
Chapter 6 

Synthesis and Relighting 

6.1. Introduction 

In chapter 4, we introduced five methods for representing and relighting surface 

textures. In chapter 5, we selected a 2D texture synthesis algorithm. In this chapter 

we present five approaches that combine the surface representation methods with the 

2D texture synthesis algorithm to synthesise images of 3D surface textures under 

arbitrary lighting directions. We will compare these synthesis approaches according 

to the quality of their output results. The criterion for the comparison is the 

resemblance, as perceived by human vision, between output results and input 

samples. The work described in this chapter corresponds to the final stage in our 

overall framework, as highlighted in Figure 6.1.1. 
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Figure 6.1.1 The final stage of the overall framework 
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We modify the 2D texture synthesis algorithm selected in chapter 5 so that it 

can take sample surface representations as input and perform synthesis in multi-

dimensional space. We propose five approaches for the synthesis of 3D surface 

textures that correspond to the five surface representation and relighing methods 

introduced in chapter 4:  

The 3I synthesis approach: This approach uses three images of the sample texture 

as input and it relights the synthesised images using the 3I relighting method. 

Synthesis is performed in R3 space.  

The Gradient synthesis approach: The second approach uses surface gradient and 

albedo maps as input and it relights the synthesised surface gradient and 

albedo maps using the Gradient relighting method. Synthesis is also 

performed in R3 space.  

The PTM synthesis approach: This approach uses Polynomial Texture Maps 

(PTM) as input and it relights synthesised PTMs using the PTM relighting 

method. Synthesis is performed in R6 space.   

The Eigen3 synthesis approach: The fourth approach uses the first three eigen base 

images as input and it relights synthesised base images using the Eigen3 

relighting method.  

The Eigen6 synthesis approach: This is identical to the previous approach except 

that it uses the first six base images as input. Thus, synthesis is performed in 

R6 space.  

For our experiments we use the same 23 textures as those used in chapter 4. 

We are also interested in the performances of these five approaches 

concerning the quality of their synthesised results. In chapter 4, we performed a 

quantitative assessment of the five surface representation and relighting methods. 

However, we can not perform a similar quantitative comparison here because ground 

truth data is not available. We therefore qualitatively assess the five synthesis 

approaches. We perform psychophysical experiments to rank these five approaches 

based on human perception. Based on the rank data, we use Fredman’s 

nonparametric two-way Analysis of Variance followed by a multi-comparison 

method to test their significance. The conclusion is that the Gradient and Eigen3 
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approaches outperform any of the other approaches if both the synthesised results 

and computational cost are considered.  

The chapter is organised as follows. Section 6.2 introduces the five synthesis 

approaches. Section 6.3 describes the psychophysical experiments for the qualitative 

comparison of the five approaches. Finally in section 6.4 we draw conclusions from 

the results of this chapter. 

6.2.  The five synthesis  approaches 

This section introduces five synthesis approaches: 3I, Gradient, PTM, Eigen3 and 

Eigen6. They employ the same basic algorithm—the modified Efros and Freeman’s 

2D texture synthesis algorithm. However, they use different inputs, which comprise 

different multi-dimensional vectors that represent a sample surface texture under 

arbitrary illumination directions. During the synthesis process, each pixel location on 

the sample surface is represented by multi-dimensional vectors that are extracted 

using the surface representation methods introduced in chapter 4. The synthesis 

algorithm uses the multi-dimensional vectors as input to synthesise new surface 

representation maps. They are finally relit using the relevant relighting methods to 

obtain new images under different illumination directions.  

6.2.1. The general algorithm for the synthesis of surface texture 

representations 

The general algorithm for the synthesis of surface texture representations is an 

extension of the 2D synthesis algorithm that we selected in chapter 5. The algorithm 

synthesises a result representation by ‘stitching’ together small blocks from a sample 

representation. It uses a Sum of Absolute Differences (SAD) as the metric for 

selecting best-matched blocks in the sample. For 2D texture synthesis, the 

calculation of SAD only uses pixel intensity values. In the case of 3D surface texture 

synthesis, each pixel location on the sample surface is expressed as a multi-

dimensional vector. The general algorithm therefore uses multi-dimensional vectors. 

