
Chapter 5 

Synthesis Algorithms 

5.1.  Introduction 

In Chapter 4, we investigated five inexpensive methods for extracting surface texture 

representations from a set of sample images. The aim of this chapter is to select an 

efficient 2D texture synthesis algorithm that can be easily extended for the synthesis 

of 3D surface texture representations. This is therefore equivalent to the second 

stage of our overall framework, as highlighted in  
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Figure 5.1.1 The selection of synthesis algorithm in the overall framework.    

Since the main objective of this thesis is to develop inexpensive approaches 

for the synthesis of 3D surface textures, the choice of 2D synthesis algorithms is 

particularly important with respect to computational complexity and quality of final 

results. We set two criteria for the selection of 2D texture synthesis algorithms: (1) 

the suitability of the algorithm for extension to deal with multi-dimensional 
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representations, and (2) the capability of producing good results while requiring little 

computation. 

We first present a detailed survey of recent publications on 2D texture 

synthesis. Then we investigate two popular approaches based on [Wei2000] and 

[Efros2001] respectively. The first approach synthesises images from small sample 

textures at pixel scale by employing a multi-resolution decomposition technique. 

The second approach synthesises the result image by ‘stitching’ together small 

patches selected from the sample image. We propose simple modifications to these 

two methods, which can reduce the computation and produce similar synthesis 

results to the originals. On comparing the two approaches, we select the modified 

Efros’ 2D texture synthesis algorithm as our basic algorithm, as it can produce better 

results while requiring less computation. In particular, we analyse the effects on 

output images produced by varying the four input parameters of the selected 

algorithm.  

The rest of this chapter is organised as following. Section 5.2 presents a 

detailed survey on 2D texture synthesis methods. Section 5.3 describes the two 

selected approaches and compares them in terms of computational complexity and 

quality of results.  Section 5.4 analyses the input parameters of the selected 

algorithm, and finally we conclude our work of this chapter in section 5.5. 

5.2. A detailed survey of synthesis algorithms  

The goal of this section is to survey 2D texture synthesis algorithms using the 

criteria that we proposed in the previous section. In Chapter 2, we divided 2D 

synthesis algorithms into two groups according to the sampling strategies. 

Accordingly, this survey is also based on this taxonomy. Two algorithms are 

selected for further investigation at the end of this section. 

5.2.1. Texture synthesis methods based on global sampling 

strategies 

As discussed in Chapter 2, texture synthesis algorithms employing global sampling 

strategies synthesise new images by matching global statistics between the sample 

and result images in feature space. In general, these texture synthesis methods are 
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not preferable for the use of synthesising surface relighting representations in multi-

dimensional space. One reason is that the surface relighting representations normally 

consist of multi-dimensional vectors with correlation existing between the elements. 

For the synthesised surface representations, the correlation is unlikely to be 

maintained during global sampling process. Meanwhile, these methods essentially 

amount to a multi-parameter and non-linear optimisation process over a single 

image. As shown in Table 2.1.1, two typical methods [Zhu2000 and Portilla200], 

which produced good synthesis results over a wide range of sample textures, require 

more than 20 minutes for computing. Extending these approaches to multi-

dimensional surface representations would require iteration and optimisation over 

inter as well as intra image parameters. Consequently, the computation may be 

expensive. 

Many 2D texture synthesis methods synthesise result images by matching 

marginal or joint histograms between the sample and result images [Heeger1995, 

Van Nevel 1998, Zhu2000 and Copeland2001]. For 3D surface texture synthesis, the 

input consists of multi-dimensional vectors that represent the sample surface texture 

under arbitrary illumination. Thus, the one-dimensional histograms in 2D texture 

synthesis algorithms will become multi-dimensional histograms in 3D surface 

texture synthesis. During the matching process, the element values of the result 

multi-dimensional vectors are changed according to the sample histograms. This 

might destroy the correlation between the surface relighting representations. For 

example, if we use surface gradients and albedo maps as the representation of a 

Lambertian surface, the matching process will change the result surface gradients 

and albedo values by purely comparing the sample and result histograms. In order to 

maintain the relighting characteristics, the interrelationship [e.g. cross correlation 

between components (elements)] of the multi-dimensional data must be kept for an 

iteration method. This results in a complex multi-dimensional optimisation problem. 

Meanwhile, if the number of bins is large or the dimensionality is high, there might 

be too few pixels in each bin for a multi-dimensional histogram. For instance, if we 

calculate a six-dimensional histogram using six 64x64 representation maps and each 

dimension is divided into 10 bins, we only have, on average, 6*64*64/106=0.025 

pixels in each bin.  Thus, it is difficult to accurately estimate the multi-dimensional 
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histograms. A similar problem might exist in those methods that synthesise new 

images by matching various statistics, e.g. [Jacovitti1998, Portilla2000 and 

Campisi2002]. 

In general, 2D synthesis algorithms that employ global sampling strategies 

become more complex when being extended to use multi-dimensional vectors as 

input. The method proposed in [Eom1998] estimates the parameters of a 2D moving 

model; it would be more difficult if implemented in high dimensional space. 

