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Abstract 

Texture synthesis has been extensively investigated by both computer vision 

and computer graphics communities during the past twenty years. However, the 

input and output are normally 2D intensity texture images. If the subjects are 3D 

surface textures (such as brick, woven or knitted textiles, embossed wallpapers etc.), 

these 2D synthesis techniques cannot provide the information required for rendering 

under other than the original illumination and viewpoint conditions. The aim of this 

thesis therefore is to develop inexpensive approaches for the synthesis of 3D surface 

textures. Few publications are available in this research area. 

We first introduce an overall framework for the synthesis of 3D surface 

textures. The framework essentially combines surface representation methods with 

2D texture synthesis algorithms to synthesise and relight new surface 

representations. Then we investigate five low-dimensional methods, namely the 3I, 

Gradient, PTM, Eigen3 and Eigen6 methods, for extracting representations from a 

set of images of the 3D surface texture sample. The surface representations can be 

relit to generate new images under arbitrary lighting directions by linear 

combinations. These methods are quantitatively assessed by comparing the original 

and relit images. The results show that the Eigen6 produces the best performance. 

We select a 2D texture synthesis algorithm which is then extended into 

multi-dimensional space to use the five surface representations as input. In this way, 

we develop five approaches for the synthesis of 3D surface textures. The synthesised 

results are compatible with computer graphics systems and can be used in real-time 

rendering applications. The five synthesis approaches are qualitatively assessed by 

employing psychophysical experiments and non-parametric statistics. The results 

show that the two low-dimensional methods, the Gradient and Eigen3, on average 

offer as good a performance as of any of the other methods and incur low 

computational cost. 
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Chapter 1 

Introduction 

1.1. Motivation 

The work described in this thesis is motivated by the desire for realistic texture 

synthesis in augmented and virtual reality applications, which play important roles in 

film and computer game industries. For example, as a commonly used technique to 

enhance realism, texture mapping normally requires an input texture of an adequate 

size. If the size is inadequate, texture synthesis techniques can be employed to 

generate a large texture using the small sample. Although repeatedly tiling the 

sample can produce a large image, notable seams and discontinuities will appear in 

the result image for many textures. The result therefore can not be perceived as a 

homogeneous texture. Figure 1.1.1 shows a simple example of the tiling effects and 

seams produced by repeating a sample image on the surface of a cubic box. Thus, 

the main purpose of texture synthesis is to synthesise a large texture image that is 

perceptually identical to the small sample for the human vision system. Recent 

texture synthesis techniques have been able to efficiently synthesise a wide range of 

real-world textures. Figure 1.1.2 shows an example; the result image is synthesised 

using the algorithm proposed in [Efros2001]. 

However, real-world textures are seldom “flat” and normally comprise rough 

surface geometry and various reflectance properties, which can produce dramatic 

effects on the appearance of the sample surfaces under varied illumination and 

viewing conditions. Figure 1.1.3 shows two example images of a 3D surface 
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texture—a piece of wallpaper illuminated from two directions. The difference is 

obvious. This presents challenges in both computer vision and computer graphics. It 

is therefore important to capture the characteristics of 3D surface textures so that 

new images illuminated from different directions can be produced. Photometric 

Stereo (PS) is one of the commonly used methods and can generate surface gradient 

and albedo maps from three images of a non-shadowed Lambertian surface  

[Woodham1981]. The surface gradient maps can be further integrated to produce a 

surface height map (surface profile). With the albedo and height or gradient maps, 

new images of a Lambertian surface under arbitrary illuminant directions can be 

generated. Figure 1.1.4 shows the surface height and albedo maps of a wallpaper 

patch.  

  

Figure 1.1.1 The tiling effects produced by mapping a texture image of an 

inadequate size using standard OpenGL functions.  On each surface of the cubic 

box, the texture is repeated four times in order to cover the whole surface. Seams 

are obvious. 
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Input sample
image

2D
Texture

Synthesis

Output result
image

Figure 1.1.2 Texture synthesis using the algorithm proposed in [Efros2001]. 

 

 

Figure 1.1.3 Two images of a 3D surface texture illuminated from different 

directions. The block arrows show the illuminant directions.  

 

A B

A

B

Albedo Height map

 

Figure 1.1.4 A 3D surface texture can be described using the surface height and 

albedo maps. 
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In recent years, texture synthesis has been extensively investigated by both 

computer vision and computer graphics communities. However, the input and output 

are normally 2D intensity images. If the subjects are 3D surface textures (such as 

brick, woven or knitted textiles, embossed wallpapers etc.), these 2D synthesis 

techniques cannot provide the information required for rendering under other than 

the original illumination and viewpoint conditions. This presents difficulties in 

realistic rendering in many augmented and virtual reality applications and has 

inspired the work described in this thesis—we wish to develop reliable and 

inexpensive methods for the synthesis of 3D surface textures.  

In the research field of 3D surface texture synthesis, few publications are 

available [Zalesny2000, Zalesny2001, Liu2001, Shum2002 and Leung2001]. The 

aim of this thesis is therefore to develop inexpensive approaches for synthesising 

and relighting 3D surface textures. The synthesised results should be compatible 

with the input requirement of computer graphics packages and modern graphics 

systems so that real-time rendering can be achieved.  

