
Chapter 4 

Surface Texture Representations for Relighting  

4.1. Introduction 

In chapter 3, we proposed a framework for the synthesis and relighting of 3D surface 

textures. The framework can combine 2D texture synthesis algorithms and relighting 

techniques to synthesise new texture images under arbitrary illumination directions.  

The first stage of the framework abstracts a 3D surface texture representation 

from a set of sample images. This normally comprises two phases: (1) converting 

the set of pre-recorded images into surface relighting representations, and (2) 

rendering these representations according to desired lighting conditions. It is 

impractical to discuss the two phases separately. The goal of this chapter is therefore 

to study a set of candidate methods for extracting representations of the 3D surface 

texture sample and to investigate the relighting of these representations.  

We first propose the criteria for selecting the methods. Then we present a 

detailed review on candidate methods. According to our criteria, we select five low 

dimensional representations, which can be extracted from a set of images captured 

by a fixed camera and varied illumination directions. These methods are listed 

below. 

3I: This method uses three images of the sample texture taken at an 

illumination slant angle of 45° and tilt angles of 0°, 90° and 180° 

[Shashua1992].  
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Gradient: The second method uses surface gradient and albedo maps derived using 

photometric stereo [Woodham1981 and Rushmeier1997].  

PTM: This approach uses Polynomial Texture Maps (PTM), due to 

Malzbender et. al. [Malzbender2001].   

Eigen3: The fourth method uses the first three eigen base images [Epstein1995].  

Eigen6: This is identical to the previous method except that it uses the first six 

base images. 

Thus, the first half of this chapter selects five techniques for future study. 

The second half presents the results of a quantitative comparison of these 

approaches. We use two comparison metrics, namely Ability-of-reconstruction and 

Ability-of-prediction, to perform the analysis. Twenty-three real textures are tested 

for each method. We calculate the normalised root mean-squared (rms) errors by 

comparing relit images generated by each method with original real images. Based 

on the results, we show that Eigen6 produces the smallest normalised rms errors 

while 3I produces the largest. Those of Gradient, PTM and Eigen3 vary, depending 

on the texture.  

This chapter is organised as follows.  Section 4.2 proposes the criteria for 

selecting 3D surface texture representation and relighting methods. Section 4.3 

presents a detailed review on available methods of representing and relighting 3D 

surface textures. Section 4.4 describes the selected five methods. Section 4.5 

presents two approaches to quantitatively assess the five methods. Finally we 

conclude the work of this chapter in section 4.6. 

4.2. Criteria 

The choice of surface relighting representations has a significant impact both on the 

computational requirements and the quality of final results. According to the main 

objective of this thesis, we set the criteria for selecting the methods as follows:  

1. Practicality of physical data capture 

We would like the sample data to be captured in an inexpensive way, e.g. 

using off-the-shelf digital cameras, and the synthesised representations to be 

capable of being rendered in real-time on current desktop machines. 
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2.  Low dimensionality of representations 

The relighting representations of the sample 3D surface texture should consist 

of as few components as possible. 

3. Compatibility of  representations with graphic systems 

The surface relighting representations should be compatible with computer 

graphics packages or be able to be programmed into modern graphics 

hardware. For computer graphics packages, the common input is surface bump 

or height maps and albedo maps. For graphics hardware, it is preferable to use 

texture units and register combiners to speed up rendering by linear combining 

surface representations. Modern graphics hardware and APIs provides a 

number of texture units and register combiners that can efficiently process the 

relighting representation maps and perform linear combinations 

[Burschka2003]. The real-time rendering can be achieved by using these 

hardware acceleration facilities.  

4. Capability of dealing with complex reflectance including shadows and 

specularities 

Most real-world surface textures have complex reflectance properties. We 

would like the representation to be able to represent these more complex 

functions. 

In addition to the four criteria for selecting surface representation methods, we also 

need a criterion to assess the performance of different methods. Ideally, the relit 

images produced by different surface representations should be identical to the 

original images. This is however, not possible in practice. We therefore set the 

criterion for the assessment to be a measure of how close the relit results are to the 

original images. We use the normalised rms error as the numerical metric.  

4.3. A detailed review  and selection of surface 

representation and relighting methods 

The goal of this detailed review is to survey available surface representation 

methods using the criteria introduced in the previous section. Five methods are 

selected based on the review. 
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In 1977, Nicodemus et. al. introduced Bidirectional Reflectance Distribution 

Functions (BRDF) to accurately characterise surface reflectance properties 

[Nicodemus1977]. The BRDF is the ratio of the reflected intensity in the exitant 

direction to the incident energy per unit area along the incident direction. With full 

BRDF data and surface geometry information, images of the sample surface under 

arbitrary illumination can be produced. Dana et. al. further proposed the 

Bidirectional Texture Function (BTF) by allowing the BRDF to vary spatially across 

a surface location [Dana1999a]. The CUReT image database is constructed to 

describe BTFs and has included 61 sample textures with various reflectance 

properties. However, the measurement of BRDF or BTF is expensive and time-

consuming, because the BRDF and BTF depend on both the chemical composition 

and the roughness condition of the surface. Meanwhile, BTFs imply high 

dimensionalities due to numerous images required (e.g. the CUReT BTF database 

contains 205 unregistered images for each sample). Although the 3D textons are 

introduced to characterise the essential information of BTFs, they still need 960-

dimentional vectors to represent the sample surface [Leung2001]. The reconstruction 

of BTFs from 3D textons is expensive [Tong2002]. Several other techniques 

approximate BRDFs by projection into basis functions [Lalonde1997 and 

Lafortune1997]. 

Estimating surface representations using reflectance models only requires a 

relatively small number of sample images, which are inexpensive to obtain 

[Woodham1981, Horn1989, Nayar1990, Kay1995, Rushmier1997, Saito1996, 

Lin2000, Ikeuchi1991, Lu1995, Sato1997, Ramamoorthi2001 and Nishino2001]. 

