.

1.2 Texture Analysis: A Brief Overview

In this thesis we will use techniques developed in texture analysis to discriminate

between rough surfaces based on their visual appearance. Texture analysis, itself, has a

long lineage and represents the confluence of several disciplines. In this section we briefly

note the main areas which have provided either the motivation to investigate texture, or

the techniques which have been used to do so.

Biological visual systems are biased towards the detection of rapid changes of

intensity over either time or space, since these stimuli are most likely to be important to

the organism. As a consequence of the sensitivity to spatial variation, textures are

particularly useful stimuli for the investigation of visual systems. Furthermore, as Gibson

stressed, biological visual systems are adept at inferring surface orientation from texture

cues [Gibson50]. In fact, Gibson saw texture as being more than a visual cue but rather as

having a fundamental role in his ecological view of perception[Bruce p.226]. As Bruce

(a)Fossil Illuminated  (b)Fossil illuminated  (c) The segmented image.

from Tau 90°. from Tau 0°.

Figure 1.1.3 Classification of a trilobite fossil (550 MYA).
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and Green put it "the input for a receptor is a stream of photons, but the input for a

perceiver is a pattern of light extending over space and time" [Bruce p.376]. Gibson’s

work analyses the relationship between the optical pattern and the observer’s environment.

Texture and optical flow are considered the primary sources of information about the

environment [Gibson79]. Perhaps the most convincing evidence of the biological

importance of texture is its ability to affect visual systems using disruptive pattern

camouflage, where texture is used to ’jam’ or drown out visual cues such as outlines.

Biological systems have also contributed to texture analysis in a less predictable

way. The use of a disruptive camouflage pattern requires pigmentation cells to ’switch’ to

one of two or more colourings. The cells are identical, and have no centralised form of

communication, i.e. they have no sense of their position, yet they must switch colouring in

a spatially organised manner. Turing hypothesized that the mechanism by which they do

so is due to the concentration of levels of certain chemicals. The processes by which the

chemicals diffuse across the surface and react with each other give rise to the global

spatial pattern [Turing52]. Recently, several algorithms that simulate the reaction diffusion

effect to produce textures have been developed for computer graphics

[Turk90][Witkin90]. Picard includes reaction diffusion as an important class of textures in

her, “society of (texture) models”, and notes its ability to synthesize textures comprised of

spots and stripes [Picard96].

In a typically sized image there may be approximately a quarter of a million data

elements—an equivalent volume of data to a census of a small city; consequently it is

hardly surprising that statistical methods should have been applied. What is special about

texture images, from the statistical point of view, is the spatial interaction of both

neighbouring and distant elements. Texture images have allowed the investigation of

spatial interaction models in a much more visual and intuitive way. The spatial interaction

may be described in terms of second order probabilities and several methods have been

developed which attempt to parsimoniously extract the information held in the joint

distributions.  Co-occurence techniques e.g.[Haralick73] extract features from the

distributions, whereas  Markov models e.g.[Chellappa85] have been used to model the

second order probabilities. In either case the algorithms are generally limited to

observation of the interactions between immmediately neighbouring pixels.

A large class of textured images may be considered as two-dimensional stochastic

signals and consequently fall into the realm of random signal processing. Analogously to
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the statistical approach, the interaction and interdependence of neighbouring pixels has

motivated the use of techniques which are capable of predicting the likely value of a

pixel’s intensity from those of its neighbours. Autoregressive models have been used, both

on their own and with Moving Average models, to both model and discriminate textures

[Kayshap84]. Furthermore, the requirement to localise what is an essentially non-local

phenomenon has motivated the use of time/frequency analysis. One of the main areas of

research has been the generalisation of one dimensional signal processing algorithms to

two dimensions. Wavelets [Livens97], Wigner-Ville distributions [Song92] and many

other techniques have followed this path.

With the partial exception of those techniques that use texture as a cue to

orientation, all the approaches mentioned above take the data set as their starting point. In

this thesis we shall apply texture analysis techniques to a data set which does have a

specified physical meaning—that of a rough surface interacting with light. By treating the

imaged texture as a function of surface topography, which will be used to discriminate

between surfaces, we must account for certain variables in the physical process that may

affect the data set and our classification of it. The goal of this thesis is to develop a

classifier that is immune to variation of one of these variables: illuminant tilt.

1.3 Scope

In defining the scope of this research it is useful to adopt a hypothetical example:

consider an inspection system tasked with segmenting a rough, textured, surface into

regions with uniform surface characteristics. This will be accomplished using an overhead

CCD camera, directional lighting and an algorithmic classification system (Figure 1.3.1). 

The surface is considered to be globally flat, i.e. each of its partial derivative fields

sum approximately to zero. Furthermore, the surface reflectance function is considered to

be diffuse, and uniform throughout the surface. The light rays incident on the surface are

considered to be parallel and of equal intensity across the imaged region. This is consistent

with a point source located at infinity or light originating from a parabolic reflector. The

imaging device is assumed to be a monochrome CCD camera located directly overhead

the texture sample. In addition, we shall assume the topography of the surface is small

relative to the distance between the camera and the surface, and that the projection of the

surface onto the CCD array is orthographic.
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Whereas most work in texture analysis has taken the stored data set as its starting

point, the work described here is concerned with modelling the transitions from surface to

image to numerical and finally symbolic representation. This thesis is specifically

concerned with modelling and remedying the effect of changes in the direction of the

illuminant tilt for the purposes of surface classification.

1.4 Original Work

This thesis makes three main contributions to the field of texture analysis:

• The first contribution of this thesis is the combination of physically verified

models, drawn from several areas within the field of computer vision and others

external to it. The combination of these elements allows a much more analytical

approach to texture analysis within the scope of this thesis. The analytical approach

advocated in this thesis allows the systematic development and evaluation of texture

analysis algorithms in the context of the actual physical system.The application of

physics-based vision techniques was pioneered in the field of shape from shading,

however, its application to texture analysis, as described here, is original. Pentland

published a series of papers linking fractal surfaces to observed textures

Figure 1.3.1 The classification system.

Measure
Extraction

Post-
Processing

Classified
Image
l(x,y)

Measure
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Image
f(x,y)

Discriminant
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[Pentland84,85,86 and Kube88]. He did not present any physical justification for the

models of the surface or the reflectance function he used. Healey has been active in

many of the fields considered in this thesis, such as reflectance [Healey89], imaging

artefacts [Healey94] and texture analysis [Speis96]; he has not, however, attempted to

relate these areas to each other.

• We have described the effect of illuminant tilt on a set of Gabor features and

shown that this effect may introduce a significant degree of misclassification. The tilt

induced misclassification problem was first noted by Chantler [Chantler94]. By

adopting feature measures that are consistent with the surface and image models, we

believe we have both verified many of Chantler’s findings and also formed expressions

that are more coherent and intuitively understandable.

• An important contribution of this thesis is the development of a model-based

technique to reduce the effect of tilt changes on classifier accuracy. We have verified

the performance of the system for tilt variation and believe it offers an effective and

physically meaningful mechanism for the suppression of tilt effects.

The combined result of these contributions may be stated as follows; a physical

phenomenon was accurately predicted and the effects at the algorithmic level modelled.

Using our understanding of the physical system, a technique was developed which reduces

the effect of the physical phenomena on the computional level. In this way, the goal of the

thesis, i.e. to develop a classifier robust to illuminant tilt, is achieved.

1.5 Thesis Organisation

This thesis may be divided into two chapter groupings. The first group comprises

Chapters 2 to 6 and develops a theoretical framework for the classification of rough,

textured, surfaces on the basis of their visual appearance. One of the predictions of the

model is that the visual texture, as well as being a function of the surface, will be affected

by the illuminant tilt. The second part of this thesis, Chapters 7 and 8, focuses on

techniques for the consistent classification of rough surfaces robust to illuminant direction.

Development of an analytical model is broken into the chapter aims and objectives

shown in Table 1.5.1. Analysis begins in Chapter 2 with the rough surface. The literature

associated with tribology and scattering theory is consulted to obtain firstly, a means of

describing rough surfaces, and secondly, models of rough surfaces framed in terms of that

form of description. In Chapter 3 a spectral model of the relationship between the surface
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description and the image incident on the camera lens is developed. An existing model

[Kube88] is evaluated in terms of optimality and of accuracy. The conversion of this

image into a usable data set is carried out by camera and framestore, and is modelled in

Chapter 4. This chapter forms an analytical model of the imaged data and develops a noise

engine with estimated parameters of the conversion process. The classifier developed in

Chapter 5 operates on the data set and converts the two dimensional signal into symbolic

form. This represents the final component in the conversion from physical surface to

symbolic representation. However, in Chapter 6 it is shown that varying illuminant

direction between training and classification can render the classifier useless; the second

part of this thesis examines techniques designed to remove this dependency.

Thesis Goal To develop a tilt invariant classifier

Thesis

Sub-goal

To form a model of the effect of tilt

Chapter Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6

Aims

Objectives

Table 1.5.1 Aims and objectives of first chapter grouping.

The second chapter grouping considers several schemes designed to tackle the

problem of tilt dependency. Chapter 7 considers three techniques advanced by Chantler

[Chantler94] as well as the feasibility of applying shape from shading techniques. In fact,

whereas some of these schemes do reduce the effect of tilt on classification, none

eliminates the effect. In Chapter 8 a novel technique is proposed, which models the

surface and the processes analysed in the first part of this thesis during its training stage.

The technique is evaluated by simulation using various model surfaces, the empirical

reflectance map and the noise engine. The scheme’s performance on real data is then

evaluated at each process step before final evaluation on the criterion of misclassification.

To model the
topography of
rough surfaces.

To model the
process of
image
formation.

To model the
imaging device.

To develop a
texture
classifier suited
to rough
surfaces.

To model the
classifier.

To find:
•a means of
description
• models of
rough surfaces

• To describe
the local effect

• To develop a
spectral model.

Selection of
appropriate
algorithms for:
• Measure
extraction
•Post-
Processing
•Discrimination

Modelling the
effect of tilt on:
• Measure
spectra
• Feature
statistics

To model:
• The device
transfer function
• Sources of
noise
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Finally, Chapter 9 summarises the findings of the previous chapters and draws

together the conclusions of the work carried out in this thesis.
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Chapter 2

Modelling Rough Surfaces

2.1 Introduction

The goal of this thesis is to develop a classifier that is suited to the discrimination

of rough surfaces, and which is robust to changes in illuminant tilt. It is the belief of the

author that this goal can best be achieved by gaining an understanding of, and an ability to

model, the physical, as well as the computational aspects of this problem. This chapter

considers the first data structure (or signal) in the surface to symbol chain, the surface

topography. In subsequent chapters we shall consider the transformations of this signal

that occur at higher levels in the process of recognition.

The aim of this chapter is to develop a physically based model of the surface. The

first objective is to arrive at a method for characterising textured surfaces and to define the

limitations of this technique. Having found a means of description, the second objective is

to adopt a group of models which are defined in terms of that method. These models will

then form the basis of subsequent analysis of the recognition process.

To attain these two objectives, this chapter is structured in the following way. The

first section consists of a literature survey of methods for the description of rough

surfaces. The method adopted, the power spectrum, forms a complete description of a

surface in conjunction with the phase spectrum. The next section develops a stochastic

model for the phase spectra, which includes an ad hoc definition of the textures that lie

within the scope of this thesis; this section also describes a simple test to determine

whether a surface complies with the phase model’s definition. Having adopted the power

spectrum as the surface descriptor, we next consider rough surfaces models defined in

terms of the power spectrum. Three models are adopted: a linear roll-off (or fractal)
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model; a fractal model modified to have a flat spectrum below a parameterised cut-off

frequency; and a model that varies the cut-off frequency with polar angle to introduce

surface directionality. These models are discussed with reference to experimental findings

reported in the literature.

2.2 Rough Surface Description

2.2.1 A Brief Review of Possible Sources of Models

Several fields of research have been surveyed to consider descriptive techniques

and to construct a suitable model. One source considered was visual texture analysis,

where investigators have used a wide variety of techniques such as Markov modelling

[Chellappa85], ARMA modelling [Kayshap84] and Gabor filtering [Jain91]. Whereas early

approaches in texture analysis were based purely on discrimination, more recently,

techniques which attempt to model textures have come to the fore. Furthermore, most

techniques are inherently two dimensional and explicitly consider anisotropy. There are,

however, two drawbacks to the use of texture analysis techniques. Firstly, most are

designed to segment an image and are consequently optimised for the localisation of a

texture, rather than its accurate representation. The second and more serious difficulty

stems from the fact that these techniques have been developed for visual textures.

Applying them to an application outside their original context has the consequence that

reported parameter values cannot be used to model surfaces, so any surface model would

lack experimental verification in this important respect. Texture analysis techniques will

therefore not be considered as a means of either surface description or modelling.

Another potential area of interest is terrain modelling, e.g. [Austin94]; recently

interest in modelling land surfaces has increased, largely motivated by the development of

fractals and microcomputers. Because the subject is comparatively new, there is little

literature and theoretical framework compared to some of the more established areas such

as scattering. The physical basis of the application, and the overlap in descriptive methods,

does however, make this a possible source of realistic modelling data.

The texture of surfaces is of interest in many engineering applications. The

interaction of light with surfaces which have been “optically finished”, i.e. manufactured to

an accuracy comparable with the wavelength of light, is of considerable interest in
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scattering theory. Surfaces manufactured to less exacting standards are also studied,

usually with reference to their frictional properties in the field of tribology1. The

combination of theoretical background and the emphasis on actual physical measurements

makes these fields the most attractive areas to survey, and this chapter will be restricted to

these fields.

Both scattering theory and tribology use surface description as a stepping stone

towards subsequent analysis of their respective properties of interest. Despite this common

interest in surface description, the fields are distinct and often use different parameters. In

general, the descriptive techniques favoured in scattering theory, e.g. the Power Spectral

Density (PSD) and rms roughness, are more suited to this research than their counterparts,

e.g. the Autocorrelation Function (ACF) and centre line average, used in tribology. On the

other hand, tribological surfaces exist on a scale that is much closer to, and which may

actually overlap with, that at which a vision system is likely to operate. It follows that

surfaces of this scale are more likely to resemble those which a vision system will

encounter and are therefore more reliable sources of model parameters. Fortunately, there

is a large degree of overlap in the subjects and we choose to treat both simultaneously.

A description of a surface may be made on several levels: a single parameter may

be sufficient to characterise a surface for some purposes; in other cases a much greater

degree of description is required. The organisation of this section follows an increase in the

sophistication of the description and its ability to define a surface; the flow of the section is

in consequence approximately chronological. We have resolved three distinct levels of

description. The first level seeks to characterise some property of the surface with a single

parameter such as the root mean square (rms) height or gradient. On the second level, a

statistical model, in the form of a histogram, is applied to the variation of height or

gradient. This is a natural extension to rms values, i.e. the standard deviation of surface

height and slope, but in another respect it represents a paradigm shift since it allows the

use of surface models, such as Beckmann and Spizzichino’s height model [Beckmann63]

or Torrance and Sparrow’s slope model [Torrance67]. At the third level in our taxonomy

are those techniques which incorporate spatial interaction, such as the PSD and the ACF.

Given certain assumptions discussed elsewhere in this chapter, these form the basis for

models of a wide range of surface textures.

                                                       
1 Tribology is the study of friction, lubrication and wear between moving surfaces.
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2.2.2 Single Parameter Description

The most basic form of profile description requires the use of only one parameter.

The 1930’s saw new emphasis placed on profile measurement and a large number of

measures were developed around this period [Parsons, p.268]. These measures vary in the

degree to which they are specialised to a particular application and in their mathematical

tractability. We will consider the two most common and general measures of roughness,

rms roughness σs and the Centre Line Average (or average roughness) Rcla, in addition we

will discuss the much less popular rms slope parameter.

σs (2.2.2a) and Rcla (2.2.2b) have, broadly speaking, been used in different fields;

σs roughness has tended to be used to describe optical finish, whereas Rcla is more

commonly associated with machined surfaces [Bennett89 p.39]. Despite this, even in the

field of machining, most theoreticians prefer to use σs, since it allows the use of statistical

random process techniques (these will be discussed later in this chapter). It is worth noting

that for surfaces which have height distributions conforming to the normal distribution,

there is an approximate relationship between the two parameters (2.2.2c). In this thesis,

however, the preferred parameter will be rms roughness due to its compatibility with

statistical analyses.
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Rcla ≈ 0.8 σs (2.2.2c)

The rms slope parameter, mrms (2.2.2d),  is much less commonly used than either

of the other measurements. Bennett states that the measured rms slope may vary by a

factor of 50 depending on the profilometer and the separation of sampling points

[Bennett89 p.40]. Whereas rms roughness is commonly used in physical scattering
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models, such as Beckmann and Spizzichino [Beckmann63], rms slope has been used in

geometric optics models such as Torrance and Sparrow [Torrance67]. Despite the

problems associated with this parameter, it is useful in the context of this thesis. The same

texture analysis technique may be applied to images ranging from electron microscopy to

satellite imagery; absolute scale is in many cases relatively unimportant. The slope of a

facet is more important than its height, and the rms slope provides a parameter particularly

suited to the purposes of this research.
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where s’(x) is the derivative of the function s(x) at point x.

In practice, the values of both the rms roughness and slope depend on the

measuring instrument. The length of the sample, the area resolution and the sampling rate

all affect the parameters—this being especially true of the rms slope. Strictly speaking,

neither the rms slope nor the rms roughness are defined for non-bandlimited surfaces.

2.2.3 Histogram Description

In retrospect, it now seems a natural progression from considering the rms

roughness, i.e. the standard deviation of the heights of a surface, to the adoption of a

statistical model of height distributions, though this development does not seem to have

followed quickly. We believe that use of histogram description represents a significant

shift in the way surfaces were thought about since it not only implies a new degree of

discrimination between surfaces but also allows a certain degree of modelling.

The histogram does give an insight into the nature and history of a surface.

Surfaces which are the result of a large number of random events tend to have a Gaussian

distribution. Wear, grinding and abrasion tend to wear down and deform summits while

leaving valleys largely unaffected, which is reflected in the histogram taking on a negative

skew [Bennett89 pp.42-44]. Some turning and milling operations and the presence of

relatively large particulate matter on an otherwise smooth surface will result in the

histogram taking on a positive skew. It is worth noting, however, that use of skew, and of

higher moments of the distribution in general, is subject to artefacts in the sampling

process.



15

The histogram has been used to model surfaces: Beckmann uses a normal

distribution of heights in his scattering model, while Torrance uses a normal distribution of

slopes for his geometric model of specular reflection from rough surfaces. Stone

[Stone94] develops a taxonomy of models used for reflectance modelling in machine

vision, shown in Figure 2.2.1. Stone defines two important classes, isotropic and one

dimensional shown as the ellipses with vertical major axes. However, the major division is

between models defined in terms of either slope or height. Important subclasses of each

are defined by the Gaussian constraint. Since differentiation is a linear operation, Gaussian

height models have Gaussian slope distributions, though unless integrability is enforced,

the converse may not be true. While first order statistical surface models have proved

successful in these areas, their lack of spatial information means that they are clearly

inadequate for the representation of texture.

The statistical parameters of the height distribution have been further exploited in

conjunction with some spatial information. The two point height probability distribution,

analogous to the co-occurrence matrices used in texture analysis, allows the description of

correlation and structure within the profile. The related technique of Markov chains, again

with related applications in texture analysis, has also been applied to profile description

Figure 2.2.1 Stone’s taxonomy of roughness models
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[Ogilvy p.29]. However, these techniques have not been widely used in surface

description.

2.2.4 PSD and ACF

The forms of profile description discussed above do not take into account any

spatial correlation within the surface. This is a profound limit to their ability to characterise

surfaces to any satisfactory degree. At the next level of description the surface profile is

treated as a realisation of a random process. The tools with which Wiener laid the

foundations of random process theory: the autocorrelation function (ACF) and the power

spectral density (PSD) are now applied to the surface profile. The autocorrelation function

is the most popular approach in production engineering, while the PSD is more commonly

associated with scattering theory, due to the surface spectrum’s close relationship to the

scattered intensity of light from the surface.

Assume the surface profile is wide sense stationary and has zero mean. The

autocovariance function (ACVF) (2.2.4a) is the average product of the heights of two

points on a profile separated by a distance t, known as lag. The autocorrelation function

(2.2.4b) is the normalised (by surface variance) form of the ACVF2.

c t E s x s x t( ) [ ( ) ( )]= + (2.2.4a)

[ ]r t E
s x s x t

c
s

( )
( ) ( )= +

σ 2 (2.2.4b)

where t is lag.

In Figure 2.2.2 we plot the ACF for various surfaces. The ACF for a white noise

process approximates an impulse at zero lag; the ripple texture, shown in Figure 2.2.3a,

has a gradually decreasing periodic ACF, whereas that of the fractal surface (Figure

2.2.3b) falls monotonically as lag increases. The form of the decay for real surfaces has

been the subject of much controversy and several models have been proposed; the most

common models are the exponential (2.2.4c) and the Gaussian (2.2.4d). The exponential

form appears to be the better fit to the experimental data, however, it does suffer from a

discontinuity at zero lag; Ogilvy and Foster [Ogilvy89a] show that an exponential decay is

equivalent to a linear roll-off for at least part of the power spectrum. In practice, many

                                                       
2 These definitions are based on those used in scattering theory texts, [Ogilvy] and [Bennett], signal
processing texts, e.g. [Therrien] define the autocorrelation and autocovariance functions as:
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surfaces have ACF which do not conform to either form. Consider the ACF of the ripple

surface (the image of which is shown in Figure 2.2.3a), this exhibits zero crossings and a

large positive peak, suggesting that the surface contains a strong periodicity at that lag.

                                                                                                                                                                     

[ ]r t E s x s x t( ) ( ) ( )= +  and c t E s x s x s x t s x( ) [( ( ) ( ))( ( ) ( ))]= − + −  where s x E s x( ) [ ( )].=

Normalised Surface ACF’s 
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Figure 2.2.3 Synthetic ripple(a) and fractal (b) textures.
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(2.2.4d)

where λ0 is the correlation distance.

The power spectral density is equivalent to the ACF and forms a Fourier transform

pair with the ACVF—it is also easily related to the rms roughness (2.2.4e) and

slope(2.2.4f) of a bandlimited surface. Equations (2.2.4e) and (2.2.4f) also illustrate that

these parameters are not defined for non-bandlimited fractal surfaces.

σ ω ωs dS d2
1=

−∞

∞

∫ ( ) (2.2.4e)

m S drms d
2 2

1=
−∞

∞

∫ω ω ω( ) (2.2.4f)

where S1d(ω) is the power spectrum of the surface profile.

While the rms roughness is an isotropic parameter, the rms slope will vary with

direction for a anisotropic surface. In this thesis we will assume that the dominant

directionality of the surface is aligned with the image axes, and the directionality of the

slope distribution may be parameterised using the rms slopes of profiles taken in the

direction of the x and y axes, prms and qrms respectively. The two dimensional equivalents of

(2.2.4f) are shown in (2.2.4g) and (2.2.4h).

p u S u v du dvrms
v u

=
=−∞

∞

=−∞

∞

∫ ∫ 2 ( , ) . (2.2.4g)

q v S u v du dvrms
v u

=
=−∞

∞

=−∞

∞

∫ ∫ 2 ( , ) . (2.2.4h)

where u is the frequency in the x-direction

and v is the frequency in the y-direction

2.2.5 Relationship between Profile and Surface Spectra

Most work in tribology and scattering deals with one dimensional profiles, whereas

we are primarily interested in two dimensional surfaces. The generalisation from one to

two dimensions is not trivial and we give a brief description of the process based on two
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papers [Nayak71] and [Church83]. We begin with the calculation of a profile PSD from a

surface PSD. Consider a sinusoidal surface (shown in Figure 2.2.4b) with PSD:

S k( , ) ( , )ω θ ∂ ω= °0 45

Now, consider a profile taken in the direction of the x-axis, Figure 2.2.4b, this will

be sinusoidal with frequency ωa, such that ωa<ω0. More generally, the power spectrum of a

profile at a given frequency will be the sum of the two dimensional PSD at that frequency

and direction and the projections of the two dimensional PSD at all directions and

frequencies that project onto this component Figure 2.2.4c. Again assuming the profile is

in the direction of the x-axis, mathematically this can be stated as:

S u S u v dvd1 ( ) ( , )=
−∞

∞

∫ (2.2.5a)

Consider now a two dimensional surface, such that the two dimensional power spectral

density is dependent only on radial frequency ω, i.e. the surface is isotropic.

let ω = +u v2 2 (2.2.5b)

S S dd d1 2 2 22( ) ( ).
( )

γ ω ω
ω γ

ω
ω γ

=
−

=

∞

∫ (2.2.5c)

where γ is the frequency parameter in the one dimensional power spectrum.

If we wish to calculate the two dimensional signal given a profile PSD, we must either

assume extreme anisotropy or isotropy. Let us consider the latter case.

(a.) (b.) (c.)

Figure 2.2.4 Calculation of profile spectrum of 2D spectrum.

ωa

ω0
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Given a one dimensional profile with spectrum S1d(γ), we may calculate the PSD of the

two dimensional spectrum S2d(ω), along one direction using:

S d
d

S dd d2 1 2 2
1 1( ) ( ).

( )
ω π γ γ

γ ω
γ

γ ω
= −

−=

∞

∫ (2.2.5d)

2.2.6 Summary

In this section we have surveyed methods of surface description used in tribology

and scattering theory. Three levels of description were discussed. It was argued that single

parameter description is not sufficient for our purposes, though the rms slope parameter

does measure a surface characteristic which is relevant. The surface height histogram is

usually assumed to be unimodal Gaussian, in which case it is closely related to the rms

parameters. The histogram, however, like the single parameters, lacks any description of

the spatial interaction of points on the surface and therefore does not contain sufficient

information for texture description. Second order statistics, i.e. the PSD and the ACF,

which incorporate the spatial relationship of surface heights were then considered. The

relationship of the 1D and 2D forms of the power spectra was discussed, and an analytical

expression from the literature for the isotropic case was quoted.

The evidence considered in this section suggests that the power spectrum should

be adopted as the principle means of description. However, the rms slope was also found

to be a useful surface parameter and will be used throughout this thesis. The surface height

histogram, and consequently the slope histogram, will be assumed to be Gaussian.

2.3 An Admissibility Criterion Based on Phase

In the previous section it was stated that the most sophisticated level of surface

description commonly in use in tribology and scattering is the PSD (or equivalently the

ACF). It follows that surfaces with identical power spectra are considered to be identical

for the purposes of the analysis. This thesis is concerned with distinguishing between

surfaces that have dissimilar appearance under identical conditions. The sufficiency of the

PSD-only approach must therefore be considered in this context. Following from our

PSD-only approach we must impose certain bounds on the phase spectra of the surfaces

which we will consider in this thesis.
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Our next objective is to determine for what type of surface the condition holds.

Unfortunately, we do not possess a data set of surface topography. We do however have a

series of textured images each of which form a two dimensional data set sharing many of

the textured characteristics of the surface. By applying a test of the phase condition to this

data set, we will identify those characteristics which either include or exclude a particular

data set from the scope of this thesis.

We now consider some general requirements of the phase condition. Firstly, the

model must be sufficiently specific to allow discrimination, yet general enough to allow the

grouping of similar textures. A further requirement is that the assumptions of the model

should easily be met for synthesis. Finally, the degree to which the model is appropriate

for a particular texture must be measurable. With these requirements in mind, next we

consider the nature of a possible model.

2.3.1 A Phase Condition

It is well established that images with the same PSD may be easily discriminable:

both the power and phase spectra are required for complete reconstruction of the image.

This applies equally well to the surface. If we discriminate between surfaces solely on the

basis of their PSD we cannot guarantee a correspondence with any reasonable visual

discrimination. One approach to circumvent this problem is to adopt a model of the phase

spectra and to restrict our research to textures which satisfy the model’s assumptions. If

the model is appropriate, we will be able to extract the PSD of a texture and use it,

together with a random realisation of the phase component of the model to generate a

texture which can be reasonably said to belong to the same class as the original texture.

We adopt the concept of a maximum entropy phase spectrum, i.e. the phase

spectrum should contain no discriminatory information and all characteristics of the texture

should be encoded in the power spectrum. Clarke [Clarke92] has shown that the

appearance of deterministic textures, i.e. those containing a large degree of structure such

as Beans (Figure 2.3.1) is more sensitive to changes in phase than that of unstructured

textures such as Rock. It is reasonable to conclude that unstructured textures are more

effectively defined in terms of a PSD-only model than their structured counterparts. This

leads us to predict that the maximum entropy requirement will be fulfilled by unstructured
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textures; the next step is to formalise this either directly, or indirectly, in terms of the phase

spectra.

2.3.2 A Simple Test for the Condition

Given the difficulty in interpreting phase information, it would clearly be

advantageous to express information held in the phase spectra in another form in order to

assess its effect. If we inverse filter the Fourier transform of the original texture with the

resultant of its real and imaginary parts, we obtain a scalar field with a uniform PSD. Any

structure in the field will be due to the phase spectrum. An unstructured texture will

produce an uncorrelated random field, whereas a structured texture will have a structured

field. If we can differentiate between these two cases we can discover how well a texture

is described by the PSD-only model.

       

Beans                                                   Rock

Figure 2.3.1 Two Test Textures

Figure 2.3.2 Recovery of Phase Information
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We must now deal with the problem of detecting texture with a uniform power

spectral density. Clearly frequency domain models will be inappropriate; we must

therefore use probabilistic means. The second order statistics of a spatially uncorrelated

random field are completely specified by the first order statistics. If the second order

statistics predicted from the mean and standard deviation statistics differ significantly from

the measured statistics we may infer that the field is correlated and the texture does not

conform to our criteria.

We use the χ2 goodness of fit test to ascertain whether the measured second order

statistics are drawn from the same distribution as those predicted from the first order

statistics. We use the following framework:

define i as the intensity of a point  (x,y) and g as the intensity at point (x+δx,y+δy).

For an uncorrelated field the values of i and g are independent and the joint probability

function of i and g, p(i|g), is equal to the product of the probabilities of each of the

individual probability functions, p(i) and p(g), i.e :

p(i|g)=p(i).p(g) for all δx,δy except δx=δy=0

since i and g share the same uniform probability function:

p(i|g)=p(i)2=p(g)2 for all δx,δy except δx=δy=0 (2.3.2a)

The observed histogram will have f(i,g) elements in each bin (i,g). For a random field with

n elements, the expected number of elements in each bin, by (2.3.2a), will be:

 E(i,g)= np(i|g)=n.p(i)2

 

Figure 2.3.3 ’Phase-only’ Images of the Test Textures
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The form of the χ2 test for this application is shown below:

χ2=
[ ( , ) ( , )]

( , )
f i g E i j

E i j
−∑

2 2

2

We adopt the following procedure: the whitened image is requantised to 32 levels

and the histogram equalised; allowing all bins to be filled to a level that will avoid the

problems associated with the Chi statistic when it is applied to empty or nearly empty bins.

The Chi square goodness of fit criteria is then applied to assess the similarity of the

function f(i,g) with E2(i). For a histogram of these dimensions and a 5% level of

significance, the Chi square test gives a threshold of 1098. A plot of the statistic for each

displacement vector is given in a 3D histogram (Figure 2.3.4). Columns exceeding the 5%

threshold are shaded more lightly than those that fall below the level.

In Figure 2.3.5 the histograms for the Beans and Rock textures are plotted. The

first point we note is that in both cases the highest values are clustered around the zero

displacement vector. This indicates that the spatial interactions of pixels in the whitened

textures is highly localised, suggesting that both the phase-only textures exhibit the

Markov property. Beyond this, comparison of the graphs shows that while both textures

do exceed the 5% threshold, the structured texture does so in a much more marked

fashion.

5% Threshold
χ2

Displacement
Vector δy

Displacement
Vector δx

Figure 2.3.4 Chi Square Statistic/ Displacement Vector Histogram
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The test is now applied to a wider range of textures, these are shown in Appendix

B. Since it is not practical to plot such a wide range of displacements for all the textures,

we take advantage of the localisation property observed earlier and define a second order

neighbourhood composed of the eight closest displacements. From this neighbourhood we

extract two figures: the mean and the maximum value. The results are tabulated in Table

2.3.1 and shown in Figure 2.3.6.

If we consider the statistic we note that the textures do fall into two distinct

categories: those with statistics less than 1500 and those with values greater than 2000.

The latter group consists of stones, chips and beans, i.e. those textures which we

intuitively identified as being structured. It is also worth noting that the anaglypta textures,

which consist of a regularly repeated primitive, have among the lowest Chi statistics.

(a) Beans (b) Rock

Figure 2.3.5 Histograms of Beans and Rock Test Textures
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Texture Mean Max Texture Mean Max

Isoroc 1033 1055 Maze 975.5 1044

Pitted 938 965 Ripple 1025 1052

Radial 994 1023 Lip 993 1048

Rock 1081 1179 Stripl 1122 1173

Slab 1063 1109 Beans 2103 2537

Slate 983 1023 Chips 2186 2341

Striate 1057 1137 Rock (Chantler) 1304 1589

Twins 1023 1100 Stones 3380 4555

Table 2.3.1 Chi Statistics

0 500 1000 1500 2000 2500 3000 3500

5 % Level

Isoroc

Pitted

Radial

Rock

Slab

Slate

Striate

Twins

Chi Square Statistic

0 500 1000 1500 2000 2500 3000 3500

5 % Level

Maze

Ripple

Lip

Stripl

Beans

Chips

Rock (MJC)

Stones

Chi Square Statistic

Figure 2.3.6 Histogram of Chi Square Statistic for various textures

It is clear that the textures Stones, Chips and Beans do contain important phase

information, though the other textures also contain a certain degree of structure which is

independent of PSD. The key characteristic which differentiates phase-rich textures is the

presence of step changes in the value of the data set. In the image data set this occurs due

Figure 2.3.7 Phase rich textures.

Beans Chips Stones
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to cast shadows or the clear delimiting of a texture primitive. In terms of the surface, a

step change would manifest itself as a rapid change in height, or ’cliff’ topography. This

seems to be rare in rough surfaces which have their origin in physical, rather than

biological or synthetic processes. The maximum entropy phase condition is therefore

compatible with the chosen data set.

By defining random phase textures, we can restrict the scope of this thesis to a

class of textures which we can confidently discriminate on the basis of the PSD alone. In

the next section we consider models that are expressed in terms of the power spectrum;

our interpretation of these models implicitly assumes the phase spectra to be realisations of

an uncorrelated random process.

2.4 Models of  Surface Roughness

In the previous sections of this chapter we considered some popular techniques for

describing engineering surfaces, culminating in the power spectrum. We now look at some

models which have been developed from these methods. Two aspects of the model: the

power roll-off and the surface directionality are considered. In the literature these aspects

are rarely treated in the same paper: most roll-off models are one dimensional, and

directional models are generally stated in terms of m parameters, rather than explicitly in

terms of the spectrum.

2.4.1 Modelling Roll-Off

The models are generally stated in one of three ways: PSD, ACF or fractal

techniques. In this thesis, for the purposes of consistency we will state each model in terms

of its PSD. As we would expect, the models do have characteristics in common—an

inverse power law is a common feature of most for at least part of the frequency range.

The first model we consider was proposed by Sayles and Thomas in their paper in

Nature [Sayles78]. The paper showed that a large number of surfaces, ranging over eight

decades of surface roll-off had power spectra exhibiting an inverse square power law with

increasing wavelength. The thesis of the paper was that a wide range of surfaces may be

modelled with an expression of the form:
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terms of the spectrum.

2.4.1 Modelling Roll-Off

The models are generally stated in one of three ways: PSD, ACF or fractal

techniques. In this thesis, for the purposes of consistency we will state each model in terms

of its PSD. As we would expect, the models do have characteristics in common—an

inverse power law is a common feature of most for at least part of the frequency range.