1.2. Scope of the research 

In order to explicitly describe the work in this thesis and avoid confusions, we first 

summarise and list the definitions of commonly used terms. We then introduce the 

scope of our research. 

1.2.1. Definitions of terms  

Table 1.2.1 shows the definitions of terms used in this thesis. 

Terms Definition First 

introduced 

3D surface texture Topological texture comprising 3D 

variation of surface geometry and 

reflectance 

Section 1.1 

2D texture An intensity image of the sample texture.   Section 1.2 

2D texture synthesis Synthesising a large image using a small 

intensity image of the sample texture. 

Section 1.2 
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This is identical to the term texture 

synthesis. 

3D surface texture 

synthesis 

Synthesising new texture images under 

different viewing and lighting conditions. 

The input sample data for 3D surface 

texture synthesis can be a set of intensity 

images or surface representations of the 

sample texture. 

Section 1.1 

Texture images Images produced by illuminating 3D 

surface textures 

Chapter 2 

Input sample images The intensity images used for 2D or 3D 

surface texture synthesis 

Section 1.1 

Output result images The synthesised images output by 2D or 

3D surface texture synthesis algorithms 

Section 1.1 

Photometric image 

set 

A set of images captured under varied 

illumination directions using a fixed 

camera. Also called photometric images 

Section 3.3 

Surface 

representations  

The set of representations extracted from 

a set of photometric images. They can be 

used to produce new images under 

different illumination directions. Also 

called surface relighting representations 

or representation maps. 

Section 1.2 

Relit images The images produced by relighting 

surface representations 

Section 1.3 

Table 1.2.1 Definition of terms 

1.2.2. Scope of the research 

The work described in this thesis involves the following research: 

(i) selecting and investigating suitable surface representations for the synthesis 

of 3D surface textures under arbitrary illumination directions, 
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(ii) selecting and investigating suitable 2D texture synthesis algorithms that can 

be efficiently extended to synthesise surface representations in multi-

dimensional space, and 

(iii) developing and assessing 3D texture synthesis approaches. 

 

Figure 1.2.1 shows the scope of our work described in this thesis. 

Camera

Sample

Sample
images

Extract
representations

Surface
represen-

tations

Synthesise
representations

Compare
representation

methods

Synthesised
surface

representations

Relighting

Relit images

Assess
synthesis

approaches

 

Figure 1.2.1 The scope of research in this thesis 

This thesis concentrates on synthesising 3D surface textures with varied 

illumination directions. The illumination is assumed to be unidirectional. The 

viewpoint is assumed to be fixed and vertically above the surface textures, which are 

placed in a horizontal plane. Although using computer graphics programming 

techniques or software packages can achieve the effects produced by varying 
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viewpoints and illumination simultaneously, the description and research related to 

these topics are beyond the scope of this thesis. The synthesised 3D surface textures 

are compatible with computer graphics systems and can be effectively rendered 

using linear combinations in graphics hardware. However, this implementation will 

not be described in detail in this thesis. Readers can refer to [Robb2003] and 

[Burschka2003] for the latest developments on real-time graphics programming 

techniques using modern graphics hardware. 

1.3. Thesis organisation 

This thesis consists of seven chapters. Chapter 2 provides an overview of the 

research fields related to the thesis. Based on this survey, we present a framework 

for the synthesis of 3D surface textures in chapter 3. According to the framework, 

we then investigate and select suitable surface representations and 2D texture 

synthesis algorithms in chapter 4 and chapter 5. In chapter 6, we describe and 

compare five approaches for the synthesis of 3D surface textures. Chapter 7 

summarises the work in this thesis and briefly discusses the use of synthesised 

results in computer graphics programming and software packages. 

In chapter 2, we survey three research fields: (1) 3D surface texture synthesis, 

(2) 2D texture synthesis and (3) surface representation methods for relighting. Based 

on the survey, we conclude that there are only five publications available concerning 

3D surface texture synthesis, while many techniques have been published in the 

other two research fields. Thus, we propose an overall framework for the synthesis 

of 3D surface textures in chapter 3. The framework essentially combines surface 

representation methods with 2D texture synthesis algorithms to synthesise 3D 

surface textures under arbitrary illuminant directions. 

Based on the overall framework, chapter 4 reviews the available surface 

representations and selects five inexpensive methods for investigation. We propose a 

mathematical framework for the selected five methods and then describe each 

individual method. The performances of these methods are quantitatively assessed 

by comparing relit images with original real images under multiple illumination 

directions. We analyse the assessment results and in particular discuss the problem 
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associated with a heightmap-based representation, which is obtained by integrating 

surface gradient maps. 

In chapter 5, we review the available 2D texture synthesis publications and select 

two methods based on [Wei2000] and [Efros2001] as the candidates of basic 

algorithms for 3D surface texture synthesis. We then investigate and compare the 

two methods in terms of the quality of synthesis results and computational 

complexity. The comparison shows that the algorithm based on [Efros2001] 

produces better performance. We therefore select it as our basic synthesis algorithm. 

The effects on output images produced by varying input parameters are also 

analysed. 

In chapter 6, we describe five 3D surface texture synthesis approaches that 

combine the five surface representations with the basic synthesis algorithm. We then 

perform psychophysical experiments to qualitatively assess the performances of the 

five synthesis approaches, as no ground-truth data is available for a quantitative 

comparison. 