Although De Bonet’s method can be easily extended to take surface relighting 

representations in multi-dimensional space as input, it is not clear whether the filter 

bank is sufficient to capture the characterisations of the sample representations [De 

Bonet1997].  

To summarise: 

Two-dimensional texture synthesis algorithms that employ global sampling 

strategies are generally not suitable as the basis of algorithms in 3D surface texture 

synthesis approaches. The main reason is that these algorithms become too complex 

or have difficulty to preserve the correlation between surface relighting 

representations when they are extended to multi-dimensional space.  

5.2.2. Texture synthesis methods based on local sampling strategies 

As introduced in Chapter 2, texture synthesis methods based on local sampling 

strategies synthesise new images by matching local information between the sample 

and result images. These methods can be further divided into two sub-classes 

depending on whether they employ a parametric and non-parametric model.   

In general, parametric methods require expensive computation due to the 

estimation of the parameters. Zhu et. al. estimate the parameters of the FRAME 

model for texture synthesis; they report that the computational cost increases 

proportionally with the size of the filter window and long iterations are required to 

achieve accuracy [Zhu1995]. Bader et. al. implement parallel algorithms for the 

synthesis in order to reduce the computing time [Bader1995]. Zhang et. al. estimate 

the parameters of the wavelet autoregressive model and the radial basis function 

network for modelling and synthesising texture images [Zhang1998b]. Their 

multiresolution AR model has a total of 91 parameters. If multi-dimensional surface 
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representations are used as input in these methods, both the models and the 

computation become more complex.  

 Non-parametric texture synthesis methods are less complex compared with 

their parametric counterparts because they do not need to estimate the parameters of 

statistical models [Efros1999, Wei2000, Hertzmann2001, Efros2001, Parada2001, 

Ashikhmin2001, Harrison2001, Tonietto2002, Zelinka2002, Cohen2003 

Nealen2003, Paget1998, Ashlock1999, Bar-Joseph2001, Xu2001, Liang2001 and 

Gousseau2002].  Thus, these methods are more suitable for extension to use multi-

dimensional representations as input. However, several methods still require 

expensive computation. Paget and Longstaff require parallel algorithms for the 

synthesis using non-causal, non-parametric and multiscale Markov random field 

[Paget1998].  Ashlock and Davidson apply tandem generic algorithms for texture 

synthesis based on non-parametric partially ordered Markov models; their method 

need several hours to compute [Ashlock1999]. On the other hand, recent non-

parametric synthesis approaches have been reported to be able to produce good 

results with less computation [Efros1999, Wei2000, Bar-Joseph2001, Xu2001, 

Liang2001, Hertzmann2001, Efros2001, Ashikhmin2001, Harrison2001, 

Tonietto2002, Zelinka2002, Cohen2003 and Nealen2003]. In these approaches, pixel 

values in the synthesised results are obtained from the sample images. The 

correlation between synthesised surface representations can be kept. Therefore, these 

methods are more suitable for the synthesis of surface relighting representations in 

multi-dimensional space. In particular, several patch-based synthesis algorithms 

([Efros2001, Xu2001 and Liang2001]) have one of the smallest requirements in 

terms of computational complexity.  

 The algorithm proposed in [Efros1999] is a highlight in the research field of 

texture synthesis. It assumes a Markov random field model and calculates the 

conditional distribution of a pixel given all its neighbours by querying the sample 

image and finding all similar neighbourhoods. The conditional probability density 

function  can be estimated using the following set: )|),((
RNresult IyxIp

}*)1(*    :{)),(( mindIIGIIyxI
Rss NNsampleNresult ε+≤−⊂=Ψ  (5.2.1) 

where:  
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),( yxIresult  is the intensity value of the pixel (x, y) to be synthesised in the 

output result image 

  is the neighbourhood centred at pixel (x, y) in the output image 
RNI

  is a neighbourhood in the input sample image 
SNI

)(*
SR NN IIG −  is a weighted Sum of Squared Differences (SSD) by a 

Gaussian kernel G between pixel values in an sample neighbourhood and 

the result neighbourhood , which is centred at   

sN

RN ),( yxIresult

mind  is the minimum SSD between pixel values in the input and the output 

neighbourhood, weighted by a Gaussian kernel G 

 ε  is the error threshold and is set to 0.1 

The centred pixel values of neighbourhoods in )),(( yxIresultΨ  provide an estimated 

histogram for . Thus, the algorithm first finds the best-matched 

neighbourhoods (within certain error tolerance 

),( yxIresult

ε ) in the sample image for the result 

neighbourhood  centred by . Then a best-matched neighbourhood is 

randomly selected and its centred pixel value is assigned to .  Although 

the algorithm is simple and not fast, it can produce promising synthesis results. 

Based on this algorithm, Wei and Levoy employed image pyramid representations to 

develop a new synthesis algorithm and used the tree-structured vector quantization 

for acceleration [Wei2000].  