The SAD that we use for multi-dimensional surface representations is:  
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where: 

  represents a sample pixel location ),( yx

 ),( yx ′′  represents a result pixel location 

  is a pixel value at  in the i),( yxmi ),( yx th sample representation map 

 ),( yxmi ′′′ is a pixel value at ),( yx ′′  in the ith result representation map 

jΩ  is an overlapping area covered by block j 

n is the dimensionality or the total number of sample representation maps. 

The best-matched blocks are found by minimising the SAD between the overlapping 

windows of the sample and result representation maps.  

 The sample surface and output representations are stored as multiple images. 

The number of images is equal to the dimension of the representations. Thus 

synthesis in R3 space involves three input images and three output images, as shown 

in Figure 6.2.1. 

Same locations
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Figure 6.2.1 Each group of best-matched blocks in synthesised results comes from 

the same location in samples  

The synthesised representation maps are then relit using corresponding relighting 

methods to produce the final results.  

Matching errors 
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It should be noted that matching errors exist during the selection of best-

matched blocks by calculating the minimum SAD in Rn space. Suppose we are 

observing two synthesis processes. The first process synthesises only one 

representation map in R1 space using pixel values as input; the second synthesises 

all representation maps simultaneously in Rn space. All other parameters are 

identical. At the same locations of two output representation maps, the best-matched 

block obtained in R1 space might be different from its counterpart in the group of 

best-matched blocks that are produced simultaneously in Rn space (using n-

dimensional vectors as input). In the other words, the group of best-matched blocks 

produced in Rn space does not guarantee each individual in the group is the same as 

the best-matched block produced in R1 space. Figure 6.2.2 illustrates this process. 

Each large image (output) in Figure 6.2.2 (a) is synthesised independently in R1 

space. For the framed blocks in output images, their best-matched blocks in the 

samples have different locations. These locations also differ from those in the 

sample images of (b), in which synthesis is performed in R3 space. In (b), all framed 

blocks in output images lie in the same location.  
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(b) 

Figure 6.2.2 The group of best-matched blocks produced in R3 space does not 

guarantee each individual in the group is the same as the best-matched block 

produced in R1 space. (a) Each large image (output) is synthesised separately in R1 

space; all framed blocks in the output images lie in the same location but their best-

matched blocks have different locations in the samples. (b) Synthesis in R3 space. All 

framed blocks lie in the same location in output images and are identical to those in 

(a), but their best-matched block group has the same location in the samples. This 

location differs from each of those in (a). 

The reason for producing matching errors is that the minimum SAD, which 

decides the best-matched blocks, is normally greater than zero when synthesising 

real-world surface texture representations. Thus, the following mathematical 

statement is obvious:  
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The left side of equation (6.2.2) represents the minimum SAD calculated using n-

dimensional vectors, while the right side is the sum of the minimum SAD calculated 

in R1 space.  The matching error can be seen as the difference between the two sides 

of equation (6.2.2). The higher the dimensionality of input vectors is, the larger the 
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matching errors might be. Matching errors will introduce discontinuities in the 

result representation maps. 

6.2.2. The 3I synthesis approach 

The 3I synthesis approach first synthesises three output images from three sample 

photometric images, which are captured under linearly independent illumination 

directions. The synthesis is therefore performed in R3 space. The three synthesised 

photometric images are then relit to generate new images under arbitrary 

illumination directions using a linear combination—the 3I relighting method, as 

introduced in chapter 4. Figure 6.2.3 shows the process in R3 space. 
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Figure 6.2.3 The 3I synthesis approach 

6.2.3. The Gradient  synthesis approach 

The Gradient synthesis approach synthesises output surface gradient and albedo 

maps from sample maps. These are generated using the Gradient representation 

method.  Synthesis is also performed in R3 space. Since pixel values in surface 

gradient maps are normally smaller than those in the albedo map, all pixel values are 

transformed into same scale during synthesis process. This gives the surface gradient 

and albedo maps the same weight when calculating Sum of Absolute Difference 

(SAD). However, the synthesised surface gradient and albedo maps still use pixel 

values from the corresponding original sample maps. They are relit using the 

Lambertian model to generate final images under arbitrary illumination directions. 