Finally, we summarise and conclude our work described in this thesis in chapter 

7. We also discuss the simple use of synthesised representations in graphics 

programming and software packages. 

1.4. Original work 

It is believed that this thesis contains the following original work: 

1. An overall framework and five inexpensive approaches are proposed for the 

synthesis of 3D surface textures. In the literature, only five publications are 

available in this research field. This thesis, together with our previous 

publications, makes important contributions in the research field of 3D surface 

texture synthesis.  

2. In chapter 4, a mathematical framework that summarises five surface 

representation methods is proposed. This framework exclusively reveals the 

relationships between the five surface representations using mathematical 

formulas.  

3. In chapter 4, five surface representation methods are quantitatively compared. 

The comparison provides quantitative measurement for their performances in 
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representing 3D surface textures under different illumination directions. The 

problem of integrating surface gradient maps to generate surface height maps is 

also discussed. It is believed that it has not been investigated and reported 

before. 

4. In chapter 6, an assessment method based on psychophysical experiments is 

proposed to qualitatively compare the five 3D surface texture synthesis 

approaches. It is believed that very little has been published on the systematic 

qualitative assessment of texture synthesis results.  
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Chapter 2 

Literature Survey 

The purpose of this chapter is to provide an overview of the research fields relevant 

to this thesis. Three fields will be surveyed; they are: (1) 3D surface texture 

synthesis, (2) 2D texture synthesis and (3) surface representation methods for 

relighting. These research fields will be reviewed in more detail later in the thesis 

when required by the context.  

As introduced in chapter 1, 3D surface texture synthesis techniques can 

synthesise new texture images under different viewing and lighting conditions. The 

input sample data for 3D surface texture synthesis can be a set of intensity images or 

representations of the sample texture. The synthesised results can be relit using 

illumination directions and viewing angles that differ from those used in original 

sample images. Few publications are available so far in this research area. 

In contrast to 3D surface texture synthesis, the terminology 2D texture 

synthesis is exclusively used in this thesis to refer to synthesising a large image from 

a small intensity image of the sample texture. Thus, this term is equivalent to texture 

synthesis, which is commonly used in computer vision and graphics communities. In 

this thesis, we also use texture synthesis to refer to 2D texture synthesis since the 

former appeared in most relevant literature. There are many publications in this 

research area. 

 We use the terminology surface representation methods for relighting to 

refer to the techniques that can extract surface representations from a set of images 

and relight (render) these representations using illumination conditions that differ 

from those of the original. We also use the term surface relighting representations, 
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surface representations for relighting, or surface representation maps to refer to the 

extracted representations.  

2.1.  Three-dimensional surface texture synthesis  

Since the main objective of this thesis is to develop inexpensive and reliable 

approaches for the synthesis of real-world 3D surface textures, we first present a 

detailed review in this area. There are only five publications that can be classified 

into this area. They are [Zalesny2000], [Zalesny2001], [Liu2001], [Tong2002] and 

[Leung2001]. 

Zalesny and Van Gool’s work 

Zalesny and Van Gool in [Zalesny2001] present a multi-view texture model 

which can synthesise new texture images under different viewpoints. These 

synthesised images can catch the effect of foreshortening due to changing 

viewpoints. They propose a compact model that captures the first and second order 

statistics of different pixel pairs, which are named cliques [Zalesny2000]. For each 

clique type, the histogram of pixel value difference is calculated. The sample texture 

is first modelled for a single viewpoint, typically a fronto-parallel one. The result 

image is initialised by an independent noise with pixel values uniformly distributed 

in the range of sample image. Then, different clique types are collected to form a 

neighbourhood structure. In order to synthesis a texture image with a novel 

viewpoint, the neighbourhood structure is deformed by contracting and stretching 

according to the angle between the two views. Clique types in the deformed 

neighbourhood structure are used to extract new statistical parameters—difference 

histograms—from the sample image with the desired viewpoint. Finally, these 

statistical parameters are combined with the deformed neighbourhood structure to 

generate the result image. During synthesis process, statistics of each clique type in 

the neighbourhood structure are forced to keep consistent between the result image 

and the sample image.  

Their work did produce a compact multiview texture model that can capture 

viewpoint dependencies in the appearance of textures. They do not however, 

consider varying illumination which is the focus of this thesis. 

Leung and Malik’s work  
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The earliest publication that considers varying illumination in 3D surface 

texture synthesis probably is [Leung2001], in which Leung and Malik use 3D 

textons to represent the visual appearance of real-world surface textures. They first  

apply a set of linear Gaussian derivative filters on 20 images of a sample 3D surface 

texture with different viewing/lighting conditions (from CUReT database 

[Dana1999a]). Then they generate 3D textons that associate with appearance vectors 

containing the outputs of the filters. Each pixel in any sample image can be labelled 

with a 3D texton that associates with an appearance vector in a 960 dimensional 

space. The 3D textons can be used to reconstruct novel images under varying 

lighting/viewing conditions. Although they did mention that 3D textons can be used 

in the synthesis of 3D surface textures by modifying the 2D texture synthesis 

algorithm proposed in [Efros1999], the computation is very expensive because 

synthesis has to be performed in the 960 dimensional space. Furthermore, the 

algorithm in [Efros1999] uses Sum of Square Differences (SSD) as the similarity 

measurement, which produces large errors when matching is performed in a high-

dimensional space. Few synthesis results are shown in their paper.  