Traditional Photometric Stereo techniques use three or more images to estimate 

surface gradient and albedo maps based on the Lambertian model [Woodham1981 

and Horn1989]. Integration techniques can be further used to obtain the depth 

information or the height map from surface gradient maps [Coleman1982 and 

Frankot1988]. In [Shashua1990], Shashua proves that three images captured under 

linearly independent illumination directions can represent a non-shadowed 

Lambertian surface. Nayar et. al. estimate the surface shape and reflectance of a 

hybrid model by photometric sampling [Nayar1990]. Saito et. al. recovers the 

parameters of the Phong model by fitting the pixel intensities into a sine curve 
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[Saito1996]. Based on the experiments, Kay and Caelli conclude that it is more 

difficult to estimate geometric and material parameters of a specular surface because 

specularities can only be captured using certain lighting and viewing angles 

[Kay1995]. Accordingly, many approaches make assumptions concerning the 

reflectance properties on the sample surface, e.g. uniform surface roughness 

[Saito1996 and Lin1999].  

In general, the above techniques are more practical to implement if the 

reflectance models are accurate enough to describe the sample. The estimated 

surface geometric and reflectance representations lie in low-dimensional space and 

are compatible with graphics systems. For example, a Lambertian surface can be 

effectively represented in 3-dimensional space (surface gradient and albedo maps) or 

even 2-dimensional space (surface height and albedo maps) [Woodham1981 and 

Horn1989], and the Nayar model needs a 7-dimensional representation [Kay1995]. 

Furthermore, the albedo map and surface normals, which can be obtained from 

surface gradient maps, are standard inputs for rendering the Lambertian reflectance 

models or the Lambertian component in reflectance models [Blinn1978, Phong1975 

and Cook1982]. However, many reflectance models only characterise certain classes 

of surfaces. The accuracy of the extracted representations therefore depends on 

whether the models are capable of accurately describing the reflectance properties of 

the sample surface [Koudelka2001].  

Without using a reflectance model, many mathematically based methods 

have been developed to represent images of a surface illuminated from different 

directions. Huang employs Fourier Series to approximate the pixel values of a set of 

images under different illumination directions [Huang1984]. The number of 

harmonics, or the dimensionality of the surface representation, depends on the 

reflectance complexity. Epstein et. al. suggest that five eigen basis images (plus or 

minus two) can be effectively used to represent arbitrary lighting for many different 

objects, although specular spikes and cast-shadows require more base images 

[Epstein1995]. The relighting is achieved by a linear combination. Basri and Jacobs 

use 9-demension spherical harmonics to represent a convex Lambertian surface 

under distant and isotropic lighting [Basri2001]. The Polynomial Texture Maps 

proposed in [Malzbender2001] use a 6-dimensional representation to capture the 
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colour variance for a surface exhibiting shadows and interreflections with varied 

illumination directions. Instead of using a physically based reflectance model, a 

quadratic function is employed to relight a Lambertian surface. In 

[Ramamoorhi2001], spherical harmonics are used to estimate isotropic BRDFs 

based on certain assumptions, including known geometry, distant illumination and 

curved objects without interreflections. Ashikhmin uses a set of 49 steering basis 

functions to relight bumpy surfaces, which exhibit shadows and interreflections 

[Ashikhmin2001]. McAllister et. al. use the Lafortune BRDF representations, which  

is capable of representing Fresnel reflection, off-specular peak and retro-reflection, 

to perform real-time rendering in graphics hardware [Lafortune1997 and 

McAllister2002]. 

In theory, these mathematically based methods can be seen as data 

approximation functions. Thus, the dimensionality is related to the accuracy 

required. Normally using more base images achieves more accurate relighting 

results. The linearly based representations, such as eigen base images, spherical 

harmonics, Polynomial Texture Maps and steering basis functions, can be 

effectively programmed into graphics systems, as the relighting is performed in 

linear space.  

More recently, several image-based relighting (rendering) techniques were 

proposed and showed realistic relighting results for scenes with complex reflectance 

properties [Matusik2002, Koudelka2001, Wong2002 and Lin2002]. These methods 

require a great number of sample images for relighting and even complex hardware 

set-up. Matusik et. al. built a system that can acquire and render surface reflectance 

fields under varying illumination from arbitrary viewpoints [Matusik2002]. They 

captured 53136 images using an array of cameras and lights, and perform a weighted 

linear combination to generate new images. Wong et.  al. propose the plenoptic 

illumination function that can be also used to support relighting and view 

interpolation  [Wong2002]. They need to employ compression techniques to reduce 

the storage space. Lin et. al. define the reflected irradiance field as the relighting 

representation [Lin2002]. They show that the method can produce accurate 

relighting results on surfaces with complex reflectance properties e.g. steel and 

anisotropic surfaces, but their relighting representation requires 240MB to 320MB 
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storage space. All these methods have the advantage that they do not assume a 

particular reflectance model. However, they have extremely high dimensionalities 

due to the number of images required for interpolation. Since common graphics 

cards designed for desktop PCs can not provide unlimited memory, these techniques 

are less practical for synthesis and real-time relighting applications on desktop PCs. 

To summarise:  

We have reviewed typical surface representation and relighting methods based 

on the criteria introduced in section 4. 2. These methods have different merits and 

drawbacks under different criteria. In general, the surface geometric and material 

parameters estimated using reflectance models are the most compact representations 

and compatible with graphics systems. The drawback is that existing models can not 

represent complex reflectance. Representations in linear sub-spaces, such as eigen 

base images, Polynomial Texture Maps (PTM), steering base functions and spherical 

harmonics, can be used for representing surfaces with complex reflectance, but 

specularities require more base images. Although the Bidirectional Texture 

Functions (BTF) and some image-based relighting/rendering techniques are able to 

produce accurate relighting results, they are too expensive to be used for the purpose 

of this thesis. Figure 4.3.1 shows the analysis of typical surface representations using 

different criteria. 

Practicality of physical data capture

1 2 3 4 5 6

Dimensionality of representations

7 8

1 23 45 67 8

Compatibility of representations with graphic
systems

1 2 3 4 5 67 8

Capability of dealing with complex reflectance

1 23 4 5 6 7 8

Low High

Weak Strong

Weak Strong

More Less

 

Figure 4.3.1 Different representations v.s. criteria. (1)Estimated surface geometry 

and reflectance parameters using reflectance models [Woodham1981]; (2) Eigen-

based methods [Epstein1995]; (3) Polynomial Texture Maps 
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(PTM)[Malzbender2001]; (4) Steering basis functions [Ashikhmin2002]; (5) 

Spherical harmonics [Basri2001]; (6)Opacity hulls[Matusik2002]; (7)3D texons 

[Leung2001]; (8) BRDF/BTF [Dana1999a].  