RN ),( yxIresult

),( yxIresult

The work in [Efros1999 and Wei2000] has received broad attention in the 

computer vision and computer graphics communities. Later work based on these two 

algorithms includes [Ashikhmin2001, Hertzmann2001, Efros2001, Parada2001, 

Tonietto2002, Zelinka2002, Cohen2003 and Nealen2003]. In [Ashikhmin2001], 

Ashikhmin modifies the algorithm of  [Wei2000] and achieves faster synthesis 

speeds, which allow direct user input for interactive control over the synthesis 

process. In [Hertzmann2001], Hertzmann et. al. propose an image processing 

framework called image analogies, which can learn the analogy between the original 

and filtered input images to produce new image pairs. Their algorithm is based on 

[Wei2000 and Ashikmin2001]. In [Parada2001], Parada and Ruiz-del-Solar use self-

organizing maps to improve the algorithm of [Wei2000]. In [Efros2001], Efros and 
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Freeman develop a patch-based texture synthesis algorithm, which is based on 

[Efros1999] but produces better results with much less computation. In 

[Tonietto2002], a local-controlled synthesis algorithm is proposed that can generate 

texture in which the basic elements have different sizes, e.g. the skin of a cheetah. In 

[Zelinka2002], a jump map is first generated to store the matching input pixels and 

then used to synthesise a new texture image in real-time. In [Cohen2003], Wang 

tiles are employed and combined with the algorithm of [Efros2001] for texture 

synthesis. In [Nealen2003], a pixel-based algorithm and a patch-based algorithm are 

combined to improve previous synthesis methods.  

To summarise: 

 Since estimating the parameters of statistical models in multi-dimensional 

space is complex, parametric texture synthesis methods with local sampling 

strategies are not suitable for synthesising multi-dimensional surface relighting 

representations. On the other hand, most non-parametric synthesis approaches can be 

easily extended to dealing with multi-dimensional representations, and they can 

produce good results with little computation.  Thus, we select two non-parametric 

texture synthesis approaches based on [Wei2000 and Efros2001] for future 

investigation.  

5.2.3. Summary 

We have surveyed 2D texture synthesis approaches using the two criteria: (1) the 

suitability of the algorithm for extension to deal with multi-dimensional 

representations, and (2) the capability of producing good results while requiring little 

computation. Texture synthesis algorithms employing global sampling strategies 

have difficulty to synthesise the multi-dimensional surface representations because 

they tend to become excessively complex, and the correlation between the result 

representations may be damaged. On the other hand, non-parametric synthesis 

algorithms with local sampling strategies are capable of taking multi-dimensional 

vectors as input and producing good results with less computation. We therefore 

select two non-parametric approaches based on [Wei2000 and Efros2001] as 

candidate basic algorithms for 3D surface texture synthesis.  
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5.3. Two Approaches 

This section investigates two 2D texture synthesis approaches based on  [Wei2000] 

and [Efros2001]. 

5.3.1. The first approach and modification—a pixel-based multi-

resolution approach   

The first approach employs a pixel-based multi-resolution texture synthesis 

algorithm, which is based on a non-parametric sampling method [Wei2000]. The 

algorithm in [Wei2000] can be seen as the extension of the work in [Efros1999]. It 

also assumes a Markov random field texture model, which means a pixel value at a 

certain location only depends on its immediate neighbourhood. If we recall the 

expression (5.2.1), the algorithm in [Wei2000] essentially uses neighbourhoods 

across different resolutions and synthesises pixel values from lower to higher 

resolutions incrementally. The size of the neighbourhood is a parameter of the 

algorithm and must be chosen taking into account the granularity of the subject 

texture. When choosing the value of the next pixel in the output image the algorithm 

uses the populated portion of the pixel’s neighbourhood to exhaustively search for 

the ‘best’ matched region in the sample image.  

However, in our approach, for a certain percentage of the selections we use 

the ‘next column neighbour pixel’. Supposing we have just found a best-matched 

pixel and stored this in the result image, since we are synthesising texture in raster 

order, an obvious candidate for the next best match is the neighbouring pixel located 

in the next column of the sample image. Figure 5.3.1 shows an example. 
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Figure 5.3.1 The next column neighbour of last best-matched pixel can be used as 
the current best match. Pixel (i,j) in the sample image is the best match of pixel 

(m,n) in the result image. When we are synthesising pixel (m, n+1) in result image, 
we grant pixel (i,j+1) in the sample image is the best-matched without performing 

an exhaustive search. 

The use of the ‘next column neighbour pixel’ as opposed that derived by 

exhaustive search is controlled. It cannot be used for boundary conditions. In these 

cases we always perform an exhaustive search. In addition for certain randomly 

selected pixels we force the algorithm to use exhaustive search.   The percentage of 

the random selections is controlled by a parameter set by the experimenter. If we set 

the exhaustive search rate to 100%, the algorithm is the same as Efros and Leung’s 

[Efros1999] and Wei and Levoy’s [Wei2000]. We can also trade off synthesis 

speeds against synthesis quality. This modification approach is similar to the 

synthesis algorithm in [Ashikhmin2001] and can be seen as a simplified version. 