Liu et. al. ’s work 

Liu et. al. in [Liu2001] also exploit the CUReT database to develop a method 

for generating Bidirectional Texture Functions (BTFs). They firstly select and 

register four sample images from the CUReT image database, and then apply a 

shape-from-shading algorithm to recover the sample surface height and albedo maps 

by assuming the Lambertian reflectance. These are used to synthesise a larger height 

map and image templates by applying the 2D texture synthesis algorithm proposed 

in [Efros1999]. In order to produce the final image with a novel viewing/lighting 

condition, a reference image with the same viewing/lighting condition is selected 

from the BTF database and transformed into a grey scale image with the histogram 

equalised to that of the template image. Finally, the result image is synthesised by 

matching and copying blocks between the sample reference image and the template 

image.  

Several limitations exist in Liu et. al. ’s method [Liu2001]. Firstly, the 

method requires the registration of images because images in CUReT database are 

not registered. This is never a trivial task and can not guarantee every texture in the 
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database can be successfully registered. Secondly, they assume the Lambertian 

reflectance on the surface texture in order to perform shape-from-shading. 

Consequently, some real-world textures with non-Lambertian reflectance can not be 

used as input due to this assumption. Furthermore, applying shape-from-shading 

assumes integratibility on the surface, which does not always hold for real-world 

surfaces [Tong2002]. Finally, a sample reference image has to be used to provide 

pixel values for the output synthesised BTFs with the desired viewing and lighting 

conditions. This requires additional computation and memory space to store the 

sample reference image. Nevertheless, this paper shows realistic rendering results 

for Lambertian surfaces and is the most relevant to our work described in this thesis. 

We show the flow chart of this work in Figure 2.1.1. 

Sam ple BTF

4 registered
200x200
im ages

Recovered
height m ap
by shape
from
shading

Expand by non-param eter
sam pling &  render as required

lighting/viewing

512x512
template im age

A reference
im age
(color)

select the
nearest or by
interpolating
from sam ple
BTFs with

required
viewing/light

ing

 M atch the two
blocks by m easure
SSD

Final im age
512x512

Copy the
block from

the reference
image to the
final image

 

Figure 2.1.1 The flowchart of the method introduced in [Liu2001] 

Tong et. al.’s work 
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Later work by Tong et. al. can synthesise BTFs on arbitrary surfaces by 

using surface textons [Tong2002]. Surface textons are defined by linear 

combinations of appearance vectors associated with 3D textons [Leung2001]. Tong 

et. al. suggest in [Tong2002] that the method proposed by [Liu2001] is not suitable 

for the synthesis of BTFs on arbitrary surfaces, because it is time consuming to 

reconstruct/render the appearance from the recovered sample geometry for all 

lighting and viewing settings. In addition, they suggest that it is impractical to 

directly synthesise 3D textons and reconstruct BTFs [Leung2001] on the surface of a 

3D model because of the huge memory space required for storing appearance 

vectors. Thus, they pre-calculate the dot product for each pair of appearance vectors 

and store the results in a matrix. This matrix is then used for searching the best-

matched pixel in sample BTFs for each vertex while the appearance vectors are 

discarded. Nevertheless, they still apply a fast searching algorithm for acceleration. 

The typical time consumed by their algorithm is 45 minutes for generating 3D 

textons and 21 minutes for synthesising a 96×96 image with 250k vertices on a 

700Mhz Pentium III.  

To summarise:  

We have reviewed five available publications related to 3D surface texture 

synthesis. Zalesny and Van Gool present a multi-view texture model which can 

synthesise new texture images under different viewpoints with a fixed illumination 

direction [Zalesny2000 & Zalesny2001]. Leung and Malik propose the use of 3D 

textons to synthesise new images under arbitrary viewpoints and illuminations with 

expensive computation [Leung2001]. Liu et. al. apply a shape-from-shading 

technique to recover the surface heightmap under the Lambertian assumption and 

then use it for the synthesis of BTFs [Liu2001]. In later work, Tong et. al. introduce 

a method to synthesise BTFs on arbitrary surfaces by using 3D textons [Tong2002]. 

However, these techniques are computationally complex. 

In contrast to previous work, our main objective in this thesis is to develop 

inexpensive approaches for the synthesis of 3D surface textures under varying 

illumination directions. We wish the synthesised texture representations to be 

capable of being loaded into graphics hardware and rendered in real-time on a 

modern desktop personal computer.   
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2.2.  Two-dimensional texture synthesis 

Although very few publications are available in the research field of 3D surface 

texture synthesis, many 2D texture synthesis techniques have been published during 

the past two decades. This section presents a brief survey of these 2D synthesis 

techniques. We will further review the relevant publications in more detail in chapter 

5. 

In [Xu2001], Xu et. al. present a short review on recent 2D texture synthesis 

approaches based on the underlying stochastic mechanisms employed by the 

sampling algorithms. Following their work, we also divide available publications on 

2D texture synthesis into two groups according to sampling strategies. The first 

group employs global sampling strategies, which decide result pixel values by 

matching global statistics between the sample and result images in feature space. 