Figure 6.2.4 shows the whole synthesis process. 
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Figure 6.2.4 The Gradient synthesis approach 

6.2.4. The PTM synthesis approach 

This PTM synthesis approach performs synthesis in R6 space.  The six-dimensional 

sample Polynomial Texture Maps are also transformed into same scale so that they 

have the same weight when calculating SAD. The synthesised PTMs are relit using 

the PTM relighting method [Malzbender2001] to produce final images under 

different illumination directions.  
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Figure 6.2.5 The PTM synthesis approach 

6.2.5. The Eigen3 and Eigen6 synthesis approaches 

The Eigen3 or Eigen6 approach uses the first 3 or 6 eigen base images as input to 

synthesise output eigen base images. The sample eigen base images are generated 
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using the Eigen3 or Eigen6 surface representation method. They are also 

transformed into the same scale during synthesis process so that they have equal 

weight in calculating SAD between samples and results. The synthesised base 

images are relit using a bilinear interpolation—the eigen-based relighting methods 

described in chapter 4 to generate new images under varied illumination directions.   
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Figure 6.2.6 The Eigen3 and Eigen6 approaches 

6.2.6. Summary 

We have presented five approaches for the synthesis and relighting of 3D surface 

textures. They use surface representation maps extracted from a set of sample 

images as input to synthesise new surface representations. The synthesised 

representations are then relit using the corresponding relighting methods to generate 

final result images under arbitrary illumination directions. We summarise the five 

approaches in Table 6.2.1. Synthesis results of 23 textures with illumination angles 

of (τ =60°, σ =60°) and (τ =120°, σ =60°) are shown in Appendix B. 
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Table 6.2.1 Summary of the 5 approaches 

Approach 1st phase 2nd phase 3rd phase 

3I  
No processing required in this 

phase as the three images are used 
directly 

R3 synthesis 
(produces 3 output photometric 

images) 

Image-based relighting 
(produces final image) 

Gradient  

 
Produces sample gradient(p,q) and 
albedo maps (al) using all sample 

images  

R3 synthesis 
(produces output gradient and 

albedo maps) 

Gradient-based 
relighting 

PTM  Generates sample Polynomial 
Texture Maps   

R6 synthesis 
(produces output Polynomial 

Texture Maps) 
PTM- based Relighting 

Eigen3 Generates 3 base images of sample 
in eigen-space 

R3 synthesis 
(produces output eigen base 

images) 

Eigen-based relighting 
 

Eigen6 Generates 6 base images of sample 
in eigen-space 

R6 synthesis 
(produces output eigen-base 

images ) 

Eigen-based relighting 
 

 

 

6.3.  Qualitative assessment of the five approaches 

Section 6.2 described five approaches for the synthesis and relighting of 3D surface 

textures. This section evaluates the performances of these methods concerning the 

quality of their synthesis results. In chapter 4, we have quantitatively assessed the 

surface representation and relighting methods. The conclusion is that the 3I 

representation method produces the worst performance and the Eigen6 method 

produces the best. The R6 PTM representations perform better than R3 Gradient 

representations, although it can not be considered superior to the computationally 

cheaper Eigen3 representations in R3 space. We are interested in whether the 

qualitative performance1 of the five synthesis approaches is consistent with the 

quantitative assessment results of relighting methods.  