Since our main concern in this chapter is to select inexpensive surface 

representation approaches, we need to trade-off the expense and performance 

between different methods and criteria. We have chosen five methods that can 

produce efficient relighting representations. The first two methods—3I and 

Gradient—are based on the Lambertian reflectance model: the 3I method uses three 

images of the sample texture taken at an illumination slant angle of 45° and tilt 

angles of 0°, 90° and 180° [Shashua1992], while the Gradient method uses surface 

gradient and albedo maps derived from photometric stereo techniques 

[Woodham1981 and Rushmeier1997]. We also select the PTM method that employs 

Polynomial Texture Maps (PTM) to represent a surface exhibiting shadows and 

interreflections under different illumination directions [Malzbender2001]. Finally, 

we select the Eigen3 and Eigen6 methods, which use the first three and six eigen 

base images respectively, to represent a surface with complex reflectance.  

We summarise the selected methods in Table 4.3.1 and provide further 

details in the next section.  
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Table 4.3.1. Summary of the selected surface representations vs. criteria  

 Practical to obtain? 

Compatible of using 

linear combinations 

in graphics 

hardware? 

  Capable of 

capturing shadows?

Capable of dealing 

with specularity?
Dimensionality  

3I 
 

Yes 

 

Yes 

 

No 

 

No 3 

Gradient 
 

Yes 

 

Yes 

 

No 

 

 

No 

 

3 

PTM 
 

Yes 

 

Yes 

 

Yes 

 

No 6 

Eigen3 

 

Yes 

 

Yes 

 

Yes 

 

No 3 

Eigen6 

 

Yes 

 

Yes 

 

Yes 

 

Yes 6 

4.4. The selected methods 

4.4.1. Mathematical framework 

In section 4.3, we selected five methods, which all use a set of images as input in 

order to extract surface representations for relighting. In this section, we propose a 

mathematical framework that can be used to describe and compare these methods. 

This framework summarises the common properties of the five methods—the point 

of departure is the known image intensity matrix, which contains all images of a 

sample texture captured under different illumination directions. The lighting matrix, 

which contains lighting elements, is also analysed when a reflectance or lighting 

model is assumed. 

 We first briefly introduce Singular Value Decomposition (SVD), which is 

commonly used in matrix analysis. It is the appropriate tool for analysing a mapping 

from one vector space into another vector space, possibly with a different dimension. 

Most systems of simultaneous linear equations fall into this category. Thus, SVD 

can be used to for solve most linear least squares problems, e.g. an over-constrained 
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linear or well-constrained equation group [Press1988]. SVD is based on the 

following theorem of linear algebra: 

 Any m ×n  matrix whose number of rows ′ ′ m′  is greater than or equal to its 

number of columns , can be written as the product of an × column-

orthogonal matrix , an n

n′ m′ n′

U ′ × n′  diagonal matrix  with positive or zero elements, 

and the transpose of an ×n

W

n′ ′  orthogonal matrix V . That is  
TUWVM =   (4.4.1) 

where  and is the unit matrix. The elements on the diagonal of 

 are called singular values. The pseudoinverse of M is expressed as  

EVVUU TT == E

W
T11 UVWM −− = . 

 For a group of linear equations bxM =⋅ , where  and 

 are two vectors, we can solve  according to equation (4.4.1) 

T
nxxx ),, ,( 21 ′= Kx

T
nbbb ),, ,( 21 ′= Kb x

bUVWbMx T11 −− ==  (4.4.2)  

 

The mathematical framework is based on the analysis of the image data 

matrix. The image data matrix contains all images under multiple illumination 

directions. Assume each image has m pixels and we have total of n images per 

sample texture. To simplify notations, let  denote the intensity value of pixel j in 

the k

jki
th image, where  and mj ≤≤1 nk ≤≤1 . If we use two-dimensional co-ordinates 

(x, y) to denote the pixel location, then index j can be calculated by using 

ywxj +−= *)1( , where w is the image width. Then we write all image intensity data 

 into an m×n matrix  jki

⎥
⎥
⎥
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⎤
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⎣
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=

mnm2m1

n

n

iii

iii
iii

K

MKMM

K

K

22221

11211

I   (4.4.3) 

where each column represents an image captured under a certain illumination 

direction and each row represents the intensity values of a pixel location under 

different illumination directions.  

The framework expresses the image data matrix as a product: 

21MMI =  (4.4.4) 
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where M1 and M2 are two matrices. M1 is the surface relighting representation 

matrix that we want to extract. Thus, if we know M2 and assume a certain 

reflectance/lighting model, we can solve M1 by using SVD according to (4.4.2). The 

Gradient and PTM methods fall into this category. For the 3I method, M1 is simply 

the original image data matrix I. If we do not know M2 or do not want to assume any 

reflectance/lighting model, we can directly use SVD to analyse the image data 

matrix I and obtain M1 and M2, as will be shown in the eigen-based methods 

(Eigen3 and Eigen6). 

 Thus, the relighting process can be expressed as a product of the surface 

representation matrix M1 and a vector c related to the required illumination 

direction: 

cMi 1=   (4.4.5)  

where is the image data vector and   are pixel values. T
miii )(i  , , , 2 1 K= miii ,,, 2 1 K

4.4.2. Lambertian methods--3I and Gradient 

At a pixel location, the Lambertian reflectance function is expressed as 

ln ⋅= λρ),( yxi       (4.4.6) 

where:  

),( yxi  is the intensity of an image pixel at position (x, y) 

λ  is the incident intensity to the surface 

α  is the albedo value of the Lambertian reflection 

l  is the unit illumination vector at position (x, y) and can be expressed as  
TT

zyx lll )cos  ,sinsin  ,sin(cos), , ,( σστστ==l  

 τ  is the tilt angle of illumination 

σ is the slant angle of illumination 

n  is the normalised surface normal at position (x, y) and can be expressed as 

 TT
zyx

qpqp
q

qp
pnnn )

1
1 ,

1
 ,

1
() , ,(

222222 ++++

−

++

−
==n  

p and  are the partial derivatives of the surface height function in the x and 

y directions respectively and defined by:  

q
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y

yxsyxq
x

yxsyxp
∂

∂
=

∂
∂

=
),(),(,),(),(  

),( yxs  is the surface height function 

If the incident intensity to the texture surface λ  is constant—as assumed in this 

thesis, we can treat λ  as a scalar and merge it with albedo α . To simplify notations, 

we use ρ  to represent λ α . Thus, the image data matrix I can be expressed as: 

I=ANL (4.4.7) 

where: 
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is the surface albedo matrix; 
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is the surface normal matrix; 
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is the lighting matrix.  