The second group uses local sampling strategies, which decide result pixel values by 

matching local statistics. Many different techniques have been used by the two 

sampling strategies. These techniques produce significantly different synthesis 

results and synthesis speeds. In later chapters, we will show that the taxonomy of 2D 

texture synthesis literature is related to the development of inexpensive approaches 

for 3D surface texture synthesis.  

2.2.1. Texture synthesis methods based on global sampling 

strategies 

A global sampling strategy means a texture synthesis algorithm generates result 

pixel values by matching global statistics between the sample and result images in 

feature space. The feature space is normally the multi-dimensional space spanned by 

feature images, which are produced by imposing a set of filters on the sample image; 

it may also be the 1D real space in which the pixel intensities of the sample image 

lies. This sampling strategy is called ensemble sampling in [Xu2001].  

Two-dimensional texture synthesis is highly related to modelling a sample 

texture in terms of texture perception, which was pioneered by Julesz’s conjecture. 

Julesz suggested that the Nth-order joint empirical densities of image pixels, e.g. the 

co-occurrence statistics for intensities, can statistically characterise a sample texture 
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[Julesz1962]. This has promoted a great deal of research in texture synthesis that 

employs global sampling strategies. These texture synthesis methods synthesise an 

output image according to statistical models. The models are derived from the 

sample image and employ a set of statistics. The output image is generated using the 

same statistics as those of the sample.  

The majority of texture synthesis approaches employing global sampling 

strategies combine the use of statistical models with a bank of filters and 

multiresolution image representations. The multiresolution representations can 

capture long-range and nonlinear spatial interactions and therefore reduce the 

computational complexity. The sample image is first transformed into a 

multiresolution representation, and then the result image is synthesised by matching 

statistics across all resolutions. Heeger and Bergen use the steering pyramid and the 

Laplacian pyramid for texture synthesis by matching histograms between the sample 

and result pyramids [Heeger1995]. Their method fails to synthesise textures with 

distinguishable features, e.g. highly structured textures. De Bonet uses the Laplacian 

pyramid and analyses the input texture by computing the joint occurrence across 

multiple resolutions in the feature space [De Bonet1997]; the output texture is 

generated by sampling successive spatial frequency bands from the input texture, 

conditioned on the similar joint occurrence of features at all lower spatial 

frequencies. Van Nevel develops a texture synthesis method that relies on matching 

the first and second order statistics of wavelet subbands [Van Nevel 1998]. Based on 

joint statistics of complex wavelet coefficients in the multiresolution framework, 

Portilar and Simoncelli propose a parametric texture model that can synthesise a 

wide range of artificial and natural textures [Portilla2000]. In [Copeland2001], 

Copeland et. al. use the gray-level co-occurrence (GLC) model coupled with 

multiresolution data structure for texture synthesis. They also employed ten human 

observers to test the correlation between the synthesis results and their texture 

similarity metric by performing psychophysical experiments. In [Campisi2002], the 

Circular Harmonic Functions are used to develop a mutiresolution approach for 

texture synthesis. It essentially extends previous work in [Jacovitti1998] by using 

multiresolution decomposition.  
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There are also several texture synthesis methods that employ statistical 

models derived from filtered images without explicitly using multiresolution image 

representations. Eom proposes a 2D moving average (MA) model for texture 

synthesis and analysis [Eom1998], and the result image is generated in frequency 

domain by using estimated parameters of the 2D MA model. Jacovitti et. al. use 

hard-limited Gaussian process to develop a twin stage texture synthesis-by-analysis 

[Jacovitti1998]. Zhu et. al. present a definition of texture as the Julesz ensemble, 

which is the set of all images sharing identical statistics, and texture synthesis is 

achieved by sampling the ensemble using a Markov chain Monte Carlo algorithm 

[Zhu2000]. Histograms of feature images are employed in their approach. 

To summarise: 

For 2D texture synthesis, a global sampling strategy decides result pixel 

values by matching global statistics between the sample and result images in feature 

space. Among 2D texture synthesis approaches employing global sampling 

strategies, the majority apply multiresolution decomposition techniques and impose 

filters in multiresolution domain to generate the statistical descriptions of the sample 

image. The synthesis is then performed by matching statistics across multiple 

resolutions in feature space  [Heeger1995, De Bonet1997, Van Nevel1998, 

Portilla2000, Copeland2001 & Campisi2002]. Only few methods directly apply a 

bank of filters on the sample image without explicitly using multiresolution 

decomposition; the result image of these methods is synthesised by matching 

statistics in feature space [Eom1998, Jacovitti1998 & Zhu2000]. Table 2.2.1 shows 

the summary of typical texture synthesis methods employing global sampling 

strategies. 
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Table 2.2.1Characteristics of typical global sampling methods 

Reference Global statistics Number of 
pyramid 
levels 

Iterat-
ions 

Complexity/ 
time-

consumed/ 
speed 

[Heeger1995] Marginal histograms 4 5 Faster than 
[Portilla2000] 

[DeBonet1997] Joint occurrence of 
features 

Depends on 
the sample 
size 

1 Slower than 
[Heeger1995] 

[Eom1998] Moving average 
model parameters, 
elongation and 
orientation 
parameters 

1 1 unspecified 

[Nevel1998] Mean, histograms 
and the correlation 
matrix 

3 1 2 minutes for 
400 largest 
entries in the 
correlation 
matrix using a 
Sun UltraSparc