The whole synthesis process 

First we decompose the input sample image to obtain a set of multi-scale 

images by applying a Low-pass filter, i.e. Gaussian filter [Burt1983] to obtain a 

pyramid data structure. Let L represent the level of the lowest scale in each pyramid 

and 0 represent the level of the highest scale. Corresponding to the sample pyramid, 

we construct a result pyramid data structure, in which all elements are 0. The 

synthesis process begins from the lowest scale (level L), pixel by pixel, in raster 

order. For an output pixel, we first construct a neighbourhood as defined in  

[Wei2000]. The neighbourhood is shown in Figure 5.3.2. In the top pyramid level 

(the lowest scale), the neighbourhood uses only local populated neighbour pixels to 

perform exhaustive search. In the lower pyramid levels, it uses local populated 

neighbour pixels plus pixels immediately above (i.e. in the upper level). A 

neighbourhood is also constructed for each pixel in the sample pyramid. All of the 

pixels involved in the neighbourhood form the neighbourhood vector, which is used 

to perform exhaustive search to find the best matches for pixels in the result 

pyramid. During the exhaustive search, in order to determine the pixel value at a 

location (x,y) in the result pyramid, its neighbourhood is compared against all 

possible neighbourhoods in the sample pyramid. If pixel (i,j) has the most similar 
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neighbourhood, the value of pixel (i,j) in the sample pyramid is assigned to pixel 

(x,y) in the result pyramid. We use the Sum of Absolute Differences (SAD) to 

measure the similarity between neighbourhoods. More details about the exhaustive 

search algorithm can be found in [Wei2000]. 

 

P P P P P
P P P P P
P P X P P P

P Y P
P P P

 
                                                           l                         l+1 

Figure 5.3.2. The neighbourhood defined by Wei and Levoy [Wei2000]. The current 
level of pyramid “l” is shown at left and the upper level “l+1” is shown at right. It 

uses local populated neighbour pixels (marked as “P” in level “l”) plus pixels 
immediate above in the upper level (marked as “P” in level “l+1”).  All of marked 
pixels form the sub-neighbourhood. The current output pixel is marked as X, which 
locates at (x, y) in the lth pyramid level. Its “parent” pixel in the l+1 pyramid level 
locates at (x/2, y/2), which is marked as Y. Since the level “l+1” is complete, this 
sub-neighbourhood can contain all pixels around Y.  The sub-neighbourhood is 

constructed for each sample pyramid and result pyramid.  

We use the ‘next column neighbour pixel’ as the best-matched pixel 

whenever allowed. Now suppose we have synthesised the pixel located at  (m,n) in 

level X (X<=L), and its best-matched pixel locates at (k,l) in level X of the sample 

pyramid. Let {X, (m, n)} represent the pixel location in the result pyramid and {X, (k, 

l)} for the pixel location of the sample pyramid. We are going to find the best match 

for next pixel. Suppose the next pixel locates at {X, (m, n+1)} of the result pyramid. 

Intuitively, we consider the next column neighbour pixel of {X, (k, l)} in the sample 

pyramid as the candidate of the best match of pixel {X, (m, n+1)}. If {X, (k, l+1)} 

exists in the sample pyramid, we grant the neighbourhood of {X, (k, l+1)} as the best 

match for that of {X, (m, n+1)} in the result pyramid. The pixel value of {X, (k, l+1)} 

of the sample pyramid is assigned to the pixel value of {X, (m, n+1)} of the result 

pyramid (Recall Figure 5.3.1). However, there are three cases in which exhaustive 

searches must be performed. They are: (1) pixel {X, (m, n+1)} of the result pyramid 

is randomly selected for exhaustively searching; (2) pixel {X, (m, n+1)} does not 
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exist in the result pyramid, which means {X, (m, n)} is the last pixel of the mth row; 

and (3) pixel {X, (k, l+1)} of the sample pyramid does not exist. Figure 5.3.3 shows 

these three cases.  

The synthesis process will continue until all pixels in the result pyramid are 

assigned values from the lowest scale to the highest scale. In the highest scale (level 

0), the required result image is synthesised. The pseudocode is shown in Table 5.3.1. 

For most textures, the ratio of exhaustive search is from 40% to 70% given good 

results. The quality of synthesis results is similar to previous work by using 100% 

exhaustive search [Wei2000][Efros1999], but the computational complexity is 

reduced. Figure 5.3.4 shows example results from using 100% exhaustive search 

algorithm and our algorithm. The acceleration technique can still be applied in the 

modified algorithm [Wei2000]. 

 

(k,l)

  (m,n)
(m,n+1_)   (m,n)

(m+1,0_)

Result Pyramid

(level X)

Result Pyramid

(level X)

…...…...

Sample Pyramid

(Level X)

…...

(1)

(3)

(2)

 

Figure 5.3.3.  Three cases that must perform exhaustive search. (1) Pixel at {X, (m, 
n+1)} of the result pyramid is randomly selected for exhaustive search, (2) Pixel at 
{X, (m, n+1)} does not exist in the result pyramid, which also means {X, (m, n)} is 
the last pixel of the mth   row  and (3) Pixel at {X, (k, l+1)} of the sample pyramid 

does not exist. 
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Figure 5.3.4 Comparison of synthesis results. The image in the left is  the  sample. 
The image in the middle is the synthesised result by using 100% exhaustive search. 

The image in the right is the synthesised result by only using 40% exhaustive search. 
All of other parameters are same.  