We further define a new matrix Na which is the product of the surface normal matrix 

and the albedo matrix A: N

ANNa = . 

This matrix contains the set of “scaled surface normals” [Drbohlav2002]. Thus we 

can simply express the image data matrix as   

LNI a=  (4.4.8). 

It is convenient to use equation (4.4.8) to introduce Lambertian based methods—3I 

and Gradient. 

The 3I method—a linear combination of three photometric images 
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Shashua shows that an image of a convex object can be represented as a 

linear combination of three base images under the assumption of Lambertian 

reflectance [Shashua1992]. We call this method 3I. The three base images can be 

obtained by positioning the light at three linearly independent directions. These three 

base images are called photometric images. Thus, if we recall the equation (4.4.5), 

we only need to decide the vector c, which contains the coefficients used for the 

linear combination. This can be achieved by using (4.4.8) and calculating the inverse 

lighting matrix.  

 Since we have three known linearly independent lighting vectors, and we can 

express it using the lighting matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

zzz

zyy

zxx

lll
lll
lll

321

321

321

)l ,l ,(lL 321 .  

Accordingly, we can also write the image data matrix as an m×3 matrix 
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=
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232221

131211

mmm iii

iii
iii

MMM
I , 

which is also the surface representation matrix M1.  Thus, according to (4.4.8), we 

have , where  can be easily calculated because it is a non-singular 

square matrix. Note SVD can also be used here to obtain . 

a
1 NIL =− 1L−

1L−

Given any illumination direction with the corresponding lighting vector   
TT

zyx lll )cos  ,sinsin  ,sin(cos,, σστστ== ) (l , 

 the new image i  can be expressed as  

lILi 1−=   (4.4.9) 

where is the image data vector.  T
miii )(i  , , , 2 1 K=

By equation (4.4.5) in the mathematical framework, we have . Then 

(4.4.9) becomes  

lLc 1−=

IccMi 1 ==   (4.4.10) 

which means an image under a given lighting vector can be expressed as a linear 

combination of three images. The vector c is called the coefficient vector.  
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In our case, we capture three images with illumination tilt angles separated 

by 90°. Thus, the illumination is provided at a common slant (45° in our case) and at 

tilt angles of 0°, 90° and 180°. The reason for using these three tilt angles is that they 

simplify the inversion of L for use in photometric stereo [McGunnigle1998] and 

provide near optimum results [Spence2003]. We calculate the inverse lighting vector 

 and express the coefficient vector in terms of the illumination tilt angle 1L− τ  and 

the illumination slant angle σ of the new image:   
T

3c c c ),,( 21=c  (*) 

where °°° +−=
45cos2

cos
45sin2

sinsin
45sin2

sincos
1

σστστc  

°=
45sin
sinsin

2
στc  

°°° −−=
45sin2

sinsin
45sin2

sincos
45cos2

cos
3

στστσc . 

Thus, the new image is calculated using (*) and (4.4.10). 

The Gradient method—using surface gradient and albedo maps as the surface 

representation for relighting 

According to Lambert’s law (4.4.6), surface gradient and albedo maps can be 

used to represent 3D surface textures for relighting. We call this method Gradient. 

Traditional photometric stereo techniques [Woodham1981] use three images to 

estimate the gradient and albedo maps of a Lambertian surface. Additional images 

lead to an over-constrained system, which may be solved using least squares 

techniques (e.g. SVD) to provide potentially more accurate solutions. The Gradient 

method uses 36 images under different known illumination angles for each texture in 

the image database.  Thus, in equation (4.4.8) 

LNI a= , 

the image data matrix I becomes a known m×36 matrix and the lighting matrix L is a 

known 3×m matrix. Comparing equation (4.4.8) with equation (4.4.4), we have  

a1 NM =  and LM 2 = . 

The matrix Na, which contains surface gradient and albedo information, is the 

unknown.  
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It is trivial to obtain Na by using SVD.  We first decompose the lighting 

matrix as: 
T

LLL VWUL = . 

Then we have 
T

L
1

LL
1

a UWIVILN −− ==  

By relighting Na, which contains surface gradient maps scaled by albedo, we can 

generate new images under arbitrary illumination. The Lambertian model is used 

again for relighting: 

lNi a=  

where  is the image data vector and 

 is the lighting vector.  

T
miii )(i  , , , 2 1 K=

T)cos  ,sinsin  ,sin(cos σστστ=l

The advantage of the Gradient method is that the albedo map and the surface 

gradient maps, which can be calculated from Na, or the displacement map, which 

can be further generated from surface gradient maps, are compatible with computer 

graphics programming or packages for rendering [Robb2003 and Burschka2003]. 

To summarise: 

Based on the assumption of Lambertian reflectance, the 3I method uses three 

photometric images to represent 3D surface texture for relighting. A linear 

combination of the three images can produce new images under arbitrary illuminant 

directions. This provides the simplest way to represent a 3D surface texture for 

relighting. However, this method can only achieve accurate results for unshadowed 

Lambertian surfaces.  

 The Gradient method uses surface gradient and albedo maps to represent a 

Lambertian surface for relighting. The surface gradient and albedo maps are 

generated by using SVD to solve an over-determined system. This surface 

representation method only has three dimensions and provides the most common 

format used in computer graphics programming or packages. 

4.4.3. The PTM method 

The PTM method uses Polynomial Texture Maps [Malzbender2001] as surface 

representations for relighting. Malzbender et. al. proposed a luminance model that 
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employs a quadratic function of the lighting vector to capture variations due to self-

shadowing and interreflections. It is based on the Lambertian assumption and uses 

the first two elements of the unit lighing vector 

 to form a new six-dimensional 

lighting vector  

TT
zyx lll )cos  ,sinsin  ,sin(cos,, σστστ== ) (l

T

T
yxyzyx

s
llllll

)1 ,sinsin ,sincos ,insincos  ,sinsin  ,sin(cos
1,,,,,
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= ) (lptm
 

The image data matrix is expressed as  

ptmptmLAI =    (4.4.11) 
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Each row of matrix Aptm ( 61 aa − ) represents six coefficients of the luminance model 

at each pixel location. These coefficients are stored as spatial maps and called 

Polynomial Texture Maps (PTM). We call Aptm the PTM matrix and Lptm is the 

lighting matrix. Although the lighting matrix contains quadratic terms, it can be pre-

calculated offline. In accordance with equation (4.4.4) in the mathematical 

framework, Aptm and Lptm are equivalent to M1 and M2 respectively. 