[Portilla2000] Marginal Statistics, 
coefficient 
correlation,  
magnitude 
correlation and 
cross-scale phase 
statistics 

3 50 20 minutes for 
a 256x256 
image using 
500Mhz 
Pentium 
workstation 

[Zhu2000] Marginal histograms 
of filtered responses 

Unspecified 20 to 100 Slower than 
[Portilla2000] 
according to 
[Xu2001] 

[Copeland2001] Co-occurrence 
matrix 

3 5  
(spin-flip 
algorithm) 

2.5 minutes 
using a Silicon 
Graphics Indy 
with a IP22 
processor 

[Campisi2002] First and second 
order statistics  

3 to 7 2 or 3 Computational 
complexity 
depends on the 
number of 
filters and 
iterations. 
Time-
consumed is 
not specified. 
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2.2.2. Texture synthesis methods based on local sampling strategies 

A local sampling strategy means the texture synthesis algorithm generates result 

pixel values solely by using local information in the sample and result images. A 

typical example is to compute local conditional distributions using certain 

neighbourhoods and synthesise pixels in the result image in raster order. The 

majority of texture synthesis methods with local sampling strategies make certain 

statistical assumptions. We further divide these synthesis approaches into two sub-

classes. One sub-class explicitly uses parametric statistical models for the synthesis. 

The other uses non-parametric methods. 

Representative texture synthesis approaches using local sampling strategies 

and parametric models include [Cross1983, Popat1993, Bader1995, Zhu1998, 

Zhang1998b and Kokaram2002]. These methods first estimate the parameters of the 

assumed statistical models for the input sample image, and then synthesise the result 

image using the statistical models. Cross and Jain use Markov random field models 

to represent the sample image [Cross1983]. Popat and Picard present a method that 

first performs clustering analysis on the sample data and then calculates the 

probability mass function using Gaussian parameters for texture synthesis 

[Popat1993]. Bader et. al. propose the use of scalable data parallel algorithms for the 

2D texture synthesis using Gibbs random fields [Bader1995]. Zhu et. al. develop a 

Markov random field model based on feature images, which are produced by a bank 

of filters with large image lattice; the result image is synthesised by using a Gibbs 

sampler [Zhu1998].  Zhang et. al. exploit the wavelet autoregressive model and 

radial basis functions in a multiresolution domain for texture synthesis 

[Zhang1998b]. Kokaram estimates the parameters of 2D autoregressive models and 

uses the models to synthesise missing gaps in images [Kokaram2002].  

Non-parameteric texture synthesis approaches have the advantage that the 

estimation of parameters in statistical models is not necessary. Thus, the 

computational complexity is normally lower compared with their parametric 

counterparts. In particular, the method proposed by Efros and Leung is widely used 
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in texture synthesis research [Efros1999]1. It assumes a Markov random field model 

and calculates the conditional distribution of a pixel given all its neighbours by 

querying the sample image and finding all similar neighbourhoods. It further 

inspired the work in [Wei2000], which improved the performance of the original 

algorithm by employing a multiresolution image representation and an accelerating 

algorithm. The methods in these two publications can produce excellent results 

while simplifying the whole synthesis process. Based on these two algorithms, 

several texture synthesis approaches have been developed and applied in different 

areas [Hertzmann2001, Efros2001, Parada2001, Ashikhmin2001, Harrison2001, 

Tonietto2002, Zelinka2002, Cohen2003, Zhang2003 and Nealen2003].  

Other typical non-parametric approaches unrelated to the two algorithms 

proposed in [Efros1999 and Wei2000] include [Paget1998, Ashlock1999, Bar-

Joseph2001, Xu2001, Liang2001 and Gousseau2002]. In [Paget1998], Paget and 

Longstaff propose a non-causal, non-parametric and multiscale Markov random field 

model for 2D texture synthesis; they employ the Parzen-window density to estimate 

the frequency of occurrence. In  [Ashlock1999], generic algorithms are used to track 

the basic texture elements and produce a non-parametric partially ordered Markov 

random field model for texture synthesis. In [Bar-Joseph2001], Bar-Joseph et. al.  

construct a tree representation of the input signal in multiresolution domain and 

generate a new tree representation by learning and sampling the conditional 

probabilities of the paths in the original. Their method can synthesise static and 

time-varying textures. In [Xu2001], a patch-pasting algorithm is introduced for the 

fast texture synthesis. Later work in [Liang2001] extends it by sampling patches 

according to a non-parametric estimation of the local conditional MRF density 

function; the performance is also improved. More recently, Gousseau presents a 

texture synthesis method by sampling from level sets [Gousseau2002]. 

To summarise: 

Texture synthesis approaches based on local sampling strategies have 

attracted much attention in recent years. Several parametric methods have been 

proposed to firstly model the sample image and then synthesise the result using the 

                                                 
1  Note: in [Efros2001], it has been pointed that a nearly identical algorithm was proposed in 

[Garber1981] but discarded due to its then computational intractability. 
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parameters [Popat1993, Bader1995, Zhu1998, Zhang1998 and Kokaram2002]. 

However, many researchers employ non-parametric methods that are capable of 

producing promising results with less computation [Efros1999, Wei2000, 

Hertzmann2001, Efros2001, Parada2001, Ashikhmin2001, Tonietto2002, Bar-

Joseph2001, Xu2001, Liang2001, Gousseau2002, Zelinka2002, Cohen2003 and 

Nealen2003]. In particular, the algorithms in [Efros1999 and Wei2000] have 

promoted further work in different research directions.  