The first model we consider was proposed by Sayles and Thomas in their paper in

Nature [Sayles78]. The paper showed that a large number of surfaces, ranging over eight

decades of surface roll-off had power spectrums exhibiting an inverse square power law

with increasing wavelength. The thesis of the paper was that a wide range of surfaces may

be modelled with an expression of the form:
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It follows that these surfaces can be characterised by the factor kt, known as

topothesy. In retrospect, the similarity to fractals is obvious and while Sayles and Taylor

do not mention it in their paper, Berry and Hannay do relate Sayles’ work to that of

Mandlebrot in their reply [Berry78]. Berry goes on to describe Sayles’ treatment of data,

as ‘procrustean’ and Sayles himself states that many machined surfaces will have their

longer wavelengths suppressed by processing. This remark would seem to characterise

many of the subsequent modifications to the linear roll-off model.

A more empirical approach to spectral description adopted by several authors is to

split the spectrum into two regions of different fractal dimension. Both [Hasegawa93] and

[Oden92] fit two lines: with low roll-off at low frequencies and high roll-off at high

frequencies. Imre et al. [Imre93], split the spectrum into three regions, microscopic, fractal

and macroscopic. The fractal region has dimension 2.4, while the micro and macroscopic

regions have no roll-off. A similar, though more elegant, model was developed by

Underwood and Banerji in their paper dealing with fractured steel samples. Instead of a

linear fractal curve, they report a reversed sigmoidal curve [Underwood86].

Echoing Sayles’ reservations on the power of low frequency components for

machined surfaces, Mulvaney et al. have developed an alternative model from

experimental data (2.4.1b) and goes onto develop an estimate for surface variance (2.4.1c)

[Mulvanney89]. Interestingly the PSD of the exponential correlation function mentioned in

section 2.2.4 is of a similar form (2.4.1d) [Ogilvy89a].
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where λ0 is the correlation length, i.e. the distance from the origin it takes the ACF to fall

to e-1 of its value at the origin. The fractal and Mulvaney power spectra is shown in Figure

2.4.1.
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Figure 2.4.1 Power Spectra of Ogilvy and Fractal Surfaces

The illuminated fractal and Mulvaney surfaces are shown in Figure 2.4.2, it is

interesting to note that, while both are realistic, the Mulvaney surface resembles a rough

surface which has undergone a degree of physical processing.

 

Figure 2.4.2 Isotropic fractal (left) and Mulvaney surfaces (right).

Mulvaney

Fractal



30

Both the fractal and Mulvaney models are stated in terms of profile spectra, using

equation 2.2.5d we can predict the spectra of isotropic surfaces conforming to these

models. Substituting the fractal model into equation 2.2.5d leads to:

s d
d

k
dd

t
2 2
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A fractal surface profile with roll-off β1d=2.0 corresponds to a fractal surface with power

roll-off β2d=3.0. We may repeat the process for the Mulvaney profile spectrum :
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For ω small, this corresponds to a white noise spectrum, and for ω large to fractal

roll-off with β=3.0.

Since this thesis is concerned with the surface image, which is related to the surface

facet slopes, we differentiate the two surface models (in any direction) and the plot the

power in Figure 2.4.3. Both models have a 1/ω  characteristic at high frequencies. This

does not converge to zero as frequency tends to infinity. Consequently, without

bandlimiting the slope variance will tend to infinity. This serves to underline the

dependency of the mrms parameter on sampling frequency. Since the model is used in

discrete form we assume the surface is bandlimited above the Nyquist frequency.
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Derivative Spectra
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Figure 2.4.3 Comparison of Surface Derivative Spectra (not to scale)

At low frequencies, the power of the derivatives of the Mulvaney model varies

quadratically with frequency and therefore tends to zero as frequency approaches zero.

The amount of derivative power present at wavelengths greater than the sampling window

size will depend on the frequency of the breakpoint. For the fractal model the 1/ω

relationship still holds at low frequencies. The derivatives are therefore non-stationary,

with unstable statistical properties.

The 1/ω characteristic is both very common in practice and difficult to

accommodate in signal theory. However Keshner states that for a 1/ω  process, "If the time

over which the process is observed is short compared with the time elapsed since the

process began then the exact ACF can be approximated." He goes on to say, "the PSD (of

a ω-1 process) is stationary except for the steady state value which depends

logarithmically on the time elapsed since the process was started" [Keshner82]. For ease

of analysis, we will assume that the surface spectra are bandlimited for frequencies less

than the fundamental.

Mulvaney
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2.4.2 Modelling Directionality

In this section we will examine the most common model of directionality and

consider some frequently made assumptions. We will also survey the literature to find

what degree of directionality occurs in real surfaces. Finally, we will consider the question

of whether fractal dimension is rotation invariant for anisotropic surfaces.

We begin by considering the Longuet-Higgins (LH) description [Longuet-

Higgins57]. This was developed to describe the sea surface and forms the foundations of

statistical geometry. Nayak [Nayak71] was the first to apply the LH approach to

engineering surfaces and therefore provided the motivation for the use of random process

techniques on surfaces. We have neglected the LH description, since it is first order i.e.

does not incorporate any spatial information and is ultimately used to develop a number of

parameters, such as summit density, which are of no direct relevance to this work.

However, the first stage of the LH model does provide a useful basis for discussion of

surface directionality.

If we assume that the direction of the surface grain is aligned with one of the axes,

then we may use the matrix described by Bush et al. [Bush79].

m m m

m

m

m m

m m

00 20 02

20

02

20 40

02 04

0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

− −

−
−

where

m u v S u v du dvfg
f g=

−∞

∞

−∞

∞

∫∫ ( , ) , (2.4.2b)

From equation (2.4.2b) we can see that m00 is independent of direction. We do

however note that the one dimensional profiles in the Hasegawa study do show

considerable variation in surface variance [Hasegawa93]. We presume this is due to

limited data length and/or detrending removing significant low-shifted frequencies.

From (2.4.2a) we infer that surfaces are assumed to contain one dominant

directionality. While this is probably the case for the majority of surfaces, we note that at

least one of our real, manmade, test surfaces exhibit two well resolved directionalities.

 (2.4.2a)
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In the previous section we noted that most surface roughness models have a power

law roll-off over at least part of their spectrum. We now consider whether fractal

dimension, and therefore the rate of roll-off, is rotation invariant for anisotropic surfaces.

Hall et al. develop the theorem that, “the fractal dimensions along the transects of a

stationary stochastic surface are all identical, save that in one special direction.” He

further states that “the majority of processed surfaces we have examined appear to have

identical fractal dimensions, even though they are markedly anisotropic in other

characteristics” [Hall95]. In his study of an anisotropic thin-film rigid disk, Majumdar and

Tien found that the x spectrum consisted of two regions with β=-1.94 and -1.42, the y

spectrum had β=-2.51, though the low frequency spectrum oscillated and did not follow

any power-law. In the most comprehensive study of this area, Hasegawa et al. measured

fractal dimension for several sample types at various orientations [Hasegawa93]. The roll-

offs are shown in Table 2.4.1, where Hasegawa divided the spectrum into two regions; we

have denoted these regions by (a) and (b). The results shown do not appear to give a

definitive answer to the question of the rotation dependency of fractal dimension.

Angle 0° 30° 60° 90° 120°

Lapped

Surface

1.56 1.54 1.56 1.69 1.69

Electric

Discharge

(a)

1.57 1.87 1.58 1.56 1.57

(b) 1.66 1.80 1.86 1.65 1.74

Grinding1

(a)

1.54 1.55 1.55 1.52 1.59

(b) 1.77 1.79 1.73 1.78 1.73

Grinding2

(a)

1.67 1.72 1.68 1.73 1.70

(b) 1.68 1.65 1.64 1.72 1.70

Table 2.4.1 Estimated Fractal dimensions in various directions, (from Hasegawa93)
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The two dimensional PSD form of the exponential correlation function derived by

Ogilvy (2.4.2c) offers an interesting possibility: since the only term which is direction

dependent is the correlation length, directionality may be expressed in the cut-off

frequency (λ1 and λ2) at which fractal behaviour, i.e. linear roll-off, begins to occur

[Ogilvy91].
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Figure 2.4.4 Overhead and isometric views of directional Ogilvy surface

(a.) (b.)

Figure 2.4.5 Contour Plots for Ogilvy Surface Spectra
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In fact we find this model inadequate in one respect; it does not allow for a smooth

transition between isotropic and highly directional textures. Setting the correlation lengths in

the orthogonal directions to equal values results in a cross-like power spectrum, Figure

2.4.5b, rather than an isotropic spectrum. However, this model is well suited to extremely

anisotropic textures and we shall use this model to produce a series of exemplar textures.

2.4.3 Assumptions of the Models

We make several assumptions in connection with the models we have adopted. We

assume that a surface can be reconstructed from its gradient field i.e. the gradient field

must be integrable; if a surface s is a potential field to the gradient field S then S is

conservative, i.e. an integral of the gradient field around any path is equal to zero, Eq

2.4.3.

Curl S = 0  (2.4.3)

As a consequence of (2.4.3), the first and second partial derivatives of s are continuous

and the mixed derivatives equal [Thomas p.1065].

A stricter assumption is that the surface is bandlimited. The low pass component of

this assumption allows a discrete form of the surface model to be used, and in consequence

the surface model can be differentiated an infinite number of times. A further consequence

of this is that the rms slope of a surface will be finite. The high pass component of the

assumption implies that the surface is stationary. It follows that the surface can be

completely predicted from a realisation of the phase spectrum and the model without

recourse to initial conditions. A further consequence is that the surface statistics are stable.

Within the bandlimited region we assume the surface spectrum conforms to either the

fractal, Mulvaney or directional Ogilvy models.

We assume the surface phase spectrum satisfies the maximum entropy condition,

i.e. there is no discriminatory information held in the phase spectra and classification must

be carried out purely on the power spectra. A consequence of this assumption and the

central limit theorem is that the height distribution, and consequently the slope distribution

will be Gaussian, allowing a more tractable analysis in subsequent chapters. We make the

further assumption in this thesis that the slope distribution will have a standard deviation

not exceeding 0.5.
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2.4.4 Summary of the Models

We have identified three complementary models:

1. a fractal model,

2. the Mulvaney model, and

3. the Ogilvy model.

Surfaces (1) and (2) are isotropic and differ in the low frequencies. At high

frequencies, the Mulvaney model exhibits behaviour identical to the fractal model, i.e. a

power law roll-off, however, at low frequencies the Mulvaney spectrum is white. By

varying with direction the frequency at which the transition between the two behaviours

occur, Ogilvy produces our third model. The fractal and Ogilvy surfaces will be used

extensively in this thesis as exemplars, though the Mulvaney model will be used to a lesser

extent.

2.5 Summary of Surface Description and Modelling

The topography of a rough surface is modelled as the scalar field s(x,y) which acts

as a potential field to the (conservative) vector field S(x,y). The probability function

associated with each of the scalar fields of S(x,y) as well as the height field itself are

assumed to be Gaussian. The standard deviations of these distributions, prms and qrms form

useful surface parameters and will be used extensively in this thesis.

The surface power spectra S(u,v) is the principle means of surface description—it

is assumed to conform to one of three prototypical forms:

(1) a fractal form, this follows an inverse power law throughout its range,

(2) the Mulvaney form, exhibiting roll-off only above a cut-off frequency, and

(3) the Ogilvy form, which varies the frequency at which cut-off occurs with 

orientation to introduce surface directionality.

The phase spectrum of the surface is assumed to contribute no discriminatory

information, i.e. surfaces with the same surface model and model parameters, but different

phase spectra, will be considered to be of the same type. In fact, this is only a reasonable

assumption for a limited subset of textures. Intuitively, this subset is characterised by the

absence of step changes and a lack of structure in the data set.
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2.5.1 Relevance of this Chapter to subsequent chapters
This chapter describes the first stage in the classification process. In consequence,

many of the assumptions and decisions made in this chapter have consequences throughout

the rest of the thesis. In this sub-section we show the relevance of these decisions to later

chapters.

Throughout this thesis we model the topography of a rough surface with a discrete

function s(x,y) with an associated derivative vector field S(x,y) . The distribution of heights

and gradients is assumed to be Gaussian. In Chapters 3, 4 and 6 we model imaging and

classification as a linear process, consequently the assumption of normality is maintained

throughout these sections. The slope distributions are parameterised by the rms slope

parameters (mrms,prms and qrms). Unlike the rms roughness, the slope parameters are

directional, and consequently provide a simple indication as to the directionality of the

surface. In Chapter 3 we will see that the adequacy of the linearity assumption for the

rendering process is a function of slope. Slope parameters therefore represent an important

surface characteristic and are used in Chapters 3, 7 and 8. As a consequence of starting

from a height, rather than a derivative, model we assume the derivative fields are

conservative and integrable. This is relevant in Chapters 7 and 8 where we consider

reconstruction of the surface from derivative estimates.

The scalar field s(x,y) is described using the power spectrum, S(u,v). Use of the

PSD allows integration of the surface model with the illumination, noise and filtering

models of Chapters 3,4 and 6 respectively. The power spectrum is assumed to be

bandlimited. The low pass component of this assumption allows a discrete form of the

surface model to be used, consequently the rms slope of a surface will be finite. The high

pass component implies that the surface is stationary and the surface statistics are stable.

We assume the surface phase is random, i.e. there is no discriminatory information

held in the phase spectra, and classification must be carried out solely on the power

spectra. This will affect the classifier design in Chapter 5. This assumption in conjunction

with the central limit theorem supports the assumption that the height distribution, and

consequently the slope distribution will be Gaussian.

This chapter has also justified the adoption of three surface models defined in terms

of the power spectrum:



38

(1.) an isotropic and fractal model—this obeys a power law roll-off within the 

observed bandwidth.

(2.) Mulvaney's model is also isotropic and can be seen as a generalisation of 

the fractal case, with a flat response below a cut-off frequency.

(3.) Ogilvy's model, varies the frequency at which the transition between white 

noise and fractal roll-off occurs with angle to produce a directional surface.

The spectral characteristics of these models has influenced the design of the classifier

developed in Chapter 5. The fractal and Ogilvy models are used throughout this thesis as

test cases for isotropic and anistropic surfaces respectively. The requirement for a series of

isotropic surfaces in Chapter 6, is partially fulfilled using the Mulvaney model.

3
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Figure 2.5.1 Assumptions developed in this chapter and their use in later chapters.
(Shading indicates use of assumption in chapter)

2.6 Conclusions

The aim of this chapter was to define a system of surface modelling, whereby

different realisations of the same model, with identical parameters, could be classified as

belonging to the same class of surface on the basis of their visual appearance. After

considering several fields it was decided to consult the related fields of tribology and

scattering in order to find an established methodology of surface description and

modelling. Several levels of description were discussed, before a second order technique,

the PSD, was adopted for the description of rough surfaces.
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The description is in terms of the power spectrum. However, surfaces may have

the same PSD but radically different visual appearance due to the influence of their phase

spectra. We circumvent this problem by adopting a maximum entropy condition for the

textures’ phase spectra: a texture’s phase spectrum may have any realisation so long as it

doesn’t carry any information. A simple test was developed to assess whether this

condition holds for a given texture. Only textures which fulfilled the criterion will be

considered in this report.

The models considered are defined in terms of the description adopted: the power

spectrum. Two characteristics of the spectrum were considered: the roll-off of power with

increasing frequency and directionality. All the models display a power law roll-off of

power with frequency for at least part of their frequency range. While the fractal model

shows this characteristic throughout the frequency range, Mulvaney and Ogilvy models

have a limiting process at low frequencies where the spectrum is approximately white. The

Ogilvy model, models directionality by varying the frequency at which the transition from

white to fractal behaviour occurs with direction.
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Chapter 3

Image Formation

3.1 Introduction

The goal of this thesis is the development of a classifier which discriminates

between rough surfaces on the basis of their visual appearance. This chapter links the

surface description developed in the last chapter to the image incident on the camera lens.

It will be shown that the characteristics of this link depend on, among other things, the

illuminant tilt. This chapter develops a model of the source/surface dependency to which

we aim to make the classifier robust.

The aim of this chapter is to model the transition from physical surface to incident

image. This aim is attained by satisfying two objectives: firstly, the formation of a

description of the mapping from surface derivatives to image intensity; and secondly, the

development and evaluation of a frequency based transfer function from surface to image.

Whereas the first is a purely local process, the second takes into account the spectral

characteristics of the surface and forms the link between the spectral surface models

described in the previous chapter, and the image, data set and frequency-based feature set

considered in subsequent chapters.

The first aspect of the model is considered in section 3.2; a brief description of the

underlying physical mechanisms of reflection and some of the more prominent

developments in reflectance modelling, is given. The thesis then focuses on the much less

researched area of diffuse reflection: three modern models are considered, two of these, as

well as the classical Lambertian model, are compared with an empirical mapping. We will

find the analytical function which most closely resembles the measured function under the

conditions associated with rough surfaces.
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The second aspect of the model is a frequency-based transfer function between

surface and image—again taking an analytical model as the starting point. In this section

we ask two questions:

• is the analytical model optimal in the least squares sense?

• how does the nature of the surface affect the accuracy of estimation?

This section therefore considers the optimality of the analytical model as well as the

accuracy of a more empirical linear model.

Finally, the predictions of the analytical model are compared with the actual

characteristics of an isotropic and an anisotropic texture.

3.2 Modelling the Reflectance Function

In this section we shall consider the purely local interaction between a surface

facet and lighting geometry to give the observed intensity. This problem has been

investigated by researchers in physics [Torrance67], computer graphics [Cook82] and

more recently machine vision [Nayar91]. The phenomenon of reflection can be produced

by one or more different physical processes. These processes give rise to various generic

behaviours, as well as intermediate forms. In this section we will briefly discuss the

different characteristic behaviours, as well as the physical processes behind them, before

focusing on one generic type. Several models of this type will be evaluated against the

reflection characteristic of the surfaces used in the experiments described in this thesis.

The findings of this section will then be used in the next to produce a non-local model of

illumination, which will link the surface models of the previous chapters to the feature

models of Chapter 5.

3.2.1 Terms used in this chapter

We begin by stating the standard radiometric definitions. These are given in more

complete terms in most textbooks [Watt p.91] and many papers [Nayar91], we reiterate

them here for completeness. Flux is the rate of emission or reflection of light energy, and

is measured in Watts. Irradiance is the incident flux per unit surface area (Wm-2), radiant

intensity is the flux radiated per solid angle in a particular direction (Wm-2 St-1) . Radiance

is the radiant intensity, per unit, of foreshortened area (Wm-2 St-1), where the

foreshortened area is the surface area times the cosine of the angle between the radiated

light and the surface normal. For a Lambertian surface the radiance is independent of the
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viewing angle. Horn has shown that image irradiance, i.e. the pixel intensity value is

proportional to the scene radiance [Horn86].

The ratio of surface radiance to incident irradiance is defined as the bi-directional

reflection distribution function (BRDF) (equation 3.2.1a), which Horn attributes to

Nicodemus. For a facet with isotropic microstructure, the BRDF is invariant to rotation of

the surface about the surface normal and may be expressed in the form shown in (3.2.1b)

[Horn p.210].

f(θr,θi,ηr,ηi) (3.2.1a)

f(θr,θi,ηr-ηi) (3.2.1b)

where θ is the tilt angle and η is the slant angle. The subscript denotes whether the angle

refers to the incident (i) or reflected (r) ray.

In this thesis, we will borrow the concept of the reflectance map, developed by

Horn [Horn77] and widely used in shape from shading research. The reflectance map

assumes a specific lighting orientation and describes the radiance/irradiance ratio in terms

of the surface normal. It is therefore a two dimensional function with two independent

variables, the directional derivatives. The measured intensity is the dependent variable.

While the reflectance map is stated in terms suited to our purposes, the fact that it

has two independent variables makes it difficult to show graphically and we seek to

describe the effect with a single variable. The Lambertian model has the assumption that

reflectance is a function purely of the angle of incidence and is independent of viewing

direction. This assumption has been challenged in both [Oren94] and [Wolff94], though

Healey’s model does retain the assumption [Healey89]. We will show the reflectance

function as a function of incident angle averaged over the relevant range of viewing angle.

That is, the reflectance function is calculated in terms of surface gradient and expressed in

terms of incident angle.

3.2.2 Underlying Physical Processes

Light incident on a flat surface will be reflected and transmitted. The degree to

which either occurs depends on the electrical characteristics of the material. In a

conductor electrons are loosely bound to atoms and will oscillate at the same frequency as

the incident field. The field itself will be quickly attenuated as it penetrates the material,

however, the surface currents induced by the field will in turn reradiate an electromagnetic
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field in the mirror direction. If on the other hand, the electrons are tightly bound to atoms,

as they are in a dielectric, they will interact with the field to a much lesser degree and the

light will, in the main, be transmitted. We would therefore expect reflection to be the

dominant effect in conductors and transmission in dielectrics.

In fact, dielectrics are rarely transparent; light is reflected from the material,

though by a different mechanism and in a much less directional manner than with the

surface reflection associated with conductors. The actual mechanism is unknown, though

the most popular hypothesis is that of ‘bulk (or body) scattering’. This model assumes the

material to be inhomogeneous; light incident on the surface is refracted at the boundary

and is transmitted through the material until it encounters an inhomogenity boundary from

which it is scattered. Light is repeatedly reflected and refracted from these internal

boundaries and some is scattered in the direction of the air boundary and will emerge in a

randomised direction. In the limiting ‘Lambertian’ case, the surface will appear equally

bright from all viewer orientations.

The previous discussion attributed optical effects solely to the material

characteristics and yielded the two extreme cases: specular reflection for conductors and

Lambertian reflection for dielectrics. In fact, both conductors and dielectrics exhibit

transitional behaviour. We consider surface reflection from dielectrics first. The ratio of

surface reflected light to incident light is given for both dielectrics and conductors in terms

of the Fresnel equations. These are defined in terms of the complex refractive index,

n+iK, and the angle of incident light with respect to the surface normal. If we plot the

Fresnel expression for unpolarised light incident on a smooth dielectric, we obtain the

curve shown in Figure 3.2.1. The surface reflection rises sharply as the incident light

approaches the grazing angle and, assuming a conservative system, the total body

reflection will decrease accordingly.
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Fresnel Function (n=1.7, K=0)
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Figure 3.2.1  Fresnel Function

Just as dielectric reflection shows some characteristics associated with conductors,

conductor reflection may also fall into the transitional region. Although metals attenuate

transmitted light far too quickly for body reflection to be significant, surface roughness

will cause the reflected light to be more diffuse. A rough surface no longer has a single

mirror direction, but instead a statistical distribution of directions, that manifests itself as a

variation of intensity. This effect will be most pronounced in the conductor case, though it

will also have an effect for dielectric reflection.[a1]

3.2.3 Specular Models
The most general methodology for dealing with surface reflection, both in terms of

the degree of roughness and surface conductivity, is scattering theory. A less general and

rigorous technique, which models the surface as a collection of perfectly mirror-like

microfacets whose slopes conform to a specified distribution was developed by Torrance

and Sparrow [Torrance66]. The Torrance-Sparrow (TS) model is only relevant where the

level of roughness is much greater than the wavelength of light. Although this restriction

excludes surfaces with optical finish, the TS model forms the basis for the majority of

specular models recently developed in both computer graphics and machine vision. We

argue that the substitution of the scattering model by a TS type model is particularly valid

in texture analysis given the large body of experimental evidence that the roughness

spectrum is continuous to almost atomic scales.
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The TS model consists of three sub-components: a slope distribution (analytically

modelled as a distribution of V-grooves), a geometric factor used to model facet shading

and a Fresnel coefficient. Blinn is the first to have applied the model to computer graphics,

appending a Lambertian component [Blinn77]. Cook further developed the model by

introducing a new slope distribution, defined in terms of real measurable parameters and

introducing a spectral dependency [Cook82].

3.2.4 Diffuse Models

While specular reflection has been thoroughly investigated in the field of computer

graphics, researchers in this area seem to be content to assume diffuse reflection to be

adequately modelled by the Lambertian model. However, diffuse reflection is also widely

encountered in machine vision and recently the need for accurate reflectance maps has

motivated the investigation of diffuse reflection. We consider three analytical models

developed in recent years, the model developed in [Oren94] is the least physically-based

and, like the TS model it models the surface as a group of microfacets, although in Oren’s

model the facets are perfectly Lambertian, rather than specular, reflectors. Healey

[Healey89] adapts existing theory of diffuse reflection and integrates it closely with the TS

model of specular reflection. Wolff [Wolff94a] develops a more complex model, which

includes a viewer orientation dependency. This is valid for smooth surfaces only, though

in a later paper the model is extended to include rough surfaces. We will briefly discuss

these models with reference to each other and the Lambertian model in the context of

textured surfaces.

Lambertian Model

In intuitive terms, the Lambertian model states that the perceived intensity of a

surface facet is dependent only on the relative geometry of that facet and an illuminant.

Mathematically, this is represented as the dot product of the surface derivative vector with

the illuminant vector.

While the radiance of the facet is constant with respect to the viewer's position, we

note that the radiant intensity, that is the flux per unit solid angle, varies with the

foreshortened area of the facet.

The radiance is plotted against the angle of incidence in Figure 3.2.2; as with all the other

reflectance functions in this thesis the function is scaled to give unity radiance for a flat
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surface, i.e. at an angle of incidence of 60° where the slant angle is held constant at 60°.

This is compatible with our experimental practice of using the image of a flat surface with

a uniform albedo equal to that of the textures to remove variations in the irradiance

incident on the surface.

Lambertain Reflectance Function
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Figure 3.2.2 The Lambertian Reflectance Function

Oren’s Reflectance Function

Oren states that the Lambertian model is inadequate for many applications and that

this failure is most apparent when viewer direction (relative to the surface normal) is

varied. It is Oren’s thesis that the discrepancies are primarily due to subpixel surface

roughness and he does not pursue the physics of diffuse reflection. Like the TS model,

Oren models the surface as a set of long V-grooves consisting of two facets, although in

Oren’s model these are perfect Lambertian, rather than specular reflectors. Another

difference is in the models’ facet distributions: the TS facets are of equal area, and the

distribution represents the number of facets with a specific normal that lie within a unit

area. Oren’s distribution, in contrast, represents the fraction of the area occupied by facets

of a given normal; this, he argues, makes the model less sensitive to variations in the

actual roughness distribution. Oren uses these facets to model shadowing, masking as well

as interreflection, though this last term is subsequently neglected. Finally Oren develops a

functional approximation for the model.
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We plot Oren’s reflectance function of radiance against angle of incidence for three

degrees of sub-facet roughness Figure 3.2.3. This function, as with all the functions

reported in this section, has been normalised at θi = 60°, i.e. it assumes a value of unity for

the radiance of light reflected from a flat surface
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Figure 3.2.3 Oren’s reflectance function for various degrees of surface roughness

Oren then experimentally verifies his model on a set of 2X2 inch samples imaged

with a CCD camera at 6ft, with the average pixel value as the sample irradiance. He finds

the model to be in strong agreement with his experiments for samples of wallplaster,

painted sandpaper and white sand (though a small specular component was detected in

this case). Other notable results are that as roughness increased, the reflectance map

varied from the Lambertian to a more linear form. Another interesting result is that

backscatter is greater than foreground irradiance—not only illustrating an inadequacy in

the Lambertian model but also contrasting with the case of specular reflection from a

rough surface. For samples of cloth, foam and woodshaving, Oren appends a TS model

for specular reflection, with varying degrees of success. Several parameters of the model

are estimated by fitting the data to the model using non-linear optimisation. He assumes

the Fresnel coefficient to be unity due to difficulties in measuring n.

Healey’s Reflection Model

RMS Slope
0.1
0.3
0.5
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Healey’s dielectric model must be set in the context of the rest of his paper

[Healey89], which develops a dichromatic reflection model with the aim of discriminating

between materials based on their reflectance properties. He therefore considers metals as

well as dielectrics and wavelength forms an important part of his model. This thesis is

concerned only with dielectric surfaces and only considers monochrome images,

wavelength dependencies are therefore neglected in the interest of clarity.

Healey models surface reflection using the TS model, with the Cook and Torrance

slope distribution [Cook82]. He notes that for perfect dielectrics the refractive index is

purely real, simplifying the Fresnel equations. Internally, scattering is based on a modified

form of the Kubelka-Munk (KM) theory. The original KM theory treats the dielectric as

consisting of many elementary layers, in which colorant particles are embedded. These

layers are characterised by two parameters: αh the fraction of light absorbed per unit path

length and σh the fraction of light scattered per unit path length. The reflectance function

predicted by the KM model is:
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It is worth reiterating that, in contrast to the models of Oren and Wolff, Healey’s model

does not incorporate any viewer dependency.

Healey’s Reflectance Function
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Figure 3.2.4 Healey’s reflectance function for various surface roughnesses

Wolff’s Reflectance Model

Wolff [Wolff94] also develops a model for sub-surface scattering, and in

[Wolff94a] he extends this model to include rough surfaces and a surface reflection term

by linearly adding the TS model. Wolff bases his model on the theory of Chandrasekhar;

like the KM model this assumes a vehicle with refractive index equal to that of air. Wolff

couples this model to the Fresnel boundary conditions, noting changes in the direction and

subtended solid angle of the incident light.

Unlike the other models considered in this section, the Wolff model was not implemented

due to its complexity. We are therefore unable to evaluate its effectiveness.

Comparison of Models

The relative characteristics of the illumination models, can be examined by

rendering three spheres with Lambert’s, Oren’s and Healey’s reflectance functions (see

Figure 3.2.5). The most obvious difference between the renderings is in the regions of

maximum reflectance. Lambert’s function gives a distinct peak in intensity while Healey’s

model does not produce any discernible bright spot. Oren’s model is intermediate between

these forms.

mrms
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Figure 3.2.5 Spheres rendered with Lambertian (a), Oren(b) and Healey Models (c)

The highlight effect is also visible in the reflectance maps of the models (Figure

3.2.6). The lessening of the effect suggests that the relationship between surface derivative

and radiance is more linear for Oren’s model than Lambert’s, as was noted by Oren

himself..

Figure 3.2.6 Reflectance Maps for (a)Lambert’s, (b)Orens’s and (c)Healey’s Models

Comparison of the models with the empirically measured function is of more

relevance to this thesis. All the surfaces considered in this thesis have been sprayed matt

white. The reflectance map associated with this surface characteristic was derived by

measuring the intensity of an object of known geometry, i.e. a sphere, and recording the

mapping between surface derivatives and radiance. It is shown together with the analytical

reflectance models in Figure 3.2.7.

It can be seen that Healey’s model performs relatively poorly for the surface type

used in this report. The Lambertian model is a much better approximation, however, it is

Oren’s model that is closest to the measured reflectance function.

(a)

-0.5

(b) (c)

0.5

q
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Comparison of Reflectance Functions
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Figure 3.2.7 Comparison of Reflectance Function

While the comparison of reflectance functions is useful from an analytical point of

view, it is also important to assess how well the reflectance functions perform on rough

surfaces of the type considered in this thesis. The accuracy of the reflectance function will

vary with incident angle. Light incident on a rough surface will have a distribution of

incident angles, which will be partially dependent on the slope distribution. In order to

assess the accuracy of the models for textured surfaces we must take the angular

distribution into account. We do so by applying the models to synthetic surfaces with

different slope distributions. This approach will therefore give a better indication of the

actual accuracy of the function for our application. We evaluate the accuracy by rendering

a series of synthetic height maps using an experimentally measured reflectance map. These

results are then compared with analytical estimates derived using the three models. A

signal to residue ratio (S/R) is used to perform this comparison. It is defined as

]S R Log
Var i x y
Var e x y

/
[ ( , )]
[ ( , )

=
⎛
⎝
⎜

⎞
⎠
⎟10 10

where Var[i(x,y)] is the variance of the image predicted using the empirical 

function
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and Var[e(x,y)] is the variance of the difference between this, and the image

predicted by the relevant theoretical model.

The first group of surfaces we consider is based on an isotropic fractal surface

which is scaled to give varying degrees of roughness. The results show the Lambertian

function to be the most accurate model for the reflectance function of our experimental

surfaces, followed closely by Oren’s model, with Healey’s model performing comparatively

poorly on our surfaces (see Table 3.2.1)

S/R (dB)

RMS Slope Lambertian Oren Healey

0.125 18.96 17.05 12.12

0.250 18.77 17.95 10.27

0.500 16.50 15.81 12.10

Table 3.2.1 The accuracy of image prediction from isotropic surfaces of various
roughnesses.

We now consider the highly directional Ogilvy surface defined in the previous

chapter. In the first case, the grain of the surface runs at right angles to the direction of

illumination, i.e. the illuminant is aligned with the direction of maximum slope variance

Table 3.2.2. We note an increase in accuracy over the isotropic case, however the fall in

accuracy associated with increasing roughness is still apparent.

RMS Slope S/R (dB)

prms qrms Lambertian Oren Healey

0.125 0.034 20.43 18.76 12.42

0.250 0.068 20.62 21.30 10.01

0.500 0.136 16.26 16.26 12.39

Table 3.2.2 The accuracy of image prediction for directional surfaces, illuminant

perpendicular to surface grain.

If we illuminate the same series of directional surfaces in the same direction as the

surface grain, we find a significant fall in the accuracy of the Lambertian, and even more

so in the Oren functions, whereas Healey’s model is relatively unaffected (Table 3.2.3) .

The poor performance of the Lambertian and Oren models is not solely an effect of the

low slope in the direction of illuminant. We infer this from the fact that the maximum rms.

slope in the direction of the illuminant for this category of surface (prms =0.136) exceeds
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the minimum slope parallel to the illuminant for two previous surface types (prms =0.125),

yet the accuracy is still substantially below that of the first two cases.

RMS Slope S/R (dB)

prms qrms Lambertian Oren Healey

0.034 0.125 11.13 2.18 11.12

0.068 0.250 13.66 9.87 12.48

0.136 0.500 14.22 13.47 10.82

Table 3.2.3 Accuracy of prediction for directional surface illuminated in the direction of

surface grain.

We conclude that of the models tested here, the reflectance function of the

surfaces used in this thesis is best approximated using the Lambertian model. The model

performs well for isotropic surfaces and directional surfaces of low slope, which have their

axis of maximum slope variance aligned with the illuminant. The Lambertian model

performs most poorly on directional surfaces of low slope when the illuminant is parallel

to the grain of the surface. For the directional surfaces considered in this thesis, the

accuracy of the Lambertian function never falls below 11dB while for isotropic surfaces it

remains above 16.5 dB.

3.2.5 Summary

In this section we have reviewed three analytical models of diffuse reflection, and

evaluated these against the empirically measured reflectance map for our test surfaces. We

found that, as a function of incident angle, Oren’s was the closest to our measured

function. If the test is weighted by the frequency with which facet orientations are

predicted by our surface models, however, it was found that the Lambertian function

modelled the empirical mapping more accurately. We found that the Lambertian model

performed best on isotropic surfaces with low slope angles and on directional surfaces of

low slope when the illuminant is perpendicular to the surface grain. The model performed

most poorly on directional surfaces of low slope when the illuminant is parallel to the

surface grain. However, even in the worst case, the S/R ratio of the Lambertian model

never fell below 11 dB for the range of surfaces considered in this report.
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3.3 An Optimal Linear Model of Image Formation

In the previous section we treated the reflectance function as a purely local

phenomenon. However, any work concerned with texture is inherently concerned with the

interaction of a point with its neighbours. In the previous chapter we modelled this

interaction in the frequency domain. The radiance of a facet is a function of its surface

derivatives—the spectra of which are easily related to the surface height spectrum. It is

therefore attractive to model the transition from surface to image in the frequency domain.

For a tractable frequency domain analysis we require a linear model of the

rendering process. If we assume a single reflectance function is valid over the entire

surface, and that the illumination conditions are constrained, we can state that the only

factor that will affect the degree to which the transfer function can be described as being

linear will be the topographical characteristics of the surface. These will affect:

• the area and location of the region of the reflectance map which the model 

must approximate, and

• the degree of cast and self-shadowing1.

From this it follows that a linear approximation is more valid for some surfaces than

others.

The first objective of this section is to identify the degree of accuracy with which a

linear model can represent the rendering of various surface types. This will be carried out

in section 3.3.1 by using a least squares filter to obtain the optimal linear reflectance

function for a given surface and illumination conditions. The surfaces will be scaled

versions of two prototypes: the isotropic fractal, and the directional Ogilvy surface. The

synthetic surfaces will be rendered using the empirical reflectance map and the least

squares derived linear model. The criterion of accuracy will be stated in terms of the signal

to residue ratio. This section will conclude with the statement of a number of constraints

on the characteristics of surfaces which can be rendered, using an optimal linear model, to

a specified S/R ratio.