Since the image data matrix I and the lighting matrix Lptm are known, we can 

use SVD to solve the over-determined system (4.4.11) and obtain the PTM matrix 

Aptm. This is similar to solving for surface gradient representations described in 

section 4.4.2. Given an illumination direction and recalling equation (4.4.5), the relit 

image can be expressed as  

ptmptm1 lAcMi ==  

where  is the image data vector and lT
miii )(i  , , , 2 1 K= ptm is the PTM lighting vector. 

Thus, the relighting is achieved by linear combinations of PTMs. 

To summarise: 
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Polynomial Texture Maps (PTM) can be used to represent 3D surface 

textures with self-shadowing and interreflection under varied illumination. They are 

actually the six coefficient maps of a quadratic luminance model based on 

Lambertian assumption. PTMs can be obtained by solving an over-determined 

system using SVD. 

Since relighting is implemented using a linear combination of pre-computed 

quadratic terms, they are suitable for real-time rendering applications in graphics 

hardware. 

4.4.4. The eigen-based methods (Eigen3 and Eigen6) 

Eigen based methods are widely used by many researchers to model the effect 

due to varying illumination e.g. [Dana1999, Epstein1995, Nishino2001 and 

Zhang1998a]. These methods have the advantage that an assumption concerning 

surface reflectance is not required. Based on experiments, Epstein et. al. in 

[Epstein1995] suggested that five base images (plus or minus two) can be effectively 

used to represent arbitrary lighting for many different objects. They concluded that 

this approach could accurately model Lambertian surfaces with specular lobes, while 

specular spikes, small shadows and occludes can be treated as residuals. Naturally 

both the specularity and the complexity of surface geometry increases the number of 

base images required.  

 We have elected to use 3 base images and 6 base images in eigen-space to 

represent 3D surface texture for relighting. Three eigen base images can represent 

3D surface texture with Lambertian reflectance, while six eigen base images can 

further capture certain specularities and shadows [Epstein1995]. We apply SVD to 

generate base images in eigen-space.  The image data matrix is expressed as  
T

III VWUI =  

Each column in UI therefore is an eigen vector of corresponding to the singular 

value in W

TII

I. UI is used to construct eigen base images and  contains coefficients 

for linear combinations. We can write 

T
IV

),...,,( 21 nwwwdiag=IW , where  is the 

singular value of the image data matrix  and . An important property of 

W

iw

I 1+≥ ii ww

I is that the singular values decrease dramatically. If we use the following 
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definitions as the measurement for information accounted for by individual 

eigenvector [Epstein1995]:  

)()(
1

22 ∑
=

=
n

i
ikindi wwkf    (4.4.12) 

and cumulative eigenvectors [Zhang1998a]:  

)()()(
1

2

1

2 ∑∑
==

=
n

i
i

k

i
icumu wwkf    (4.4.13) 

we find that the first few eigenvectors account for more than 99% of the total 

information contained in the image data matrix I . For illustration, we show the plots 

of information accounted by eigenvectors for two textures “aar” (with near 

Lambertian reflectance) and “ach”  (with specularities) in Figure 4.4.1. 
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 Figure 4.4.1 Information accounted for by the first ten eigenvectors. Texture 

“aar” has a near-Lambertian surface; texture “ach” has a specular surface. In (a), 

f(k)—Information Accounted(Individual) is calculated using (4.4.12); In (b), f(k)—

Information Accounted(Cumulative) is calculated using (4.4.13). 

 Since singular values decrease rapidly and the first few eigenvectors account 

for most of the information, we approximate the original WI by  

)0,,0,,,,( 21 KK
)

  w w wdiag k=IW , 

where k is the number of  singular values that we want to keep. We then obtain an 

approximation of the image data matrix I  that can be expressed as 
T

III VWUI
))

=  (4.4.14) 

Recalling equation (4.4.4) in the mathematical framework we can write 

II1 WUM
)

= . We let M1 be an m×k matrix, since the last kn − columns of II WU
)

 are 

zeroes. Similarly, we create a k×n matrix M2, which only contains the first k rows of 

, because the last rows of  can be assigned zeroes due to the fact that 

the last  diagonal elements of 

T
IV kn − T

IV

kn − IW
)

 are equal to zeroes.  Thus, we obtain a set of 

k base images in eigen-space which are the k columns of M1. These base images are 

called eigen base images. Matrix M2 provides the coefficients for the linear 

combination of eigen base images to produce those original images in I . We write 

21n21 MM)i , ,i ,(iI == K  (4.4.15) 

where  are image data vectors that represent those original images 

captured under different illumination directions. In our case, we use 36 images and 

therefore . 

n21 i , ,i ,i K

36=n

 If we use coefficients that differ from those in M2, the linear combinations of 

these base images allows us to generate new images under new illumination 

directions. Thus, we can use these eigen base images as representations of 3D 

surface textures for relighting. In our case, we use 3 eigen base images to represent 

3D surface textures with Lambertian reflectance and 6 eigen base images to 

represent 3D surface textures with complex reflectance. 

Interpolation  
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 Although the linear combinations of eigen base images can produce novel 

images under illumination conditions that differ from those of the original, there are 

no direct links between the coefficients used for the linear combinations and 

illumination slant and tilt angles. Many researchers naturally employ interpolation 

techniques to relate the illumination directions with the coefficients because they are 

inexpensive, practical and able to produce reasonable results (with limitations) 

[Epstein1995, Zhang1998a, Wong2002].  Therefore, we also apply an interpolation 

technique to generate new images under given arbitrary illumination directions. 

 The illumination direction is specified by the slant angle σ and the tilt angle 

τ . We apply the bilinear interpolation method to generate a novel image with a 

given tilt angle τ  and a slant angle σ . It is obvious that πτ 20 ≤≤  and 20 πσ ≤≤ . 