 

SamplePyramid = buildPyramid(SampleImage); 

ResultPyramid = Null;          //result image pyramid 

Input   rate = exhaustive search percentage; 

RandomPixels = randomSelectPixels(rate); 

Loop l :=  the highest pyramid level L to the lowest pyramid level 0  

Loop through all pixel locations (x, y) in result pyramids in level l, 

(i, j) = FindBestMatchLocation ( SamplePyramid,  

                                                        x, y, l, ResultPyramid); 

Result_PixelValue (x, y)  = Sample_PixelValue (i, j); 

While     (i, j+1) exists in sample pyramids   

                && (x, y+1) exists in result pyramids 

                 && (x, y+1) not belong to  RandomPixels 

{ 

  Result_PixelValue (x, y+1)  = Sample_PixelValue (i, j+1); 

 j :=  j+1;  

 y := y+1; 

} End while 

 End loop 

End loop 

ResultImage = writeImage (ResultPyramid); 

Table 5.3.1 The pseudocode of the first approach  
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To summarise: 

We have investigated a 2D texture synthesis approach proposed by 

[Wei2000]. It assumes a Markov Random Field texture model, which means a pixel 

value at a certain location only depends on its immediate neighbourhood. A multi-

resolution scheme is applied to construct the neighbourhood around a given pixel. 

The algorithm synthesises a result image in pixel scale by finding the best-matched 

neighbourhoods in the sample image. We modified the original algorithm by using 

the ‘next column neighbour pixel’ as the best-matched pixel for a certain percentage 

of pixel locations. The modification can produce similar results with less 

computation. 

5.3.2. The second approach and modification—A patch-based 

approach  

The second approach is based on the image quilting method proposed by Efros and 

Freeman [Efros2001].  The method synthesises a new image by ‘stitching’ together 

small patches from the sample image. It requires little computation and can produce 

remarkable synthesis results. This method is also an extension of the previous work 

in [Efros1999]. 

The method in [Efros2001] synthesises a result image block by block in 

raster order.  Square blocks are used to capture the primary pattern in the sample 

texture. The size of the block is a parameter of the algorithm and must be chosen 

taking into account the granularity of the subject texture. First, a block is randomly 

selected from the sample image and pasted into the new image beginning at the first 

row and the first column. Then another block is selected as a candidate neighbour. It 

is placed next to the first block so that they overlap one another. The overlapping 

area between the two blocks is used to test the goodness of fit of the candidate using 

an L2 norm (Sum of Squared Differences). This is repeated for different candidates 

to find the minimum difference metric (distance). The final neighbour is randomly 

selected from those blocks whose distance lies in a certain range of the minimum 

distance. The range is controlled by a predefined error tolerance. A minimum error 

boundary cut is calculated in the overlapping area between the overlapping pixels so 

that the boundary looks smooth, as shown in Figure 5.3.5. Both vertical and 
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horizontal overlapping areas are used for selecting best-matched blocks inside the 

new image. This whole process is repeated until an output image of the required size 

has been generated. 

We have made two modifications to this quilting algorithm. First, instead of 

locating the best-matched block using exhaustive search, we select the ‘next column 

neighbour block’, which is the corresponding neighbour of last selection, and assign 

it as the current best-matched block, providing it exists in the sample image. This 

modification is similar to that introduced for the first approach. During the synthesis 

process, after a best-matched block is found in the sample image, we store its 

location in an array. When a new block in the result image is being synthesised, we 

check the best-matched block locations of its already generated neighbours. If there 

exists a block that is adjacent to all the best-matched block locations in the sample 

image, this block is selected as the current best-matched block. Figure 5.3.6 

illustrates this process. Suppose we are going to synthesise block h’ in the result 

image. We first check the best-matched blocks of its existing neighbour blocks e’, f’ 

and g’. If their best-matched blocks e, f and g are adjacent in the sample image, then 

block h, which is the neighbour of e, f and g, is selected as the best-matched block 

for h’. Obviously, for the first block row or column in the result image, only one 

neighbour block is checked. This simplification can increase the speed of the 

algorithm without apparently affecting the output. It can also be seen as an extension 

of the method used in [Ashikhmin2001].   

The second modification to the original algorithm is that we use an error 

metric based on the Sum of Absolute Differences (SAD) rather than more expensive 

L2 norm (square of SAD). They produced similar results in our experiments. 

Although both the L2 norm and the SAD are not perfect as perceptual metrics, the 

existing perceptual metrics might not be completely reliable and require more 

expensive computations [Sebe2000, Bolin1998, Ramasubramania1999 and 

Ashikhmin2001]. Figure 5.3.7 shows example output images produced by the 

modified and original algorithms respectively. The pseudocode of the whole 

algorithm is listed in Table 5.3.2. 
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Figure 5.3.5 The boundary cut process of Efros’ 2D texture synthesis approach. The 
curve shows the best boundary cut. 
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Figure 5.3.6. The neighbour of previous best-matched blocks. The grey area in the 
result image represents those blocks that have already been synthesised.  