                                                       
1 Shadowing may take two forms. A cast shadow occurs where one part of the surface prevents another
part from being illuminated, by blocking the direct path between the light source and the shadowed area.
Self-shadowing occurs when a facet is oriented such that it does not present an area on which light is
incident, i.e. I.N<0. While the latter is a function of facet orientation and is a purely local phenomenon,
the former is a function of surface height and is non-local in effect.
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3.3.1 A Linear Filter

In this section we treat the problem as one of developing an optimum filter for a

given illumination condition and also for a given surface. The optimum filter represents

the transfer function from the surface derivatives to the image. Applying the filter to the

surface derivative fields will give an approximation to the image. The filter will have the

general form shown below:

i x y x y T( , ) ( , )= S V

where:

S =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

p x y

q x y

( , )

( , )

1
   V =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a

b

c

i(x,y) is the image intensity at point (x,y),

p(x,y) and q(x,y) are the surface derivatives at (x,y),

and  a,b and c are the filter weights.

Let

R SS= E T[ ] U S= E id[ ]

where id is the desired signal.

To find the optimum parameter values we must minimise the quantity e, where

e E id
T T= + −[ ]2 2V RV U V

The transfer function is approximated by a least squares linear filter in p and q calculated

for the surface and image to which it will be applied.

3.3.2 The Signal to Residue Ratio

The analytical work of Chapter 5 is based on Kube and Pentland’s frequency

domain model [Kube88]. In order to link the surface and image spectra, Kube was obliged

to use a linear approximation to the reflectance map. In this section we aim to assess the

conditions under which the assumption of linearity is reasonable by comparing renderings

using the optimal linear model for a given surface and illuminant with those of the

empirically derived reflectance map. We also seek to discover the nature of the errors in

spectral terms.
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We will consider the transition from surface s(x,y) to images i(x,y) and i’(x,y) as

being performed by process o(p,q)(derived experimentally using the matte-white sphere)

and its linearised version o’(p,q) respectively. The difference between the desired signal

i(x,y) and the linear estimate i’(x,y) is denoted by e(x,y), the residual signal (Figure 3.3.1).

s(x,y)

o

o’

i(x,y)

e(x,y)

i’(x,y
)

Figure 3.3.1 Calculation of residue image.

The signal to residue ratio is defined as:

]S R Log
Var i x y
Var e x y

/
[ ( , )]
[ ( , )

= ⎛
⎝⎜

⎞
⎠⎟

10 10

where Var represents the variance of a signal.

The surface vector field, S(x,y), is estimated from the potential field, s(x,y), using

two simple two-point estimators. The two point estimator is the simplest form of

differentiator, and we note that it underestimates the magnitude of high frequencies,

nevertheless we use the two-point estimator due to its simplicity, see [Bentum96] for a

readable treatment of the subject.

3.3.3 The Effect of Surface Characteristics

Surface Roughness

We now consider the effect of surface roughness, parameterised by rms slope, on

the accuracy of the linear model. An isotropic fractal surface was scaled and rendered

using the empirical reflectance map. The accuracy of prediction is plotted against rms

slope in Figure 3.3.2. As we would expect, the accuracy of the approximation falls with

increasing slope—falling below the 10 dB mark for surfaces with an rms slope greater

than 0.25.
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The Effect of Surface Roughness
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Figure 3.3.2 The effect of surface slope on the accuracy of an optimal filter.

Surface Directionality

If we consider Ogilvy’s directional surface and alter the tilt of the illuminant vector

we see that the S/R of the prediction is highly dependent on the tilt of the illuminant

relative to the directionality (Figure 3.3.3). The prediction is least accurate when the

illuminant vector is parallel with the grain of the surface, falling to a minimum of 5 dB.

We also note that the increasing rms roughness in the principal direction causes a

significant decrease in the prediction accuracy.
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If we again set an arbitrary signal to noise limit of 10 dB we may form the

following nominal bounds for the application of a linear approximation: surfaces should

have an rms gradient not exceeding 0.25, whereas strongly directional surfaces should not

be illuminated from tilt angles at less than 15 ° to the perpendicular of their primary axis.

3.3.4 Summary

In this section we found that the accuracy of the approximation falls as rms slope

increases. Setting a nominal lower limit of 10dB for the S/R ratio we showed that

isotropic surfaces could be modelled as long as the rms slope did not exceed 0.25. The

accuracy with which directional surfaces could be modelled is highly dependent on the

angle between the grain of the material and the illuminant. Again taking the 10dB limit,

we found that surfaces with rms slopes of less than 0.25 could be accurately modelled

except in the region ±15° of the material grain direction.

3.4 Kube’s Model

Having considered the accuracy and scope of an optimal linear filter, in this section

we shall consider an analytical linear model reported in the literature [Kube88]. Since the

characteristics of the function, which the optimal model approximates vary with surface

characteristics, a single analytical filter cannot be optimal for all possible surfaces. The

form of the model may, however, be common to the optimal filters of a range of surfaces.

The next question we ask is under what circumstances does the form of the theoretical

model coincide with the behaviour of the least squares filter? Kube's model predicts that

the intensity will be a linear combination of the surface derivatives scaled by a

trigonometric function of tilt as well as a mean component. If the coefficients of the

optimal linear model, recalculated for each tilt condition, vary in the same manner as the

trigonometric function, we may conclude that the form of Kube's model is optimal in the

least squares sense.

3.4.1 An Analytical Expression

We restate Kube's model in our own notation, dropping the assumption that the surface is

fractal.

Consider the bandlimited surface with height map defined by the scalar function s(x,y).
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(a.)   S(x,y) (b.)   L(x,y) (c.) i(x,y)

Figure 3.4.1 The components of image formation.

(a) The Lambertian Image

let S(x,y) (Figure 3.4.1a) be the derivative field of the bandlimited scalar field s(x,y) such

that

S(x,y) = grad s(x,y) = δ
δ

δ
δ

δ
δ

z
x

z
y

z
z

⎡
⎣⎢

⎤
⎦⎥

Also define the illumination vector field L(x,y), assuming illumination is produced by a

point source located an infinite distance from the scene, the magnitude and direction of

the vectors will be uniform throughout the field (Figure 3.4.1b).

[ ]L(x, y) = k k k1 2 3

where

k1 = CosτSinσ k2 = SinτSinσ k3 = Cosσ

Assume that a surface has a reflectance function which is:

(i) homogeneous over the surface, and

(ii) Lambertian.

Furthermore, assume that the surface is constrained such that there is no significant:

(i) cast or self shadows, or

(ii) degree of interreflection.

Adopting these assumptions we may state that the image field i(x,y) (Figure 3.4.1c)is the

normalised scalar product of the surface derivative field and the illumination vector field.

i x y
x y x y

x y x y

T

T
( , )

( , ) ( , )

( , ) ( , )
= L S

L S

This results in a non-linear operation at each facet,
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i
k p k q k

p q
= − − +

+ +
1 2 3

2 2 1
(3.4.1a)

where i, p and q are functions of x and y.

(b) Kube’s Linearisation

Kube uses the Taylor Expansion to form a linear approximation to equation 3.4.1,

shown below, truncated beyond the quadratic term.

i= ( )k p k q k
k

p q1 2 3
3 2 2

2+ + − +

Using the first three terms he forms a linear estimate

�i = k p k q k1 2 3+ + (3.4.1b)

or             [ ]�i k k k

p

q=
⎡

⎣

⎢
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⎤

⎦

⎥
⎥
⎥

1 2 3

1

This approximation is  reasonable where:

p>>p2  and q>>q2

i.e. where

p<<1 and q<<1

(c) Frequency Domain Dual

Since equation 3.4.1b is linear, we can easily form a frequency domain dual. For simplicity

we will work in terms of the magnitude (denoted by the m subscript rather than the power

spectrum.

Im(u,v)=Pm(u,v).k1+Qm(u,v)k2+k3δ(0,0)

where Pm(u,v) and Qm(u,v) are the spectra of the directional derivative fields.

However, the directional derivatives are related to S(u,v)

P u v iuS u v

Q u v ivS u v
m m

m m

( , ) ( , )

( , ) ( , )

=
=

where i represents a 90° phase shift.

If we restate these in polar co-ordinates:

P i S

Q i S
m m

m m

( , ) cos . ( , )

( , ) sin . ( , )

ω θ ω θ ω θ
ω θ ω θ ω θ

=
=

Ignoring the mean and using polar co-ordinates:

I k i S k i Sm m m( , ) . . .cos . ( , ) . .sin . ( , )ω θ ω θ ω θ ω θ ω θ= +1 2
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Resolving the k terms into their trigonometric components and gathering like terms:

[ ]I i Sm m( , ) . .sin . ( , ). cos .cos sin sinω θ ω σ ω θ θ τ θ τ= + (3.4.1c)

Which can be simplified to

( )I i Sm m( , ) . .sin .cos . ( , )ω θ ω σ θ τ ω θ= −

From the point of view of this thesis, the most important effect of this expression is that

the image spectrum is a function of both the surface and the illuminant tilt.

3.4.2 A Comparison of Kube’s Model with the Optimum Linear Model

Kube’s model gives an analytical expression as to the relationship between surface and

image, however, we can also empirically define a least squares mapping from p and q to

intensity as we did in section 3.3.1.

We can therefore define a least squares model, with parameters a and b, to map

the surface derivative fields to the image intensity fields for a given tilt. If we then vary tilt

we can compare the behaviour of the parameters ( a and b)with that predicted by Kube,

i.e. k1=cosτ.sin.σ and k2=sinτ.sin.σ (σ is held constant at 60° in this work).

Consequently if Kube's model is near optimal in the least squares sense we would

expect that the a and b parameters of the linear model to be equivalent to the parameters

k1 and k2 and would follow cosτ and sinτ curves respectively as tilt is varied and the slant

angle is held constant. We therefore plot the estimates of a and b for an isotropic surface

against these expected functions in Figure 3.4.2.

If we test this prediction with an isotropic surface we see a linear relationship

between the parameters estimated by the least squares criterion and those predicted by

Kube's equation 3.4.1c. However, it is immediately obvious that the slope of the line

varies with the rms slope of the surface; this was not predicted by Kube's model. If we

tabulate these results we can see that both the estimated parameters are highly correlated

with Kube's predictions (see Table 3.4.1). It is also clear that the scaling factor falls as rms

slope increases. Finally we note the estimated a and b parameters at a given tilt are scaled

by almost equal amounts. We measure the degree of correlation between the parameters a

and b with Kube's predictions.
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Figure 3.4.2 The variation of the least squares parameters plotted against those

predicted by Kube (isotropic fractal surface).

Scaling Correlation

RMS Slope a b a b

0.125 90.83 90.89 0.99988 0.99963

0.250 79.21 78.89 0.99995 0.99956

0.500 54.60 54.37 0.99995 0.99945

Table 3.4.1 The relationship of LS parameters to Kube’s predictions.

If we now consider Ogilvy’s directional surface we note the relationship is less

linear (Figure 3.4.3), though the correlation coefficients are still high (Table 3.4.2). The

trend of decreasing line slope with rising rms surface slope is still evident, though there is

a growing disparity between the parameter scaling values as slope increases. This would

seem to be in agreement with the inverse slope relationship found in both the isotropic and

directional cases.

PrmsPrms
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Figure 3.4.3 The variation of LS parameters for directional Ogilvy surface to Kube’s

predictions.

Slope Scale Correlation

prms qrms a b a b

0.125 0.34 91.72 89.46 0.999537 0.9985

0.250 0.067 82.90 87.77 0.999554 0.9983

0.500 0.134 60.75 74.64 0.999833 0.999217

Table 3.4.2 The relationship of LS parameters for directional surface to Kube’s

predictions.

3.4.3 Summary

We conclude that Kube’s model is near optimal in the least squares sense for

isotropic surfaces, albeit with the proviso of a scaling factor dependent on the rms slope

of the surface. Furthermore, while some distortion is apparent in the parameter estimates,

Kube’s model agrees to a satisfactory degree for Ogilvy’s directional surfaces as long as

the slope is moderate. The scaling effect is also apparent for the directional surface.
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3.5 Real Textures

3.5.1 Test textures and their Spectra

In this section we shall use two exemplar textures and will consider whether the

predictions of Kube’s model and our simulations are borne out by real data. In this

chapter we will concentrate on two textures: the Rock texture, Figure 3.5.1, and the

Striate texture, Figure 3.5.2. The Rock texture is isotropic and of the textures used in this

thesis, is the most similar in appearance to the fractal simulations. The Striate texture is

highly anisotropic, and is the closest experimental texture to the synthetic Ogilvy

surface.

 

Figure 3.5.1 Rock Texture Figure 3.5.2 Striate Texture

If we consider the log magnitude spectra of the above images (Figure 3.5.3), we

note a valley running at right angles to the direction of illumination in both spectra. This

is consistent with Kube’s prediction of attenuation of frequency components at right

angles to the illuminant direction. In addition, the anistropic texture has an obvious ridge

running in the perpendicular direction which is not apparent in the isotropic case.
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Figure 3.5.3 Magnitude Spectra of Rock (left) and Striate (right) Textures τ=0°

If the light source revolves through 90° the power spectrum of the isotropic

surface is effectively rotated by the same amount, however, the change in tilt causes the

ridge of the striate texture to be lost. While the effect on the isotropic texture is

equivalent to one of rotation, the image spectrum of the directional surface is of a

fundamentally different image texture.

Figure 3.5.4 Magnitude Spectra of Rock (left) and Striate (right) Textures τ=90°

3.5.2 The Polar Power Distribution

In order to verify Kube’s model, however, it is necessary to consider the effect more

analytically. We focus our attention on the variation of spectrum power with polar angle.

This is carried out by integrating the power along radii of the polar spectrum and plotting

the quantity as a function of polar angle. Due to the finite quantisation of frequency at

the low end of the spectrum, and the effects of noise at the high end, this integration is
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performed within certain frequency bounds. The bounds used for our first experiment are

ω = 0.156fs   to 0.469fs shown in Figure 3.5.5.

Figure 3.5.5 Region of support for polarogram.

Plotting this quantity for the rock texture Figure 3.5.6 with the least squares fit of

both the Tau 0 and 90° images, we find that it is in agreement with the |Cos(θ−τ)| (or

Cos2(θ−τ) for the power spectrum) relationship predicted from Kube's work with the

addition of a small bias term. This result is also in agreement with that reported by

Chantler [Chantler94] for a similar isotropic rock surface.
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In the case of an isotropic surface, the dominant source of image directionality is

due to directional illumination. However, if the surface is anisotropic, the surface

directionality will also contribute to the polar distribution of power, Figure 3.5.7.
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Figure 3.5.7 Polar distribution of image power for Striate texture.

3.5.3 Summary

In this section we took two real textures and showed that their image spectra are

directionally attenuated as predicted by Kube’s model. Using the isotropic test texture it

was possible to verify the ⏐cos(θ−τ)⏐ relationship predicted by Kube. For the isotropic

surface, varying illuminant tilt is equivalent to rotating the texture, however, for the

directional surface the attenuation causes a fundamental change in the visual texture

which cannot be modelled as rotation.

3.6 Conclusions

This chapter has considered the underlying mechanisms of reflection and

discussed four analytical descriptions of the phenomenon. Three of the models were

implemented and compared with the function measured for the surface type used in the

experimental work. Both Oren’s and Lambert’s models were found to be effective

methods of modelling, and, whereas Oren’s model was the more accurate over a range of

incident angles, Lambert’s Law was found to be more accurate when the slope

distribution of a rough surface was taken into account. We then considered the
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circumstances under which a linear filter could maintain adequate accuracy. Taking a

nominal accuracy threshold of 10dB we concluded the linear form could accurately

predict images of surfaces with an rms slope of less than 0.25. The highly directional test

surface had the additional restriction that the illuminant should not make an angle of less

than 15° from the grain direction of the material.

The third part of this chapter considered an analytical frequency based

description of the link between surface and image. A model reported in the literature,

[Kube88] was investigated to see whether it is optimal in the least squares sense. We

concluded that the form was optimal for most surfaces, provided that a scaling factor

dependent on the surface roughness was used.

The observation of the real isotropic surface Rock confirmed Kube’s predictions

for the angular distribution of power. The behaviour of the directional surface Striate

illustrated that the tilt effect can either attenuate or accentuate useful directional

information. This implies that tilt variation will have serious consequences for the

discrimination of rough surfaces.



69

Chapter 4

The Imaging Process

4.1 Introduction

In the previous chapters we have considered the modelling of rough surfaces and

their interaction with light to form a textured image. However, strictly, machine vision

algorithms do not operate on images. An algorithm is applied to a data set. The aim of this

chapter is to describe the link from the image, whose formation was described in the

previous chapters to the data set, on which the classifier discussed in the next chapter will

operate.

The motivation for the development of this model is two-fold. First, a recurring

theme in this thesis is that texture analysis cannot be properly investigated in isolation, but

must be observed in the context of the physical process of which it is part. The need for an

analytical description of the imaging process follows from this premise. Since CCD

cameras are the most common imaging devices in machine vision, it is logical that we

concentrate on these devices. There is however a second, more practical, motivation: in

the latter part of this thesis several algorithms will be proposed. In order that their

performance may be assessed under realistic conditions, yet in a controlled manner, we

must develop a ‘simulation engine’ which characterises noise and distortion in a realistic

way. This engine will be based on the work reported in this chapter.

4.1.1 Noise and Texture

We note that noise has largely been ignored in the texture analysis field. Those

papers which do consider the effect of noise, such as [Liu90], [Szirani96] and [Porter97],

do not cite experimental evidence to support their models. Liu and Jernigen state that their

noise is random, additive and, the author presumes, white. They use the model to select a

subset of measures from a feature set defined in terms of the power spectrum, and then
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evaluate their performance for various S/N ratios. Szirani investigates the use of neural

networks for the tasks of deblurring and texture segmentation. In the case of texture

segmentation he investigates the effect of additive noise and the number of quantisation

bits upon the classification accuracy. Porter and Canagarajah use additive white noise,

with a signal to noise ratio in the range 0-25dB, to compare the robustness of Markov

models, Gabor filters and wavelet approaches, though again with no physical justification

of either the form or the magnitude of the noise model. Outwith texture analysis,

Terrillon, [Terrillon96] adopts a more analytical approach, relating specific noise

mechanisms, i.e. speckle and film grain noise to rotation-invariant classification. We note

that unlike many of the effects observed in this chapter, these effects are either isotropic,

or rotate with the image.

4.1.2  Organisation of this Chapter

The aim of this chapter is the development of a spectrally defined model of the

imaging process. We noted in the previous section that where texture analysis does

account for noise, it is usually considered to be white and additive, without any theoretical

or experimental justification. In this thesis, we have taken a physically-based approach to

the effects considered in the belief that this approach is more rigorous and leads to a more

accurate and more flexible understanding of how surfaces can be classified. In this

context, we do not believe that it is appropriate to treat noise as being additive and white

without obtaining supporting evidence.

This support may come from two direct sources, the literature, or experiment.

Unfortunately the literature is fragmented and deals mostly with mechanisms, rather than

the spectral effects which are of relevance to this thesis. Similarly, the experimental

approach is also limited, since many of the effects are difficult to resolve from the correct

image. Where the effect is not easily separable from the correct image, we may use a third

approach—simulation. This allows us to take a mechanism from the literature and observe

the nature and magnitude of its effect for a textured image of the type considered in this

thesis.

The process of developing an imaging model consists of four stages (Figure

4.1.1). In the first, the literature is surveyed in order to identify noise mechanisms and,

where possible, their spectral effects. At the end of this section, the noise mechanisms will

be categorised as belonging to four functional classes. These classes are organised on the
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basis of the experimental approach which will be required to characterise and measure

them in sections 4.4 and 4.5. In the experimental section, we set about measuring those

categories of imaging artefact which can be directly observed. Those which cannot be

directly measured are further divided into categories we are unable to analyse, and those

which can be investigated using simulation. In the former case we are limited to a

qualitative description of the effect, while in the latter, a model of the effect specific to an

exemplar texture will be developed. The descriptions obtained will be integrated with

those from the simulation section to form a complete noise model.

Directly
Measurable Effects Non-observable

Effects

Non-Quantifiable Quantifiable

•  Identify mechanisms
•  Categorise

4.4 Experiment 4.6 Qualitative 4.5 Simulation

4.7 Integration

Simulation of signal
dependent effects.

Measurement of signal
independent effects.

Qualitative description.

Figure 4.1.1  The organisation of the noise investigation.

• Identify mechanisms
• Categorise

4.7 Integration
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Since this chapter is the first point at which we can directly observe the data set, in the

final section we compare both the first order statistics and the measured spectra with

those predicted by our models. This represents our first opportunity to use our surface,

rendering and imaging simulations in order to verify our models.

4.2 Literature

The aim of this section is firstly to identify noise mechanisms from the literature and then

to categorise them into classes according to the experimental approach required to

quantify them.

4.2.1 Overview

Though several authors do give descriptions of the entire process, e.g. [Healey94]

and [Lenz90], most of the literature relevant to the imaging process is usually limited to a

single effect. This specialisation is problematic in our application; we are interested in the

overall effect, rather than the individual components. This section surveys the literature to

obtain a description of the mechanisms which form components in the transition from

image to data set. The organisation of this section is therefore arranged by mechanism,

rather than perceived effect, and follows the order in which the signal encounters these

mechanisms. We use three categories; system optics, the CCD array, and the framestore

(Figure 4.2.1)

Figure 4.2.1 Section approach.

While this organisation is imposed by the nature of the literature, it is of limited

use in our application. This section therefore concludes by categorising noise mechanisms

by the experimental approach which will be used to quantify them.

4.2.2 System Optics

We retain the assumption of orthographic projection, but now consider sub-

optimal focusing. Drawing on the work carried out in the field of shape from focus, we

adopt the term Point Spread Function (PSF) which represents the image i(x,y) resulting

Incident
Image Optics CCD

Frame
store

Data
Set
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from a single point source imaged by the camera. This is equivalent to the two

dimensional impulse function of systems theory. Although usually associated with optics,

the PSF may be used to characterise the transfer function of the entire imaging system.

Subbarao and Lu use paraxial geometric optics and the assumption of spatial

invariancy to develop an cylindrical PSF [Subbarao94]:

b x y
dm

( , ) = 4
2π where 

x y
dm2 2

4
+ ≤

and (4.2.2a)

b x y( , ) = 0
where 

x y
dm2 2

4
+ >

where dm  is the diameter of the blur circle in millimetres. As the diameter of the blur circle

decreases, the image becomes sharper; as the diameter approaches zero, the impulse

response of the optical system approximates the ideal impulse function. Pentland argues

that the PSF is best modelled as a two dimensional Gaussian function b(r,σb) where σb is a

spatial constant proportional to the diameter of the blur circle [Pentland87], (in fact

Subbarao also provides the option for a Gaussian PSF in his simulation engine). This

model is also used by Nayar and Nakagawa [Nayar94] who state it both in the spatial and

frequency domains:
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(4.2.2c)

where B(u,v) is the Fourier transform of b(x,y).

An example of the effect of the blurring function is shown in Figure 4.2.2.
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Figure 4.2.2 Focused and defocused (σb=0.04) images.

We briefly note one other effect of the optical system: vignetting is an artefact of

the compound lens system which causes a roll-off in sensitivity with distance from the

centre of the image. The effect is most significant when using wide angle lenses or when

using a lens at full aperture. Kolb et al. [Kolb95] give an example where intensity at the

edges of the sensor plane is one third that of the centre. However, like Subbarao we

explicitly ignore this effect, and assume it to be corrected for in the set up of the system.

4.2.3 CCD Array

We now consider the CCD array itself, a clear description of the noise mechanisms

and observed effects is difficult since each mechanism may contribute to one or more

observed effect. Each effect in turn may be due to a combination of noise sources which

are not necessarily confined to the array. Since researchers generally investigate only part

of the process, or to varying degrees of depth, taken as a whole, the literature often

appears to be inconsistent. The aim of this section is to present a coherent model of

effects occurring on the array in a form that is relevant to texture analysis.

We begin with dark current noise: as with any silicon device at ambient

temperature, thermally generated electrons are produced within the body of the sensor. If

these electrons wander to the sensing surface they may be captured by a photoelectron

site, giving rise to noise. This effect is stochastic: the generation of an electron is a

random event. However, due to the inhomogeneous nature of the lattice, electrons are

more likely to be generated at some locations than others. While the subsequent

movements of the electrons will also be random, some sites will be more prone to electron
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capture than others [Talmi80]. In this sense dark current noise may be argued to

contribute to both fixed pattern and spatially independent noise (as shot noise). It should

also be noted that this effect is highly dependent on temperature; each 6.7° rise in

temperature will cause a doubling in the dark current, so changes in temperature that

imperceptible to the human observer may cause significant changes in both the fixed

pattern and spatially independent noise.

A fundamental limitation of all imaging devices is the quantum nature of light: the

number of photons which arrive at a site in a given period is a Poisson process and may be

described as shot noise [Healey94]. In most practical applications the large number of

incident photons will cause the distribution to tend towards a Gaussian distribution with

variance equal to its mean. The larger the number of incident electrons, the less significant

the standard deviation will be relative to the mean.

Two other effects occurring at this stage are blooming and non-uniform sensitivity.

Blooming occurs when some sites are intensely illuminated causing a large number of

electrons to be generated at a site, some of which then overflow to adjacent sites; we will

neglect this effect. Non-uniform sensitivity is due to variations in the quantum efficiency

of sites caused by fabrication effects [Healey94], we shall consider this to be fixed pattern

noise.

4.2.4 Framestore

The previous sections described the process of measuring image intensity over a

discrete grid, this section is concerned with the transfer to numerical representation. The

process may be described in two steps: first a serial readout of the rows, with low pass

filtering of the pulse train and the addition of the synchronisation signal. In the second

stage, the signal is stripped of synchronisation information, resampled and quantised

before being stored in memory. We describe three problems associated with this process

identified in the literature:

1. serial filtering effects,

2. errors in synchronisation, and

3. quantisation errors.

Serial Filtering

 Having collected the image, it is necessary to convert it to a continuous, interlaced, serial

signal. In their paper Boie and Cox develop a camera model in electronic terms [Boie92].
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The circuit model consists of both serial and parallel components, the parallel noise

mechanisms i.e. leakage currents and Johnson noise are modelled by the in term, the serial

component models noise associated with amplification and is also modelled as a current

source, e Cn t2πω . These components are combined in (4.2.4a) to model the noise PSD due

to the camera:

( )2 22 2 2 2G i e Cn n n t( )ω πω= + (4.2.4a)

where

Gn(ω) is the total noise current power density,

in is the total noise current,

en is the equivalent input noise voltage,

Ct is the total camera capacitance,

The model is high pass in character, and predicts that noise power will increase with the

square of frequency. However, since the camera is being readout in a serial manner this

characteristic only applies to the rows, the noise at different points on the same column

will be uncorrelated and the noise signal along columns is therefore predicted to be white.

In fact Boie found both spectra to be essentially white and goes onto argue that the

bandlimiting in the preamplifier acts as a prewhitening filter.

Synchronisation

The next stage we consider covers the removal of synchronisation information.

The CCD array is read out in rows, each of which corresponds to a low pass filtered

signal bounded by a blanking interval. If the rows are not perfectly synchronised, sampling

points will be out of alignment with those of adjacent rows. Wang and Chen report this

error is within the bounds ±0.4 pixels [Wang96].

Quantisation

The final stage considered is the quantisation of the signal. Most video analogue to

digital converters (ADC) have a resolution of 8 bits, giving a random error uniformly

distributed between ± 1

512
of the full scale deflection. The quantisation noise may be

treated as a white noise process with variance 
0 5

12

2.
 [Healey94] . In practice quantisation

noise is more significant than this figure would suggest since the full dynamic range of the

ADC is rarely utilised and the presence of both random and fixed pattern noise reduces
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the proportion of the ADC range which is available to the signal.

4.2.5 Conclusions

In this section, we have discussed the noise mechanisms described in the literature.

In order to incorporate these mechanisms into a spectral model of the observed effects,

we must:

• characterise the spectral shape, and

• measure its magnitude.

The approach we take will depend on the nature of the mechanism. We define four

functional categories of artefact; transfer function, fixed pattern noise, temporal noise—

which we define to be variations in the image of the same scene over consecutive frames,

and signal dependent noise. A given mechanism may contribute to one or more of these

categories.

The predominant effect of the optical system considered in the literature is the blur

function, we adopt Pentland's model and treat it as a Gaussian transfer function.

Dark current noise was considered to be stochastic, contributing to both temporal

and fixed pattern noise. Shot noise was described as being temporal, having a white

spectrum and conforming to a Poission distribution, which tends to the Gaussian case as

irradiance increases.

 We have been unable to find any work on the spectral effects of line jitter, and

hence we are forced to resort to simulation in order to estimate the effects line jitter will

introduce into our model.

Serial filtering will affect the transfer function, however, the effect may not be

noticeable due to the dominance of optical blur. The filtering effect may manifest itself in

the filtering of noise generated subsequent to the optical system, most obviously in

temporal noise.

Quantisation noise has on the one hand been described as being signal dependent

[Lim, p.592] and on the other, as being white [Healey94]. While these descriptions are not

necessarily incompatible, we believe it is necessary to verify that the white noise

assumption is safe for the type of images used in this thesis. We again use simulation to

assess the character and degree of the effect.
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Transfer

function

Fixed

Pattern

Noise

Temporal

Noise

Signal

Dependent

Noise

Blur √

Dark noise √ √

Shot noise √

Filtering √ √

Jitter √ √

Quantisation √

Table 4.2.1 Noise categories.

If we assume a linear transfer function, the system transfer function is easily

measured using calibration images. Temporal noise is also relatively easy to measure,

using disparities in multiple images of the same scene. Fixed pattern noise can be observed

by preventing light from entering the lens and observing the resulting image. However, if

the camera does not have its autogain disabled, it is not possible to measure the effect

relative to a textured image. Unfortunately, we found that the autogain was required for

stable operation of the camera/framestore, and we are unable to measure the effect,

though we do characterise the effect in section 4.4. Signal dependent noise is also difficult

to measure and model. We adopt the following approach. The effect is simulated with a

synthetic exemplar texture, the difference between the correct image and the noisy image

is treated as being additive noise, (we shall describe it as pseudo-additive). In this way we

treat imaging artefacts as being either a transfer function or as (pseudo) additive.

4.3 The Case for Sub-sampling

4.3.1 Introduction

The easiest form of noise to identify is that disclosed by temporal variation of the

image. Using multiple images of the same scene we observe the spectral characteristics of

temporal noise relative to that of the static part of the image. The spectral characteristics

of the S/N ratio lead us to implement sub-sampling in the test images. In the next section

we estimate the overall transfer function of the system and the remaining temporal noise,

subsequent to pre-processing.
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4.3.2 Justification of Sub-sampling

We average 10 frames to produce a ’clean’ image and produce residual error

images from the original images, we then average the PSD of these images, Figure 4.3.1.

We note that the temporal noise is clearly coloured. This immediately calls into question

the white noise assumption made in most papers which deal with the effects of noise on

texture.

(a.) (b.)

Figure 4.3.1 Spectra of Time averaged image (a) and averaged residual spectra (b)

We define two nominal, possibly overlapping, classes of noise: spectral artefacts

and temporal variation. Taking the PSD of a captured rock image,  Figure         4.3.4, we

identify three suspected artefacts of the imaging process in     Figure 4.3.3: a wide

vertical-running noise plateau (1), and 2 groups of spikes (2) and (3). We confirm that

these are artefacts of the imaging process by rotating both the light source and the surface

by 90°,  Figure 4.3.2. While the characteristic illumination effects rotate, the artefacts (1)

2
3

1

Figure 4.3.2 Rotated Rock PSD    Figure 4.3.3 Key Figure         4.3.4 Rock Image Spectrum
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and (2) remain static, showing that these effects are associated with the imaging process.

We observed from Figure 4.3.1 that the temporal noise spectra is not white. While

the spectra is uniform in the vertical direction, there is a pronounced "plateau" running in

the horizontal direction. In Figure 4.3.5 we plot the profile of the 1D spectrum in the

horizontal averaged over the spectrum columns. There is a clear trend which is remarkably

uniform for all the textures.
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Figure 4.3.5 Horizontal Profiles of Residual Power Spectra

We now consider noise in the context of imaged test surfaces. We measure the

signal to temporal noise ratios of several textures along both the vertical and horizontal

axes of the frequency plane. The textures are illuminated from the vertical direction, and

the signal is at its maximum in this direction. According to our models, the signal along

the horizontal axis is composed of the non-linear components and noise. The frequency

dependent signal to temporal noise ratio is defined below:

E
I E
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where

Ii(ω) = the power of the average measured image at frequency ω.

Er(ω) = the power of the residue image.
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Figure 4.3.6 Signal to Temporal Noise Spectrum for Rock Texture

The signal to temporal noise ratio, Figure 4.3.6, shows a clear frequency

dependency as we would expect from the fractal nature of the image. High frequencies are

characterised by low signal to noise ratios of 0dB or less. This leads us to believe that

little information, useful for classification, will be found at these frequencies. This

immediately commends low pass filtering and decimation for two reasons.

1.  Low pass filtering will remove the majority of noise spikes and the associated

attenuation of high frequency, vertical running components will mean that the

temporal noise process can be effectively described as being white.

2. The suppression of high frequencies will allow decimation of the images with the 

associated reduction in processing time for the classification algorithm.

This procedure was therefore adopted, and all the images were low pass filtered with a

7th order Butterworth filter implemented in a 25X25 mask prior to decimation. A linear

image rescaling was also carried out at this stage.

4.4 Experimental Investigation

4.4.1 Introduction

This section is concerned with the experimental measurement of image artefacts.

We estimate the overall transfer function of the system, including pre-processing, using a

calibration image, and fitting an experimental model to the observed data. As with the

previous section we use multiple images of the same scene to identify temporal variation

before quantifying the effect in terms of its first and second order statistics.
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4.4.2 Transfer Function

Having adopted the down-sampling procedure, we now investigate the overall

effect of the blur function. The blur function is assumed to be isotropic and Gaussian in

accordance with Pentland [Pentland87]. We compare a calibration image with a synthetic

image and a blurred synthetic image Figure 4.4.1, the spectral results are shown in Figure

4.4.2.

  

(a) Synthetic (b) Actual (c) Blurred synthetic

Figure 4.4.1 Synthetic, actual and blurred calibration images.

The blur function with σb=0.02 accurately predicts the magnitude of the peaks in

the calibration spectra, with the exception of the very low frequencies, i.e. below 0.025 fs.

We therefore adopt this as our optics model.
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Figure 4.4.2 Comparison of Actual, Synthetic and Blurred Synthetic Calibration Spectra
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4.4.3 First Order Statistics of Temporal Noise

Now, let us consider temporal noise. We treat any variation over consecutive

frames of the image of a given scene as being noise. We call this temporal noise and model

it as being additive. We begin by estimating the first order statistical properties of this

noise. Averaging a series of temporal images will reduce temporal noise. The additive

noise will be of the same order of magnitude as the quantisation noise and a disparity

histogram calculated from a mean image will have a low standard deviation, making it

difficult to form a good estimate of its properties. Instead we mitigate this problem by

subtracting two images of the same scene; this is equivalent to the subtraction of two

random noise processes.

Texture Mean

Disparity

Standard

Deviation of

Disparity

Texture Mean

Disparity

Standard

Deviation of

Disparity

Isorock 0.45 1.78 Slab 0.03 1.69

Pitted 0.08 1.58 Slate 0.40 1.68

Radial -0.02 1.59 Striate -0.02 1.67

Rock -0.35 1.64 Twins -0.07 1.62

Table 4.4.1 Table of image disparities.

0

10

20

30

40

50

60

70

-5 -4 -3 -2 -1 0 1 2 3 4 5

Disparity

P
ix

el
 F

re
q

u
en

cy
 (

%
)

Figure 4.4.3 Disparity histogram for rock texture.



84

If we assume that the temporal noise distributions, which underlie the disparity

distribution, are identical and Gaussian, we may infer their standard deviations from that

of the disparity histogram.

σ σ
σ

1 2

2

2
= = disparity

This results in an estimated standard deviation (σt) of 1.17 averaged over all the textures.