Since images are captured under different illumination slant and tilt angles for each 

texture, these illumination slant angle and tilt angle pairs form a sampling grid. In 

order to simplify further explanation, we use an image data vector  to denote an 

image obtained under illumination tilt angle 

)σ,(τ jii

iτ  and slant angle jσ . Thus each  

corresponds to an image vector in  of (4.4.15). Firstly, we search for the 

intervals that contain 

)σ,(τ jii

n21 i , ,i ,i K

τ  and σ  such that 1+≤≤ ii τττ  and 1+≤≤ jj σσσ . Then we 

define )/()( 11 iiit ττττ −−≡ +  and )/()( 12 jjjt σσσσ −−≡ + . Finally we calculate the new 

image with the illumination direction (τ , σ ) using the algorithm from [Press1988]: 

)σ,(τ)σ,(τ)σ,(τ)σ,(τσ)(ττ 1ji1j1ij1iji iiiii ++++ −++−+−−= 21212121 )1()1()1)(1( tttttttt  (4.4.16) 

where  i and  (τi an be approximated by linear combinations of  

eigen base images using equation (4.4.15). Thus, ),( στi  is also a ear combination of 

eigen base images.   

),σ(τ jii , )σ,(τ j1ii +
, )σ,(τ 1j1i ++

 
1ji +
 c

 lin

)σ,

To summarise:  

The Eigen3 and Eigen6 methods use 3 and 6 eigen base images respectively 

to represent 3D surface textures for relighting. These methods do not assume a 

particular reflectance model. The eigen base images are generated by using SVD. 

New images under arbitrary illumination directions can be constructed by a bilinear 

interpolation. These two methods are compatible with the input requirement of 

computer graphics hardware because the relighting can be expressed as a sum of 

products. 
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4.4.5. Summary 

In sections 4.4.1 to 4.4.4, we introduced a mathematical framework and five 

inexpensive methods to extract 3D surface texture representations for relighting. The 

mathematical framework expresses the image data matrix as a product of two 

matrices; one is the surface representation matrix and the other can be either a 

lighting matrix or a coefficient matrix. With the exception of the 3I method, the 

surface representations can therefore all be obtained using SVD. The five methods 

are: 

3I:  This method uses only three images of the sample texture taken at an 

illumination slant angle of 45° and tilt angles of 0°, 90° and 180° 

[Shashua1992]. It can produce accurate results for Lambertian surfaces 

with no shadows. 

Gradient: The second method uses surface gradient and albedo maps, which are 

obtained by solving an over-determined linear system, to represent a 3D 

surface texture for relighting [Woodham1981].  

PTM:  This approach uses Polynomial Texture Maps (PTM), due to 

Malzbender et. al. [Malzbender2001].  PTMs are obtained by solving an 

over-determined linear system. Malzbender et. al. report that this method 

requires the assumption of a Lambertian surface, but it can capture the 

intensity variations due to surface self-shadows and interreflection. 

Eigen3:  The fourth method uses the first three eigen base images. Eigen base 

images are generated using SVD. Three eigen base images can capture 

the Lambertian component under varied illumination directions 

[Epstein1995]. New images with different illumination can be 

constructed by using linear combinations of base images. A bilinear 

interpolation is used to relate the illuminant slant and tilt angles with the 

coefficients of linear combinations.  

Eigen6:  This is identical to the previous method except that it uses the first six 

base images. This method can be used to represent 3D surface textures 

with specular components [Epstein1995].  
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We will further assess and compare these methods in next section. 

4.5. Quantitative assessment of 3D surface texture 

representation methods  

In Section 4.4, we introduced five inexpensive methods that can extract 3D surface 

texture representations. This section evaluates these methods by testing the ability-

of-reconstruction and ability-of-prediction. The ability-of-reconstruction indicates 

the capability of these methods in reconstructing images that have already been used 

for the extraction of surface representations, whereas the ability-of-prediction shows 

the capability of these methods in predicting new images which are not used for the 

extraction of surface representations.  We perform a quantitative assessment by 

comparing the relit results with original real images. In order to assess the 

performances of these methods on textures with different reflectance, we select 23 

different textures from the PhoTex database (shown in Appendix A). Some of these 

textures have near-Lambertian surfaces; some have complex surface reflectance 

including self-shadowing, interreflectance and/or specularities. The normalised root 

mean-squared (rms) errors are used as the metric for the assessment, since large rms 

errors are not as noticeable in high variance textures as in low variance textures.  

4.5.1. Normalised root mean-squared errors 

The reason we use the normalised root mean-squared (rms) error as the metric is 

that we wish to assess the performances of the five methods on different textures. 

Gullón showed that this metric could produce reasonable assessment results 

[Gullón2002]. Because we have captured 36 images under different illumination 

directions for each texture, the normalised rms errors are averaged across 36 images 

per texture. It is expressed as  

∑
=

=
36

1 )(36
1

k

k

kVar
e

η        (4.5.1)

  

where:  
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)(kVar
ek  is called the normalised rms error 

( )∑∑
= =

−=
M

x

N

y
k yxiyxr

NM
e

1 1

2),(),(1  is the rms error 

)(kVar is the standard deviation of original image k 

NM is the size of the images in pixels 

i(x,y) is the intensity of an input image pixel at position x,y 

r(x,y) is the intensity of a relit image pixel at position x,y 

The relit image has the same illumination condition as that used in one of the 

original input images.  

Assessment of the ability-of-reconstruction 

When assessing the ability-of-reconstruction of each method, we use all 36 

images per texture as input to extract surface representations. Then the surface 

representations are relit to reconstruct 36 images using the same illumination 

conditions as those used in original images. The normalised rms error is calculated 

based on the 36 relit images and 36 original input images. It is obvious that for the 

3I method we only use three images, although we produce 36 relit images using the 

same illumination conditions as those used for the other methods. 

Assessment of the ability-of-prediction 

We would like to evaluate the ability of these five methods in predicting new 

images with illumination conditions that differ from those used for the extraction of 

surface representations. We employ a leave-one-out method, which leaves one 

image out of the 36 images that we have captured for each texture and tests it as an 

unknown.  Thus, for Gradient, PTM, Eigen3 and Eigen6, thirty-five images of each 

texture are used as a training image set to extract surface representations. For the 3I 

method, we simply select three images with illumination directions that differ from 

those in predicted images. The surface representations are then relit using the same 

illumination condition as that used in the image which is not included in the training 

set. This process is repeated 36 times for each texture, and each time an image with a 

different illuminant direction is left out of the training set and then is tested. We 

therefore still produce 36 relit images in total, which are compared with 36 original 

images to calculate the normalised rms error.  
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4.5.2. Assessment results 

Figure 4.5.1 shows the assessment results of these five methods across 23 textures.  
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Comparison of 5 surface representation methods for relighting
(Ability-of-prediction)
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(b) 

Figure 4.5.1 Relighting error vs texture for the five approaches: (a)Ability-of-

reconstruction; (b)Ability-of-prediction(Leave-one-out). 