 

Figure 5.3.7 The comparison of results produced by the modified and original 
algorithms. The first column shows sample images (texture “aar” and “aaf”). The 

second column shows synthesis results produced by the original algorithm. The third 
column shows synthesis results produced by the modified algorithm. 
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ResultImage = Null;          //result larger image 

Input   SampleImage, BlockSize, OverlapSize 

A_RandomBlock = randomSelectBlock(SampleImage); 

PixelValue(ResultImage, FirstBlockLocation) = PixelValue(SampleImage,  

A_RandomBlock); 

Loop through the ResultImage in raster order in steps of one block 

SampleBlockLocation = FindBestMatchLocation ( SampleImage, ResultImage,   

ResultBlockLocation, BlockSize, OverlapSize); 

 SampleBlock=PixelValue(SampleImage, SampleBlockLocation); 

PixelValue (ResultImage, ResultBlockLocation)  = BestBoundaryPath 

(ResultBlockLocation, NeighbourResultBlocks,  

SampleBlock, OverlapSize) ; 

While     (SampleBlockLocation+1) exists in sample pyramids   

                && (ResultBlockLocation+1) exists in result pyramids 

{ 

SampleBlock=PixelValue(SampleImage, SampleBlockLocation+1); 

PixelValue (ResultImage, ResultBlockLocation+1) =  

BestBoundaryPath(ResultBlockLocation+1,  

NeighbourResultBlocks, SampleBlock, OverlapSize); 

ResultBlockLocation :=  ResultBlockLocation+1; 

SampleBlockLocation := SampleBlockLocation+1; 

} End while 

End loop 

Table 5.3.2 The pseudocode of the first approach 

To summarise: 

 The second 2D texture synthesis approach is based on the image quilting 

algorithm proposed by [Efros2001]. This approach can produce high-quality 

synthesis results while requiring little computation. We made two modifications to 
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the original algorithm. The modified algorithm can produce similar results to those 

from original algorithm while the computation is reduced.    

5.3.3. Comparison of the two approaches 

In section 5.3.2, we investigated two 2D texture synthesis approaches. Since the 

main goal of this thesis is to develop inexpensive approaches for the synthesis of 3D 

surface texture, we need to select one method which requires less computation while 

producing reasonable results. Therefore, we first compare the two approaches 

according to the computational complexity and synthesis results.  

The computational complexity of the original algorithm in [Wei2000] 

without acceleration is O(N), where N is the number of pixels in sample image. It is 

obvious that our modified algorithm has the computation O(a%*N), where a the 

input percentage of total pixels that the algorithm should perform exhaustive search. 

In contrast, the second approach, which is based on [Efros2001], has the 

computational complexity at most O(B), where B  is the number of blocks in the 

sample image. The number of blocks is usually much smaller than the number of 

image pixels.  For example, if the block size is 13×13, for a 64×64 sample image, 

the block number is only 24 compared with the pixel number 4096. Even if we set 

the percentage of total pixels that perform exhaustive search as 40% (a=40), the 

computational complexity of the first approach is O(1638) whereas that of the 

second approach is O(24).  Obviously, the second approach requires much less 

computation. We report the time consumed in a typical experiment without using the 

acceleration technique in Table 5.3.3. The experiment was performed on a normal 

desktop PC with a 600MHz Intel Pentium III CPU. Note same acceleration 

techniques are available for both algorithms [Efros2001 & Wei2000].  

Approach The first The second 
Sample size 65×65 65×65 

Result size 129×129 129×129 

Computational complexity O(4225) O(6)—With block size  26×26 

Time consumed 5374 seconds 6 seconds 

Platform where experiments 

performed 

A 600MHz desktop PC with a Pentium III CPU, Linux OS. 

Table 5.3.3 The comparison of two 2D texture synthesis algorithms 
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 Efros et. al.  have already shown the comparison of some synthesis results 

produced by their method [Efros2001] and the method of [Wei2000].  They report 

that their algorithm is particularly effective for semi-structured textures, which were 

always difficult for statistical texture synthesis methods. In Figure 5.3.8, we show 

two synthesis result images produced by the two approaches using a sample texture 

from our database.  

 

Figure 5.3.8 Two example synthesised images produced by the two approaches 
using a sample texture “acd” from our database. The image in the left is the input 

sample (65×65). The image in the middle is the synthesis result of the first approach. 
The image in the right is the synthesis result of the second approach. The size of 

result images is 256×256. 

5.3.4. Summary 

We have investigated two 2D texture synthesis approaches. The first approach 

synthesises a new image by decomposing the input sample into a multi-resolution 

image set and searching the best-matched neighbourhood for every pixel in the result 

image. The second method generates a new image by ‘stitching’ together small 

patches from the sample image. Since the second approach can produce better 

synthesis results while requiring less computation, we select it as our basic algorithm 

for the synthesis of 3D surface textures.  

5.4.  Analysis of the selected synthesis algorithm 

In last section, we selected a patch-based 2D texture synthesis approach as our basic 

algorithm for the synthesis of 3D surface texture. The selected approach requires 

four parameters as input, comprising: (1) a sample image, (2) a block size, (3) an 

overlap size and (4) an error tolerance. The four input parameters will affect the 

computation required by the algorithm and the quality of final synthesis results. 

 90



These effects are very important to the synthesis of 3D surface textures. This section 

will therefore analyse the algorithm in terms of computation and synthesis results by 

varying the input parameters.  