2.2.3. Summary 

In section 2.2.1 and 2.2.2, we reviewed recent publications on 2D texture synthesis. 

These publications can be divided into two classes depending on whether global or 

local sampling strategies are used. Most texture synthesis approaches with global 

sampling strategies synthesise a result image by matching global statistics in feature 

space and multiresolution domain.  Among texture synthesis methods with local 

sampling strategies, both parametric models and non-parametric models can be used. 

Recent publications suggest that some non-parametric texture synthesis methods can 

produce good synthesis results with less computation.  

2.3.  Surface representation methods for relighting 

As introduced in chapter 1, varying the illumination directions can produce 

significant effects on images of a 3D surface texture. These images can exhibit 

remarkable differences, which present challenges in both computer vision and 

computer graphics. It is therefore important to extract surface representations of the 

sample texture under arbitrary illumination directions. Once the representations are 

available, they can be relit to generate new images with arbitrary lighting conditions. 

This section briefly reviews relevant publications in this research area, which 

involves reflectance distribution modelling, model-based and image-based relighting 

(rendering) techniques.  
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2.3.1. Extracting surface relighting representations using 

reflectance models 

The most accurate surface relighting representations can be described by 

Bidirectional Reflectance Distribution Functions (BRDF) [Nicodemus1977]. With 

full BRDF data, images of the sample surface or object under arbitrary illumination 

can be produced. However, full BRDF data are difficult to obtain because the 

measurement of BRDF is very expensive and time-consuming. Various local-based 

reflectance models have been used in computer vision and computer graphics to 

describe how lights are reflected from a surface and reach to the observer. 

Commonly used models include the Lambertian model, the Torrance-Sparrow model 

[Torrance1967], the Phong model [Phong1975], the Cook-Torrance model 

[Cook1982], the Nayar model [Nayar1991] and other models [He1991 and 

Oren1994]. Obviously, extracting surface representations using reflectance models is 

equivalent to estimating the models’ parameters, which normally represent surface 

geometric and material properties. However, these models can only be seen as 

approximations of the ground-truth, as the physics of light reflection involves 

extremely complicated nonlinear processes.  

Methods for estimating the parameters of reflectance models has been 

extensively investigated in recent years.  Photometric stereo is one of the major 

techniques used to obtain surface geometric and material properties [Woodham1981, 

Horn1989, Nayar1990, Kay1995, Rushmier1997, Saito1996 and Lin1999]. This 

approach requires a fixed camera, several lighting conditions and a static object. 

Traditional photometric stereo methods assume the Lambertian reflectance function 

and use three images to obtain surface gradient maps and an albedo map 

[Woodham1981 and Horn1989]. If the sample surface exhibits both diffuse and 

specular components, more complex reflectance models are required. Consequently, 

more images are needed in order to estimate the parameters [Nayar1990, Kay1995, 

Rushmier1997, Saito1996 and Lin1999]. By firstly separating diffuse and specular 

components, both diffuse and specular parameters can be estimated using 

photometric stereo techniques. The combined use of range and intensity data is 

another popular technique that can be used to extract surface relighting 

representations from existed reflectance models [Ikeuchi1991, Lu1995, Sato1997, 
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Ramamoorthi2001 and Nishino2001]. For example, Sato et. al. use multiple range 

images to recover surface shape and then estimate reflectance parameters of the 

Torrance-Sparrow model [Sato1997]. Polarisation techniques can also be use to 

separate reflection components so that surface representations can be estimated 

[Nayar1996].  

The surface geometric representations estimated from reflectance models are 

usually expressed as surface normals or surface gradient maps. Extracting surface 

normals from an intensity image is also the aim of shape-from-shading [Horn1989]. 

Integration techniques can be further used to obtain the depth information or the 

height map from surface normals [Klette1996]. Both local and global integration 

approaches have been proposed in the past [Coleman1982 and Frankot1988]. Global 

approaches are more robust to noise than local approaches [Gullón2002].  

2.3.2. Extracting surface relighting representations using other 

techniques 

There are also a great number of other techniques that can be used to obtain surface 

relighting representations without directly employing reflectance models. The 

surface relighting representations derived from these techniques are not, in general, 

geometrical and material properties of the surface.  

Image-based relighting (rendering) techniques can generate realistic images 

from pre-recorded images without using complex rendering processes as in 

geometry-based computer graphics [Kang1997, McMillan1999, Koudelka2001, 

Lin2002, Matusik2002 and Wong2002]. In [Kang1997], Kang presents a survey on 

early image-based rendering techniques. In [Matusik2002], Matusik et. al. introduce 

a system that can acquire and display high quality graphical models of objects using 

opacity hulls; both effects produced by changing view and illumination conditions 

are considered.  In [Wong2002], Wong et. al. define the plenoptic illumination 

function that can relight images while supporting view interpolations. However, 

many image-based rendering techniques can only synthesise new images under 

different viewpoints, while the illumination remains fixed [Chen1995, Levoy1996 

and Gortler1996].  
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 The representation of varied BRDF on a surface requires numerous sample 

images. Researchers have developed several methods to approximate this model by 

projecting these images into general base functions so that the representation is more 

compact for practical applications [Lalonde1997, Lafortune1997 and 

McAllister2002]. Lalonde and Fournier use wavelet coefficients to represent large 

anisotropic BRDF data sets [Lalonde1997]. The Lafortune representation consists of 

a diffuse component and several specular lobes which are generalised Phong lobes 

[Lafortune1997]. McAllister et. al. employ the Lafortune representation for 

rendering the Spatial BRDFs using register combiners in an Navidia Geforce 4 

graphics card [McAllister2002]. 