We may also usefully state the temporal noise level in terms of the signal to noise residue.

Texture S/R (dB) Texture S/R (dB)

Rock 25.90 Slate 15.90

Striate 24.08 Pitted 19.63

Isorock 22.67 Twins 20.76

Slab 26.23 Radial 17.20

Table 4.4.2 Signal to temporal noise levels for the test textures.

4.4.4 Spectral Characteristics of Temporal Noise

Having observed the statistics of the disparity images, and inferred those of the

temporal noise process, we now consider the spectral characteristics of the temporal

noise. We do so by observing the spectra of the same disparity images which will be the

scaled image of the noise spectra.

In section 4.3 we advocated the use of sub-sampling for the images used in this

thesis, we now make a polar plot of the temporal noise spectra of the subsampled Rock

image (Figure 4.4.4), for comparison we also show the polar plot for the original Rock

image prior to sub-sampling. We can see that the noise power in the subsampled image is

far more evenly distributed throughout the angular range than that of the original image.

With the exception of the peak at θ=90°, the plot shows the noise power distribution to be

essentially isotropic in the case of the sub-sampled image.

If we now plot power against radial frequency for the Rock image (Figure 4.4.5),

we note a gentle fall in power with increasing frequency. A least squares fit over the entire

frequency range gives an estimated β=0.70, if the beta parameter is measured over the

midband range fs=0.14 to 0.38, a much lower estimate of β=0.39 is made.
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Polar Plot of Temporal Noise
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Figure 4.4.4 Polar plot of temporal noise spectra of original and sub-sampled images.
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image.

Original

Sub-sampled

β=-0.70

(°)

β=-0.39



86

The result of the polar and angular plots is the description of the noise process as

being of isotropic and mildly low pass in character. Given the relatively low estimates of

the beta parameter, and the convenience of the assumption, we will assume in this thesis

that the temporal noise is white.

Comparison of the radial noise spectra for different textures (Figure 4.4.6) show

them to be similar. Some differences are apparent at low frequencies, though we note that

these correspond to only a few spectral components. Overall, we believe the similarity of

the spectra vindicate our assumption that temporal noise can be treated as being signal

independent, at least within the class of textures considered in this thesis.

We therefore conclude that the spectra of temporal noise associated with the

textures of this thesis may be modelled as being realisations of the same noise process,

independent of the texture characteristics, and, furthermore, that the process may be well

approximated by a white noise process.

Radial Plot of Temporal Noise
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Figure 4.4.6 Radial temporal noise spectra.

4.4.5 Summary

In this section we have found the transfer function to be well approximated by a

Gaussian with parameter σb = 0.02. It was also concluded that the temporal noise

associated with the subsampled image is reasonably approximated as white noise of
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variance 1.17.

4.5 Use of Simulation to Investigate imaging phenomena

In the literature section, several noise mechanisms were described which cannot be

easily resolved from the uncorrupted image. In the cases considered here, it was not

possible to either observe the mechanism or measure the effect directly. We therefore use

simulation to estimate the magnitude and nature of the spectral effects caused by the noise

sources. It is, however, important to note the limitations of simulation as an investigative

tool. We cannot prove causal links between a mechanism and an observed effect. Instead,

we are limited to stating that the results predicted by the model are compatible with the

observed results.

In order to make the experiment as relevant to texture analysis as possible, we will

use a synthetic test surface with realistic parameters. A fractal surface will be illuminated

with the empirical reflectance map. Noise simulations will then be carried out on this

image and the measured and simulated spectra compared.

4.5.1 Quantization Noise

While most cameras/framestores are 8-bit, in practice, due to lighting variations

and the field of view not consisting entirely of texture, it is likely only a fraction of this

range will be utilised to convey useful texture information. To illustrate this point we

show the standard deviations of the pixel intensities for the test surfaces illuminated from

τ= 0° (Table 4.5.1). In the third column, the number of bits required to quantise the range

from -2σ to +2σ is shown.

Texture σ Bits Texture σ Bits

Isorock 9.48 6 Slate 6.19 5

Radial 6.61 5 Striated 12.20 6

Rock 11.37 6 Twins 8.45 6

Slab 13.10 6 Pitted 6.68 5

Table 4.5.1 Effective quantisations of data sets.
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Figure 4.5.1 Power spectra of original signal and residue signal.

If we assume that the active region ranges from -2σ to +2σ, all of our images are

effectively quantised in 5 or 6 bits. This was clearly an area of concern and the effect was

simulated by comparing the original rendering with that of the image quantised to 6 bits.

The spectrum of the residual image was found to be small and effectively white, Figure

4.5.1. This is consistent with Szirani who found that at least four bits were required for

reliable classification.
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Figure 4.5.2 Signal to residue ratio vs. frequency

We therefore conclude that it is safe to assume that the residual spectrum due to

quantisation is white. Furthermore in our simulations the S/R ratio varies from
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approximately 40dB at low frequencies to 22dB at high frequencies for a 6 bit

quantisation.

4.5.2 The Effect of Jitter

We again use our experimentally based synthetic surface to generate a blurred

image which is then supersampled (X10) in a raster scan with a random jitter drawn from

a uniform distribution of width -0.2 to 0.2 pixels being added at the beginning of each line.

The serial signal is then subsampled to its original rate and the power spectrum examined

for artefacts. The resulting residual spectrum is shown in Figure 4.5.3.

(a) Linear frequency scale, log power scale.       (b) Log frequency;log power scale.

 Figure 4.5.3 Jitter induced 2D residual spectrum (a) and mean row spectrum (b).

The simulated effect is similar to the plateau effect observed for temporal noise prior to

subsampling.

4.5.3  Serial Filtering

 The image is read from the CCD array in discrete, serial form. This pulse train is

then low pass filtered to yield a continuous waveform. A one-dimensional filter applied to

this signal will produce an attenuation with frequency of the signal in the rows, while

leaving the columns unaffected. We hypothesise that a white noise process filtered in this

way will produce a spectrum with a characteristic vertically running plateau.

We test this hypothesis by simulation, using a Butterworth filter (arbitrarily

designed to be 10th order) with breakpoint at 0.25 fs, we filter a two dimensional white
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noise process in serial form. The resulting spectrum (Figure 4.5.4) is of similar form to

that observed for the jitter simulation.
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Figure 4.5.4 The spectral effects of an anti-aliasing filter.

Like the jitter simulation this produces a residue spectrum of the “plateau” form.

The fact that two mechanisms may form rival hypotheses for a particular observed

phenomenon serves to underline the inability of simulation to establish causal

relationships. In any case, the results of the simulation indicate that the effect can be

reduced to a white noise source if subsampling is employed.

4.5.4 Summary

In this section we found that the members of the data set were effectively

quantised in 5 to 6 bits. The residual signal associated with quantisation was found to be

white, with the result that quantisation noise is most significant at high frequencies. This

section also disclosed that serial filtering of a white noise source and line jitter both give

rise to the 'plateau' effect, and are possible sources of this plateau. However, as with the

real data set after subsampling, these are effectively white noise sources.

4.6 Non-Quantifiable Noise Mechanisms

 The aim of this chapter is to develop and parameterise a noise model. There are

some noise mechanisms which are not readily measured either by direct experimentation,

nor by simulation. Since we cannot measure these mechanisms in a useful way, we are

unable to include them in a noise model. We do, however, briefly discuss two effects for

completeness.
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4.6.1 Camera Non-linearity

We conclude this section by briefly noting the effect of camera non-linearity. While

many cameras may be set to give a linear response, the large range of intensity values, and

the limited number of bits, mean that it is often more convenient to use a camera with

γ=0.51. Figure 4.6.1 shows the spectra of a "Chessboard" calibration image. While the

measured and synthetic spectra share the same spectral peaks, particularly at low

frequencies, both the measured spectra have additional peaks due to non-linearity-induced

harmonics.
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Figure 4.6.1 The generation of harmonics due to camera non-linearity.

In the previous chapter we measured the reflectance function in terms of camera

response, effectively lumping together camera and reflectance non-linearity. We note that

unlike reflectance, the effects of camera non-linearity are dependent on the incident

intensity. As a consequence of this, the amplitude of the harmonics relative to the

fundamental will change if the incident intensity is varied. A change in the intensity of

illumination may therefore have serious effects on the classification of textures which

cannot be corrected for using standard normalisation techniques.

                                                       
1 The camera amplifier can be modelled using the relationship i k iout in= . γ ,, where k is a constant. In

linear operation γ=1.0, more commonly however γ=0.5 to allow quantisation of a large dynamic range in
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We also note that a non-linear camera means that even the additive noise measured

earlier will be signal dependent in effect. We justify our use of an additive model by

measuring the effect of noise on the data set itself, we are in effect forming a linear

approximation around the actual operating point. The uniformity of the temporal noise

spectrum measured in Figure 4.3.5 supports the validity of this assumption.

4.6.2 Fixed Pattern Noise

Associated with several of the noise sources considered in section 4.2 is the

phenomenon of fixed pattern noise, that is an imaging effect which is present regardless of

the image content. Given a camera without autogain and with a linear gain function, it is

possible to measure fixed pattern noise by preventing light from entering the lens.

However, we found both the autogain and the non-linear gamma function to be essential

when imaging textures. Consequently, while it is possible to observe the effects of fixed

pattern noise, it is not possible to predict its effect when imaging textures.

Figure 4.6.2 Fixed Pattern Noise Spectrum

We are therefore unable to quantify or model the effect of fixed pattern noise and while

we do illustrate the spectral properties in Figure 4.6.2 we do not include it in our noise

model. Comparison with  Figure         4.3.4 shows that several of the peaks observed in

the FPN spectrum are also apparent in the imaged texture spectrum. We note however,

that these are only obvious at high frequencies, and the effect will be reduced by

subsampling.

                                                                                                                                                                    
a limited number of bits.
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4.6.3 Summary

 This section has briefly discussed those noise effects which we are unable to

integrate into our model. Ideally it would be possible to use a linear camera without

autogain. However, in practice the required dynamic range make this difficult to use with

only eight quantisation bits. Due to non-linearity it is important that a constant level of

incident intensity be maintained.

Fixed pattern noise is not in itself a problem to classification, though its non-linear

interaction with the correct image may generate spurious spectral components.

4.7 An Imaging Model

Up until this point we have concentrated on describing and quantifying the noise

and distortion associated with the imaging process. We now draw together the strands of

this investigation to form a model of the imaging process. This model will serve as both an

analytical tool and as the basis of simulations of the imaging process.

4.7.1 Integrating noise components

Two of the simulated effects, serial filtering and line jitter, are temporal in nature

and their effect will be apparent in the temporal noise observed in section 4.5. The effect

of quantisation, conversely, is static and is not accounted for in the temporal

measurements. We now combine the temporal noise with quantisation noise to form an

estimate of the error between the measured and actual values.

The pdf of a random process which is the sum of two random variables may be obtained

by convolving the distributions of the two variables [Peebles, p.102]. We form expression

(4.4.2) from the convolution of the uniform distribution with the postulated Gaussian

distribution. Assuming a zero mean Gaussian process:
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(4.4.2)

 The parameter σt, controls the shape of the distribution, Figure 4.7.1. For temporal noise

with a relatively large variance (σt =1), the resulting distribution resembles a Gaussian

curve, smaller variances (σt =0.1) give rise to distributions closer to the uniform case.
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Figure 4.7.1 The effect of the sigma parameter on the PDF of a linear combination of

Gaussian and uniform processes.

 If we combine the estimated temporal noise distribution with the quantisation

distribution (which exists in the interval ±1.2 due to rescaling due to pre-processing) we

can form the distribution shown in Figure 4.7.2. We find that the resulting distribution can

be modelled as being Gaussian of standard deviation (σn) 1.36.
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Figure 4.7.2 Estimated distribution of combined temporal and quantisation noise.

Since both the subsampled temporal and the quantisation residual spectra are considered

to be white, the linear combination of the two will also be white.

 σt=1.0

σt=0.1
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4.7.2 Development of a Noise Engine

We now use the work carried out in this chapter to develop a noise engine which

will be used later in this report. This engine forms a computational component in our

system model.

The decision to use downsampled images allows several simplifications to be made

to our model, such as the elimination of noise spikes at 0.25fs, the reduction of the relative

effect of the blur function and the suppression of those directional noise mechanisms that

only become apparent at high frequencies.

The model itself, Figure 4.7.3, consists of only two components, a blur function

and an additive white noise process, both of which are considered to be global in

character. The estimated blur function was found to fit well with the Gaussian model

presented by Pentland. While localised distortions were experienced in the experimental

work, these occurred in regions of the image which were not utilised. Their absence in our

working data and the relative difficulty of their description lead us to omit them from our

model.

   Simulated
     Image

 White Noise
 Process

+ Data
Set

  Blur

Figure 4.7.3 Noise model for sub-sampled images.

The second component of our noise model, additive white noise, lumps together several

noise mechanisms. Dark noise, shot noise and quantisation noise are considered as being

white in accordance with the literature, while jitter noise and filtered noise are also

considered to be white as a consequence of subsampling.

Since we only consider texture which is caused by topography with no albedo variation,

we will assume that camera non-linearity is lumped together with the reflectance function

and modelled implicitly with the reflectance map.
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Noise

Mechanism

Description Notes Modelled

Dark noise Temporal Subsampled temporal noise found to be white. Gaussian

White

Shot Noise Temporal Subsampled temporal noise found to be white. Gaussian

White

Jitter Temporal Approximately white when subsampled Gaussian

White

1,2 Noise Narrow band noise

at 0.25 fs

Suppressed by lpf prior to sub-sampling. Ignored

Quantisation Simulation confirms accepted white noise assumption

for broadband textures. While quantisation error is

itself drawn from a uniform distribution, when lumped

together with temporal noise of the magnitude

observed here, the resulting distribution is Gaussian in

character.

White

noise.

Table 4.7.1 Summary of noise mechanisms and their effects.

The engine will have default parameters as follows: a Gaussian blur function with

σb=0.02 and a noise function with standard deviation 1.36, quantisation will be carried out

to 6 bits. The effect on a synthetic fractal image is shown in Figure 4.7.4.

        

Figure 4.7.4 Original and processed images.

4.8 Assessment of the  Physically Based Model of Texture Images

The work carried out in this thesis has so far consisted of modelling the formation

of textured images from rough surfaces. We have now reached a stage in the imaging
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process at which we are able to compare the predictions made by our models with actual

measurements. Comparison of measurement and prediction will give an indication of the

accuracy of our models.

4.8.1 First Order Statistics

The theoretical work carried out in the previous chapters has been performed with

the (non-essential) assumption that the data had, at all stages, a Gaussian distribution. This

was justified on the basis of the height distribution of our surface models, and the linearity

of the subsequent stages of the process. We have now reached the point where we

experimentally evaluate this assumption in a direct way.

The standard test for testing whether a distribution conforms to a model is the Chi

square test (used in the phase section). This will give the probability that the observed

measurements are drawn from a particular distribution. If the sampled distribution really is

drawn from the model distribution we would expect the measured pdf to converge to the

models as the number of samples increase. Accordingly, the probability of a fit for a given

pdf will decrease as the number of samples increases. Since in this application we use a

very large number of samples the measured pdf must be almost exactly Gaussian.

In fact, the measured distributions are not Gaussian, but may be described as near-

Gaussian. The large sample size means that the Chi square test will return a vanishingly

small probability for distributions which are near-Gaussian. In this case we must rephrase

the question, instead of asking is this distribution Gaussian? we must ask how close is the

observed distribution to the Gaussian form? We therefore seek a figure of merit which

operates on the pdf. and gives a smoother transition as the actual pdf. moves away from

the model.

The requirement for a smooth transition is shared by criteria used in parameter

estimation. With this in mind we define a modified form of the L1-norm [Siva, p.67]. We

define the figure in equation 4.9.

L p i p io g
i

N

1
0

= −∑
=

( ) ( )

where po is the observed probability density function, and pg is the pdf of a Gaussian

distribution with the same mean and standard deviation.

In order to relate the figure to a meaningful form, we show the pdf of the textures with the

lowest and highest measures, (Figure 4.8.1) before tabulating the criterion in Table 4.8.1.
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In all cases the Gaussian model is parameterised by mean and standard deviation measured

in the usual way, with no parameter optimisation.
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Figure 4.8.1 Histogram distributions of grey levels for most and least Gaussian

distributions.

Texture L1 Statistic Texture L1 Statistic

Isoroc 0.039 Pitted 0.095

Rock 0.077 Radial 0.173

Slab 0.053 Slate 0.173

Striate 0.061 Twins 0.099

Table 4.8.1 Degree of ’normality’ in grey level distribution.

The distributions range from the very Gaussian-like Isoroc to the positively

skewed, Slate and Radial textures. However, even the Slate and Radial textures are

broadly Gaussian and we shall retain the assumption of normality in the theoretical models

used in this work.

4.8.2 Second Order Statistics

We have described the data set as being the output of a linear system with input

conforming to one of the surface models described in Chapter 2.

I S k B W( , ) ( , ). . . cos ( ). ( , )ω θ ω θ ω θ τ ω θ= − +2

We plot the power spectra of the images of the test surfaces illuminated at τ 0° in Figure

4.8.2.
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Figure 4.8.2 Power spectra of test textures illuminated at τ=0°.

The first point we note from Figure 4.8.2 is that the power spectra are no longer

fractal, i.e. they do not have a linear roll-off when plotted on a log-log graph. We believe

this to be primarily due to the Gaussian transfer function, associated with blur acting as a

low pass filter. In Figure 4.8.3 we plot the image power spectra against that of the fractal

surface rendered and ’imaged’ using our models. The spectra are not identical, however,

they are in reasonable agreement and this result does give some verification of the models

used in this thesis.
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The result discussed above while analytical, does not give a very intuitive idea of

the accuracy of our models. In Figure 4.8.4 we show the original Rock image as well as a

second semi-synthetic image. The second image was obtained by imposing the predicted

power spectrum on the Rock image while retaining the original’s phase spectrum.

 

Figure 4.8.4 Comparison of original rock surface with modified PSD reconstruction.

4.9 Conclusions

Summary

In this chapter the case for down-sampling the test image has been demonstrated

on grounds of noise reduction and the advantages of subsampling to classification,

rotation invariant classification and image modelling have been highlighted.

The chapter has consulted both the literature and experimental data to model the

transition of the signal from incident image to data set. The form and parameter values of

the model have been estimated for the rock surfaces used in the work described in this

thesis.

Blurring was found to be the dominant artefact of imaging, and a Gaussian model

of the imaging system transfer function was adopted. We have shown that the common

assumption of a white noise model is not justified, in our case at least, without down-

sampling.

We have established signal to noise ratios for the textures considered in this thesis,

giving a measure of the quality of these images. Furthermore, we have measured the S/N

ratio as a function of sampling frequency, allowing the effects on spectrally-definable
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classification feature measures to be considered.

We have also compared the statistics of the imaged textures with those predicted

by our models. We found that the first order statistics while not exactly Gaussian could

reasonably be described as such. We also found that the spectra were not fractal, though

the measured spectra were reasonably approximated with our surface, rendering and

imaging models.

Implications for Texture Analysis

The fractal nature of the signal and the observed effects of blur and white noise

discourage the use of high frequencies as consistent sources of discriminatory information.

While the blur function reduces the feature mean and variance, particularly at high

frequencies, the additive white noise increases the texture’s variance in feature space. The

magnitude of the degradation in classification will depend on the proximity of the textures

in feature space as well as the level of the noise itself.

While the absolute power of noise seems to be similar in all images, the power

relative to the texture varies depending on which texture is used. Consequently, we cannot

apply Wiener filtering to the image prior to classification. Use of the related technique of

spectral subtraction is possible, albeit with the introduction of serious distortions. In line

with the philosophy of this thesis, processing beyond sub-sampling will be avoided.

The directionality of noise and imaging effects for the original image makes the

unprocessed image unsuitable for rotation invariant algorithms. Fortunately, these

directional effects can largely be suppressed by subsampling the image and we recommend

the operation prior to the use of a rotaion-invariant algorithm.

The findings of this chapter are relevant to the remainder of this thesis. The results

affect the design of the classifier in chapter 5 and its modelling in chapter 6. The most

significant contribution of this chapter is, however, to chapter 8, where an experimental

algorithm is evaluated using the simulation engine developed in this chapter.
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Chapter 5

A Classification System

5.1 Introduction

The goal of this thesis is the development of a rough surface classifier which

operates on imaged texture, yet is robust to changes in illuminant tilt between training and

classification. The aim of this chapter is to develop a classifier that operates solely on the

basis of image texture and does not apply any domain knowledge of the underlying

physical system.

The first part of this thesis is concerned with modelling the transition from physical

surface to symbolic representation. In the previous chapters we have modelled the

physical processes of image formation and data extraction. In this chapter, we will

develop the classifier. The classifier forms the final link in the surface to symbol chain,

extracting the symbolic representation from the textured image. This task corresponds to

surface classification where the imaging conditions are held constant throughout training

and classification. In the next chapter the classifier developed here will be modelled, and

the effects of varying illuminant tilt considered.

The combination of algorithms, which we describe collectively as a classifier,

consist of: a means of extracting the relevant signal components, a mechanism to process

these components and a discriminatory mechanism to classify on the basis of this

information. In this chapter we will consider all of these components, however, the

emphasis will be on the first stage, that is, of signal extraction. The chapter, consists of

two parts: firstly, a review of feature extraction techniques and the selection of the

technique thought to be most suitable for this thesis, and secondly a description of its

incorporation into a complete classifier.
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5.2 Terms used in this chapter

What we mean by classification.

Ehrich and Foith [Ehrich77] define three tasks associated with texture analysis,

 1. given a textured region, to which of a finite number of classes does the

sample belong;

 2. given a textured region, how can it be described; and

 3. given a scene, how can boundaries between the major textured regions be

established.

Reed and Wechsler [Reed90] quote this analysis and designate the tasks as, classification,

description and segmentation respectively. We are concerned with classification and

segmentation.

Unfortunately various authors give differing definitions of these terms. Tuceryan

and Jain [Tuceryan92] state that "the goal of texture classification is to produce a

classification map of the input image, where each uniform region is identified with the

texture class it belongs to." This seems to imply that segmentation is taking place, if only

implicitly. Chellappa et al. [Chellappa92] on the other hand, use a stricter definition: "..

standard pattern classification techniques may be applied assuming there is only one

texture in the image." Tuceryan and Jain contrast classification with segmentation: "The

goal of texture segmentation is to separate regions in the image which have different

textures and identify boundaries between them. The textures themselves need not be

recognised." [Chen, p237]. Subsequently he enlarges on this, stating that there are two

general approaches; boundary-based approaches which rely on detecting differences in

textures and region-based approaches which grow and merge uniform regions of texture.

Clearly these definitions are incompatible, this is due to the fact that Jain bases his

definitions on methodology, whereas the conflicting definitions are set in terms of

objectives. We believe that all the above definitions have their own merits, but, for clarity

we will adopt terms suited to the subject matter of this thesis.

We will define the purpose of our system to be classification. We define this term

in the context of the hypothetical example given in Chapter 1; consider an inspection

system applied to a rough surface, which may exhibit several different forms of roughness

within the same sample. The inspection system must be able to detect and identify
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different textures and the boundaries between them. The approach adopted in this thesis is

to calculate the probability that each individual pixel belongs to a certain class, on the

basis of a feature vector, and to label that pixel as belonging to the most likely class.

As with Jain, segmentation of the image is implicit in our definition of

classification. Jain’s definition of segmentation, however, is not relevant to the approach

used in this thesis. We relate the term segmentation to that of classification in the

following sense: classification is an operation applied to a pixel whereas segmentation is

an image wide phenomenon. In this thesis, segmentation is considered to be the global

effect of the classification process occurring at pixel level.

Terms used to describe the classifier’s components.

The mechanism by which pixels are classified and the image segmented will be

described as the classifier. The classifier represents the combination of algorithms which

extract information from the image and segment the image on the basis of that

information. We break this process into three stages: measurement, feature extraction and

discrimination.

Discrimination occurs on the basis of evidence, generally the collection of this

evidence may be broken into two stages. At the first level a measure, d(x,y), is obtained

from the measurement of some signal component or components. This will have a

tractable relationship with the original signal. While the measure is physically meaningful,

it is not in a form suited to numerical discrimination and so further processing is required.

The resulting feature, f(x,y), represents a quality of the image, it will not be tractable in

general, however, it will be in a form which is suitable for the discriminant. In a multiclass

problem it is usual to use more than one feature; several features associated with each

pixel are treated as being orthogonal and grouped together as a feature vector F(x,y). The

discriminant function is then applied to the feature vector associated with each pixel and

will allocate a label for that pixel according to the estimated class. The resulting

segmentation will be described as the label field l(x,y)

5.3 The Choice of a Texture Measure

In this thesis, our agenda is slightly different from that of most texture analysis

researchers. Whereas most researchers are concerned solely with minimising

misclassification, we also aim to develop a model for the classification of rough surfaces.

It follows that our main criterion for the selection of a texture measure should be
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compatibility with that model, and implicit from this, that the measures should be suitable

for the type of textures considered in this report. It is, however, also essential that the

texture measure be illustrative of those used within the texture analysis community. The

selection of a feature set for this thesis therefore rests on three criteria:

• the existence of a spectral representation of the measure,

• its popularity within the texture analysis community, and

• its suitability for random phase, broadband textures.

In this section we will briefly consider a selection of texture analysis techniques

which can be described in spectral terms. We show an incomplete taxonomy of texture

analysis techniques in Figure 5.3.1. Texture analysis is usually initially divided into

structural and stochastic groups. Structural techniques are generally applied to textures

composed of a number of copies of a primitive placed at various locations in the image

plane. Stochastic techniques are more appropriate for the type of textures—in which there

is no obvious primitive—used in this thesis. We divide the stochastic techniques into those

based on the texture's spectrum and those based on its probabilistic character. This

distinction is not absolute; the probabilistic Gaussian Markov models are closely related to

the spectral autoregressive models [Cohen91]. Furthermore, some techniques such as

fractals e.g. [Linnett91] do not conform to either class.

Figure 5.3.1 An (incomplete) taxonomy of texture analysis techniques.
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Our first criterion is that there exists a spectral representation of the measure. This

thesis is based on spectral models; in consequence we will ignore the probabilistic

techniques. We do, however, note that these probabilistic techniques are often able to

characterise structure which is lost by most spectral techniques. This was shown as an

indirect result of the random phase experiment in section 2.3.2 where structure was

detected in a signal with a whitened spectrum using second order probabilities. We justify

our approach by adopting the maximum entropy phase restriction developed in Chapter 2

and only considering texture types which are described completely—for the purposes of

classification—by their power spectrum.

Up until this point in the thesis, we have considered images and surfaces in which

there is only one type of texture present. In any segmentation scheme this is not a valid

assumption. Instead, the observed image or surface is considered as consisting of distinct

areas of homogeneous texture. These regions, while being stationary, will have different

spectral characteristics and the overall image may no longer be considered stationary. In

consequence classical spectral analysis techniques can no longer be applied. Instead, the

two dimensional equivalents of time/frequency techniques, which attempt to maximise

localisation in both the spatial and the spectral domains, will be considered.

Of the spectral techniques we chose to ignore the parametric models. Although

these models do have spectral representations, and indeed have been used for spectral

estimation [Therrien p.596], the features on which the classification is based are difficult

to relate intuitively to our theoretical models. Whereas the other techniques considered

use features based on image measurements, the model based features are based on the

closeness of the sample to a candidate texture. This is an effective strategy for

classification, but it does not lend itself to the analytical approach of this thesis.

Historically, many texture analysis techniques have concentrated on signal

magnitude or power at the expense of phase. This is not always an appropriate approach

since for many textures the majority of textural information lies in the phase spectrum.

More recently, techniques that utilise phase information have emerged to redress this

imbalance. However, in Chapter 2 we adopted our maximum entropy phase condition and

explicitly stated that no discriminatory information is held in the phase spectra of the

textures used in this thesis. It would be desirable therefore for a candidate technique to

identify the signal's phase component which can then be resolved from magnitude

information and disregarded.
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The second criterion in our selection of a texture measure is that of popularity

within the texture analysis community. In the next chapter we will show that the measure

adopted, and consequently the classifier, are affected by changes in illuminant tilt. For this

result to have any relevance to the wider texture analysis community, the measure must be

widely used within that community.

The third criterion is suitability to broadband, random phase textures. A great deal

of work has been carried out on narrow band textures, e.g.[Bovik96][Weldon96],

however, the development of fractal signal models and multiresolution techniques

promises an equally analytical approach to broadband textures. In the context of this

thesis, the only real effect of stating that the sample textures are broadband is the

exclusion of narrowband techniques.

5.3.1 Wigner Ville Distribution

The application of time/frequency techniques to texture analysis represents an

attempt to resolve the conflicting requirements of accurately localising a non-local

phenomenon. Judged on this criterion, a candidate technique should have high spatial and

spatial-frequency resolution. The Wigner Ville distribution (WVD) has twice the conjoint

resolution of the STFT periodogram and superior resolution to that of the Gabor

transform. It is therefore unsurprising that several authors have used the WVD as the

basis of texture analysis algorithms [Reed90][Christobal91][Song92][Zhu93].

The spatial/spatial-frequency representation of a two dimensional image is a four

dimensional function. For simplicity of notation, and ease of visualisation, we will, in

general, concentrate on the application of the WVD to a one dimensional signal s(x).

The WVD is a member of the large family of time/frequency distributions known

as Cohen’s class. Members of this class conform to a general expression that includes a

kernel function. Members differ in the form of this kernel, and in the case of the WVD the

kernel is constant and equal to unity. The form of the WVD is given below:

( )W x f s x t s x t j ft dt( , ) ( ) ( )exp*= + − −∫
−∞

∞

2 2 2π

Due to the symmetry of the ’lag’, the WVD is always real, however, it does contain phase

information, albeit implicitly, and is an invertible transform.
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The discrete form of the WVD is known as the Pseudo WVD (PWVD), it is shown

below:

W x f s x t s x t w t w t fts
k

[ , ] [ ] [ ] [ ] [ ]exp( )* *= + −∑ − −
=−∞

∞
2 2π

The factor two, present before the summation and in the exponential term, is due to the

fact that in order to evaluate x± t/2, we must sample at twice the Nyquist rate to avoid

aliasing. Christobal et al. [Christobal91] note three methods of satisfying this requirement:

• oversampling the signal, used in [Reed90]

• using the analytical signal, used in [Zhu93] or

• low pass filtering the image, implicit in the windowing function in [Song92].

The PWVD also includes a window, w[t], which reduces the effect of truncation on the

estimate, and acts to suppress high frequencies and reduce the aliasing problem.

The major shortcoming of the WVD is the presence of interference, or cross terms

in the distribution. Due to the intrinsic bilinearity of the distribution, frequency

components interact to introduce spurious components. Zhu et al. identify two classes of

interference:

(a.) interference between positive and negative frequencies, and

(b.) interference between components of different absolute frequency.

In the one dimensional case, the first problem can be avoided by eliminating the

negative frequencies and using the analytical signal [Quian, p.123]. In two dimensions,

Zhu notes that there is more than one possible analytical image for a given real image;

furthermore, each analytical image has its own properties; which analytical image to use

must be decided on the basis of the spectral properties of the original image.

While certain aspects of the second problem can be alleviated by using the

analytical image, it nonetheless remains a significant problem. Quian notes that the cross-

terms oscillate, especially for frequency components which are far apart [Quian p.121].

The cross-terms therefore can be reduced by low pass filtering the spectra with over time

and frequency—at the cost of resolution—to give the smoothed WVD (SWVD).



109

Zhu adopts the scheme for the spectral estimation for spectral estimation outlined

in Figure 5.3.2. The first step in the scheme is to suppress negative frequencies by using

the 2D Hilbert transform of the image. The 2D pseudo WVD is then obtained at each

spatial point in the analytic image. The local spectra obtained are then averaged over

space.

Application of the WVD to images results in a 4D function (or a 2D function at

each sample point). Authors adopt various schemes to extract useful information from the

distribution. In the context of crack detection in a textured field, Song et al. first calculate

the average distribution for the image. The average local spectra is then subtracted from

the actual spectra at each image point. Pixels with residues exceeding a threshold are

classified as being possible crack locations.

Other authors have extracted feature measures from the spectra. Reed and

Wechsler use the location of the peak frequency component spectra as a feature, whereas

Zhu used the orientation and radial frequency of the largest spectral peak as features.

Christobal et al. developed five feature vectors in their scheme:

• mean of image frequency content

• variance of image frequency content

• mean of image directionality

• variance of image directionality

• variance of image intensity.

We believe these features to be largely arbitrary and, in the context of our

requirement for a tractable measure, none of these techniques is entirely satisfactory.

The WVD has two problems: the most serious of which is intercomponent

interference; this presents a significant problem for signals with a limited number of

harmonic components, it is likely to be an even more serious drawback to application of

the technique to broadband textures. Hlawatsch and Boudreaux-Bartels state that the

Image
2D Hilbert

Transform
2D  PWVD

Spatial

Smoothing

4D Space/

Frequency

Figure 5.3.2 Zhu’s scheme for local spectra estimation
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number of interference terms grows quadratically with the number of signal components

[Hlawatsch92]. The second difficulty is that the WVD implicitly contains phase

information. The fact that there is no clear method stated in the literature for resolving

phase and magnitude components means that the feature images will contain information,

which by our conditions, is redundant.

5.3.2 Higher Order Statistics

Higher order statistics (HOS) have recently been proposed as a means of

discriminating between textures. The power spectrum gives a complete statistical

description of a Gaussian process. It is however, unable to describe either the phase

relations within a process or departures from normality. Hall and Giannakis developed a

test of normality and applied it to nine Brodatz textures. All the test textures were found

to be non-Gaussian to varying degrees—presenting a strong case for the use of HOS

[Hall95b]. Higher order statistical techniques are suited to those textures which we have

been at pains to exclude from the scope of this thesis. Nevertheless, we include a brief

discussion of these methods partly for completeness, but also in order to gain an insight

into the effect of our assumptions about the data set.

Higher order statistics form a natural extension to the second order statistics used

in classical spectral analysis. If we consider the moments of a random process s[x],

Mx
(1) E[s[x]]

Mx
(2)[t] E[s*[x]s[x+t]]

Mx
(3)[t1,t2] E[s*[x]s[x+t1]s[x+t2]]

Mx
(4)[t1,t2,t3] E[s*[x]s*[x+t1]s[x+t2]s[x+t3]

Table 5.3.1 Definition of higher order moments.

Cumulants of order 1 and 2 are identical to the mean and autocorrelation function. The

third and fourth order cumulants for a non-Gaussian process s[x] are defined as

C t t t M t t t M t t ts
K

K s
K

k s
K

K
( ) ( )

’
( )[ , .. ] [ , .. ] [ , .. ]1 2 1 2 1 2= −

K=3,4

where s’ is a Gaussian process with mean and correlation function identical to those of s.

It follows that where s is a Gaussian process, the third and fourth order spectra are zero.

The higher order spectra, or polyspectra, are the Fourier transforms of the third

and fourth order cumulants, and are known as the Bispectrum and the Trispectrum
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respectively. The Bispectrum has been found to be useful in detecting quadratic phase

coupling, i.e. phase relationships between harmonically related components of a random

process.

Several researchers have taken advantage of the properties of higher order spectra

for signal processing applications. Nikias and Mendel [Nikias93] identify four areas where

high order statistics have been used.

• Suppression of additive Gaussian noise of unknown spectra.

• Identification and reconstruction of non-minimum phase systems.

• Recovery of information contained in deviations from a Gaussian process.

• Detection and characterisation of non-linear systems.

Tsatsanis and Giannakis use HOS to classify textures using a bank of filters, where

each filter is matched to one of the candidate textures [Tsatsanis92]. The image is then

filtered and the zeroth lag of the third order cumulant calculated for each filter output. The

filter which gives the highest cumulant is assumed to be matched to the correct texture.

HOS techniques represent an attempt to utilise texture information that has been

largely ignored by most spectral techniques. The proponents of HOS make a convincing

case that the assumption of normality, which underlies most spectral techniques is not safe

for many textures, and allows the loss of valuable discriminatory information. It is our

view that this argument is, in general, justified. However, we have explicitly limited the

scope of this thesis to textures which are near Gaussian and which carry little or no

information in the phase spectrum. It is our belief that by adopting these restrictions we

may justifiably ignore higher order statistics.