5.4.1. Sample image size  

Efros et. al. suggest that the input sample texture should contain enough variability 

[Efros2001]. Thus, the more stochastic patterns the sample texture contains, the 

larger sample image the algorithm should use. The reason is that a larger sample can 

provide more information and more choice when searching for best-matched blocks. 

If the sample texture contains many irregular elements, e.g. different beans of 

different sizes and shapes, we should use a larger sample.  Otherwise, a smaller 

sample will cause mismatching between blocks and then lead to discontinuities in 

the result image. However, since the computational complexity of the synthesis 

algorithm is proportional to the total number of blocks contained in the input sample, 

a large sample requires more computations. We may trade off the quality of 

synthesis results against synthesis speeds by selecting an appropriate sample size. 

Figure 5.4.1 shows synthesis results using sample images of different sizes.  

 

Figure 5.4.1 Synthesis results produced by using different input sample sizes. The 
size of sample images is 65×65 in the first column and 128×128 in the third column. 

The size of result images is 256×256. The three textures from top to bottom are 
“abj”, “add” and “adf” respectively. 
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5.4.2. Block size  

The second input parameter required by the synthesis algorithm is block size. This 

parameter is crucial to the quality of synthesis results and speed. As reported in 

[Efros2001], the block should be large enough to capture the relevant structures or 

pattern in the sample texture. However, it must also be small enough so that the 

interaction between these structures is left to the algorithm.  The overlarge block size 

will introduce more matching errors and may cause the result image losing the 

stochastic properties. On the other hand, it will reduce the computation required by 

the synthesis algorithm, since a large block size results in the sample image 

containing fewer blocks. Figure 5.4.2 shows the synthesis results using two example 

textures of different input block sizes. All other input parameters remain constant 

throughout the experiments.  

 

Figure 5.4.2 Synthesis results produced by using  different input block sizes. The 
images in the first column are input sample images. In the first row (texture “ach”), 

the second to the fourth image uses block size of 4,8 and17 respectively. In the 
second row (texture “abj”), the second to the fourth image uses block size of 5,10 

and 20 respectively. 

5.4.3. Overlap size 

The third input parameter of the selected algorithm is the overlap size—the size of 

overlapping areas between neighbour blocks. We use the ‘width’ to represent the 

size of a vertical overlapping area and use the ‘height’ to represent the size of a 

horizontal one.  The reason we can make this simplification is that the length of the 

other edges of overlapping areas is decided by the block size, which is constant in 

the synthesis process. Efros and Freeman report that they use 1/6 of a block size as 

the proper overlap size in their experiments [Efros2001].   
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Inappropriate overlap sizes will cause faulty matching during synthesis 

which will introduce discontinuities in the synthesis results. The reason is that pixels 

in overlapping areas are used for searching for the best-matched blocks. The 

algorithm calculates Sum of Absolute Differences (SAD) using those pixels in the 

overlapping areas; a block with the minimum SAD will be selected as the best-

matched block. If the overlap size is too small or too large, there are either too few 

or too many pixels that can be used to calculate SAD. In either case, the minimum 

SAD might not represent the real best-matched blocks due to the sum effect. For 

example, suppose the best synthesis results are achieved by using a size that leads to 

each overlapping area containing 200 pixels. For each block location, the algorithm 

calculates 

∑
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iiiij j

yxIyxI    (5.4.1) 

where: 

jΩ  is the overlapping area containing 200 pixels covered by block j  in the 

sample image and the already synthesised pixels in the result image 

),( ii yx  represents the ith pixel in the sample image covered by the 

overlapping area  jΩ

),( ii yx ′′  represents the ith pixel in the result image covered by the overlapping 

area  jΩ

  is the i),( ii yxI th pixel value in the sample image  

 is the i),( ii yxI ′′′ th pixel value in the result image.  

Suppose another overlap size that makes the overlapping area contain 600 pixels. 

Then the following statement is not guaranteed to hold: 
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where: 

jΩ′  is the overlap area containing 600 pixels covered by block j  in the 

sample image and the already synthesised pixels in the result image 
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),( ii yx ′′′′  represents the ith pixel in the sample image covered by the 

overlapping area  jΩ′

),( ii yx ′′′′′′  represents the ith pixel in the result image covered by the overlapping 

area jΩ′  

  is the i),( ii yxI ′′′′ th pixel value in the sample image 

 ),( ii yxI ′′′′′′′ is the ith pixel value in the result image. 

 Furthermore, small overlap sizes can not provide enough choice for the boundary 

cut, which is designed to produce smooth transitions in overlapping areas. All of 

these will lead to discontinuities or even ‘garbage’ in the result image. Figure 5.4.3 

(a) and (b) show example synthesis results of two sample textures using different 

input overlap sizes. The results contain discontinuities and artefacts due to either 

oversmall and overlarge overlap sizes.  

However, varying overlap size does not have significant impact on the 

synthesis results of semi-structured textures. This is obvious because semi-

structured textures contain simple patterns which can be easily ‘stitched’ together.  

An example is shown in Figure 5.4.3 (c). In general, we found based on our 

experiments that using an overlap size between 1/6 to 1/3 of the block size can 

produce reasonable results.  