 Despite the significant quantity of research on texture synthesis approaches 

little has been published concerning their assessment. The majority of researchers 

therefore simply display their results alongside those of their competitors and leave 

                                                 
1 Note that unlike the assessment of surface representation and relighting methods, we can not 

perform a quantitative comparison because no ground-truth data is available. 
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the comparison to readers [DeBonet1997, Wei2000, Efros1999, Xu2001, Efros2001 

and shikhmin2001]. Few provide any experimental support. Copeland et. al. did use 

a psychophysical experiment with ten observers to assess the ability of a numerical 

error metric to model the perceptual differences between texture patterns 

[Copeland2001] but very little has been published on the systematic qualitative 

assessment of texture synthesis results per se. In this section, we introduce a simple 

qualitative approach which uses nonparametric statistical tests and psychophysical 

experiments.  

6.3.1. Design of the psychophysical experiments 

Since we are interested in comparing the performances of the five synthesis 

approaches concerning the quality of synthesis results, we use rank (ordinal) data as 

the scale of statistic measurement. An ordinal scale of measurement represents an 

ordered series of relationships or rank order. In our case, we wish to know which 

methods outperform others or which one can achieve the best, second, or third 

performance. Unlike precise measurement, rank data is suitable for qualitative 

measurement. Furthermore, the advantage of using rank data is that it can be simply 

obtained from observation. 

We asked a set of ten human observers to rank different synthesis approaches 

by comparing output images with input samples. The main concern is the 

resemblance between the samples and results under multiple illumination directions. 

In order to avoid distraction from other effects during comparison, we simply place 

the sample images alongside results with same illumination conditions. Although we 

have performed the synthesis on 23 sample textures and we can generate images 

with arbitrary illumination directions, we only select a representative subset from the 

results for the psychophysical experiments so that observers are relieved from 

exhaustive comparison. The subset comprises eleven textures (near 50% of all 

textures) with two illumination directions. These textures include surfaces that 

exhibit near Lambertian reflectance, Lambertian reflectance with shadows and 

interreflections, and specular reflectance. These textures also include surfaces with 

stochastic and structured patterns. 

For each texture, we used each of the five approaches to synthesise two output 

images under illumination angles of (τ =60°, σ =60°) and (τ =120°, σ =60°). These 
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images are shown in Table 6.3.1 and labelled as “aaj”, “aas”, “ace”, “adc”, “add”, 

“aar”,  “acd”, “aai”, “ach”, “aci” and “abj”. Observers were asked to compare real 

sample images with synthesised images and rank the results for each of the eleven 

textures from the best to the worst. The illumination directions are indicated by 

block arrows in the figure. No other instructions were given concerning as to what 

qualities to look for when comparing methods. Thus we collect 110 sets of rankings 

(10 observers x 11 textures).  
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Table 6.3.1Synthesis and relighting results from the five methods for 11 textures. The 

small images in each cell are the samples; the large images are synthesis results. Arrows 

indicate illumination directions  (τ =60° and τ =120°). 

3I Gradient PTM Eigen3 Eigen6

Texture “aaj”

Texture “aas”

Texture “ace”
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3I Gradient PTM Eigen3 Eigen6

Texture “adc”

Texture “add”

Texture “aai”

Texture “acd”
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3I Gradient PTM Eigen3 Eigen6

Texture “aar”

Texture “ach”

Texture “aci”

Texture “abj”
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6.3.2. The test of significant difference—Friedman’s nonparametric 

two-way Analysis of Variance 

We firstly would like to know whether there are significant differences between the 

performances of these approaches according to the rankings. Since observers 

performed their rankings independently, we use Friedman’s nonparametric two-way 

Analysis of Variance (ANOVA) to test for significance.  

Friedman’s nonparametric two-way Analysis of Variance (ANOVA) is designed 

to determine if we may conclude from sample evidence that there are differences 

between treatment effects (which in our case are the five approaches). We therefore 

construct a matrix which contains one column for each approach.  Each column 

contains 110 rank data (10 observers x 11 textures). Friedman’s test compares the 

means of these columns (see [Daniel1990] for more details).  The null hypothesis H0 

is that there are no significant differences between the five methods, while the 

alternative hypothesis H1 is that at least one is different. The test statistic is defined 

as: 
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where: 

b is total number of  rank data for each method (110) 

k is  the number of methods to be compared (5), and 

jR  is the sum of rank data for each method. 