5.3.3 Empirical Techniques

The class of techniques we describe as empirical are FIR filters, designed purely

for the purposes of discriminating between textures, either in the general case, or for a

particular set of textures.

The oldest, and best known members of this class are the Laws feature measures

[Laws79]. Despite their simplicity and lack of theoretical background, these form a highly

effective approach, which in many cases have a classification performance comparable

with modern techniques, and very modest computational expense. More recently, several

authors have used Laws features as a testbed for the use of novel classification algorithms.
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Greenhill and Davies used a classifier consisting of Laws filters with a neural network and

mode filter [Greenhill93]. While Chen and Kundu used the Laws features in combination

with a hidden Markov model [Chen95]. Moreover, the simplicity and effectiveness of

Laws filters have made them a popular choice for researchers working on applications

rather than investigating techniques, e.g.[Miller91][Neubauer92].

Other authors have produced schemes with analytically derived filters for a

particular classification task. Ade calculated the eigenvectors of the covariance matrix of

3x3 neighbourhoods of the textures. The nine resulting eigenvectors were convolved with

the image to produce principal component images. Classification is carried out on the

basis of the averaged absolute values of pixels from these images [Ade83]. Randen and

Husoy developed an expression for the statistics of the output of the post-processing

stage of his classifier, this being a function of the texture statistics, the filter mask and an

averaging filter [Randen95]. He then uses this expression as the basis of an algorithm

which adjusts the filter weights as a means of maximising the distance between classes in

feature space. Jain and Karu noted the similarity between the prototypical FIR filter based

system and a neural network [Jain96]. In Jain’s analogy, the filter coefficients correspond

to the input weights of the network, while the non-linearity and averaging stages

correspond to the non-linear summation junction of the neural network. He uses training

data with the Back-propagation algorithm to derive filter coefficients which are optimal

for a given classification task.

The use of empirically defined masks offers an effective, and computationally

efficient, approach to texture classification. Recent advances in developing masks for a

particular task represent a promising area of research for supervised classification. Despite

these advantages, empirical filters will not be used in this thesis. Although, by definition,

the modern empirical techniques will be suited to the discrimination of the test textures,

due to the ad hoc nature of the filters, these techniques fail to meet our two remaining

criteria for the selection of a feature measure:

• A given filter may not be well localised, or have a tractable expression in 

the frequency domain.

• The ad hoc sampling of the frequency domain is unique to the application

-this will reduce the ability of the results to be generalised.
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5.3.4 Wavelets

Wavelets have proved to be an effective and popular tool for texture analysis in

recent years [Livens97]. Introductions to wavelets occur at a variety of conceptual and

mathematical levels. In this section we will give a brief description of the technique at the

two simplest levels to illustrate the significance of the different techniques used in texture

analysis. The first explicitly deals with the wavelet—effectively treating it as an FIR filter

related to the empirical schemes discussed above. The second level does not explicitly

evaluate the wavelet, but uses it as a theoretical construct to describe the result of the

implementation.

Explicitly evaluated wavelets

The trade-off inherent in time/frequency techniques is (in our case) spatial

localisation against spectral localisation. It is desirable that the bandwidth and the spatial

extent of the elementary functions should both be minimised. Unfortunately they are

inversely related and a compromise must be sought.

Given the relationship between spatial and spectral localisation, we may pursue

two distinct strategies for sampling the signal spectrum:

(1.) using elementary functions with bandwidths which are constant throughout the 

signal spectrum, Figure 5.3.3a, and

(2.) sampling with elementary functions each possessing a bandwidth which is constant

relative to the function's central frequency, Figure 5.3.3b.
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(a.) (b.)

Figure 5.3.3 Spectral sampling schemes, (a) constant absolute bandwidth, (b) constant

relative bandwidth.
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The first is the approach undertaken by the Gabor Transform and represents the

spectral dual of a series of analysis functions with envelopes of the same spatial extent.

Spatial localisation is uniform throughout the frequency range, and is therefore limited by

the bandwidth requirements of the analysis function of lowest frequency, Figure 5.3.4a.
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(a) Gabor Transform (b.) Wavelet

Figure 5.3.4 Analysis functions of (a) the Gabor Transform and (b) the wavelet

approach, (after Quian p.77).

The second approach, used in wavelet analysis, varies bandwidth with frequency.

In the spatial domain this results in the extent of the envelope function varying with the

wavelength modulating function. As a consequence of this, the number of wavelengths in

an envelope will be constant and the functions will be scaled versions of a single

prototype, Figure 5.3.4b.

The spatial effect of variable bandwidth is that low frequency filters will give good

frequency resolution, but poor spatial resolution, high frequency filters will give poor

frequency resolution and good spatial resolution. Low signal frequencies will be easily

discerned from neighbouring frequencies but will be difficult to localise spatially whereas

the converse will apply to high frequency signals.

Implementation-based explanation

In practice, wavelets are not generally implemented as convolution filters, instead

most implementations are based on Mallat’s multiresolution approach. A brief description

of the technique is given here.
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Define an elementary function:φ( )x k− , known as a scaling function, together with

translated versions of itself, this forms a basis for the space V0. Scaled versions of this

function, i.e. φ φl
l l x k( ) ( )2 2= − each form a basis for a corresponding space space Vl .

Intuitively, as l increases the ability of the function to detect detail also increases.

Furthermore, Vl  is a subspace of Vl+1

and define Wl  to be the complement of Vl  on the space Vl+1 such that,

 Vl+1 = ⊕V Wl l

That is, a signal defined on Vl+1 can be represented in terms of a low detail signal defined

on Vl  and a detail signal defined on Wl

Since Vl  is a subspace of Vl+1 , the elementary function φ l  can be represented as a linear

combination of shifted version of the function φ l+1 , i.e.

φ φl t
t

l
x h x t( ) ( )
2

2 1= −∑ + (5.3.4a)

Expression 5.3.4a is known as the dilation equation. The coefficients ht may be thought of

as the weights of a FIR filter, furthermore it can be shown that this is low pass in

character (Qian p.88). Since Eq. 5.3.4a is the convolution of the coefficients ht and

φ l x t+ −1( ) , we may express it in the frequency domain as the product of the Fourier

transforms of these terms:

( ) ( ) ( )φ ω ω φ ωl lH2 1= + .

or equivalently as:

( ) ( ) ( )φ ω ω φ ω
l lH= +2 21 .

or more generally as

( ) ( )φ ω ω φl k
K

H= ⎛
⎝⎜

⎞
⎠⎟=

∞

∏
2

0
1

φ( )0  is a constant and φ ωl ( ) is a function of H( )ω only.

The low pass filter represents a mechanism to move from a space Vn+1 defined in terms of

φ ωl+1( )  to a less detailed space Vn defined in terms of φ ωl ( ) .

The detail which is residual to this transition is defined in the space Wl . Let

elementary function ψl  form the basis for Wl. The detail signal at level n may be observed

by high pass filtering the image defined in subspace Vn+1.
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The high pass filter should satisfy (5.3.4b)

H G H G( ) ( ) ( ) ( )* *ω ω ω π ω π+ + + = 0 (5.3.4b)

where H(ω) and G(ω) are quadrature filters. One solution of (5.3.4b) is shown below:

G j H( ) exp( ) ( )*ω ω ω π= − − +

The detail image at level l represents the result of the low pass filterings required to reach

level l followed by a high pass filtering. The net effect of which is of a bandpass filter

( ) ( )ψ ω ω φ ω( ) = G
2 2

( )ψ ω ω ω( ) = ⎛
⎝⎜

⎞
⎠⎟∏

=

∞
G H K

K2 22

ψ φ( ) ( )x g x KK
K

= ∑ −2 2

Consequently, the wavelet transform may be evaluated over a range of scales by

repeated low pass filtering followed by high pass filtering, and neither the wavelet, nor the

scaling function need ever be explicitly evaluated.

Directionality

The two dimensional wavelet transform is applied consecutively along the rows

and columns of the data set, in a similar fashion to that of the FFT. The separability of the

two dimensional transform makes its implementation highly efficient. The approach is

shown in Figure 5.3.5, giving four data sets for each level.

Figure 5.3.5 Two dimensional wavelet implementation.
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While the above approach is used in almost all schemes, it gives poor polar

resolution—which is particularly relevant to this thesis. Antoine [Antoine93] has applied a

directional Morlet wavelet, though this is implemented in the two dimensional frequency

domain and will lack the computational efficiency of the separable scheme. Freeman and

Adelson propose the use of a steerable pyramid [Freeman91]. This approach uses basis

filters oriented at 0°, 45°,90° and 135° which can be combined to allow the image to be

filtered in any arbitrary direction. The filters are themselves separable, allowing an

efficient implementation.

Summary

Wavelets have become highly popular in the literature over recent years, they offer

a computationally efficient method of localising spectral components in the frequency

domain. Unfortunately, most implementations are separable, being applied to rows and

columns in turn. The result of this is a rather crude sampling in the polar frequency

domain. Given the importance of directionality in this thesis, this is a rather more serious

drawback than in most applications.

5.3.5 Gabor Functions

Definition of 1D Gabor function
The Gabor filter is defined as consisting of a Gaussian envelope modulated by a

complex exponential. The one dimensional spatial and spectral forms are expressed in

equations (5.3.5a) and (5.3.5b) respectively. The function's real part and its frequency

domain description are shown in Figure 5.3.6.

[ ]g x x j x
f

( ) exp exp ( )= −⎡

⎣
⎢

⎤

⎦
⎥ +

2

2 02
2

σ
πω ϕ (5.3.5a)

[ ] [ ]G f f( ) exp ( ) exp ( )ω πσ ω ω πσ ω ω= − − + − −2 22
0

2 2
0

2 (5.3.5b)

where x is the spatial variable

σf parameterises the extent of the Gaussian envelope

ω0 is the centre frequency of the filter

ϕ is the phase displacement.
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Figure 5.3.6 Real spatial part and frequency domain representation of Gabor function.

Bandwidth Characteristics of the Gabor Function

The spectral location of the bandpass region of a Gabor filter is governed by the

modulating function. The bandwidth, however, is governed by the standard deviation of

the Gaussian envelope, regardless of the frequency modulating function. A filter with a

large spatial variance (Figure 5.3.7a) will have a relatively localised spectral

representation (Figure 5.3.7b). Decreasing the extent of the spatial envelope, i.e.

increasing its spatial localisation(Figure 5.3.7c), will decrease the spectral selectivity of

the filter(Figure 5.3.7d). A large variance will increase the spectral resolution at the cost

of decreased spatial resolution.

Gabor as a wavelet

By linking envelope extent to the sinusoid’s wavelength, we may define a series of

functions which are scaled versions of each other. A family of Gabor functions may be

described as a series of dilated forms of a single prototype, and a transform may be

defined in terms of equation 5.3.5c [Lee96].

g a x y x y a g
x x

a
y y

ad d
d d

( , , , , ) ,0 0

1 0 0=
− −⎛

⎝⎜
⎞
⎠⎟

−
 (5.3.5c)

where x0 and y0 are the spatial co-ordinates of the filter at a given time,

and ad is the dilation parameter (typically a power of two).

In this sense, a Gabor function may be treated as a wavelet, albeit lacking in the usual

requirements for admissibility and orthogonality.
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Figure 5.3.7 The effect of decreasing the extent of the Gaussian envelope on the 

frequency domain representation.

The admissibility condition requires that a wavelet function has zero mean. While

the imaginary part of the function is admissible, the real part has a non zero mean. Lee

develops an additional term to the carrier function to eliminate the mean response and

satisfy the admissibility criterion, the modified expression is shown below.

exp[ ( )] expj xCos ySinω φ φ κ
0

2

2
+ − −⎡

⎣⎢
⎤
⎦⎥

where φ is the orientation of the filter.

and κ=π for a 1 octave bandwidth filter.

Navarro et al. report that the mean component is very small [Navarro95].

The orthogonality condition is clearly of relevance to coding schemes, but how

relevant is it to pattern recognition? Non-orthogonal filters will certainly exhibit a degree

of redundancy, but Navarro et al. argues that with their use, there will be an increase in

the robustness of classification: "Biological vision...lacks orthogonality, producing a
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redundancy that is highly expensive, this being the price of robustness." This implies that

a degree of redundancy is desirable to our application, and that orthogonality is not a

prerequisite for a classifier.

Although classifying the Gabor function as a wavelet is debatable, it is certainly

wavelet-like. As the number of terms in the dilation function of a wavelet increases (Eq.

5.3.4a) the smoothness of the wavelet and its spectral compactness increase. For t large,

many families of wavelets resemble windowed sinusoids similar in appearance to Gabor

functions. In fact, the relationship of several wavelets is even more closely established;

Unser et al. have shown that wavelets based on a B-spline scaling function converge to

the Gabor function as the power of the spline increases [Unser92]. Antoine et al. describe

the Morlet wavelet as a Gabor function with an additional term to ensure admissibility,

furthermore, this term tends to zero for high frequencies [Antoine93].

Definition of the two-dimensional Gabor Function

The two dimensional form of the Gabor filter was first defined by Daugman

[Daugman85]. The filter can be described as an elliptical Gaussian modulated by a

complex sinusoid with direction of propagation φ. The spatial and spectral forms are

shown in equations 5.3.5d and 5.3.5e respectively. For consistency, we use the notation

described in [Jain91].
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where

σ πσu
x

= 1
2

 σ πσv
y

= 1
2

g(x,y) is the filter impulse response.

G(u,v) is the spectral transfer function.

u is the component of frequency in the direction of the x-axis.

v is the component of frequency in the direction of the y-axis.

v0 is the centre frequency of the filter along the y-axis.
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u0 is the centre frequency of the filter along the x-axis.

σx is the standard deviation of the Gaussian envelope in the direction of the 

x axis in the spatial domain.

σy  is the standard deviation of the Gaussian envelope in the direction of the y 

axis in the spatial domain.

σu represents the extent of the Gaussian envelope in the spectral domain in the

direction of the x-axis.

σv represents the extent of the Gaussian envelope in the spectral domain in the

direction of the y-axis.

Daugman also introduced the concept of orientation bandwidth. While the

direction of maximum sensitivity is defined by φ, the degree to which adjacent directions

are attenuated is governed by the extent of the Gaussian in the direction perpendicular to

propagation. In Figure 5.3.8 three Gabor filters, which have identical spatial parameters

save σy, are shown. If we apply these filters to an isotropic field we obtain the polar plot

shown in Figure 5.3.9.

(a.) σy=3.54 (b)σy=7.07 (c)σy=14.14

Figure 5.3.8 Gabor filters with various σy parameters.

As with radial frequency where there exists a trade-off between spectral and

spatial resolution, there is an analogous trade-off between directionality and spatial

resolution: a highly directional filter will not be well spatially localised perpendicular to

propagation, Figure 5.3.8 & Figure 5.3.9.
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From Jain and Farrokhnia, the radial and orientation bandwidths of the filter, Br

and Bθ, are defined by equations 5.3.5f and 5.3.5g respectively. Kiernan has criticised the

accuracy of these expressions on the basis of geometric arguments [Kiernan95]. However,

in the context of this thesis, these inaccuracies are not critical and we will continue to use

these expressions due to their accessibility and popularity in the literature.

B
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o u
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5.3.6 The Selection of a Measure Set
At the beginning of this section we stated three criteria for the selection of a

texture measure:

• the existence of a spectral representation of the feature,

• its popularity in the texture analysis community, and

• its suitability for random phase, broadband textures.

The scope of this review was largely dictated by the first two criteria, we must

therefore choose an algorithm on the basis of the third. The rationale behind HOS

techniques is to utilise phase information. The random phase condition developed in

Chapter 2 removes this justification for the type of textures used in this thesis. We
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Figure 5.3.9 Polar plot of Gabor filters angular magnitude responses for various σy.
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concluded that the Wigner Ville distribution was not suitable for broadband textures due

to the interference of components, and the distribution’s implicit treatment of phase

information made it difficult to decorrelate useful power information from the random

phase. Empirical techniques were considered, however, their ad hoc nature was

considered to be incompatible with the analytical approach of this thesis. Wavelets

represent a promising feature measure, however, their lack of polar resolution is a serious

handicap to their application in the context of this thesis.

The related, though non-orthogonal and non-separable, two dimensional Gabor

wavelet is much more versatile in the polar domain. Though this versatility is gained at the

expense of the computational efficiency associated with a separable transform. In our

assessment, of all the measures considered in this thesis, Gabor functions are closest to

fulfilling our three criteria.

Gabor filters are defined explicitly both in the spatial domain and in the polar

frequency domain and therefore can be easily integrated into our model. They may be

used to extract and resolve magnitude and phase components of the image [Bovik90]. The

magnitude information allows us to relate the output of the Gabor filters to the surface

and image descriptions developed in the earlier chapters.

 Besides being suited to the model used in this thesis, Gabor filters also represent

an important and popular area of research within texture analysis. This is due to two

properties of the Gabor filters: the space/frequency characteristics of the filter, and the

similarity to the operation of the early human visual system. The complex form of the

Gabor filter represents the optimum space-frequency resolution and is therefore of interest

to analysts attempting to localise textures in the spatial domain using their spectral

characteristics. Furthermore, the early stages of the human visual system can be accurately

modelled using Gabor filters. These properties have popularised the Gabor function, and

by establishing the tilt dependency of the Gabor based classifier, we will demonstrate the

relevance of this work to a wide area of texture research.

In Chapters 2 and 3 we concluded that the surface types considered in this thesis

(and their images) could be described as being broadband and having random phase.

Gabor filters have been used to measure narrowband signals, however, their use for

broadband textures is equally valid. Reduction in the spectral resolution corresponds to an

increase in the spatial resolution. Therefore Gabor filters can be applied to accurately

locate broadband textures. From our random phase condition we regard the phase
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information as being redundant. Gabor filters provide a set of features in which this

redundant information can be decorrelated from the relevant information and discarded.

These filters are therefore suited to both the nature of the classification task, and to the

characteristics of the test textures.

5.4 A Classification System

5.4.1 Overview
In this section we develop a classifier that is tailored to the task of classifying

rough surfaces. We do not, however, make any claim of optimality. We base our classifier

on the generic form shown in Figure 5.4.1. A textured image is processed using Gabor

filters; the resulting measures are passed through a non-linear post-processing stage. The

features extracted are passed to a statistical classifier which labels each pixel as belonging

to a certain class on the basis of its feature vector and the a priori probability of that

vector being a member of each class. In the following sub-sections we shall discuss each

of these stages.

5.4.2 The Implementation of Gabor Filters

Design vs. Systematic Structure

The generally accepted definition of an n-dimensional Gabor function is that of a

Gaussian function modulated by a complex exponential. The generality of this statement is

striking. The two dimensional expression of this statement, Eq. 5.3.5a, has four

independent parameters. This lack of structure has, on balance, been beneficial: the most

important characteristic of the Gabor filter, the space-frequency optimality, is

encapsulated in its definition. Furthermore, the looseness of the definition allows the filter

design algorithms the necessary latitude to be worthwhile.

While a great deal of work has been devoted to the algorithmic design of optimal

Gabor filters for a particular task (e.g. [Dunn95],[Kiernan95], [Weldon96]), in this thesis

Figure 5.4.1 The Gabor-based Classifier

Image
Gabor

Filtering
Post-

Processing
Discriminant Label

Field
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we shall use a more standard, less ad hoc, filter implementation. This is less

computationally efficient than that produced by the design techniques, and will almost

certainly give a poorer classification. Nevertheless we adopt this approach for two

reasons:

• A uniform sampling of a particular frequency range is more compatible with our

analytical approach. It allows us to draw conclusions not only about which 

features are most affected but also to analyse the effect on features using the same 

analytical framework used to model the earlier stages in the process 

considered in previous chapters.

• Generality; illustrating the effect with a small number of irregularly placed filters 

is less convincing proof that any irregularity is due to our predicted effect than a 

much wider polar frequency sampling.

If we opt for a systematic sampling of the image spectrum we must decide on the

location and bandwidth of the filters in polar and radial space Figure 5.4.2.

Several parameter schemes have emerged [Jain91][Lee96]. These are mostly based

on biological justifications that constrain the parameters and which have been adopted by

most non-design researchers. The most commonly used constraints are those adopted by

Jain and Farrokhnia [Jain91]. Jain uses real filters with frequency and angular (half peak

magnitude) bandwidth of 1 octave and 45° respectively. The polar frequency domain is

sampled at intervals of 1 octave and 45°, giving a total of 32 filters for a 512x512 image.

With this, and the polar distribution, in mind we adopt the following filter designation:

(a.) Filter location (b.) Filter bandwidth

Figure 5.4.2 Filter parameters.

Br

Bθ

ω0

φ

u

v
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Fω0 dφ

where ω0 is the centre frequency of the filter in cycles per image

and φ is the filter orientation in degrees.

Polar Properties

Given the directional nature of the tilt effect we believe it is important for the

purposes of analysis that the polar spectrum is uniformly sampled. Therefore, each

frequency band will be sampled by filters each with a bandwidth of 45°, oriented at

0°,45°,90° and 135°, after Jain. In Figure 5.4.3 we show the polar response of a filter

oriented at φ=0° superimposed on the polar spectra of images of the isotropic rock surface

and directional striate surface illuminated from τ=0°. The figure suggests that the 2D

Gabor is able to detect directional information important for discrimination.

Radial Sampling

Several papers such as [Jain91][Nestares96][Namuduri94] adopt a wavelet

approach to the implementation of Gabor filters. Kube and Pentland [Kube88] state that

assuming a linear reflectance function, a fractal surface will give rise to a fractal image

with roll-off βi=βs +1. In Chapter 2, we concluded that most surfaces have roll-off of
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a Gabor filter orientated at Tau 0°.
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β=3.0 in their fractal region. A multi-resolution approach would seem to be redundant for

textures which are entirely fractal. However, both the Mulvanney and Ogilvy type surfaces

exhibit fractal behaviour over only a range of frequencies. The spectral characteristics

below this range, and the point at which the transition to fractal behaviour occurs, are rich

sources of discriminatory information. Moreover, the radial plots in the previous chapter

show that the data sets are not fractal. A multi-resolution approach is therefore

compatible with our surface models and our measurements, as well as being an efficient

method of sampling the radial spectrum. The image is low pass filtered (lpf) and

decimated before being passed to a set of Gabor filters. The lower the measured

frequency, the more decimations its input data set has undergone. The wavelet

implementation means that the central frequencies of filters will rise in one octave steps.

As with Jain’s implementation, the filters will have a bandwidth of an octave.

This leads to the question of which range of frequencies the filter should be

applied to. In Chapter 2 and 3, we saw that the radial spectra of different surface models

(and consequently of their images) differ most markedly at low frequencies. Furthermore,

in Chapter 4 we noted the attenuation of high frequencies due to blurring, and the

decrease in the S/N ratio with increasing frequency. This would suggest that it is the low

frequencies that should be most closely scrutinised by a classifier. On the other hand, in

this chapter we have noted that low frequency filters have poor spatial resolution. As an

empirical compromise, we will use three sets of filters, which range from the low
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frequencies to the midband, beginning at 25 cycles per image. The responses of the

F25d0, F50d0 and F100d0 filters are shown in Figure 5.4.4, plotted against one

dimensional spectra of the columns of our two exemplar textures Rock and Striate.

Spectral Support

Given the emphasis on low frequencies, and the linear nature of the filters, it is

interesting to discover how much image information is captured by the feature set. to code

the image. The two exemplar textures, Rock and Striate, were filtered by the Gabor filters

on which the classifier is based (the F25,F50 and F100 sets). The sum of the measure

images are shown in Figure 5.4.5c and d. While the combinations of the measure images

do not bear an obvious resemblance to the exemplars, it is noticeable that the

directionality of both textures is captured, and the more pronounced directionality of the

Striate surface is particularly well recorded.

 

(a.) Original Rock image. (b.) Original Striate image.

(c.) Coded Rock image. (d.) Coded Striate image.

Figure 5.4.5 The Rock and Striate exemplar textures and their feature set coding.

5.4.3 Post-Processing

Although the form of the Gabor filter itself is relatively standard, there are several

approaches to the subsequent processing of the signal prior to classification, although

these generally take the form of a non-linearity followed by low pass filtering. Although
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the non-linearity limits our ability to analyse the process, it is clearly central to the scheme.

If it were not (and textures could be classified on the basis of linear operations) then

classification could be carried out by a statistical classifier purely on the basis of grey

levels and their displacements with no need to filter.

In selecting a post-processing approach we must attempt to satisfy certain criteria.

Firstly, the technique must perform well and reliably in conjunction with the discriminant.

Since many classifiers are optimal for Gaussian data only, it is also necessary that the

output of the post-processing stage should have at least an approximately Gaussian

distribution. Specific to the approach of this thesis, it is also desirable that the algorithm

should permit some degree of analysis and have a physically meaningful output. The

schemes may be broadly split into two groups: those based on a biological rationale and

those grounded in signal processing theory. A taxonomy is shown in Figure 5.4.6.

Biologically Based Schemes

Jain and Farrokhnia were the first to suggest the use of a hyperbolic tan function

(tanh) as the non-linearity. Their argument was based on the Julesz texton theory

[Jain91]. This proposed that textures are discriminated on the attributes of elongated

Figure 5.4.6 Taxonomy of post-processing techniques.
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Schemes

Biological
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Magnitude Power

Quadrature Rectification
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blobs or textons. The preattentive visual system cannot determine the location of

terminations but can count their numbers or their first order statistics. Most of Julesz’s

work was conducted with binary images and critics have pointed out that the theory is not

directly applicable to most realistic textures. Jain proposes Gabor filters as the first

element of a mechanism to extend Julesz theory to naturalistic textures. The rapidly

saturating tanh function will force the filtered output into an almost binary form—

effectively composed of blobs. A low pass filter will then be used to measure the density

of the textons. Randen and Husoy [Randen94] as well as Tang et al. [Tang95] also use a

tanh non-linearity, though Tang pushes the biological analogy further by replacing the

averaging filter with non-linear interaction both within and between feature images. He

forms an analogue between feature maps and neurone-fields: pixels in a feature image are

excited by other pixels in a surrounding annulus, and inhibited by pixels from a feature

image of different orientation. This process is stepped through an unspecified number of

generations before finally a dominant feature is declared. The biologically based

techniques are not mathematically tractable. Consequently, we opt for the more tractable

techniques employed by the signal processing based approaches.

Signal Processing Based Schemes

In this section we will consider post-processing techniques that are, or can be,

stated in terms of signal processing terminology. In order to make this discussion as

thorough as possible, we will not confine ourselves to the post-processing of Gabor

filters, but rather to the output of any type of bandpass filter used in texture analysis. The

post-processing algorithms we classify as being signal processing based measure, or

approximate, one of two signal quantities: the signal magnitude or the quantity known as

texture energy.

We do not believe the use of the term energy to be physically meaningful in the

sense in which it has been applied and its use in the literature is not consistent. Instead we

prefer to use the term signal power. Schemes which use this technique have the general

form shown in Figure 5.4.7.
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 Laws and Ade both use power measurement (as well as magnitude

approximations) in [Laws79] and [Ade83]. Randen et al. also use power-based features in

[Randen95] and [Randen96]; in the latter paper this allows the derivation of an expression

for signal mean and variance given a description of the bandpass and low pass filters.

Livens et al states that the majority of wavelet schemes also use this approach, [Livens97].

Unser and Eden [Unser90] advocated the use of a second non-linearity, taking

either the log or the square root of the low passed feature, Figure 5.4.8. Their motivation

for doing so was to make features, which have been passed through different non-

linearities more comparable, simplifying subsequent feature reduction and clustering work,

although they do note the tendency towards a Gaussian distribution. We note that this is

equivalent to a power transform where the random variable is raised to a power to

produce a more Gaussian distribution, [Fukunaga p.76]. We have noted a modest

improvement in classification accuracy with a quadratic classifier whose features which

have been subjected to a power transform. While the signal power is an attractive quantity

on which to base a feature, in our experience, the large variance associated with the

approach can introduce problems of stability with some, numerically sensitive,

discriminants. Unser’s approach does avoid these problems, as well as giving a more

Gaussian output. However, it does not relate to any physical concept such as power.

Figure 5.4.7 General form of feature based on channel power measurement.

Figure 5.4.8 Unser’s scheme.
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Like signal power, signal magnitude is a physically meaningful concept, though,

unlike power, it is in a range which is comparable to that of the original image. This means

that numerical stability is less of an issue than for power, and outlying samples are less

significant. Two approaches to the measurement of the signal magnitude have been used

in the literature. The first calculates the magnitude response directly from the quadrature

response of real and imaginary filters, Figure 5.4.9, [Bovik91]. The second method

approximates the magnitude by low pass filtering the absolute value of the output of a real

filter, Figure 5.4.10, [Randen94].

Aach et al. consider an analogue of the rectifier detector with the absolute value of

the feature output being low pass filtered to produce the feature image [Aach95]. They

then compare this approach with the quadrature filtering approach where textures are

classified by magnitude and in some cases also phase from complex feature images. Aach

considered the approximation, common in communications theory, by which the

magnitude of real and imaginary components is approximated by averaging the absolute

output of a real filter only. He notes that low pass filtering the quadrature images

produces a result almost identical to the texture energy technique. He concludes that:

Figure 5.4.9 Magnitude estimation using quadrature filtering.

Figure 5.4.10 Magnitude estimation using ABS approximation.
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1. for edge based techniques where localisation is less of a requirement and 

smoothing is normally carried out the estimation method is sufficient, and

2. for pixel-based classification, which may be adversely affected by smeared 

transitions between areas of different textures caused by low pass filtering, 

quadrature filters are more appropriate.

We adopt the quadrature filtering approach for the following reasons.

1. Our scheme is pixel-based and the optimal space/frequency characteristic of the 

Gabor filter only holds for the complex form of the function.

2. The calculation of magnitude from quadrature filters makes explicit our 

suppression of phase in favour of magnitude information as the basis for 

classification.

3. This thesis is primarily concerned with an analytical approach. Implementation 

efficiency is less important than tractability.

In fact, we have found that even where the texture is filtered in quadrature, the

class feature distributions have unacceptably large variances, presumably due to the

filtered images not being sufficiently narrowband. It is therefore necessary to filter the

magnitude image before classification; this conclusion is, in effect, supported by Kiernan

[Kieran95]. She calculated magnitudes from complex features but used an averaging filter

before classification. In this work we shall adopt a feature set based on the signal

magnitude calculated from quadrature filters. Let us model the output from the Gabor

filters as a zero mean Gaussian process. While the second assumption follows from our

random surface models and the linearity of the transforms up until this stage, the non-

admissibility of the Gabor filters, discussed in the wavelet section (Section 5.3.4), means

that the signal will have a non-zero mean. We justify the assumption on the grounds that

the mean is small relative to the signal [Novarro95].

The pdf of the resultant of two uncorrelated Gaussian processes will follow a

Rayleigh distribution (Couch p.546). Figure 5.4.11 shows the pdf of the modulus of the

response of a complex Gabor filter to an illuminated fractal surface. The theoretical

Rayleigh distribution is superimposed onto the histogram. After low pass filtering,

however, the distribution more closely approximates the Gaussian case (Figure 5.4.12) —

satisfying one of the optimality conditions of the discriminant.
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To summarise, we shall adopt the post-processing scheme shown in Figure 5.4.13.

5.4.4 The Discriminant

Having developed the evidence upon which the classification is carried out, a

mechanism to perform the actual decision is required.

Choosing The Decision Algorithm

The nature of the problem which this thesis addresses immediately restricts us to

supervised classification, i.e. there exist a priori classified training examples. We therefore

do not consider the important area of unsupervised classification.

Several candidate techniques have been used for supervised classification in the

texture analysis literature. Neural networks have been applied to texture analysis:

Greenspan et al. evaluated a back-propagation network [Greenspan94], while other

investigators have proposed novel networks that incorporate spatial interactions e.g.

[Tang95]. Greenspan et al. also evaluated the K-nearest neighbours algorithm, as did

Ohanian and Dubes [Ohanian92]. Unser applied traditional Bayesian classification

[Unser95] whereas Weldon et al. used a Bayesian classifier modified to model texture

classes as mixture distributions [Weldon96]. Given the application, it is clear that spatial

interaction of pixel labels is an important cue to segmentation. Aach et al. used a region

growing technique [Aach89] while a growing number of authors explicitly incorporate

into their classifiers the effect the labelling of its neighbours has on the label probability of

that pixel [Song92][Raghu96].

Both neural networks and the K-nearest neighbour techniques are widely used,

however, both are largely intractable to analysis. Statistical techniques are much more

responsive to analysis. We therefore adopt the statistical approach to classification due to

its compatibility with the overall approach of this thesis. As mentioned earlier, decision

algorithms incorporating spatial information into the labelling process are becoming

Figure 5.4.13 Post Processing

Image Complex
Filter

Real

Imag
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Chapter 6

Modelling The Classifier Tilt Response

6.1 Introduction

This thesis can be broken into two parts: the first describes the development of a

model for rough surface classification, the second part develops techniques to classify

surfaces invariant to illuminant tilt. This chapter represents the transition between the

analytical and the problem solving phases of this thesis. It has two aims: to model the

effect of tilt on the classifier, and to observe the effect of tilt variation on classification

accuracy. We also model the classifier developed in Chapter 5; and are therefore

concerned with the final stage of the model that describes the process of classification

from imaged data set to symbolic representation. We will also measure the effect of tilt

variation on classification accuracy. This can therefore be seen as defining the problem

that the second part of this thesis is designed to confront.

This chapter consists of four sections. In the first, the tilt response of the texture

features will be predicted using theory. The predicted relationships will then be tested

using both simulation and experimentation in the second section. The discriminant part

of the classifier cannot be modelled in general terms since it depends on the second order

interactions between members of the sample set. The next section is designed to extend

our analysis and understanding of the tilt effect at the discriminant stage in the

classification. The third section of this chapter is designed to give an intuitive

understanding of the effect on classification. Using synthetic textures it is possible to

obtain an adequate classification using only two features. By using such a small feature

set, the discrimination process can be observed on a two dimensional scatter plot—

allowing the reader to observe the tilt induced movement of feature clusters across

discriminant boundaries with the associated rise in misclassification. Finally, the full

classifier is applied to three montages of real textures and the accuracy of the classifier
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observed as tilt is varied. This chapter will therefore use theory, simulation and

experimentation to model the relationship of features with tilt; and use experiments to

observe the effect on classification accuracy.

6.2  Modelling The Feature/Tilt Response

In Chapter 5, a classifier was developed. We now set about the formation of an

analytical model which encompasses both the classifier and the illumination model of

Chapter 3. This will enable us to make predictions as to the effect of illuminant tilt on

surface classification.

Chantler made the analogy between the tilt effect and a linear filter

[Chantler94b]. We believe this to be a useful model, and combine it with the Gabor

filters to form a single linear stage (highlighted in Figure 6.2.1), bridging the gap

between surface and measure image. We will model the tilt response of the combined

filter (sub-section 6.2.1), the power spectrum of the resulting measure images (sub-

section 6.2.2), and the first order statistics of the feature images (sub-section 6.2.3).

6.2.1 Combined Filter Tilt Response

The transfer function relating surface spectra to image spectra may be described as a

filter with magnitude response:

R k B( , ) cos( ) ( )ω θ τ ω θ τ ω= − (6.2.1a)

where B(ω) is the transfer function of the imaging device,

Figure 6.2.1 The Signal to Symbol Chain

Surface Image

Formation
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Filtering

LPF &

Classifier

Label

Field

Linear Stages
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The magnitude response of a Gabor filter oriented in direction φ is
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(6.2.1b)

If we combine the rendering response Eq. 6.2.1a with the response of the Gabor filter

Eq. 6.2.1b, we obtain the magnitude response of the combined Gabor and rendering

filter:

Z k B G W Gu v( , , , , , ) cos( ) . ( ). ( , ) . ( , )ω θ τ ω φ σ σ ω θ τ ω ω θ ω θ0 = − + (6.2.1c)

We now numerically integrate equation 6.2.1c over radial frequency, ω, to plot a series

of angular response curves in theta for various values of τ, with ω0=0.125ωs and φ=0°.