 

(b)

(a)

(c)  
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Figure 5.4.3 Synthesis results produced by using different input overlap sizes. In 
each row, the first image is the sample image; the second to the fourth images are 

result images produced by using different overlap sizes:  (a) (Texture “abj”)1, 6 and 
15;  (b)(Texture “aam”)1, 6 and 15  and (c)(Texture “ach”) 1, 5 and 10 

respectively. All other input parameters are kept constant.  

5.4.4. Error tolerance 

The fourth parameter of the algorithm is the error tolerance, which allows the 

algorithm to randomly choose a block from those that have similarity metrics within 

a certain range of the minimum one. Thus, more randomness may be introduced in 

the synthesis results. However, larger error tolerances will introduce more matching 

errors. Efros and Freeman used 0.1 in their experiments as the error tolerance when 

selecting best-matched blocks [Efros2001]. In our experiments, we have found that 

using the error tolerance between 0.0 to 0.1 does not produce much difference for 

synthesis results. Figure 5.4.4 shows two examples with a set of error tolerances.  

 

Texture:aar

Error tolerance              0.0                            0.1

Error tolerance               0.3                           0.5

Texture:aar
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Texture:ace

Error tolerance              0.0                            0.1

Error tolerance               0.3                           0.5

Texture:ace

 
 

Figure 5.4.4 Synthesis results produced by using  different error tolerances. The 
small images are samples (64x64); the large images (256x256) are synthesis results 

with different error tolerances. The error tolerances are listed under the result 
images.  

5.4.5. Strength and weakness  

As reported in [Efros2001], this algorithm performs remarkably well on semi-

structured textures, which normally contain obvious boundaries between repeated 

near-regular patterns. These obvious boundaries and near-regular patterns can 

simplify the matching between blocks. Therefore better synthesis results can be 

produced. Figure 5.4.5 shows two highly structured textures and their synthesis 

results.  

 

Figure 5.4.5 Example synthesis results of two highly structured textures (texture 
“ach” and “acd”).  

The algorithm has problems when synthesising textures with irregular 

elements, e.g. a texture that comprises beans of different sizes and shapes. Figure 

5.4.6 shows an example. Texture “ada” comprises lentils, which have different 

individual shapes and are randomly layout. Discontinuities and artefacts are obvious 

in the result image.   The reason is that the algorithm employs a square block with a 
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constant size. Irregular granularities make matching and obtaining the best boundary 

cut difficult; more flexible patch shapes should be used to produce seamless 

boundary cuts. Recent research has shown promising results to solve this issue. 

Kaplan and Salesin developed an algorithm to solve the “Escherization” problem 

[Kaplan2000]. Their algorithm can find a new closed figure similar to the sample 

and use it to tile the plane. Kwatra et. al. use graph cuts for choosing irregular 

patches and can seamlessly paste the patches during texture synthesis [Kwatra2003]. 

However, it is still difficult to develop efficient methods for selecting auto-adaptive 

block during synthesis process. This algorithm remains one of the best choices for 

the synthesis of 3D surface textures in terms of synthesis speeds and the quality of 

results. 

 

Figure 5.4.6 A failed example (Texture “add”).  The algorithm has problems when 
synthesising textures that comprise irregular elements. 

5.4.6. Summary 

We analysed the selected 2D texture synthesis algorithm in terms of the inputs 

required: the sample image size, block size, overlap size and error tolerance.  The 

larger sample image contains more information and can produce better synthesis 

results, but it also increases computations. The block size should be big enough to 

capture the basic structures or patterns in the sample image. The overlap size should 

be between 1/6 to 1/3 of the block size. Inappropriate overlap sizes will introduce 

discontinuities or artefacts to the result image. The error tolerance between 0.0 and 

0.1 does not produce much effect on the synthesis results. 

 The selected algorithm can produce remarkable synthesis results for semi-

structured textures, whereas it has difficulties to synthesise textures with irregular 

elements or granularities. The reason is that the algorithm uses a fixed square block 

in order to capture the basic texture structures.   
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5.5. Conclusion 

The aim of this chapter is to investigate available 2D texture synthesis methods and 

select an efficient algorithm that can be easily extended for use with relighting 

representations of 3D surface textures. This is the second stage of our overall 

framework.  

We first presented a detailed review of 2D texture synthesis approaches based on 

two criteria: (1) the suitability of the algorithm for extension to deal with multi-

dimensional representations, and (2) the capability of producing good results while 

requiring little computation. Then we investigated two popular algorithms proposed 

by Wei et. al. [Wei2000] and Efros et. al. [Efros2001]. Since the latter produces 

better results while requiring less computation, we selected it as our basic synthesis 

algorithm. In addition to the sample image, the algorithm requires a block size, an 

overlap size and an error tolerance as inputs. We analysed the effect on the quality of 

synthesis results when varying the four input parameters. Based on [Efros2001] and 

our experiments, the primary conclusion is that the block should be bigger than basic 

texture patterns/granularities perceived by human vision and the overlap size should 

be between 1/6 to 1/3 of block size. 

In next chapter we will describe how to combine surface relighting 

representations that we introduced in the previous chapter with the synthesis 

algorithm described in this chapter to synthesise and relight 3D surface textures.  
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