From Figure 4.5.1 it can be seen that the 3I method produces the worst 

performance. This is not surprising given that it uses three input images whereas the 

other four methods use 36. Of the remaining methods, two (Eigen6 & PTM) use 
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more expensive R6 representations while Gradient & Eigen3 use R3. We would 

therefore expect the first pair of techniques to outperform the latter, and on 

aggregate the Eigen6 method does indeed provide the best figure. However, the 

performance of the PTM approach can not really be separated from that of its 

cheaper Eigen3 competitor.  

We further subtract the normalised rms errors produced by testing ability-of-

prediction from those produced by testing ability-of-reconstruction. The difference 

is shown in Figure 4.5.2.  Since all the difference are positive, it can be concluded 

that these methods perform better in reconstructing original training images than in 

predicting new images. Among these five methods, Eigen6 has the largest difference 

between its ability-of-reconstruction and ability-of-prediction, while Gradient has 

the smallest difference in general.  

Subtraction of normalised rms errors 
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Figure 4.5.2 Subtracting normalised rms errors produced by testing ability-of-

prediction from those produced by testing ability-of-reconstruction. 

 Example output images and their absolute difference images are shown in 

Figure 4.5.3 to Figure 4.5.8. We select three textures from the PhoTex database for 

the illustration. They represent Lambertian, Lambertian with shadows, and specular 

surfaces respectively. For each texture, we show the reconstructed and predicted 

images together with their corresponding error images (difference between original 

and relit images). 
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Figure 4.5.3 Texture “aar”: Reconstructed images and their error (difference 

between original and rendering) images. Bright areas in the error images represent 

reconstruction inaccuracies.  
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Figure 4.5.4 Texture “aar”: Predicted images (produced by using leave-one-out) 

and their error (difference between original and rendering) images.  Bright areas in 

the error images represent prediction inaccuracies.  
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Figure 4.5.5 Texture “add”: Reconstructed images and error (difference between 

original and rendering) images. Bright areas in the error images represent 

reconstruction inaccuracies.  
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 Figure 4.5.6 Texture “add”: Predicted images (produced by using leave-one-out) 

and error (difference between original and rendering) images.  Bright areas in the 

error images represent prediction inaccuracies.  
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Figure 4.5.7 Texture “ach”: Reconstructed images and error (difference between 

original and rendering) images. Bright areas in the error images represent 

reconstruction inaccuracies. The 3I method produces very large errors. Because all 

error images are displayed in the same scale, errors produced by the other four 

methods are not noticeable comparing with those from the 3I method. 
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 Figure 4.5.8 Texture “ach”: Predicted images (produced by using leave-one-out) 

and error (difference between original and rendering) images.  Bright areas in the 

error images represent prediction inaccuracies. The 3I method produces very large 

errors. Because all error images are displayed in the same scale, errors produced 

by the other four methods are not noticeable comparing with those of the 3I method. 
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4.5.3. Discussion of the assessment results 

This section analyses the assessment results and discusses the relevant problems in 

different methods. In particular, we investigate the integration and differentiation 

algorithms when discussing the Gradient method. We also compare the relighting 

results of the selected five methods and a heightmap-based relighting method, in 

which surface gradient maps are integrated to generate the heightmap.  

The 3I method 

The 3I method produced the worst performance in the assessment. It is 

obvious that it can only produce accurate results when the textures have pure 

Lambertian surfaces with no shadowing. However, since this method only uses three 

images, it provides the most economical way to approximate real textures.  

The Gradient method 

The Gradient method performs much better than the 3I method in 

representing real textures, because it uses all 36 images of a sample texture and 

approximates these images in the least squares sense (Figure 4.5.1). However, its 

performance is affected by several factors: the approximation of Lambertian 

reflectance, noises in sample images and the intergratibility of surface gradient 

maps. These effects can be detected by testing the relationship between two surface 

gradient maps in frequency domain.  

We first take Fourier Transform on the spatial surface gradient maps p(x,y) 

and q(x,y). We use  and  to denote p(x,y) and q(x,y) in frequency 

domain respectively, where  is the 2D spatial frequency co-ordinate. By 

Fourier theories, we have the following equations:  

v)P(u, v)Q(u,

v)(u,

v)S(u,v)P(u, ju=      (4.5.2) 

v)S(u,v)Q(u, jv=      (4.5.3) 

where  is the frequency domain denotation of the spatial surface height map 

s(x, y) and j is the square root of minus one. 

v)S(u,

Thus,  

v)(u,Qv)P(u, uv =      (4.5.4) 
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However, most real textures do not have pure Lambertian surfaces, and the 

surface might not be integrable. These limitations cause equation (4.5.4) not to hold. 

Therefore, we can treat the surface gradient maps as images containing 

intergratibility noise. If we force the equation (4.5.4) to hold by changing  

and , we obtain the perfect synthetic surface gradient maps in frequency 

domain for a Lambertian surface. By taking inverse Fourier Transform, we can 

compare these synthetic surface gradient maps with their original counterparts. 

v)P(u,

v)Q(u,

Figure 4.5.9 shows examples of a sample texture. 

 

 

Figure 4.5.9 The comparison of real surface gradient maps and their synthetic 

counterparts. The first column shows the two surface gradient maps calculated 

using the Gradient method; the second column shows the corresponding synthetic 

surface gradient maps generated using equation (4.5.4); the third column shows the 

absolute difference images, which are generated by subtracting synthetic maps (the 

second column) from corresponding real maps (the first column).   

The noise in surface gradient maps will further affect the height map 

generated by integrating surface gradient maps. In order to obtain the surface height 

map, surface integratibility is assumed. We have used a frequency domain approach 

to generate the surface height map from gradient maps [Frankot1988]. We evaluate 

the integration problem by relighting the surface height and albedo maps using the 

Lambertian model (4.4.6) and calculating the normalised rms errors as introduced in 

the previous section.  