ω

ω

ω θ τ ω
=
∫

0

0 5.

( , , )
s

Z d (6.2.1d)

where ωs is the sampling frequency.
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Figure 6.2.2 Angular Transfer Function of Combined Illuminant/Gabor Model

We note three points from this experiment:

1. Firstly, the response of the combined filter is attenuated as the tilt angle τ increases

from 0° to 90°. Consequently, the variance of the measure image associated with the

filter will fall as the tilt angle is varied through this range.

2. Secondly, the direction of peak sensitivity is shifted in the τ =45° and 90° cases. For

an isotropic surface, the directionality of the measure image may no longer be aligned

with the directionality of the filter. In the case of a directional surface, the

directionality of the measure image will be a function of the surface, illuminant and

filter directional properties.

3. Thirdly, even at τ=90°, the filter still gives a significant response due to the

bandwidth of the filter orientation. Since we are using a linear model, there is no

response at θ=0°, however, there is still a response in other directions due to the two

sidelobes present. One consequence of this is that the variance of the measure image

for an isotropic image will always be greater than zero. Even with a linear rendering

model and in the absence of noise, the feature/tilt response will always be greater than

zero.
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6.2.2 Modelling The Measure Images

In Chapters 3 and 4, we developed an expression for the power spectral density

(PSD) of the data set,

I S B W( , ) cos ( )sin . ( , ). ( )ω θ τ ω θ τ σ ω θ ω= − +2 2 2 2 (6.2.2a)

where S(ω,θ) is the surface power spectrum.

Each Gabor filter produces a real and an imaginary output image. The PSD of the real

and imaginary measure images will be identical, and equal to:

D I Gu v( , , , , , ) ( , ). ( , )ω θ τ ω φ σ σ ω θ ω θ0
2=

Expanding the image term:

D k S B G N Gu v( , , , , , ) cos ( ) ( , ). ( ) . ( , ) . ( , )ω θ τ ω φ σ σ ω θ τ ω θ ω ω θ ω θ0
2 2 2 2 2 2= − + (6.2.2b)

Since the operation is linear, and the original image is assumed to be Gaussian,

we may assume the measure images will also have a Gaussian distribution. Integrating

(6.2.2b) over both frequency and angle, we will obtain a quantity, which we will call

signal energy, σm

2 , equivalent to the variance of the measure images.

σ τ ω θ τ ω θ
ωθ

π

m

fs

D d d2

00

2

( ) ( , , )=
==
∫∫ (6.2.2c)

If we integrate a two dimensional Gabor function, with the parameters used in

this thesis, over radial frequency, we obtain a polar plot that is approximately Gaussian

with a peak at θ=φ, Figure 6.2.3. We can use this approximation to develop an analytical

expression for σm

2 by integrating the product of the Gaussian polar response of the Gabor

function and the sinusoidal tilt response Eq. 6.2.2d. This is equivalent to the variance of

a measure image calculated from the image of an isotropic 1/f surface in the absence of

imaging artefacts.
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Figure 6.2.3 Comparison of polar response (power) of F25d90 filter with Gaussian
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For the filters used in this thesis σp  is less than 20° and the value of the integral is

negligable beyond the limits used in 6.2.2d. It is therefore permissable to redefine the

range of integration as being from θ=-∞ to ∞.

If we make the substitution λ θ φ
σ

= −
2 p

 then:

θ σ λ φ= +2 p
d
d

p

λ
θ σ

= 1
2

when θ=-∞ then λ=-∞      and when θ=-∞ then λ=∞

Therefore when integrating between θ=-∞ to ∞, the equivalent limits for integration are

λ=-∞ to ∞.
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Let α = 8  ( )β φ τ= −2
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If we gather the angular variables, we obtain an expression for the variance of the

measure image, which is a function of the filter orientation and the illuminant tilt:

( )σ φ τ φ τm a b2 2( , ) cos= − + (6.2.2e)

where             a and b are constants.

Consequently, we predict that the variance of the measure image will vary with the

square of the cosine of the angle between the illuminant vector and the direction of

maximum sensitivity of the Gabor filter. We can clearly observe this result if we

integrate equation 6.2.2c numerically. The resulting function can then be sampled at

values of φ corresponding to our filter set and plotted as a fuction of tilt, with

ω0=0.125ωs.
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The result of the numerical integration and evaluation are plotted against

cos2(φ−τ) in Figure 6.2.5. In all cases a near linear relationship exists. The function

acos2(φ−τ)+b is also plotted, where the parameters a and b are the fitted using least

squares to give the best fit to the integration results. In the case of the φ=0° and φ=90°

curves, the best fit is visually indistinguishable from the evaluated curves and is not

plotted. In the case of the φ=45° and φ=135° the numerically evaluated curves exhibit a

small amount of hysteresis—presumably due to numerical approximations. The

hysteresis is symmetrical about the best fit curve. The numerical results agree well with

the analytical predictions, (6.2.2e).
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6.2.3 Feature Image Statistics

Assuming both the measure images to be zero mean Gaussian with standard deviation σm,

the magnitude image will have a Rayleigh distribution, Eq. 6.2.3a, parameterised by σm:
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Figure 6.2.5 The numerical integration of Eq. 6.2.2c for various values of φ.
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Rayleigh distribution:
p f

f f

m m

( ) exp= −⎛
⎝⎜

⎞
⎠⎟σ σ2

2

22

(6.2.3a)

with mean, μ π σf m=
2

(6.2.3b)

and standard deviation, σ π σf m= −2
2

(6.2.3c)

As was noted in the previous chapter, it is necessary to low pass filter the magnitude

image. Due to the earlier non-linear operation of calculating the magnitude image from

the quadrature images, it is not possible to model this in the frequency domain in the

context of the earlier results. Nevertheless, the mean response of the magnitude will be

largely unaffected by the low pass filtering, merely scaled by the sum of the filter

weights. Since the mean of the distribution is a linear function of σm , (Eq. 6.2.3b), we

predict from Eq. 6.2.2e that the feature mean will vary with a relationship of the form:

μ τ φ τf a b( ) cos( )= − +

 Although we cannot predict the value of the standard deviation, we can

hypothesise its relationship with tilt angle. The low pass filter is isotropic, and our

(linear) model of rendering induced directionality is independent of radial frequency (if

we ignore imaging artefacts). Consequently, it would be reasonable to suggest that the

standard deviation of the filter shares the tilt characteristics of the magnitude image,

since the standard deviation of the magnitude image is also a linear function of σm (Eq.

6.2.1k). We therefore hypothesise that both the mean and standard deviation of the

feature follow a relationship of the form:

σ φ τf a b= − +cos( )

We shall now compare this prediction with the filter output obtained from both

simulation and experiment.

6.3 Testing the theoretical predictions

6.3.1 Verification by Simulation

The figure below shows the measured mean and standard deviation of a feature derived

from a single φ=0° filter applied to an synthetic, isotropic, fractal surface. Both the mean
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and the standard deviation are scaled to give a maximum of unity. We also plot two

additional waveforms for comparison, the absolute value of the cosine and the square of

the cosine. The parameters a and b have, in both cases, been estimated using a least

squares fit to the average of the mean and the standard deviation values.

O a b( ) cos( )τ τ= +
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Figure 6.3.1 The effect of tilt angle variation on feature output

We note several points from the above graph:

 (i) the mean and standard deviation have very similar tilt responses,

 (ii) both have a similar a/b ratio,

 (iii) both the mean and the standard deviation appear to be most successfully 

modelled using the absolute function. This is in agreement with the theoretical 

predictions.

In this thesis we will adopt the a⏐cos(φ−τ)⏐+b relationship as an approximation

for the dependency of both the mean and standard deviation of the feature images on the

illuminant tilt.
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In the previous graph we only considered the case of a single filter, in any

application it would be normal to use a larger feature set. In Figure 6.3.2 we apply all the

filters of the set within a frequency band, each is scaled by the same amount. As was

predicted in Eq. 6.2.2e, the waveforms are effectively phase shifted versions of that

shown in Figure 6.3.1 each of which reaches its maximum when the tilt angle coincides

with the filter orientation, i.e. τ=φ.
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Figure 6.3.2 Tilt effects on the means of features obtained over a range of orientations in

the F25 band.

Since the waveforms are phase shifted versions of each other, varying the

illuminant tilt may be considered as being equivalent to rotation of the image in the case

of an isotropic texture. To demonstrate this point, we plot the mean output of a fifth

feature. This feature is derived from an isotropic, Gaussian bandpass filter1. As expected,

this is almost unaffected by tilt variation.

We now consider the effect on feature output of tilt variation on the directional

Ogilvy surface, again the feature means have been scaled by the maximum value of the

largest waveform.

                                               
1 Developed by T. Wittig
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Figure 6.3.3 F25 Filter responses to directional texture with varying tilt.

We note the following points:

 (i)  on visual inspection the ⏐cos (φ−τ)⏐ relationship appears to hold for both textures

and all filters.

 (ii)  the output of the filter (φ=0°) orientated at right angles to the grain of the surface is

much larger than that of the other filters in the band.

 (iii)  the feature mean of the isotropic filter is heavily dependent on the tilt direction.

6.3.2 Verification by Experiment

We now consider the two real test samples Rock and Striate. As with the isotropic

synthetic surface, the feature means for the Rock texture all vary in a cosine manner of

approximately equal amplitude, though with a slightly lower a/b ratio.
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Figure 6.3.4 Filter responses to ’Rock’ surface illuminated from various tilt angles.

The ’Striate’ texture is analogous to the Ogilvy surface. As with the synthetic case

all features vary in an approximately sinusoidal manner. The filter means can all be

approximated by sinusoids of the same amplitude save that feature measured

perpendicularly to the grain, which has a much larger amplitude.
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Figure 6.3.5 Filter responses to ’Striate’ texture.
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Although the feature means are important, in the context of discrimination the

standard deviation of the feature must also be considered. In Figure 6.3.6 and Figure

6.3.7 the means and standard deviations of features derived from filters oriented at φ=0°

and 90° are plotted for the Rock and Striate surfaces respectively. An a⏐cos (φ−τ)⏐+b

curve is also shown in each graph where the a and b parameters have been estimated

using least squares.

In the case of Rock the feature mean fits well to the parameterised curve, though

the minima of the F25d0 graphs are much smoother than predicted. Both the mean and

standard deviation of the F25d0 features derived from Striate appear to be a better fit in

this respect, though there is a small phase disparity between the predicted and the

observed curves in the F25d90 case. Nevertheless, the proposed relationship does appear

to be a reasonable approximation to the experimental findings.
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Figure 6.3.6 Variation of Rock feature statistic with tilt angle.
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In Table 6.3.1 and Table 6.3.2 the estimated parameters for the feature mean/tilt

relationship are tabulated for the Rock and Striate surfaces respectively. It was noted

earlier that the mean curve of the F25d0 feature for the Striate texture is much larger

than the means of the other features in the set. The a (tilt-dependent) parameter reflects

this; the F25d0 feature parameter is almost twice that of the other features. The b

parameter estimate for F25d0 is noticeably larger than for the features, however, the

difference is much less significant than was observed with the a parameter.
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Figure 6.3.7 Variation of Striate feature statistics with tilt angle.
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Striate Mean Standard Deviation

Filter a b a/b a b a/b

F25d0 14.077 5.987 2.35 2.440 1.181 1.348

F25d45 7.702 4.740 1.62 1.608 0.969 1.659

F25d90 6.870 4.125 1.67 1.534 0.938 1.636

F25d135 7.086 4.914 1.44 1.839 1.083 1.698

Table 6.3.1 Feature statistics for Striate surface.

The parameter estimates for the Rock show a significant amount of variation in the b-

parameter, although the variation is small relative to that observed in the Striate

parameters. The a parameter is more consistent for the Rock than for the Striate surface,

and the variation which does exist does not show the same degree of linkage to the b-

parameter as in the Striate estimates.

Rock Mean Standard Deviation

Filter a b a/b a b a/b

F25d0 9.245 5.642 1.64 1.522 1.043 1.46

F25d45 7.606 5.687 1.34 1.321 1.147 1.15

F25d90 7.950 5.642 1.41 1.498 1.235 1.21

F25d135 8.736 5.205 1.68 1.101 1.162 0.947

Table 6.3.2 Feature statistics for Rock surface.

The results obtained are to some degree ambiguous, however, we make the

following conclusions, albeit based on a very limited data set: the a parameter is largely

dependent on the nature of the surface in the direction of the filter—it will therefore vary

widely from surface to surface. The b-parameter also contains an element of dependency

on the surface characteristics within the filter's bandpass region, however, it is largely

invariant to the surface characteristics.
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6.3.3 Summary of Classifier Modelling

In this section we have shown that measures derived from directional Gabor filters vary

with tilt. Both mean and standard deviation vary with a relationship approximated by Eq.

6.3.3.

a bcos( )φ τ− + (6.3.3a)

 We have shown this using theory, simulation and experiment.

We have also shown that an isotropic filter, applied to the image of an isotropic

surface is unaffected by tilt variations. However, an isotropic filter applied to the image

of a directional texture will be affected by tilt variation. In addition, an isotropic feature

will not, of course be able to capture important directional information.

By demonstrating that tilt affects the output of features, we have shown that there

exists a potential problem for classification. In the following sections we show tilt

induced classification failure occurring for several texture classification tasks.

6.4 The Effect on a Classifier

We shall now consider the effect of tilt variation in terms of classification

accuracy. Due to interdependency of classes associated with classification, any treatment

of this subject is necessarily empirical. We use the controllability of the synthetic

textures to define a relatively simple classification task. This enables us to reduce the

feature set to just two features (Gabor filters orientated to 0° and 90°) and still maintain a

good level of classification. With only two features we may characterise the

classification process with a two dimensional scatter plot. We also plot the feature

measures for each texture in Figure 6.4.1. This section is designed to use this window

into classification to gain an intuitive understanding of how clusters behave during tilt

variation and how this will affect classification.



157

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

Tilt Angle

F
ea

tu
re

 M
ea

n Star

Oval

Ogilvy

Iso

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

Tilt Angle

F
ea

tu
re

 M
ea

n Star

Oval

Ogilvy

Isotropic

Figure 6.4.1 Feature Means derived from F64d0 and F64d90 Filters

The classifier is trained on surfaces illuminated from τ=0°, classification at this

stage being generally good, the most prominent misclassification being mutual confusion

between the isotropic and mildly directional surfaces, (see Figure 6.4.2). The relatively

compact nature of the clusters in the vertical direction reflects the attenuation of the

vertical frequencies.

As the illumination is rotated towards the vertical, the vertical frequencies are

accentuated and the horizontal frequencies attenuated. The cluster centres now begin to

trace out an approximation to simple harmonic motion in feature space whereas the

clusters themselves contract and expand along their feature axis. By the time the

illuminant has reached the vertical, all the clusters lie in the area of feature space

assigned to the surface which displayed most vertical energy at τ=0°, which in this case

is the isotropic surface. Misclassification of the other textures is almost complete.
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Figure 6.4.8
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6.5 Classification Experiments For Real Textures

The thesis of this chapter is that variation in illuminant tilt between training and

classification can cause the classifier to fail catastrophically. In this section, this effect

will be demonstrated experimentally using real data.

6.5.1 Test Criteria

In order to demonstrate this effect, we must show three things:

1. The classifier performs well when the tilt angle is identical for training and 

classification.

2. The misclassification rate increases progressively, though not necessarily 

linearly, with the cosine of the angle between the illuminant vectors of the 

training and classification,

3. Implied from (2) is that the misclassification rate at τ=180° should be 

approximately equal to that at τ=0°.

6.5.2 The Data Set

In this section we will use three texture montages: Anaglypta, Stones1 and

Stones2, shown in Figure 6.5.1. The Anaglypta montage consists of highly directional,

and highly uniform textured surfaces. It consequently represents the easiest classification

task. The Stones1 montage consists of three approximately isotropic rock surfaces and

one highly directional surface, Striate, in which the directionality is aligned

approximately with the Y-axis, (θ=0°). The textures comprising the Stone2 montage are

all directional to some degree. The directionality of the Slate and Pitted surfaces is

aligned with the θ=0° direction. The Twins direction has its most prominent

directionality in the direction θ=90°, while the radial texture is directional at θ=45°.
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Figure 6.5.1 Test montages of surfaces, illuminated at Tau 0° (left) and 90° (right).
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6.5.3 Experimental Work

First Criterion

Our first criterion is that the classifier should be perform classification accurately

for the τ=0° image. Real textures were classified using the same system as the synthetics

in the previous section, though a much larger feature set with twelve members and a

12*12 mode postprocessing filter were used to achieve an acceptable classification

accuracy. Unfortunately the ability of the classifier to cope with the heterogeneous nature

of surface roughness on the samples is poor, and to obtain an acceptable level of

accuracy, it was necessary to use the entire montage for training, this means that we are

only testing the ability of the features to describe the textures and are not testing the

classifiers ability to generalise from the training data. The classified images and the

misclassification rates are shown in Figure 6.4.2.

Montage Misclassification
(%)

Anaglypta 2.88

Stones1 5.09

Stones2 3.29

Figure 6.5.2 Montages trained and classified at Tau 0°.

As predicted, the anaglypta montage is the easiest classification. Whereas the Stones

montages are classified to a much lower degree of accuracy.
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Second Criterion

The second criterion for our thesis is that the classifier should be progressively

less accurate as tilt angle increasingly differs from the training angle. The classifier was

trained at τ=0° and then tested on images of the surfaces illuminated from τ=0 to 180° in

10° degree increments. The degree of misclassification for this classifier was recorded

for each illumination condition in Figure 6.5.3-5 In addition to the classifier trained at

0°, a classifier retrained for each tilt angle, labeled "Best", was also employed. This acts

as a control in displaying the level of difficulty of classification inherent in a particular

classification, which enables us to resolve the misclassification rate which is due to

inappropriate training data.

In only one of the three cases does the misclassification rate increase in an

approximately monotonic fashion as the cosine of the tilt angle increases—fulfilling our

second criterion. However, deviations from the expected behaviour occur in regions of

high misclassification, and are still of a magintude such that classfication at these tilt

angles, with this classifier, is pointless. In this way we argue that the second criterion has

been fulfilled to a satisfactory degree.
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Figure 6.5.3 Misclassification rates for Anaglypta montage.
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Stone1 Montage
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Figure 6.5.4 Misclassification rates for Stones 1 montage.
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Figure 6.5.5 Misclassification rates for Stone2 montage.

Third Criterion

In order to show that the increased rate of misclassification is due to the effect of

illuminant tilt our third criterion, i.e. an accurate classification at τ=180°, must be met. In
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all cases the classification at τ=180° is significantly poorer than that at 0°, however, in

the context of the classifications at intermediate values of τ, we believe the third criterion

has been fulfilled .

Misclassification

at τ=0°

Misclassification at

τ=180°

Anaglypta 2.88 4.30

Stone1 5.09 10.95

Stone2 3.29 9.19

Table 6.5.1 Comparison of misclassification rates.

6.5.4 Summary of results

 In order to show that classification is dependent on the illuminant tilt angle we set

three criteria:

1. the classifier must be able to classify surfaces imaged under the same illuminantion

conditions as those at which the training data was obtained,

2. the level of misclassification should increase with the cosine of the difference between

the tilt angles at training and classification,

3. the classifier should be able to classify the τ=180° image accurately,

Using experiments on real textures, it was shown that these criteria were fulfilled to a

level that provides strong evidence for the tilt dependency. We therefore argue that

classification is tilt dependent, and, where illuminant tilt cannot be held constant between

training and classification, the naive classifier developed in the previous chapter is not

adequate.

6.6 Summary

At the beginning of this chapter we stated two aims: to model the effect of

illuminant tilt on the classifier, and to observe the effect of tilt on the accuracy of

classification.

Sections 6.2 and 6.3 were concerned with modelling the tilt response of the

features. In the first section, the analytical model of the imaging process was extended to

include the linear stage of the classifier, i.e. Gabor filtering. The analysis allowed the
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prediction that the first order statistics of the feature images would vary with an

a⎜cos(φ−τ)⎜ +b relationship. This was verified approximately by the simulations and

experiments performed in section 6.3.

While the calculation of features is amenable to analysis, the process of

discrimination is inherently non-linear and cannot be integrated into our model. In order

to extend our analysis we used a synthetic classification task to observe the effect of tilt

on the movement of feature clusters across discriminant boundaries. Finally the

degradation in classification accuracy due to tilt variation was shown on three montages

of real textures.

In this chapter, we have shown, using theory, simulation and experiment, that

varying the tilt angle of the illuminant induces the movement of feature clusters. Where

training and classification images are obtained at different tilt angles, this movement may

cause clusters to move across discriminant boundaries. Using simulation and experiment,

it was shown that this may occur to such a degree as to seriously degrade the

performance of the classifier. In the next chapter we will consider several schemes to

mitigate this effect.
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Chapter 7

Addressing The Problem

7.1 Introduction

The goal of this thesis is to develop a classifier which discriminates between

surfaces on the basis of their visual appearance. The development of such a classifier is

described in Chapter 5. However, using the models developed in the earlier chapters it is

shown in Chapter 6 that the direction of illumination is a critical factor in the

performance of the classifier. This chapter will review a range of candidate techniques

on which a classifier that is robust to tilt variations may be based. One technique will be

selected for further investigation in the next chapter.

Having observed the effect, we now consider some techniques aimed at reducing

tilt induced misclassification error. Chantler proposed four schemes [Chantler94], we

will begin by discussing all four and evaluating the three which we believe most

appropriate to the terms of this thesis. Since we wish to classify textures on the basis of

their surface properties, we then proceed to review the field of shape from shading.

Finally, we propose a novel scheme which uses a model based technique to overcome the

problem of tilt induced classifier failure.

7.2 Review of Chantler’s Feature Space Proposals

In [Chantler94] Chantler proposes four techniques for conferring tilt-robustness on a

classifier:

(i) a single classification rule obtained by training over the tilt range,

(ii) a series of rules indexed by tilt,

(iii) a segmentation based technique, and
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(iv) a filter based technique designed to reverse the directional effects of 

illumination.

The first three techniques operate in feature space, whereas the last pre-processes the

image before feature extraction. In his thesis, Chantler chose to investigate only the last

option. In this work we will discuss each and investigate those which are relevant to this

thesis.

7.2.1  Multiple Training Samples

Chantler’s first proposal is to train the classifier over the range of illuminant

conditions it is likely to encounter. He notes that the increased variance of each class

may reduce classification accuracy and pursues the idea no further. We reconsider the

scheme in the following terms:

In Chapter 5 we introduced a discriminant which classified a pixel, with feature

vector F, as having label �l on the criterion shown below:

[ ]�( )
arg max

( ( ))l
l

p l
i

l ii
F F

F
=

where p l
l i
iF

F( )  is the probability density function of feature F, given that a pixel

belongs to class i.

In Chapter 6 we showed that the probability density function of vector F,

p li( )F , is a function of the illuminant tilt. We treat tilt angle as a random variable,

randomly distributed between 0 and 2π, and describe using the joint pdf:

p li( , )F τ

Chantler's proposal attempts to classify pixels on the basis of an approximation to

the marginal density of p. The marginal distribution will be the integral of the joint

density over tilt (7.2.1a), assuming the illuminant tilt angle is drawn from a uniform

distribution, and the feature distributions vary continuously. This can be approximated

by the summation of a finite number of sample distributions (7.2.1b).

K l p l di i
( ) ( , )F F= ∫ τ τ

π

0

 (7.2.1a)
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K p f li’( ) ( , )=
=
∑
τ

π
τ

0

F (7.2.1b)

Where classification is made on the basis of:

[ ]�( )
arg max

( ( ))l
l

K l
i

C ii
F F

F
=

The probability function Ki(p) will occupy at least an equal, or more probably, a

larger volume of feature space than any of its component (tilt conditional) density

functions. There will consequently be a greater degree of overlap between clusters of

different classes. The success of the classifier is dependent on the degree of tilt induced

cluster movement being small relative to the distribution separation. In Figure 7.2.1 we

plot the feature means derived from filters oriented at 0° and 90° which have been

applied to the exemplar textures: Rock and Striate.
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Figure 7.2.1 Feature means for Rock and Striate textures calulated from F25 filters

oriented at 0° and 90°.

In Figure 7.2.1, it is shown that the assumption that cluster separation is large

relative to cluster movement is not reasonable for the texture features measured on the

Rock and Striate textures. While the clusters may or may not overlap at a given tilt, the

movement of the means with tilt, in both cases, clearly show that it is not possible to set

a single threshold to discriminate between the textures throughout the tilt range.

Although this technique is not appropriate in the above case, we have not ruled

out the possibility that it may be effective for data sets which are well separated in

feature space. While the technique is not universally applicable to the tilt problem, its

simplicity of implementation makes it worthy of investigation for a given data set. We

also conclude from the inadequacy of a single threshold that a priori knowledge of the
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illuminant tilt angle is a necessary condition for the illuminant invariant classification of

rough surfaces. This leads us to Chantler’s second proposal.

7.2.2 Multiple Discriminants

Chantler’s second proposal uses multiple training samples captured under various

illumination conditions to build a library of discriminant functions which can then be

indexed by tilt angle. Any practical system will have a finite number of training samples.

In the context of the schemes considered later in this chapter, we limit ourselves to three

training images.

We conducted experiments on the Anaglypta and both the Stone montages, in

each case using three discriminants, developed at 0°,90° and 180°, switching between

discriminants at 50° and 140° respectively.
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Figure 7.2.2 The use of three discriminants with the anaglypta montage.
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Figure 7.2.3 The use of three discriminants with Stone montages.
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As we might expect, the misclassification graph has minima at 0°,90° and 180°.

However, the majority of intermediate points show an unacceptably high

misclassification rate. The speed with which classification errors increase as we move

away from the training angle also suggests that the necessary interval between training

samples is so small, certainly less than 20°, as to be uneconomical for a practical

classification system. This immediately suggests an interpolative scheme, however non-

linearities in both the imaging and the classification processes make this problematic.

Later in this chapter we will propose a technique that is a derivative of this scheme, but

which operates in image, rather than feature space, circumventing the problems of non-

linearity.

7.2.3 Segmentation/Classification

The rationale for this scheme is that since the problem is caused by movement of

clusters across discriminant boundaries an appropriate strategy is to track the clusters

using cluster analysis techniques. The postulated clusters then may be identified as

belonging to an a priori defined class at a higher level in the image understanding

hierarchy. Identification at this level would be carried out by some feature measure

(Chantler suggests features based on the power spectra) which for reasons of

computational cost, or the requirement for homogenous regions of data, could not be

effectively integrated into the lower levels. We note that cluster analysis is being used as

a segmentation tool, and is therefore interchangeable with other segmentation techniques,

such as edge-based or region growing approaches. This scheme is effectively an

unsupervised technique, and consequently outwith the terms of this thesis. We do not

investigate it further.

7.3 Chantler’s Filters

While Chantler proposed four techniques he selected only one for further

investigation. Unlike the earlier techniques which seek to deal with the feature space

effects of tilt variation, this technique is proactive, and seeks to remove, or at least

mitigate the effects of tilt before features are extracted.
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7.3.1 Review

Chantler proposed and evaluated a system of filters to reduce the effect of tilt

effects on the classification of texture [Chantler94]. After verifying Kube’s work on real

textures, Chantler used this model as the basis on which he could develop a frequency

domain technique to remove the directional effect introduced by illumination—treating

the problem essentially as one of inverse filtering. In this section we consider four issues

that arise from this scheme.

• Linearity: the filters are subject to the restrictions on surface type and lighting

conditions considered in Chapter 3. Chantler attempted to model the effects of non-

linearity by adding an empirical term, b, to form his F1 filter class (7.3.1a). In effect

treating the unwanted signal components as additive white noise.

H
m Cos bF1

1( , )
( )

ω θ θ τ= − + (7.3.1a)

where

m and b are empirically derived coefficients.

• Frequency dependency: if we attempt to fit the F1 model to radial plots taken at

different frequencies we find a significant radial frequency dependency in both terms.

This led Chantler to develop the modified F2 model, where the second order parameters

are estimated in a two stage process: first, radial plots are taken for overlapping

frequency ranges, the m and b parameters are fitted to each using least squares; second a

linear least squares model is fitted to each parameter as a function of frequency.

H
m Cos b

( , )
( ) ( ) ( )

ω θ ω θ τ ω=
− +

1 (7.3.1b)

• Directionality: as the estimation process can only be applied to isotropic or near

isotropic textures, it assumes that directional textures, for which parameters cannot be

estimated, will be similarly affected by changes in tilt. In Chapter 3 it was shown that

rough directional surfaces do exhibit behaviour incompatible with Kube's model. In

combination with the linearity restrictions this forms a significant limit to the utility of

the scheme. The degree of restriction is illustrated by the fact that the isotropy condition,

strictly applied, would rule out all the test montages.
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• Optimality: The work reported in Chapter 3 was based on the performance of a filter

which was optimal for a particular texture. In a classification problem, we must accept

the fact that any general filter will be sub-optimal for each texture. If we reconsider the

frequency variation of model parameters with frequency for different textures we see that

there is a wide variation from texture to texture. Chantler tackled this problem by

averaging the model parameters for each texture. Whether the resulting sub-optimal filter

will be sufficiently effective will depend on the similarity of the textures. This

interdependency limits the generality of any experimental results obtained.

In order to address these issues, prior to an evaluation of the technique, a new set of

synthetic textures Figure 7.3.1 is introduced.

• Linearity: in chapter 3 we concluded that the major factor affecting how well a linear

model describes rendering is the rms slope of the surface. The rms slopes of the synthetic

surfaces are shown in Table 7.3.1.

• Directionality: the requirement for isotropic surfaces is satisfied by using Malvaney

and fractal surface models.

• Frequency dependency: The synthetic textures can be used to gauge the effect of

frequency dependency in the optimal parameter values. The distinct radial frequency

characteristics of the fractal and Mulvaney models provides one point of comparison.

The fractal surfaces (1 and 2) differ in their roll-off rates, β=3.0 and 4.5 respectively.

The Mulvaney surfaces differ in the cut-off frequency at which the transition between

white noise and fractal roll-off occurs.

• Optimality: The issue of optimality is accomodated into the evaluation in two steps.

Firstly, experiments are carried out on a texture by texture basis. In each case the filter is

designed purely for that texture. In the second stage the filter parameters of the texture

specific filters are averaged to produce a general filter which is applied to all the textures

in the montage.

The spectra and rms slope of the surfaces are shown in Figure 7.3.2 and respectively.
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Figure 7.3.1 Isotropic texture montage.

 

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

0.01 0.1 1

Fraction of Sam pling F requency

P
o

w
er

Surface 1

Surface 2

Surface 3 

Surface 4

Figure 7.3.2 Spectra of isotropic surfaces.

Surface mrms

1 0.0924

2 0.0653

3 0.249

4 0.223

Table 7.3.1 RMS Slopes of test surfaces.

Surface 1 Surface 2

Surface 3 Surface 4
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7.3.2 A Texture Specific Filter

In the last section it was concluded that a significant limitation of the technique

would be the requirement for it to generalise, i.e. to operate effectively for a range of

textures. Our assessment of the algorithm proceeds in two stages. In this section we

ignore the question of generality and test the form of the filter—each texture is processed

by a filter designed specially for that surface. In the next section the impact on

performance of the general filter is assessed. This experiment represents a more realistic

test of the algorithm. By resolving our assessment into two distinct stages we believe we

will gain a better understanding of the technique's performance.

We begin by estimating the model parameters for each texture in the test set. This

is done by splitting the power spectrum of each texture into fourteen radial frequency

bands.The polar distribution of signal magnitude for each band is measured and a curve

of the form mcos(θ-τ)+b is then fitted to the polar plot using least squares. The m and b

parameters plotted against frequency in Figure 7.3.3. For both parameters the family of

parameter curves can immediately be split into two groups which correspond to whether

the surface is fractal (surfaces 1&2) or of the Mulvanney type (surfaces 3&4). The

fractal textures exhibit a gradual decline in the value of the m-parameter with frequency,

whereas for the Mulvanney surfaces the parameter actually increases before saturating.

In the case of the b-parameter the Mulvanney surfaces are largely independent of

frequency while the fractals show a significant drop with frequency. We therefore

conclude that the form of the filter is a function of the surface type.

In our first application of the filters we postpone the issue of optimality and treat

each texture independently. The F2 model is fitted to and applied to each texture. This

involves fitting linear functions of frequency to both the parameter curves. We then

examine the output of the 0 and 90° features of the f64 filter set, which is concentrated in

the model's linear region (ω<0.25ωs). In all the compensated cases the variation of

feature output with tilt angle is much flatter, i.e. more stable than the uncompensated

outputs (Figure 7.3.4 and Figure 7.3.5). However, we note the decrease in the

effectiveness of the filters with the rougher surfaces. Even with F2 filters optimised to a

particular texture the effect has not been eliminated.
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Variation of m-parameter with frequency
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Figure 7.3.3 Frequency dependency of filter parameters for test textures.
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Figure 7.3.4 Uncompensated and compensated F64d0 feature means.
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Uncompensated f64d90 Feature Mean
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Figure 7.3.5 Uncompensated and compensated F64d90 feature means.

7.3.3 A General Filter

As stated earlier, for segmentation purposes we must adopt filter parameters

which are a compromise for the textures in the test set. The compromise parameters are

are estimated by averaging the m and b parameters associated with each texture and are

plotted against frequency in Figure 7.3.6, linear functions of frequency are then fitted to

both of these parameter curves. Application of the compromise filters shows a marked

decrease in the stabilising properties of the filter (Figure 7.3.7). If we classify on the

basis of the two compensated filters we find that misclassification rates quickly rise to an

unacceptable level (Figure 7.3.8).
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Figure 7.3.6 ’General’ filter parameters.
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Figure 7.3.7 Feature means compensated using ’general’ filter.

The filters do seem to work effectively on certain textures, specifically those with

low slope angles and which are fractal within the corrected frequency range. In

combination with the isotropy condition we believe the range of textures to which the

technique is applicable is limited. We therefore conclude that this approach does not

form an effective general approach to the problem of tilt induced failure.
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7.4 Single Image Shape From Shading Techniques

7.4.1 Motivation

The goal of this thesis is to develop a scheme which can classify objects on the

basis of their surface texture. There are a wide variety of texture analysis techniques

which may be applied to the classification of a textured image. However, classification

of surfaces on the basis of the appearance of textures is only valid if appearance is

invariant under all conditions likely to be encountered. Chantler has shown that, for a

large class of textures, changes in lighting orientation can radically alter the appearance

of the texture [Chantler94]. This would suggest that where illumination direction,

relative to the texture, cannot be strictly controlled, classification based purely on the

appearance of a texture may not be an appropriate approach.

Classification of rough surfaces should ideally be carried out on the basis of the

texture’s surface, rather than its image structure, i.e. either on s(x,y) or S(x,y) instead of

i(x,y). Several approaches exist for the recovery of surface topography, however shape

from shading (SFS) is the most suited to our requirements since it does not require

hardware additional to that already used for the classification task. Use of a single image

SFS technique is particularly attractive since it would operate on the same data set as a

naive classifier. The classifer would need only relatively minor modifications, applying

the same texture analysis techniques to the surface representation rather than the image.

 Shape from shading techniques have been used in computer vision for a quarter

of a century, for most of this time they have been restricted to smooth surfaces. More

recently, [Horn90] has applied the technique to complex wrinkled surfaces, while

Pentland has applied his own novel technique to fractal surfaces [Pentland90]. This

section will briefly describe the main approaches to shape from shading before

examining the difficulties peculiar to their application to textures; finally the various

techniques will be assessed in light of these difficulties.

Shape from shading techniques tend to capture high frequency surface variations,

though they appear less adept at recovering low frequencies [Frankot88]. This seems to

be true for human image interpretation [Knill90a]. Pentland [Pentland88] suggested the

combination of low frequency data from a binocular stereo system and high frequency

information from SFS techniques in the frequency domain. This was recently

successfully implemented by Cryer et al. [Cryer95] by filtering stereo and shading
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derived depth maps with low pass and high pass filters respectively. Since we are

concerned with textures, we are principally interested in the higher frequencies; shape

from shading therefore seems to be a promising approach.