The test results indicated that there is at least one method which performs 

significantly differently from the others at a confidence level of 100%.  

6.3.3. The multiple comparison 

Since there is significant difference between the performances of these approaches, 

we are interested in which approaches perform better than others. We therefore use a 

multiple comparison test of means that is designed to provide an upper bound on the 

probability that any comparison will be incorrectly found to be significant 

[Hochberg1987]. The multiple comparison compares each pair of approaches and 

outputs the confidence interval for the difference at certain confidence level.  
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We use the Statistic Toolbox in Matlab to perform the multiple comparison. 

The result is shown in Figure 6.3.1. Each group mean is represented by a small circle 

within an interval. Two means are significantly different if the associated intervals 

are disjoint, and are not significantly different if their intervals overlap.  

 

Eigen6

Eigen3

PTM

Gradient

3I

 

Figure 6.3.1 Multiple comparison test of the five approaches. Small circles and lines 

represent the group means and their intervals. The horizontal axis indicates rank 

values. Two means are significantly different if their intervals are disjoint. 

Based on the results of this test in which the confidence levels of the intervals 

are 99%  ( 01.0=α ) we make the following observation. There are no significant 

differences between the performances of the Gradient, Eigen3, and Eigen6 

approaches. However, each of these methods does outperform both 3I and PTM, 

while the PTM method outperforms the 3I. 

Although Eigen6 produced the best quantitative relighting results, its qualitative 

performance in the synthesis experiments was not significantly better than its two 

nearest competitors: Gradient and Eigen3. This is maybe because synthesis is 
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performed in R6 space which is more prone to matching errors. These errors often 

introduce discontinuities, which are particularly noticeable to human observers.  

Consequently, when the samples and results with same illumination directions are 

being compared, the effect due to discontinuities might counteract the good 

performance produced in relighting. Therefore, the overall performance of Eigen6 is 

lowered to the same level as Eigen3 and Gradient in the qualitative assessment. 

Correspondingly, although PTM performed better than Gradient in the relighting 

assessment, it failed to outperform Gradient in the qualitative comparison of 

synthesis results.   

If we take computation complexity into account, we find that synthesis in R6 

space is of course the most expensive. It exactly doubles the computation time 

compared with R3 synthesis. Thus we conclude that the Gradient and Eigen3 

approaches on average offer as good a performance as of any of the other methods 

and incur low computational cost. However, if image-acquisition requirements have 

to be kept low then the 3I synthesis approach, which uses only three photometric 

images, provides relighting at the cost of lower quality output.  

6.4. Conclusion  

In this chapter, we proposed five approaches for the synthesis and relighting of 3D 

surface texture. The five approaches—3I, Gradient, PTM, Eigen3 and Eigen6 use 

the corresponding surface representations of a sample texture as input to a modified 

version of Efros and Freeman’s image quilting method. The synthesised surface 

representations are relit to produce new images under arbitrary illumination 

directions. For the 3I, Gradient, and Eigen3 approaches, synthesis is performed in 

R3 space, while the PTM and Eigen6 approaches perform synthesis in R6 space. 

We qualitatively compared the five approaches by employing psychophysical 

experiments. We asked ten observers to rank different synthesis approaches by 

comparing output images with input sample images.  The ranked data were first 

tested using Friedman’s nonparametric two-way Analysis of Variance. The test 

suggests that there is at least one significant difference between the performances of 

these five approaches. A multiple comparison was then applied to determine which 

approaches outperform others. The conclusion is that, at the confidence level 99%, 
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the Gradient, Eigen3 and Eigen6 approaches perform better than 3I and PTM. If 

computation complexity is taken into account, the Gradient and Eigen3 approaches 

are preferable.  
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