 The surface height map in frequency domain can be expressed as: 
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22

v)Q(u,v)P(u,v)S(u,
vu

jvju
+
−−

=    (4.5.5) 

In order to use the Lambertian model (4.4.6), we need to differentiate the surface 

height map to obtain gradient maps. We have used two approaches when 

differentiating the surface height map: a frequency domain approach and a spatial 

domain approach. Equation (4.5.2) and (4.5.3) are used for the differentiation in the 

frequency domain, while the differentiation in spatial domain can be approximated 

by: 

),(),1(),( yxsyxsyxp −+≅     (4.5.6) 

),()1,(),( yxsyxsyxq −+≅     (4.5.7) 

 The two differentiation methods produce slightly different surface gradient 

maps. Figure 4.5.10 shows two pairs of example output surface gradient maps and 

their absolute difference images. Furthermore, we have found that smaller 

normalised rms errors are produced if we relight the gradient maps that are derived 

from differentiation in frequency domain. Figure 4.5.11 shows the comparison 

across 23 textures.  

 

Figure 4.5.10 The comparison of differentiation methods. The first and second 

columns are gradient maps produced by differentiation of the surface height map in 

frequency and spatial domain respectively. The third column shows the absolute 

difference images.  
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Comparison of Two Differentiation Methods
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Comparison of Two Differentation Methods
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(b) 

Figure 4.5.11 Comparison of two differentiation methods: (a)Ability-of-

reconstruction; (b)Ability-of-prediction(Leave-one-out). 

However, even if we use the differentiation method in frequency domain, the 

relighting results generated using surface height and albedo maps still have larger 

normalised rms errors compared with those produced by the Gradient method. In 

Figure 4.5.12 we show the comparison of the height map based method with the 

other five methods that we have introduced in the previous section. This comparison 

is also based on measuring ability-of-reconstruction and ability-of-prediction, which 

uses the leave-one-out method. It can be seen that the performance of the height map 
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based method is even worse than the 3I method for some textures. This is also the 

reason that we did not select a height based surface representation method in this 

thesis. Nevertheless, it provides the cheapest surface representation which only has 

two dimensions for a Lambertian surface. 

 

Assessment of Height-based Relighting
(Ability-of-reconstruction)

0

0.002

0.004

0.006

0.008

0.01

0.012

aa
a

aa
b aa

f
aa

i
aa

j
aa

m
aa

n
aa

o
aa

p aa
r

aa
s

ab
a ab

j
ab

k
ac

c
ac

d
ac

e
ac

h ac
i

ad
a

ad
c

ad
d ad

f

Texture Label

N
or

m
al

is
ed

 rm
s 

er
ro

r

3I

Gradient

PTM

Eigen3

Eigen6

Height_based

 
(a) 

Assessment of Height-based Relighting
(Ability-of-prediction)

0

0.002

0.004

0.006

0.008

0.01

0.012

aa
a

aa
b aa

f
aa

i
aa

j
aa

m
aa

n
aa

o
aa

p aa
r

aa
s

ab
a ab

j
ab

k
ac

c
ac

d
ac

e
ac

h ac
i

ad
a

ad
c

ad
d ad

f

Texture Label

N
or

m
al

is
ed

 rm
s 

er
ro

r

3I

Gradient

PTM

Eigen3

Eigen6

Height_based

 
(b) 

Figure 4.5.12 Comparison of height-based relighting and other five methods: (a) 

Ability-of-reconstruction; (b) Ability-of-prediction (Leave-one-out). 

The PTM method 

Figure 4.5.1 shows that the PTM method performs better than the 3I and 

Gradient methods in general. One possible reason for this is because it uses a 

quadratic lighting function, which employs an R6 representation—Polynomial 

Texture Maps (PTM). In contrast, the Lambertian model is a linear lighting function, 

which only uses an R3 representation. Furthermore, the PTM method was designed 
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to capture the variation of image intensities due to surface self-shadowing and 

interreflections. It did perform well in our experiments: for texture “ada”, “adc”, 

“add” and “adf”, which contain obvious self-shadowing and interreflections, the 

normalised rms errors are smaller than those produced by the 3I and Gradient 

methods (Figure 4.5.1). 

The Eigen3 and Eigen6 methods 

The eigen-space based methods (Eigen3 and Eigen6) are actually derived 

from the pure analysis of the image intensity matrix using the SVD method. 

Therefore, it will provide the best least square approximation to the original data 

matrix (Figure 4.5.1). It can also be observed that the bilinear interpolation method 

produced reasonable relighting results. The normalised rms errors produced by 

Eigen6 are the smallest for all textures. The performance of the Eigen3 method, 

which only uses three-dimensional representation maps, can not even be separated 

from that of the PTM method. 

4.6. Conclusion 

This chapter has selected five inexpensive methods for extracting surface relighting 

representations. This is the first stage in our overall framework for synthesis and 

relighting of 3D surface textures.  

We first presented a review of available relighting representations of 3D 

surface textures. Since our main goal is to develop inexpensive approaches for 

synthesis and relighting of 3D surface textures, we select five low-dimensional 

relighting representations, comprising: a set of three photometric images (3I); 

surface gradient and albedo maps (Gradient); Polynomial Texture Maps (PTM); and 

two eigen-based representations using 3 and 6 base images (Eigen3 and Eigen6). We 

presented a mathematical framework which summarises the common mathematical 

properties of these five methods. The 3I and Gradient methods require the 

Lambertian model. The PTM method assumes the surface has Lambertian 

reflectance but uses a quadratic lighting function to model the variation of image 

intensities due to surface self-shadowing and interreflections.  In contrast, Eigen3 

and Eigen6 do not assume any reflectance models. The Eigen6 method in particular 

is better able to cope with specular surfaces, although the surface geometry is 
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required to be simple. These methods are compatible with modern graphics systems; 

the extracted surfaces representations can be programmed into graphics hardware so 

that relighting can be achieved in real-time by using linear combinations through 

texture units and register combiners in graphics processing chips.  

We used 23 real textures to quantitatively assess the performances of the five 

methods by measuring the ability-of-reconstruction and the ability-of-prediction. 

The latter employs a leave-one-out test method. We compared relit images produced 

by different methods with original real images and calculated normalised rms errors. 

The results show that the 3I method produces the worst performance and Eigen6 

method produces the best. The R6 PTM representations perform better than R3 

Gradient representations, although it cannot be considered more superior to the 

cheaper Eigen3 representations in R3 space. 
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