7.4.2 Shape From Shading

Introduction

Recovery of shape from shading is an ill-posed problem; a particular intensity

value may be caused by any one of an infinite number of surface orientations. The

intensity/orientation relationship for a given surface type is described by the reflectance

map. This has the form shown in Figure 7.4.1 where each contour corresponds to a

particular image intensity. Therefore a surface facet with a particular intensity may have

any orientation p,q which lies on the appropriate contour. There are some intensities

which do correspond to a single orientation, e.g. maxima, these are known as singular

points. However most intensities are not in this category and cannot be mapped uniquely

to a single orientation. This ambiguity is the central problem of shape from shading, and

the various SFS algorithms can be categorised by the approach they adopt to solve this

problem.

Classical Methods

q

p

Figure 7.4.1 General form of the reflectance map
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 The first attempt to solve the shape from shading problem was proposed by Horn

[Horn70]. This treated the problem as that of solving a first order non-linear partial

differential equation. Proceeding from a singular point the equation was solved to give

characteristic curves of known orientation which were then grown to give the

orientations of the entire surface. This technique has several difficulties: it has not been

amenable to computer implementation, it is sensitive to measurement noise, and the areas

grown from characteristic strips do not always merge well. This technique has largely

been superceded by iterative schemes.

Iterative Techniques

Many iterative schemes have been proposed since [Strat79], most iterate on two

criteria: the closeness of the simulated image of the recovered surface to the original

image, and the smoothness of the resulting surface. Several algorithms also include

integrabilty as a criterion—equation 7.4.2a is cited in [Zheng91] as a typical cost

function:

[ ] [ ]i x y o p q p p q q z p z q dxdys x y x y s x y( , ) ( , ) ( ) ( ) ( )− + + + + + − + −∫∫ λ μ2 2 2 2 2 2
 (7.4.2a)

Closeness of intensity                 Smoothness Integrability

where λs,μs are constants,

            o(p,q) is the reflectance map

px, qx, py, qy, are the second derivatives

zx and zy are the derivatives of the estimated surface reconstruction.

The smoothness term restricts the applicability of the algorithm to smooth

surfaces, and even for smooth surfaces may prevent convergence to the optimum.

Recently however, there has been a more critical approach to the use of the smoothness

criterion. Horn presents several refinements to the system, these include representation of

both height and gradient to enforce integrability, a local linearisation of the reflectance

map around the current gradient estimate and the ability to suppress the smoothing term

as the optimum is approached [Horn90]. Using these techniques he is able to recover

complex wrinkled surfaces.
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Zheng and Chellapa have pointed out that most smoothness terms take no account

of abrupt changes in the original image, and among other results, he presents a modified

smoothing term [Zheng91]:

[ ] [ ]R p q p R p q q I x y R p q p R p q q I x yp x q x x p y q y y( , ) ( , ) ( , ) ( , ) ( , ) ( , )+ − + + −
2 2

Although Zheng conducted his experiments on locally smooth surfaces, in several

images it is possible to observe discontinuities, albedo was also recovered.

A Frequency-Based Approach

In a highly original paper [Pentland90] operates in the frequency domain to

recover complex surfaces including a synthetic fractal surface. Pentland uses a linearised

form of the Lambertian equation as an invertable transform. This can be applied to the

frequency domain representation of the original image and the resulting image can be

returned to the spatial domain to yield the surface. The inverse transform is shown in Eq.

7.4.2b. Pentland has developed a modified version of this, incorporating a Wiener filter

to suppress noise and non-linearities in the image, Eq. 7.4.2c. 

[ ]H e
k k

i

( , )
cos sin

/

ω θ
πω θ θ

π
=

+
− 2

1 22
(7.4.2b)

where k1=cos τ sin σ

 and    k2= sin τ sin σ

[ ]H e
k sd k k

i

o

( , )
cos sin

/

ω θ
π ω θ θ

π
=

+ +
− 2

1 22
(7.4.2c)

where s= Signum[cos(τ-θ)]

and     d is in the range 0.5 to 0.7

Since the Lambertian equation has been linearised, surface components

perpendicular to the illuminant direction are not illuminated. The Fourier components of

these patches must either be set to a default value, or estimated from other sources such

as singular points. Pentland reports that using default values produces good

approximations to complex and irregular surfaces, though it is less effective when

dealing with regular geometric shapes. In a later paper [Pentland91] concerned with

photometric effects in optical flow, Pentland uses a sequence of three images to first

linearise the images before recovering both albedo and shape.
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A Probabilistic System

Knill and Kersten [Knill90b] also use a linear approximation to the reflectance

map as the basis for their Bayesian scheme. Rather than tackle the problem of under-

determination by deterministic means, Knill seeks to use a priori knowledge of the

surface type to estimate the most likely surface for a given image. Using 800 synthetic,

illuminated, fractal surfaces as training data, Knill used the Widrow-Hoff algorithm to

calculate the coefficients for two, 2 dimensional, FIR filters. These filters were used to

model the mapping between the surface normals and the intensities of the corresponding

pixel and those of its neighbours. Using the assumption of surface isotropy, variation in

tilt angle is modelled by simple rotation of the masks.

The difficulty with the application of this scheme to the tilt-invariant problem lies

in the requirement for a priori knowledge of the surface. It therefore follows that

identification of the surface type is a prerequisite for the application of the optimum

filter for surface recovery. Since, for our purposes, surface recovery is a means towards

the end of identification this is clearly problematic, though if surfaces are sufficiently

similar, it may be possible to apply a sub-optimal filter to recover the surfaces to a level

of accuracy which will allow reliable classification.

7.4.3 Summary

Until recently, SFS techniques have been applied exclusively to predominantly

smooth surfaces, and their application to textures raises several issues. If the texture

surfaces are assumed to be fractal, then due to the self-similarity property, any

smoothness in the image will be due to camera effects. Iterative techniques,

unfortunately, use smoothness as a cost function. Horn’s partial suspension of the criteria,

and Zheng’s rationalisation are both only partial solutions, and it seems unlikely that they

 Figure 7.4.2 Deriving surface recovery filters.
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will be effective in dealing with textures. Knill’s and Pentland's method make no

smoothness assumption and will therefore be unaffected.

Knill’s and Pentland’s techniques represent the only techniques which we have

been able to identify as being suitable for this problem. Although these schemes are both

based on linear filtering, they do, however, differ in their derivation: Pentland’s scheme

is deterministic, while Knill’s is probabilistic. Knill's technique is unsuitable for

classification by definition: in order to employ a priori knowledge, the texture type must

already be known.

In fact, closer examination of Pentland’s technique shows it to be almost identical

to the independently developed Chantler’s filters. Although developed with different

aims in mind, both techniques are derived from Kube and Pentland's linear model of the

imaging process. The differences in the techniques are due to two factors: the different

aims of the techniques and their treament of noise. In his F1 filter Chantler assumes

noise to be white, though in the F2 filter he only assumes it to be isotropic and adopts an

empirical approach to its radial frequency characteristics. Pentland assumes the noise

spectrum is proportional to the image spectrum and develops his filter accordingly. The

filters also differ in the purpose; Chantler only seeks to remove the directional effects of

illumination and implicitly recovers the magnitude of the surface derivatives. Pentland

aims to recover the surface height and therefore includes an iω term to perform the

integration of surface derivatives in the frequency domain. For our purposes these

techniques are effectively the same, and will suffer from the same difficulties. We

believe this equivalence to be quite revealing: Chantler's scheme is recovering a

physically meaningful quantity— the magnitude of the surface derivative.

7.5 A Model-Based Approach Using Photometric Stereo

7.5.1 Model Based Classification

The model based approach is designed to anticipate the feature space distributions

by modelling the underlying physical and analytical processes of imaging and feature

extraction (Figure 7.5.1). This technique forms a spatial model of the training surfaces in

the primary training stage. The classification process proper, begins with secondary

training, when the recovered surfaces are synthetically rendered under the experimental

conditions, and the resulting images form the basis of training. If the model’s
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components, the reflectance function and the surface description, are sufficiently

accurate we should be able to obtain classification rates approaching those of the ‘best

case’ classification, i.e. based on training on images obtained from surfaces illuminated

at that tilt angle.

Simulated
Illumination
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Image TrainingFeature

Generation

Discriminant

Image Feature
Generation Classify

Surface

Model

Training

Images
SFS Recovery

Training

Classification
Classified

Image

Figure 7.5.1 Simulation Based Classification

While we have an experimentally verified reflectance model for our textures

(Chapter 3), we must still obtain the second component of the model: a description of the

surface. To do this, a method of recovery must be adopted. As we discussed earlier,

several cues to surface recovery have been investigated: focus [Noguchi94], binocular

stereo [Papadimitriou95], and laser based approaches [Gross95], have been used. Let us

assume that we will be able to invest more effort and exert more control in the recovery

stage than in the classification stages. Ideally, we seek a technique which requires no

additional hardware beyond that required for the classification.

The technique of photometric stereo allows us to form a surface description from

several images of the same surface imaged under various illumination directions. It

therefore seems ideally suited to our purposes since our problem is itself caused by

variations in illuminant direction. In fact, surface representations acquired with

photometric stereo has been used for modelling purposes by other authors. Russell
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[Russell91] used photometric techniques to acquire depth maps which could then be

synthetically illuminated to simulate aerial images.

7.5.2 Photometric Techniques

One approach to the SFS problem of under-determination is the use of

photometric techniques [Woodham79]. These involve the use of several images of the

same scene though under different illumination conditions. Each illumination condition

will have its own unique reflectance map, and a given point’s intensity will vary

accordingly. Therefore each image will define a unique set of possible orientations for

each point. If three or more images are used then the intersection of these solution sets

will contain only one orientation; it is also possible to recover the albedo of the facet.

Consider a Lambertian surface illuminated from a given illumination direction,

this defines a reflectance map o(p,q), Figure 7.5.2. If we are given a facet’s intensity

under these conditions, we may conclude only that its surface derivatives lie on a

particular contour on the p-q-plane. This is essentially the fundamental problem of shape

from shading; single image techniques use constraints in the spatial domain to resolve

this ambiguity. Photometric techniques on the other hand use several images, imaged

under different illumination conditions, with their own specific reflectance map. We

therefore have a set of contours. The facet’s derivatives are invariant and will lie at the

intersection of these contours. Since two contours may overlap at more than one point

we require three images to resolve ambiguities in all cases.
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More rigorously, consider Lambertian reflectance, where L,S and I represent the

illuminant vector, normal vector and facet intensity respectively.

I=L.S where
L

S

=
=

[ , , ]

[ , , ]

l l l

p q
1 2 3

1

Now, consider the same facet illuminated three times with different illuminant vectors:
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While this may be solved numerically, most implementations use three dimensional

lookup tables.

In this section we have proposed a simulation based scheme which is designed to

counteract the effect of tilt on classification by predicting the location of feature space

distributions for given tilt conditions. This is achieved by using a surface and a

reflectance model to generate training data which is appropriate to classification under

the specified illumination conditions.

The surface model is an important component in the scheme. We have identified,

and given a brief description of, a technique which is capable of recovering the required

model, with relatively little overhead in terms of additional hardware and training.

7.6 Conclusions

In this chapter we considered three techniques proposed by Chantler [Chantler94]

for the reduction of tilt induced misclassification, as well as surveying the field of shape

from shading and proposing a novel simulation based technique.

Chantler’s first technique attempted to make the classifier robust by training the

classifier over the range of illumination conditions which occur during the classification

sessions. Examination of the feature means for two test textures showed that it is not safe

to employ a single threshold to discriminate between textures throughout the tilt range.

This result also showed that, in practice, the tilt angle must be known before the

classification may be undertaken.

Chantler’s second proposal advocated the use of a family of discriminants

indexed by tilt angle. Application of this technique to our test montages showed that,

while the technique is effective at reducing tilt degradation at the training angles, the

misclassification rate quickly increases as the illuminant tilt moves away from these

angles. From the performance of the classifier on our montages, we believe that a new

discriminant must be designed at intervals not exceeding 20° of tilt.

Chantler also defined a system of filters which are based on inverting the

directional effects modelled by Kube and Pentland, [Kube88]. We found application of

this scheme to be limited for two reasons. The first is the requirement that test surfaces

are isotropic; this condition is associated with the implementation of the filter estimation,

and it is possible to suggest an alternative scheme using more than one estimation image
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to generalise the technique to directional surfaces. A more serious drawback is that of

generality; the characteristics of a filter are specific to a particular surface and any

general filter must be sub-optimal. In our experiments we found that, even with the

isotropy restriction, the sub-optimal filter is unable to stabilise the features to a

satisfactory degree. We do not pursue this approach further.

The field of single image shape from shading was reviewed. Mainstream SFS

algorithms use a smoothness constraint and are therefore unsuitable for texture

classification. Two techniques have been applied to fractal surfaces, however, implicit in

both is the requirement for a priori information as to the nature of the surface. This, by

definition, rules out these techniques from further investigation.

Finally a model based technique was proposed. This uses an estimate of the

surface derivative field obtained using photometric stereo to predict the observed texture

under specified illumination conditions. This prediction is then used to train the classifier

for those illumination conditions. The next chapter will describe the evaluation of this

technique.
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Chapter 8

A Simulation-Based Approach To Tilt Effects

8.1 Introduction

In Chapter 6 it was shown that changes in illuminant tilt can induce classifier

failure. In Chapter 7 we considered techniques to reduce the effect on classification: the

field of shape from shading was surveyed for possible techniques, though none was found

to be suitable. Also reviewed, and evaluated where appropriate, were the proposals

advanced by Chantler [Chantler94]. From our experiments we concluded that tilt direction

must be known a priori and that the linearity constraints of the frequency domain are too

stringent for spectral compensation techniques to be applied to a wide range of textures.

Finally a simulation based technique was proposed which is defined in the spatial domain

and circumvents the constraints of the frequency domain. In this chapter, an

implementation of the simulation-based approach will be proposed and evaluated.

We begin this chapter with a review of the literature describing photometric

techniques, a simple method for surface derivative recovery under the Lambertian

constraint is then described. Synthetic surfaces and the noise model derived in Chapter 4

are then used to assess the accuracy with which this technique can recover the surface

derivatives. The effectiveness with which the system can simulate surfaces illuminated

from arbitrary tilt angles is then assessed and finally the effectiveness of the system in

dealing with classification under varying illuminant tilt angles is evaluated.

8.2 Structure of This Chapter

In Section 8.3 photometric techniques are reviewed as a mechanism for obtaining

the surface derivative fields. A simple, though sub-optimal, technique is proposed. The

structure of the remainder of this chapter is defined by the constraints on our experiments.
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An investigation into the robustness of the model-based technique to different degrees of

surface roughness, non-Lambertian reflectance characteristics, image blur, and white noise

is most conveniently conducted using simulation. The effect of these variables is

investigated in section 8.4.

The performance of the algorithm on real data is investigated in section 8.5. The

model-based technique is evaluated at each stage of its operation. The accuracy of surface

recovery is evaluated using a controlled, smooth surface. The accuracy of image

prediction is evaluated both in terms of the "image signal to residue ratio" and in terms of

the closeness of the predicted feature distributions to those obtained from the original

data. Finally, the classification accuracy of the model-based technique is assessed in

section 8.6 using three montages of real textures.

8.3 A Photometric Implementation

In the previous chapter photometric stereo was identified as a suitable approach to

the recovery of surface characteristics and the reasoning behind the technique briefly

outlined. In this section we review the literature associated with this area of work in order

to identify appropriate implementations as well as the practical issues arising from the

technique’s use.

In the context of a model-based classifier, the accuracy of surface recovery is of

secondary importance to the accurate prediction of training images. This relaxation of the

requirement for surface accuracy allows other factors to be taken into account in the

choice of recovery algorithm. In this case, the ease of implementation and the speed of

operation become significant characteristics of the algorithm.

8.3.1 A Review of Developments in Photometric Stereo

Although several authors have attempted to reduce the number of images required

[Onn90][Lee84], most work in photometric stereo has focused on the generalisation of

the reflectance map to include specular and other non-Lambertian components. We begin

by considering work that assumes calibration data is available from which a reflectance

map may be calculated in a straightforward manner.

A Priori Known Reflectance Maps

 Coleman and Jain [Cole80] used a fourth image allowing specular facets to be

removed from the estimation process by thresholding albedo estimates. Using four images,
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they were able to obtain four estimates of both the facet normal and albedo. If none of the

albedo values exceeds a threshold, the normal is taken to be the average of the four

estimates. If, on the other hand, any of the albedos exceeded the threshold, the normal

was based on the combination of images that gave the lowest albedo estimate.

Cho and Minamitani also uses an albedo thresholding scheme, though they do so

with only three images [Cho93]. Assuming the surface is homogeneous, we would expect

the reflectivity of facets to follow a normal distribution. Facets with estimated reflectivities

greater than two standard deviations above the distribution mean are classified as being

specular. The pixel in the image with greatest intensity is then readjusted by rescaling with

a modified reflectivity.

 Tagare and Figueirdo develop a photometric theory for the case of diffuse though

not necessarily Lambertian reflectance functions [Tagare91]. Tagare defines a class of

reflectance maps he denotes as ‘m-lobed’; in the model he discusses there are three lobes:

the normal Lambertian component, the forescatter lobe corresponding to glossy specular,

and a backscatter lobe. He also develops the photometric theory for this model.

Rajaram et al. adopt a more pragmatic approach and seek to develop a noise

tolerant, stable and generalised photometric system based on a neural network

[Rajaram95]. A back propagation network is trained on 5x5 patches of a Gaussian sphere.

This empirical approach allows reflectance functions more complex than the Lambertian

to be used; referring to Tagare’s m-lobed model, he states that the optimum complexity of

the hidden architecture increases with the number of lobes present in the reflectance

model. Rajaram presents experimental evidence that the technique is superior to

Woodham’s analytical method [Woodham81].

Iwahori and Woodham [Iwahori95] applied PCA and two neural nets for the

situation where illumination sources are close to the viewing direction. Both nets are

trained on a calibration sphere: the first learns the intensity to derivative mapping and the

second the derivative to intensity mapping. In operation the first net estimates the surface

derivatives, while the second takes these estimates and forms an estimate of the intensity

for the facet. Comparison of the real and estimated intensities gives a measure of the

reliability of the estimate—a large error being indicative of effects such as cast shadows or

interreflection.
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Joint Estimation of the Surface and Reflectance Map

A more difficult problem is that of estimating a surface with an unknown

reflectance map. Nayar et al use a linear combination of Lambertian and an impulse

specular component [Nayar90].

In [Iwahori94] Iwahori and Woodham use the analysis/synthesis pairing of neural

nets discussed earlier [Iwahori95]. However, if there is no calibration data available they

adopt the following procedure. They define 25 instances of Phong’s rendering model (see

Watt pp.96-100 for a description of Phong's model) with various parameter values as

starting points for the back-propagation algorithm and use the difference between the

estimated and actual intensities as a penalty function. Finally, they select the net with the

lowest mean square error and use its surface estimate [Iwahori94].

Kay and Caelli constrain the reflectance map to a simplified Torrance-Sparrow

(TS) map with additional Lambertain and mirror-like specular terms, though the latter is in

fact modelled as a Gaussian function [Kay95]. Using a large number of images (15-75),

they use non-linear least squares to estimate the relative strengths of the Lambertian,

glossy and mirror components, the roughness parameter associated with the TS model as

well as the surface normal. Where the model is ill-defined, they describe a framework for

the selection of an appropriate sub-model. Interestingly, Kay does not make any

assumptions as to the homogeneity of surface properties, instead estimating the

reflectance map for each facet.

Tagare and Figuierdo [Tagare90] use an ‘m-lobed’ reflectance function and

concludes that of the order of ten illumination sources may be required for the joint

estimation problem.

Solomon and Ikeuchi use a four light scheme similar to Jain’s to identify

specularities though they do discuss the case where a facet is illuminated by less than four

sources [Solomon96]. Like Cho and Minamitani they opt for a statistically based albedo

threshold (±3σ in this case) though as with Cole and Jain they then resort to the lowest

albedo normal estimate. Using the surface normal estimate he is able to estimate the

strength of the specular component for that facet, and also the nature of the reflectance

map’s specular lobe. Using the TS framework they are able to infer the sub-pixel

roughness of the surface.
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8.3.2 A Simple Photometric Scheme

The schemes discussed above obtain increasingly accurate approximations to the

reflectance map of test surfaces and allow application of photometric techniques to a

wider range of materials. However, we have already verified that our test surfaces can be

accurately modelled as being Lambertian. In the context of this thesis, where surface

reconstruction is a means to the end of image prediction, it may be viable to use a simple

scheme. We note that such a scheme may be sub-optimal and almost certainly inferior to

the schemes discussed above, however it is extremely simple to implement and may give

acceptable results for the purposes of image prediction.

We therefore propose the following simple photometric scheme.

Consider an illuminated surface, whose intensity corresponds to the following equation:

( )i x y
p q

p q
( , )

cos sin sin sin cos= − − +
+ +

λρ τ σ τ σ σ
2 2 1

 (8.3.2a)

If the surface is illuminated from τ =0°, 90° or 180° these simplify to equations 8.3.2b-d

respectively:

( )i x y
p

p q
0 2 2 1
( , )

sin cos= − +
+ +

λρ σ σ
(8.3.2b)

( )i x y
q

p q
90 2 2 1

( , )
sin cos= − +

+ +
λρ σ σ

 (8.3.2c)

( )i x y
p

p q
180 2 2 1

( , )
sin cos= +

+ +
λρ σ σ

(8.3.2d)

Adding equations 8.3.2b and 8.3.2d will produce a non-linear function of the surface

derivatives (8.3.2e):

i x y i x y i x y
p q

NL ( , ) ( , ) ( , )
cos= + =

+ +
0 180 2 2

2

1

λρ σ
  (8.3.2e)

now dividing equations 8.3.2b and 8.3.2c by 8.3.2e we have two linear functions mapping

surface slope to image intensity which are independent of albedo, ρ, and incident intensity,

λ.
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i x y
i

i i
q

q( , )
tan= + = − +90

0 180

1
2
σ

 (8.3.2g)

these may be transposed to give:

p
ip=

−1 2
tanσ  (8.3.2h)

q
iq=

−1 2
tanσ  (8.3.2i)

The scheme therefore requires the capture of three images at tilt angles of 90°

increments and the application of equations 8.3.2h and 8.3.2i to provide the estimates of

the gradient field. The author notes that this simple technique is sub-optimal, and almost

certainly inferior, in terms of accuracy, to the techniques reviewed in this section. The

technique will perform comparatively poorly since:

• it assumes a Lambertian reflectance function,

• it ignores self and cast shadows, and

• it also ignores interreflection.

Set against these inadequacies, the scheme does provide a fast and simple

implementation. It is attractive in an application, such as ours, where the absolute

accuracy of surface recovery is of secondary importance to the accurate prediction of

images. We conclude by noting that, where the reflectance function is near Lambertian,

the technique could be used to provide an approximate initial estimate for an iterative

scheme—similar to those discussed in section 7.4.2—which use more accurate reflectance

models and surface constraints. We do not, however, pursue this approach as we do not

believe the gains in the accuracy of image prediction would justify the effort.

8.4 Simulation based evaluation

In Chapter 7 we proposed a simple algorithm to reduce the effect of variations in

illuminant tilt on classification, in the previous section we presented a simple

implementation of the surface recovery component of the system. The remainder of this

chapter is devoted to the assessment and verification of the technique. The primary

objective of this section is to ascertain in what way, and to what degree, do departures

from the ideal Lambertian model and the ideal imaging model, affect surface recovery and
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image prediction. The most practical method of achieving this, in a controlled and

analytical manner, is the use of simulation. Simulation also represents the most convenient

method of estimating the accuracy of surface recovery, the relationship between the

estimated and the original surface, and how vital accurate surface recovery is to image

prediction.

We investigate the technique’s robustness with respect to three effects.

• Non-Lambertian reflectance. The recovery and prediction stages of the algorithm

assume a Lambertian model; sub-section 8.4.2 considers the effect on surface recovery

and image prediction of imposing a Lambertian model. Since the model’s behaviour varies

with facet gradient, the rms slope of the test surface will be varied and the effects notedwe

will deal with the second condition;:

• Blurring. In sub-section 8.4.3 we introduce the first component of the noise model

adopted in Chapter 4, blurring. In fact, this has much wider implications than might be

immediately obvious. A surface is not bandlimited by the resolution of the imaging device

and, if we assume that the surface is fractal, then we must accept that the recorded image

will be a low pass approximation to the ideal image. The reflectance function is non-linear,

therefore low pass filtering the image is not strictly equivalent to low pass filtering the

surface. The 2.5D surface representation will be only an approximation to the low pass

filtered surface. The accuracy of this approximation will have a bearing on the accuracy of

image prediction.

• Temporal noise. In Chapter 4, we observed that if the image is sub-sampled, the time

varying residue signal may be regarded as being white. In sub-section 8.4.4 we model the

noise signal and observe its effect on surface recovery and image prediction.

Our approach, outlined in Figure 8.4.1, is incremental: investigating the effect of the

empirical reflectance model in sub-section 8.4.1, we add the blur component in sub-

section 8.4.3 before adding the final stage of the model (additive noise) in sub-section

8.4.4.
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While the simulation of the physical processes has been made as realistic as

possible, we retain the Lambertian assumptions in the algorithm. The reasoning behind

this is that the implementation of the algorithm should not require detailed knowledge of

the reflectance function beyond the fact that the reflectance is predominantly diffuse in

character.

8.4.1 Experimental Criterion

In this chapter we wish to assess both the accuracy of surface reconstruction and

image prediction. Since reconstruction and prediction form consecutive stages in the

algorithm it is of interest to see how the accuracy of the latter is related to that of the

former. In order to allow comparison, a single generic criterion of accuracy is used in both

cases: the signal to residue ratio. When the criterion is applied solely to the surface

derivatives it will be denoted as either ep or eq depending on the field being observed.

Where the criterion is used with images, it will be denoted as ei. Where the accuracy of

both the image and the surface reconstruction are being assessed we denote the quantity

as S/R. We apply it to the surface in the form below:

e
Var x y

Var x y x y
p =

−

⎛

⎝
⎜

⎞

⎠
⎟10 10log

( ( , ))

( ( , ) �( , ))

j.S

j.S j.S

where

Var (x) is the variance of the process x.

Figure 8.4.1 Experimental approach of section 8.4

1.  Surface.       
2.  Empirical Rendering
3.  Recovery Images 

 (τ=0°,90° and 180°)
4.  Surface Estimation
5.  Lambertian Rendering
6.  Predicted Image
7.  Blur Function.
8.  Additive Noise.

Sections 8.4.2-
8.4.4.

Sections 8.4.3 -
8.4.4

Sections 8.4.4

4 5 621

7

 8

3
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and �( , )S x y is the estimated gradient field

Of more practical importance for our purposes is the technique’s ability to predict

the image of a surface illuminated from an arbitrary tilt angle, given a photometric

estimate of the surface derivatives. We apply the criterion to measure the accuracy of the

predicted image. For real textured surfaces we do not know the surface derivative field, so

this is the first measure of accuracy we can apply to the process. In the case of the image

quality measures, the noise effects will be applied to both the recovery and the evaluation

images, again to allow comparison with the next section on real surfaces.

e
Var i x y

Var i x y i x yi ( ) log
( ( , ))

( ( , ) �( , ))
τ =

−
⎛
⎝
⎜

⎞
⎠
⎟10 10

8.4.2 Non-ideal reflectance

Implicit in the scheme is the assumption that the rendering can be described using

equation 8.4.2.

i x y
p q

p q
( , )

cos sin sin sin cos= − − +
+ +

τ σ τ σ σ
2 2 1

(8.4.2)

We make three criticisms of the scheme based on this fact:

1. although the reflectance function is certainly diffuse, in Chapter 3 we noted that it is

not perfectly Lambertian,

2. by choosing to describe the reflectance function using equation (8.4.2), we imply that

for certain facet orientations, a negative intensity will be observed; this is clearly not

the case, and

3. equation (8.4.2) makes no allowance for the non-local effect of cast shadows.

The first effect is investigated using a synthetic fractal surface rendered with the

empirical reflectance map. The degree to which the second and third effects occur is

dependent on the roughness of the surface. These effects will be observed simultaneously,

this sub-section corresponds to stages 1-6 of Figure 8.4.1.

Non-Lambertian Reflectance

As an initial test of the accuracy of this method we estimate the derivative of an

isotropic fractal (β=3.0) surface with rms slope 0.35 illuminated from a slant angle of 60°.
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The actual and estimated derivatives of each facet are used to generate a scatter plot; the

ideal case being a line of gradient 1 passing through the origin.

From Figure 8.4.2 it is clear that there is an approximately linear relationship

between the estimated and actual slopes. The estimated q-derivatives are more closely

correlated with the actual derivatives than the p-derivatives. This is presumably due to the

fact that the colinear recovery images were illuminated by sources parallel to the sense of

the q-derivative, though the mechanism is unknown. As expected, inaccuracy increases for

larger slopes; at both extremes of the range the magnitude of slopes is increasingly

underestimated. However, for large positive p-derivatives there is a more striking effect:

an increase in the spread of estimates, showing a much less deterministic relationship

between estimate and actual slope as other factors come into play.

The aim of this technique is to predict the image, and ultimately the feature

distributions, of a rough surface imaged under arbitrary tilt conditions. We now assess

how the quality of the image prediction varies throughout the tilt range. That is the

recovery images remain unchanged at 0°, 90° and 180°, but the tilt of the illumination

used in image prediction (block 5 Figure 8.4.1) is varied between 0° and 360° in 10°

steps. The predicted images are compared with those obtained by applying "empirical

rendering" (block 2, Figure 8.4.1) using the signal to residue ratio (Figure 8.4.3).

(a) (b)

 Figure 8.4.2 The accuracy of estimation of facet p-derivative (a) and q-derivative (b)
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Tilt and the Model

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

Tilt Angle (°)

S
/R

 (
dB

)

Figure 8.4.3 The accuracy of reconstruction with varying tilt.

In fact, the variation is considerable, maxima occur at τ=0°,90° and 180°. In the

work that follows two values of image S/R (ei), at τ= 0° and 270°, will be quoted. Due to

imaging constraints the experimental data images were only captured in the range 0° to

180° we would therefore expect the actual accuracy to be significantly better than that

obtained by simulation at τ=270°. The selection of two tilt angles that are aligned to the

grid axes allows shadowing to be implemented without supersampling and its associated

artefacts.

Cast and Self Shadowing

The technique does not take into account the clipping of negative values returned

by the Lambertian function; self-shadowed areas are, in effect, assumed to have negative

intensities. The model-based technique, being inherently 2.5d, also fails to account for cast

shadows in either the recovery or the prediction phases; we therefore incorporate cast

shadows into the rendering algorithm. In Chapter 3 we saw that the shadowed areas do

not have zero intensity—a value of 40 is more realistic in our scale.

It is interesting to consider the effect of shadowing in practice. Figure 8.4.4 shows

a stone surface, which was not considered in the main body of the thesis due to its

violation of the random phase condition. The sample itself is sedimentary and formed from

several layers of sandstone, which lie in the plane perpendicular to the camera axis.

ei

(dB)
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Several layers are exposed and the regions of transition between the layers have an

associated abrupt change in height. These abrupt changes are symptomatic of a phase rich

surface. The texture displays two symptoms of non-random phase: asymmetry of the

textural properties of the two images separated by 180°, and shadowing.

 

Figure 8.4.4 Lamina Texture Illuminated from Tau 90° and Tau 270°

Due to these characteristics, this sample provides an interesting test case to see

how well the prediction algorithm performs in areas that are shadowed in one or more of

the recovery images. Surprisingly, the image is modelled quite well for the shadowed

image, however, when the shadowed areas are illuminated the algorithm performs poorly

as shown in Figure 8.4.5.

 

Figure 8.4.5 Simulated Lamina texture illuminated from Tau 90° and 270°

As rms slope increases, more and more facets are affected by cast or self-shadowing,

(Figure 8.4.6) and the modelling error becomes more significant.

.
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Figure 8.4.6 The effect of slope on the degree of shadowing of an isotropic fractal

surface.

 It follows that the effect of surface roughness on the accuracy of derivative

estimation is significant and must be investigated. Since we are primarily concerned with

the performance of the technique with textures, we assess the relationship between

estimated and actual slopes using statistical techniques which take account of the

distribution of slopes. At this stage we resolve the question of accuracy into two criteria:

(1.) There should be a linear relationship between the estimate and the actual slope,

and

(2.) The ratio of estimate to actual slope should equal unity.

The first criterion represents the linearity and spread of the scatter plot distribution and

will be tested by measuring the degree of correlation between the estimate and the actual

slope. The second will be assessed by comparing the standard deviation of the derivative

fields.
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The correlation graph shown above (Figure 8.4.7a), shows the estimate and actual

surface to be very well correlated for surfaces with low rms. slopes. The degree of

correlation does fall significantly as the surface roughness increases, however, even at the

extreme of the experimental range there is a significant level of correlation. The scaling

function (Figure 8.4.7b) is close to unity for low slopes, however as surface roughness

increases, the degree of underestimation also increases and is significant for even

moderate slopes.

If we now phrase the question of accuracy in terms of S/R, we may consider the

accuracy of both the surface and image. In these terms the surface is modelled very

accurately for low slopes, however, the surface S/R ratio rapidly falls with increasing rms

slope Figure 8.4.8.
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Figure 8.4.7 The relationship between estimated and actual derivative fields of an
isotropic fractal surface. Experiment corresponds to stages 1-4 of Figure 8.4.1
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Figure 8.4.8 The Effect of Surface Roughness on Surface and Image Prediction.

The quality of the predicted image also undergoes a degradation with increasing

slope, however, the degradation is more gradual, and for mrms>0.25 the image S/R at τ=0°

is actually higher than that of the surface; though the same is not true of the τ=270°

prediction. The process of Lambertian rendering seems to de-emphasise the errors present

in the surface estimate. We note two points from this:

(1.) the algorithm can predict images to an accuracy greater than 10dB for surfaces 

with rms. gradients less than 0.25 in spite of imposing the Lambertian model on a 

non-Lambertian system, and

(2.) accurate image prediction of a recovery image does not imply accurate surface 

recovery, although the accuracy of an image that is extrapolated out of the 

recovery range does give a more reliable indication

The surface slope clearly imposes limits on the surfaces to which the technique can

be applied. However, the technique is able to maintain a prediction accuracy of greater

than 4dB for even the roughest surfaces considered in this thesis. Another interesting

point to emerge is that while surface recovery does seem to be sensitive to changes in the

degree of surface roughness, image prediction, for recovery images at least, is more

robust.
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8.4.3 The Effect of Blurred Images
As stated earlier, any practical application involving the imaging of rough surfaces

will almost certainly involve the loss of high frequency information. In this sub-section, we

attempt to model this, in order to ascertain the effects this will have on surface recovery

and image prediction. We now apply the Gaussian blur function adopted in Chapter 4 with

the σb parameter set to 0.02 in accordance with the experimental findings.

The effect of blurring on surface and image prediction

We again plot the estimated and actual derivatives on a scatter plot (Figure

8.4.9)— the desired result being a linear mapping. The observed result shows there is not

a simple linear mapping between the actual and estimated slopes for either of the

derivative fields, though a degree of correlation is apparent. The general trend is an

underestimation of the slope.

Whereas blurring itself is modelled here as a linear operation, the effect of the non-

linear reflectance function (block 2, Figure 8.4.1) means that the overall system is not

linear. Using blurred, i.e. low pass filtered, recovery images will not necessarily lead to a

simple low pass filtering of the surface estimate. Since the degree of non-linearity will vary

with slope, we cannot easily predict the effect of scaling on either the surface estimate or

the image prediction. We therefore consider this effect experimentally.

In Figure 8.4.10 we plot the scaling and correlation coefficients for both the

blurred and unblurred images. Comparison of the correlation functions shows that the

.  

(a.) (b.)

Figure 8.4.9 Scatter plot of actual and estimated (a) p-derivatives (b) q-derivatives
estimated from blurred images.
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surface estimates of the blurred case are much less related to the actual slopes than in the

unblurred case. It is worth noting, however, that the decline of accuracy with increasing

slope is less pronounced than with the unblurred version. The scaling coefficient for the

blurred estimate is much lower than the unblurred case and the desired figure of unity.

Recovery based on images blurred to the degree experienced in experiment will lead to

noisy underestimates of the surface.
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Figure 8.4.10 Relationship between actual and estimated rms slope from blurred images.

If we consider the effect of blurring on the S/R of the uncompensated surface, it is

clear that this represents a very poor estimate of the actual derivative field, Figure 8.4.11.

Blur is obviously a very significant obstacle to surface recovery of rough surfaces. In light

of this, the performance of the image S/R is surprising. For low slopes the predicted image

achieves an accuracy which is similar to the unblurred case, and while it is significantly

lower for rougher surfaces, its performance is remarkable given the inaccuracy of the

surface estimate.
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Figure 8.4.11 The effect of blurring on surface and image prediction.

This result leads us to make two statements:

1. A good image reconstruction does not imply an accurate model of the underlying 

surface if blur is present and uncompensated.

2. Conversely, an accurate surface model is not always necessary in order to

accurately predict the image.

(a.) p-derivatives (b.) q-derivatives

Figure 8.4.12 The effect of image blur on surface reconstruction.
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Does the estimated surface approximate a low pass filtered version of the true surface?

Earlier in this chapter we stated that due to non-linearity we could not guarantee

that the surface estimated from blurred recovery images is a low pass filtered version of

the original surface. We now question this statement. In Figure 8.4.12 we plot the

estimated facet slopes against the slope of the corresponding facets of a low pass (or

intermediate) version of the original surface. The cluster shows a significant improvement

in the degree of spread, underestimation and linearity compared with Figure 8.4.9. We

therefore proceed to investigate the effect of surface roughness on this mapping.

In Figure 8.4.13(b) we plot the rms slope of the intermediate and estimated

frames. Unsurprisingly, both have much lower slopes than the original surface. However,

since blurring is a linear operation, the rms slope of the intermediate frame is linearly

related to that of the original test surface. In contrast, the estimated surface, which also

includes the non-linear reflectance function, shows a much less linear relationship with the

slope of the test surface and undergoes a more severe underestimate of slope.

In Figure 8.4.13a we plot the coefficient of correlation between the intermediate

surface and the estimated surface slopes. The fields are very well correlated, even for

rough surfaces. In fact, the degree of correlation is even higher than for the unblurred

case, due to the fact that the mapping which occurs between the intermediate and

estimated fields occurs over a range of much smaller slopes due to the underestimation

shown in Figure 8.4.13b.

Correlation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

RMS Slope of Test Surface

C
oe

ff
ic

ie
nt

 o
f 

C
or

re
la

tio
n

Scaling

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

RMS Slope of Test Surface

R
M

S
 S

lo
pe

Intermediate

Estimated

(a.) (b.)

Figure 8.4.13 Comparison of statistics of a low pass filtered (intermediate) surface with
those of a surface estimated from blurred images.
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The effect of image blur on the accuracy of image prediction, while significant, is

not critical. The effect on derivative recovery, as measured by our criteria, is so serious as

to call into question our claim that our simulated images are estimated from a basis which

is physically meaningful.

Interestingly, despite the non-linear character of the rendering function, the

estimated derivative fields do approximate those obtained from a low pass filtered surface.

We may therefore introduce the concept of a ’dual’ of the surface. This intermediate, or

pseudo-surface provides a link between the real surface and the perceived image. The low

pass relationship of the intermediate to the real surface is analogous to the bandlimiting

assumption made in Chapter 2; although in this case it forms a less arbitary, more

physically-based alternative to the ideal filter assumed in the earlier theoretical work.

8.4.4 The Effect of Temporally Varying Additive Noise

We now model the effect of temporal noise by adding different realisations of a

white noise process to each recovery image to give a signal to temporal noise ratio of

approximately 25dB. In Figure 8.4.14 a scatter plot of the estimated derivatives against

the actual derivatives is plotted. In the interests of clarity, the blur component is

temporarily suspended for the scatter plot only. The derivative estimate is relatively

unaffected by this level of temporal noise, though comparison with Figure 8.4.2 does

show a slight increase in the spread of the clusters. However is clear that this does not

have the same magnitude of effect on slope estimation as the blurring function. 

In section 8.5 we will measure the S/R ratio for real images. The recovery images

will also be used for evaluation. We incorporate this into our simulations, so that random

noise effects will be duplicated within each of the recovery/evaluation pairs. Our

simulations of S/R consequently predict a characteristic three peak variation or "W"

waveform with tilt, Figure 8.4.15
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Figure 8.4.15 Accuracy of Image Estimation in Additive White Noise (9.62dB)

We now observe the effect additive white noise in the recovery images has on the

closeness of the simulated images to images of surfaces illuminated at τ=50° and τ=140°.

The comparison images are corrupted with noise of the same variance as the recovery

images.

(a.) p-derivatives (b.) q-derivatives

Figure 8.4.14 Scatter plots for derivative fields estimated from images with additive
noise. (Blur suspended)
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Figure 8.4.16 The effect of noise associated with the recovery image on the accuracy of

prediction.

In Figure 8.4.16 we plot the S/R ratio of the simulated image against that of the

recovery images of an isotropic fractal surface with an rms slope of 0.23. The temporal

S/R ratio associated with the real images is in the range 18-30dB suggesting that the

prediction error, ei, associated with this type of surface; due to the combination of non-

Lambertian reflectance, blurring and temporal noise would be in the range 11-13 dB

Figure 8.4.2 shows that temporal noise of the magnitude observed in the images used in

this report is much less significant than the degradation caused by blurring.

8.4.5 Discussion

In this section we have considered the effects due to the imposition of the

Lambertian model, the effect of surface roughness, blur and additive noise. Of these

effects blur was identified as being the most significant to rough surface recovery. That is

it was found to that at levels of noise and blurring under which the real images were

obtained, blurring had the most significant effect on our error measure. It is arguable that

this will not be case for data obtained under different conditions, or where accuracy is

measured under different criterion, e.g. errors in surface height. This notwithstanding, our

investigation into both the deterministic effects, i.e. non-Lambertian behaviour and blur,

lead us to make two statements:

(1.) A good image prediction does not imply an accurate surface reconstruction;
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and conversely,

(2.) Accurate image prediction does not always require an accurate surface 

reconstruction.

Blur can be compensated for; non-Lambertian photometric estimation can be carried out,

at the expense of increased memory, computational and experimental expense. However,

these are not investigated since the uncompensated estimate gives image predictions of

sufficient accuracy for training purposes over a wide range of surfaces.

The experimental findings show that the surface derivative vector field estimated

from a series of blurred images is more directly related to the low pass filtered surface

than to the original surface. The estimated vector field may be described as being the low

pass filtered image of the original surface with additive, signal dependent noise.

�( , ) ( , ). ( , )S u v G u v S u v N= +

We also note that, in general, the estimated vector field will not be conservative, i.e. in

general:

Curl�S ≠ 0

The algorithm represents a mapping from three images to a dual space and an

inverse mapping from the dual space to an image. In the definition of the algorithm we

stated that the dual had a physical meaning, i.e. as the derivative fields of the surface. The

simulations show this to be a reasonable description under certain conditions. However, it

was found that under other conditions it formed a poor approximation, yet still formed a

good basis for image prediction. We may therefore say that the algorithm maps intensity

triplets into a 2D space which may be said to lie between two descriptions:

1.  A physically meaningful model of the surface derivatives

2. An arbitrary dual with an associated interpolation mechanism.

The point at which the algorithm lies is dependent on the accuracy of the forward and

reverse models.

In fact, the difference between the two is academic, with one exception: the ability

to generalise. Within the bounds of the work presented in this thesis this effectively means

the algorithm must be able to maintain an adequate level of accuracy for all tilt conditions.

By using the τ=270° image for comparison we have shown that this is the case for low

slope surfaces.
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8.5 How well does the technique work on real data?

In the previous section simulation was used to investigate the algorithm’s

performance on surface recovery and image prediction. In this section we evaluate the

algorithm on a real data set. The accuracy of surface recovery is briefly investigated with a

Gaussian sphere, however, the main thrust of this section is to investigate the accuracy of

image and feature prediction. The performance of image prediction is assessed using the

S/R metric introduced previously. The accuracy of feature prediction is assessed in terms

of the feature space. The same classifier used in Chapter 6 for the main classification tasks

is now used to discriminate between the predicted and the actual images. If the classifier is

unable to reliably discriminate between the two images this will provide convincing

evidence that the algorithm is able to predict the image to the required level of accuracy.

8.5.1 Surface Recovery

The Gaussian sphere used in Chapter 3 to evaluate the reflectance map is now

used to assess the accuracy of recovery. Since the sphere is smooth, blur is less significant

and we would expect the accuracy of recovery to be much greater than that of a rough

surface.

Both extrema show saturation, this being most prominent for large positive (i.e.

self-shadowed) slopes. In fact within the slope range ±0.5, which is the region of

relevance to texture modelling, the relationship is highly linear with little spread. The

spread or ’vapour trail’ effect corresponds to a mapping of the actual slope to a lower

Figure 8.5.1 Accuracy of derivative estimation from real data
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estimate. However, assessment of the algorithm’s ability to recover the surface is of

limited importance, since the real issue is whether the technique is able to simulate the

observed image with sufficient accuracy and we will investigate this in the next section.

8.5.2 Image Prediction

Having obtained the surface derivatives of a field, it is possible to render these

derivatives to predict the appearance of the original images. We measure the S/R ratio, as

defined in the previous section, to assess the accuracy with which we can predict the

appearance of members of the Stone1, Stone2 and Anaglypta montages. The results are

plotted in Figure 8.5.2 and Figure 8.5.7 and all display the characteristic three peak traces

predicted in Figure 8.4.15. The anaglypta results are remarkably variable: the ‘stripl’

texture remains above 11dB while the ‘ripl’ texture falls below 2dB. We suggest that the

poor results associated with the anaglypta textures, relative to the "Stone" montages, are

due to the steepness of many of the facets associated with this type of surface.
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Figure 8.5.2 Accuracy of Image Prediction for Anaglypta

The real anaglypta surfaces illuminated from τ=50° and the simulated image are

shown in Figure 8.5.3. While there is some difference in the average levels of the

individual textures, the image textures have been predicted well. It is interesting to note

that the algorithm is able to model both the vertical and horizontal directionalities, since

ei

(dB)
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the recovery images were illuminated in these directions they tended to have one of the

directionalities, but not both. This result has shown that the algorithm is able to effectively

integrate information from the recovery images.

We use two montages of rock textures, Figure 8.5.4 and we reiterate the temporal

S/R figures (ei) for these textures see Table 8.5.1. The values tabulated form a loose

upper bound on the level of accuracy with which we can expect the system to predict.

   Rock Isorock

   Slab    Striated

     Slate    Twins

Radial Pitted

(a.) (b.)

Figure 8.5.4 Stone1(a) and Stone2(b) Montages

(a) (b)

Figure 8.5.3 Real(a) and model(b) anaglypta montages illuminated from τ= 50°
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Texture et (dB) Texture et (dB)

Rock 28.90 Slate 18.90

Striate 27.08 Pitted 12.63

Isorock 25.67 Twins 23.76

Slab 29.23 Radial 20.20

Table 8.5.1 Signal to temporal residue ratios for captured images (copied from

Chapter4)
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Figure 8.5.5 Prediction accuracy for Stone 1 textures.

The algorithm performs well for all the textures in the Stone 1 montage—in

several instances exceeding the S/N range predicted using simulations. Of the samples

used in this montage the slab texture is the least well modelled; this is noteworthy for two

reasons: firstly this is the texture which had the highest S/R ratio in Table 8.5.1; secondly

it is the texture which has the steepest facets and the most shadowing. This indicates that,

ei

(dB)
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in agreement with the simulation section, temporal noise is less important than surface

characteristics in determining the quality of image prediction.

 

(a) Actual texture montage (b) Simulated montage.

Figure 8.5.6 Comparison of real and simulated Stone 1 montages at τ=50°.

Visual comparison of real and simulated textures again shows some variation in

the mean levels of the real and simulated textures; this being most apparent for the Rock

surface. It should be noted that, even for the Rock surface, the characteristic features, or

’landmarks’ have been preserved. The second class of error which is apparent on

inspection is the underestimation of intensity for those slopes on the slab surface oriented

in the direction of the illuminant. Since this is the roughest surface, this suggests that

either the slopes are being underestimated, or the rendering function is inaccurate for large

slopes.

The algorithm’s performance on the Stone2 montage is much less impressive:

firstly the majority of samples lie below the predicted S/R ratio; secondly two textures,

Radial and Twins, do not display the usual three peak waveform. The Slate texture is also

poorly modelled, though as with the other textures in this group this may be partially

explained by the poor S/R rate of the original images
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Stone 2 Montage
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Figure 8.5.7 The Accuracy of Image Prediction for Rock Textures (Recovered

and Simulated at σ=60°)

.

As with the Stone1 montage, the visually apparent errors in the Stone2 montage

(Figure 8.5.8) appear to fall into two classes. The errors in the mean level of textures

(most apparent in the ’Pitted’ texture) and an underestimation of the intensity of steep

 

(a) Actual Stone2 Montage (b) Simulated Montage

Figure 8.5.8 Comparison of real and simulated Stone2 montages

ei
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slopes, notably in the Twins texture. It is worth reiterating that even in these cases, the

spatial relationships of intensities appear to be accurately predicted.

The accuracy of image prediction was shown to vary widely within the data set,

ranging from almost 16dB to just over 2dB, this variation being related to the surface

characteristics of the textures. In the previous section simulations indicated that the

accuracy of recovery would vary over an even wider range, depending on the rms slope.

The large range of the estimate, and our inability to characterise the rms slope of the

surfaces do not permit any meaningful conclusions to be drawn from this overlap. All bar

two of the textures displayed the characteristic W-waveform noted in the simulation

section.

8.5.3 Accuracy in the Feature Domain

As has been stated elsewhere in this thesis, although the final arbiter of the scheme

is the ability to reduce tilt-induced misclassification, the interdependency of the test set

presents an obstacle to the analysis of the process. While section 8.5.2 treated the surfaces

individually, it has given little idea of how the scheme would perform in a classification

task. This section attempts to reconcile the contradictory demands of (1) a measure of the

model accuracy in the feature domain stated in terms of classification accuracy, and (2) an

analytical approach that treats each texture in isolation.

Figure 8.5.9 Montage comprising real (left) and simulated(right) ’Twins’ textures.
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In this section we will ask how well are the textures modelled in the feature

domain. We adopt the following procedure: a two class montage consisting of the

captured and synthesized images of a texture is defined (Figure 8.5.9). The entire feature

set used in the classification task, and a quadratic classifier trained on the montage is

brought to bear on the task of discriminating between the model and the texture. The

misclassification rate will vary from 0% where the synthesized and the actual texture are

easily seperable, to 50 % where they are indistinguishable on the basis of the feature set.

We note that even a misclassification rate approaching zero does not imply that the

technique is useless for our purposes, since this will also depend on the closeness of the

other textures in feature space.
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Figure 8.5.10 Classification accuracy for two class anaglypta montages.
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Figure 8.5.11 Classification accuracy for 2 class Stone1 texture montages.
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Figure 8.5.12 Classification accuracy for Stone 2 two class montages.

The results show much less variance between the textures than might be expected

from the previous section. The Stone 1 montage is modelled most effectively, though

again the performance of the members of the Stone 2 montage is not as poor as we might

expect from the image accuracy measure. Several textures have misclassification rates
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approaching 50% for at the τ= 0° recovery image, however this quickly falls to a more

typical value. Most textures give a misclassification rate of around 30%. As a purely

illustrative exercise, we show the degree of overlap necessary for a single feature with two

normal distributions of equal variance to give this degree of overlap in Figure 8.5.13. The

degree of overlap in the individual features will be greater or equal to this.
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Figure 8.5.13 Degree of overlap (of a single feature) required to cause a 30%
misclassification rate.

While the textures are not perfectly modelled, the fact that a classifier using a full

feature set and a discriminant specially trained for the illuminant conditions cannot reliably

discriminate between the model and the texture is a good indication that the textures will

be adequately modelled for accurate and consistent discrimination between textures.

8.5.4 Discussion

This section has shown that there exists a wide variation in the accuracy of image

prediction between different surfaces. This is typified by the members of the anaglypta

montage where the S/R ratio for a given tilt angle may vary from 1 to 10 dB. Performance

for the Stone1 montage is generally good; all bar one texture, maintain a S/R greater than

10dB. The algorithm's performance for the textures in the Stone2 Montage is much

inferior, while two textures actually diverge from the W waveform, which was first noted

using simulation and subsequently found in all the other textures.

In view of these results, the performance in feature space is surprising. The 'ripl'

texture, which was the least accurately modelled of the anaglypta textures in terms of the

S/R ratio, was the texture most accurately modelled in feature space. Similarly, although

there was an obvious difference in the image accuracy of the Stone1 and Stone2 montages,

the difference between the feature space accuracy is less significant. This suggests that the
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S/R ratio is heavily influenced by high frequency noise which is ignored by a classifier that

is biased towards low frequencies.

This inconsistency not withstanding, the algorithm’s performance in feature space

is accurate enough to prevent the classifier from reliably discriminating between the actual

and simulated textures. This gives strong supportive evidence that this is an effective

approach.

8.6 The Accuracy of Classification

The goal of this thesis is to develop a surface classifier that is able to maintain a

level of classification accuracy despite changes in illuminant tilt. In this section we

evaluate the proposed algorithm within the terms of the thesis goal.

This chapter has been concerned with the evaluation of the model-based algorithm.

A reductionist approach was adopted, evaluating the performance of the system after each

operation. In this section we evaluate the final stage in the process: classification. The

experimental results established in this section represent the most convincing evidence that

the model-based approach is appropriate for the problem of tilt dependency. However, the

interdepency of samples during classification means that this stage is the least amenable to

analysis, and the results do not generalise.

The approach of this section is firstly to establish that the model-based technique

does represent an effective mechanism for the stabilisation of misclassification at a

reasonable level. The model-based approach is designed to combat the problem of tilt

dependency by generating training data appropriate to the classification task.

Misclassification may be due to either:

(1.) inadequate image prediction,

(2.) the limitations of the classifier.

The former case is of more relevance to this thesis; in the second part of this

section we therefore evaluate this quantity by comparing the model based classifier with a

classifier based on real training data imaged under the appropriate illumination condition.

This is referred to in the text as the "best case" classifier. The difference between the

model-based misclassification rate and that of the "best case" classification will be due

solely to the inaccuracy of image prediction.

Anaglypta Montage
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Figure 8.6.1 shows the performance of a naive, the best-case and a model-based

classifier on the anaglypta montage shown in Figure 8.5.3. The naive classifier (developed

in Chapter 5) was trained at τ=0°. The full feature set was used with a quadratic

discriminant. The model-based classifier used the same classifier and recovery images

obtained at τ=0°,90° and 180°.
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Figure 8.6.1 Classification of Anaglypta Textures

As was shown in chapter five, the misclassification rate of the naive classifier

quickly rises as the tilt angle is moved away from that used during training, before

returning to the original rate as the tilt angle approaches 180°. While the model based

technique initially performs more poorly than the naive classifier, it does maintain a stable

level of misclassification throughout the tilt range. Assessed over the tilt range the model-

based technique is superior in performance to the naive classifier.

Naive
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Figure 8.6.2 Comparison of Model Based and Best Case Classification For Anaglypta

Montage

In Figure 8.6.2 we look more closely at the relationship between the model-based

and the Best Case classifiers. With the exception of the images at either extreme of the tilt

range, the anaglypta model-based approaches the best case error rate. The fact that the

model performs least well on the recovery images is particularly puzzling since these are

the images for which we would expect the algorithm to be most effective.

Stone Montages

Both the Stone montages are inherently more difficult to classify; a fact reflected

in the relatively poor classification rate obtained with the naive classifier at the training

angle. Nevertheless, in both cases the misclassification rates follow a similar pattern to

that exhibited for the anaglypta montage. The error rate of the naive classifier quickly rises

as tilt is varied, falling again as tilt approaches 180°. While the model-based error is worse

than the naive classifier for the training angle, it is superior over the rest of the tilt range.

For the Stone1 data set the model-based technique performs significantly worse than the

best case classifier, though for the Stone2 montage its error rate approaches the lower

bound.
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Figure 8.6.3 Classification of Stone1 Montage
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Figure 8.6.4 Classification of Stone 2 Montage
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Neither of the model-based performance rates obtained for the Stone montages

approach the best case rates as closely as the results obtained for the anaglypta montage,

however, set against the naive approach, the model-based results are more impressive.

Comparison of the waveforms of the best case and model-based classifiers shows that the

model-based misclassification rate ’shadows’ the best case rate, Figure 8.6.5. This leads to

an interesting question: does the model-based classifier make the same errors as the best

case as well as some additional errors, or does it make a different set of errors.
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Figure 8.6.5 Comparison of model-based classifier with best case classifier.

To answer this question, we define two new error rates: the first takes the best

case classification as the correct, or ground case, and calculates the model’s error rate

from that point; the second error rate is the simple arithmetic difference between the

misclassification rates. If the classification errors of the model-based classifier include all

of the errors of the best case classifier then we would expect the two values to be equal.
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Figure 8.6.6 Comparison of the ’grounded’ and ’difference’ error rates.

The misclassification rates do shadow each other very closely, and the difference

between the two traces is relatively small, especially for the Stone 1 classifier Figure
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8.6.6. We therefore conclude that the model-based technique does share many of the same

errors as the best case classifier as well as 2-3% which are attributable to the model-based

method.

For all three data sets, the simulation-based technique clearly offers a significant

reduction in tilt-induced misclassification. For the montages used in this research we have

established that the model-based classifier maintains the misclassification rate at a level

which is comparable with, if not actually approaching, that of the best case classifier. In

terms of training requirements, the model-based classifier is most similar to the multiple

discriminant technique evaluated in chapter six. The ability of the model-based technique

to maintain a broadly constant rate of misclassification shows that it is more effective than

this technique. The results show that in all cases the technique has successfully stabilised

the misclassification rate at a low level and is, with the exception of the ’best case’

classifier, the most effective solution to the problem of tilt dependency.

8.7 Discussion

While the experimental results of the simulation-based scheme are extremely

promising, there are some points which require discussion.

• Reflectance assumptions. In the experimental work carried out here, all surfaces were of

approximately Lambertian reflectance and uniform albedo. Suspension of the former

condition will require more complex surface recovery and rendering algorithms, but will

not of itself affect the validity of the simulation/training concept. The uniformity condition

on the other hand is more serious: although the albedo variation may be isolated from the

training data, it will be difficult to generalise the demodulation process to the classification

data.

•Rotation-Invariance. This is probably the most fundamental and intractable limitation of

the model-based scheme. The model-based system as discussed in this chapter is unable to

deal with the rotation of directional surfaces. However simulation-based techniques may

still have a significant role as a means of economically generating large volumes of

training data for the design of classifiers that are invariant both to the rotation of textured

surfaces and the associated variation in relative illuminant tilt.

• Limited Data Set. The experiments described in this thesis were carried out on twelve

real surfaces. Images of each surfaces were obtained over a tilt range of 0-180°, at 10°

increments, giving a total of two hundred and sixteen test images. Despite the large
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number of images we note that the restricted number of surfaces used limits the scope of

our results.

8.8 Conclusions

Our first conclusion is that even the simple shape recovery system described in this

thesis is able to form the basis of image prediction to a good degree of accuracy for

almost all the textures considered here. Using simulation we have shown the technique to

be robust to noise in the recovery images. This notwithstanding, we do express

reservations as to the accuracy of derivative recovery. Inaccuracies at the observed levels

do not appear to seriously affect image simulation. However, we caution against blind

application of surface height recovery where errors are cumulative. Nevertheless, the level

of accuracy obtained is adequate for the purposes of training a classifier to discriminate

between the members of our data sets. More sophisticated models are available and are an

area of continuing research within the machine vision community and application of these

techniques will allow the relaxation of the Lambertian requirement.

The second conclusion is that, of the techniques described in this thesis, a

simulation-based system forms the best approach to consistently good classification

regardless of illuminant tilt. The misclassification rate is consistent and in most cases

approaches the ‘best case’ level. The concept of simulated training data does represent a

powerful tool for the development of systems robust to noise and illuminant changes for

little overhead at the training stage.

Our final conclusion is that for the surface estimation technique used in this report,

the simulation technique may be safely applied only to cases that have the same slant angle

as the classification image. This effectively means that the scheme is best thought of as an

interpolation scheme, though a more effective photometric technique may be more open

to extrapolation.
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Chapter 9

Summary and Conclusions

9.1 Summary

The aim of this thesis is the development of a classifier that is capable of

discriminating between rough surfaces on the basis of their visual appearance, yet which

is robust to illuminant tilt. The first part of this aim; that is the development of a rough

surface classifier, was undertaken in chapters 2 to 6. A physically-based approach was

adopted, which placed the algorithmic classifier in the context of the surface and the

intervening processes in the measurement of the data set.

Chapter 2 surveyed methods of surface description adopted in scattering theory

and tribology. The power spectrum, in association with a phase condition, was adopted

as the principal means of surface description. Three models, framed in terms of this

description were adopted. These form the starting point of the simulation work

performed in this thesis.

The aim of this thesis requires the classification of rough surfaces on the basis of

their visual appearance, and the formation of the image was considered in Chapter 3.

Image formation is considered in two distinct stages: the local intensity of a surface

facet; and the interaction of facets to form a global image. The local interaction is a

function of the surface and illuminant properties, but also of their relative geometeries.

Three models of diffuse reflection were compared with the reflectance function for the

test surfaces and the classical Lambertian model was adopted.

The global interaction of surface with the illuminant was first modelled by Kube

[Kube88]. In the second part of Chapter 3 the accuracy and scope of application of a

linear model relating surface and image spectra was considered. The parameter

behaviour of the optimal least squares linear filter was compared with that predicted by

Kube’s model. The form of Kube’s predictions was found to be accurate for isotropic
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surfaces and directional surfaces of moderate slope. However, it was noted that there

exists an additional scaling relationship, which is related to the degree of surface

roughness.

The algorithms adopted in the later chapters of this thesis are not applied to the

incident image, rather they are applied to a data set that is subject to noise and distortion.

Chapter 4 quantified the nature and magnitude of the imaging process that can be

accommodated into the existing model.

Chapter 5 describes the final stage of the surface classifier: the application of the

classification algorithms to the data set. This chapter begins by introducing the feature

measures and discriminants. An analytical model incorporating feature extraction into

the existing model from the previous chapters is developed in Chapter 6. This model

predicts that the features will be a function of the illuminant tilt, which implies that the

classification will also be affected. The effect of tilt on feature measures, as well as

classification was then verified experimentally.

In Chapter 6 the tilt dependency of the classifier was shown; in Chapter 7 several

strategies for removing, or at least reducing, this dependency were considered. Three

proposals made by Chantler were investigated. The first proposal attempts to cope with

tilt induced feature variation by training the classifier over a range of tilt conditions. It

was shown that tilt induced variation is much larger than the variation between features

of different textures at any given tilt for the test set. This is therefore not an appropriate

strategy for our test set. Chantler’s second proposal also trains the classifier under several

tilt conditions, however, in this case a series of discriminants are developed which are

indexed by tilt angle. The classifier therefore employs whichever discriminant function is

closest to the illuminant tilt. While this technique was found to reduce misclassification

at the training angles, the misclassification rate quickly rose as the illuminant moved

away from this angle. To maintain a reasonable level of classification, up to nine training

images would be required. Chantler’s third and favoured approach was based on the

inversion of Kube’s frequency domain model. Experimental work in this chapter and in

Chapter 3 suggests that the optimal form of the filter varies widely from surface to

surface, and the general filter, while reducing the tilt effect to a degree, does not do so to

a satisfactory extent.
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Since this thesis is concerned with the classification of surfaces from their visual

appearance, there would appear to be a great deal of overlap with the field of shape from

shading. The central problem of single image shape from shading is that of

underdetermination. The  majority of algorithms counter this by imposing a smoothness

constraint. This is clearly not compatible with our interest in rough surfaces. We have,

however, uncovered two techniques in the literature that are more suited to rough

surfaces. Pentland’s frequency-based scheme [Pentland90] is similar to Chantler’s inverse

filter, though it recovers a height map rather than a map of the derivative magnitudes.

However, this similarity means that the technique will suffer from the same problems as

Chantler’s technique. Knill uses a pair of linear filters to recover the surface derivatives

[Knill90]. Unlike either Pentland’s or Chantler’s technique, he uses an adaptive algorithm

to train the filters. In doing so, he requires a priori knowledge of the surface the

technique is applied to. By definition this is not available in a classification task.

Our final operation in Chapter 7 was to propose a model-based technique for the

suppression of tilt-effects. This used photometric techniques to obtain a model of the

surface derivative fields for each training sample. The model was synthetically rendered

under the illuminant conditions in which the classifier was to be applied in order to

generate appropriate training data.

In Chapter 8 the model-based system was evaluated. This was performed in two

stages. The first stage used the models developed in the previous chapters to implement a

simulation-based investigation into how well the system recovered rough surface

derivatives and predicted the image in the presence of imaging artefacts. The second

stage dealt with the evaluation of the system on real data. Although we do not have the

means to estimate the accuracy of recovery of rough, real surfaces, it was possible to

assess the accuracy for a smooth real surface. It is also possible to measure the accuracy

of image and feature prediction. Finally, the performance of a classifier based on the

model-based technique was assessed against that of the naive classifier proposed in

Chapter 5 and the ’best case’ classifier which was retrained under each tilt condition. The

model-based technique was found to suppress the effect of tilt variation on classification

and in several cases had a mis-classification rate approaching the ’best-case’ lower bound.

9.2 Future Work

Slant Invariance
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This thesis has dealt only with the problem of tilt invariance and has neglected the effect

on classification of variations in slant angle.  In theory, a model based scheme should be

equally adept at dealing with variations in slant. However, this represents a much more

demanding task for the technique since image prediction now requires extrapolation

from, rather than interpolation between, the training images. The task is complicated by

the fact that the mean level of the texture image will vary with tilt, making camera non-

linearity a much more significant problem.

Surface Recovery

In the first chapter of this thesis we proposed a hypothetical inspection task,

which requires  rough surfaces to be identified. It is not difficult to imagine applications

where, having identified an anomaly or other region of interest, it would be useful for a

human operator to be able to examine the three dimensional structure of the anomaly. In

Chapter 6, we concluded that the single image, rough surface recovery techniques

required a priori knowledge of the surface type in order to perform well. The

identification of the region of interest using classification techniques would allow

application of this knowledge to the recovery of surface topography.

Photometric Classification

This thesis has considered the case where the illuminant tilt was not under the

control of operator during the classification stage.  However, in many cases it will be

possible to control the direction of illuminant. Where this is the case, we advocate the

integration of photometric techniques into the classification process.

A hypothetical system could use photometric techniques to estimate the surface

derivative fields and apply texture analysis techniques to the estimated fields. If the

derivative fields could be consistently estimated this would remove the effects of

illuminant direction. Furthermore, it would allow the use of much more surface

information than is present in the image since the directional filtering effect of the

illuminant would be avoided. The removal of the directional filtering would also allow

the application of rotation invariant techniques to rough surface textures.
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Figure 9.2.1 A proposed scheme integrating classification with surface recovery.
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The recovery of derivative fields also suggests that surface recovery is a

possibility. This would require the integration of the derivative fields. One significant

obstacle is lack of integrability, although this can be overcome relatively easily for

smooth surfaces, it is likely to present more serious difficulties for the reconstruction of

rough surfaces. While integration can be carried out in the spatial domain, it can also be

undertaken in the frequency domain [Frankot88], by weighting the spectral components

and swapping the real and imaginary components. Pentland noted that filters localised in

space and frequency form an alternative to the Fourier Transform in his frequency based

shape from shading algorithm [Pentland90]. Integration of this approach into a

photometric classifier would allow the recovery of surface height with little

computational cost beyond that already incurred for the classification while avoiding the

restrictions on albedo, linearity and noise associated with a single image scheme. The

surface type classification, and the use of spectrally defined measures would also allow

domain knowledge to be used by an iterative technique. A hypothetical system is shown

in Figure 9.2.1.

9.3 Conclusions

This thesis has developed a series of models of the process of classifying rough

surfaces on the basis of their visual appearance. These models are used in the description,

analysis and simulation of the process.

Three spectral models of rough surfaces were adopted from the literature, and

their interaction with incident light to form an image was shown in a spectrally definable

form. It was found that under certain conditions imaging artefacts could be considered as

consisting of a Gaussian blur transfer function, and additive white noise. The

combination of the imaging model with the spectral definition of the features showed

that the features on which classification is based are functions, not only of the surface,

but also of the illuminant tilt angle. This was confirmed by simulation and experiment.

The ability of tilt variation to induce classifier failure was demonstrated with both

simulation and three montages of real textures.

Several schemes proposed in the literature for reducing the tilt induced effect

were evaluated. We concluded that none of these was sufficiently effective for our data

set and proposed a new model based scheme. This technique used photometric
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techniques to estimate the derivative fields of the training surface which could then be

rendered under the appropriate illumination conditions to produce training data suited to

the prevailing conditions. Evaluation of this scheme showed that it was able to accurately

model real textures and to significantly reduce the effect of tilt variation on

classification—easily outperforming the other schemes considered.
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Appendix A: Principal Symbols

β Power roll-off

ω Radial frequency

θ Polar frequency angle

σ Slant angle

τ Tilt Angle

φ Direction of propagation ofGabor Filer

λ0 Correlation length of an isotropic surface

ω0 Fundamental frequency

λ1 Correlation length in the x-direction

λ2 Correlation length in the y-direction

σb Blur

γb Exponent of camera amplification.

ωc Cut-off frequency

σdisparity Standard deviation of the difference between two images

σm Standard deviation of measure image.

σn Standard deviation of overall noise process.

Σn Covariance matrix of class n

σp Measured polar bandwidth

σp Standard deviation of the Gabor filter spectrum in the x-direction.

μr Mean of Feature image

σr Standard deviation of Feature image.

σs Rms roughness

σt Standard deviation of temporal noise.

σx Standard deviation of the Gabor filter envelope in the x-direction.

σy Standard deviation of the Gabor filter envelope in the y-direction.

σy Standard deviation of the Gabor filter spectrum in the y-direction.

a Parameter of feature/tilt model.

a b c Parameters of optimal linear model.

b Parameter of feature/tilt model.

Bφ Polar bandwidth of the filter.

B(u,v) Blur function

Br Radial frequency bandwidth of the filter.
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c(t) Autocovariance function

d(x,y) Measured image data set
D(x,y) Filter Outputs Vector
dfφ(x,y) Output of Gabor filter f,φ
e(x,y) Residue Process
F(x,y) Feature Vector
ffφ(x,y) Feature Response derived from filter f,φ
Gωφ(u,v) Gabor filter

H(u,v) Combined filter function

i(x,y) Incident image
i0,i90,i180 images obtained from τ=°,90° and 180° respectively.

id Desired image

iNL Non-linear component of surface to image mapping.

ip Image which is a linear function of p-derivative field only.

iq Image which is a linear function of qderivative field only.

k Topothesy

k(F|li) Probability that a vector x belongs to class n over the entire tilt range.

k1 k2 k3 Parameters of Kube's linear model.

L(x,y) Illuminant vector
l(x,y) Label field
mfg fth and gth order statistical moment.

Mn Mean vector of class n

mrms Rms Slope

n(x,y) Noise process
o(p,q) Reflectance function

p l
l i
iF

F( ) Probability that a vector x belongs to class n

p Facet slope in the x-direction

prms Rms slope in the x-direction

px Second derivative of surface, in the x-direction.

q Facet slope in the y-direction

qrms Rms slope in the y-direction

qx Second derivative of surface, in the x-direction.

R Correlation matrix of the surface

R(u,v) Illumination function

rc(t) Autocorrelation function

Rcla Centre line average

s(x) Surface height profile.
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s(x,y) Surface height
S(x,y) Surface derivatives
t Lag

u Horizontal frequency index

u0 Centre frequency of filter in the x-direction.

v Vertical frequency index

V[a b c] Least squares linear model of the illumination process.

v0 Centre frequency of filter in the x-direction.



239

Appendix B

Textures used in Stone 1 Montage

Isoroc Rock

Slab Striate
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Textures used in Stone 2 Montage

Twins Pitted

Radial Slate
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