Eigen-based methods are broadly used to extract surface relighting 

representation [Epstein1995, Zhang1998a, Georghiades1999 and Nishino2001]. 

These methods apply principal component analysis (PCA) or singular value 

decomposition (SVD) on a set of pre-recorded images and extract base images as the 

surface relighting representations. New images under arbitrary illumination 

directions can be generated by linearly combining these base images. Obviously, 

eigen-based approaches also belong to the class of image-based techniques. In 

addition, they can be used in pattern recognition and image impression 

[Nishino2001, Turk1991 and Belhumeur1997].  

In the literature regarding surface representation methods, many other 

mathematical models are also exploited to express the sample images as linear or 

nonlinear combinations of a set of base functions, such as Fourier Series 

[Huang1984 and McGunnigle2001], spherical harmonics [Basri2001 and 

Ramamoorthi2001] and steering functions [Ashikhmin2002]. These base functions 

normally form base images and can be used to synthesise new images under 

arbitrary illumination conditions. 

2.3.3. Extracting 3D surface texture representations for relighting 

Rough surface textures can be seen as a finer scale geometric description with 

regular or random components. In theory, methods surveyed in section 2.3.1 and 

2.3.2 can all be used to extract relighting representations of 3D surface textures. 
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Nevertheless, researchers have proposed special methods to represent 3D surface 

textures under arbitrary illumination directions. 

Representing the appearance of 3D surface textures only received attention in 

recent years [Koenderink1996, Stavridi1997, Dana1999a, Dana1999b, Leung2001, 

Malzbender2001 and Ashikhmin2002]. In [Dana1999a], Dana et. al. define 

Bidirectional Texture Function (BTF) that can represent 3D surface textures under 

varied illumination and viewing directions; they construct the CUReT database that 

contains many images from over 60 samples. Dana and Nayar further investigate 

three BTF models, including the histogram model, the correlation model and PCA 

models [Dana1999b]. Leung and Malik exploit the CUReT database and employ a 

bank of 48 filters coupled with clustering analysis to derive 3D textons, which can 

be used to represent and recognise the visual appearance of 3D surface textures 

[Leung2001].  Malzbender et. al. propose a quadratic lighting model that uses 

Polynomial Texture Maps(PTM) to reconstruct the surface colour under varying 

lighting conditions [Malzbender2001]. Ashikhmin uses a set of steering basis 

functions for relighting bumpy surfaces [Ashikhmin2001].  

2.3.4. Summary  

We have presented a brief review of methods that can be used to extract surface 

relighting representations from a set of pre-recorded images. As the most compact 

representations, surface geometric and material properties can be obtained by 

estimating the parameters of various locally-based reflectance models  

[Woodham1981, Horn1989, Nayar1990, Kay1995, Rushmier1997, Saito1996, 

Lin1999, Ikeuchi1991, Lu1995, Sato1997, Ramamoorthi2001 and Nishino2001]. 

They can then be relit using corresponding reflectance models to generate new 

images under different illumination conditions. Image-based relighting/rendering are 

also commonly used techniques that can convert the pre-recorded images into 

relighting representations [Kang1997, McMillan1999, Koudelka2001, Lin2002, 

Matusik2002 and Wong2002]. Other methods employ mathematical models to 

express a set of sample images using linear or nonlinear combinations of basis 

functions, such as eigen-based methods [Epstein1995, Zhang1998a, 
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Georghiades1999, and Nishino2001], Fourier serious [Huang1984] and spherical 

harmonics [Basri2001]. 

In recent years, special interest has been given to the research into 

representing the appearance of 3D surface textures. Several methods have been 

proposed and shown great promise in computer vision and computer graphics 

[Koenderink1996, Stavridi1997, Dana1999a, Dana1999b, Leung2001, 

Malzbender2001 and Ashikhmin2002]. 

2.4.  Conclusion 

This chapter has briefly reviewed the related research fields to this thesis. These 

comprise the literature on: 

(1) 3D surface texture synthesis approaches, 

(2) 2D texture synthesis approaches, and 

(3) surface representation methods for relighting. 

Based on this survey, we conclude that very few publications are available regarding 

3D surface texture synthesis, while there are a great number of methods in the fields 

of 2D texture synthesis and the extraction of surface representations for relighting.  

 Among the 3D surface texture synthesis approaches, Zalesny and Van Gool’s 

work can only synthesise new images with varied viewpoints, while the illumination 

direction is fixed [Zalesny2000 and Zalesny2001]. Liu et. al. use a 2D texture 

synthesis algorithm based on [Efros1999] and Lambertian surface representations 

for the synthesis of BTFs [Dana1999a]; In [Tong2002] and [Leung2001], a 2D 

texture synthesis algorithm based on [Efros1999] and the 3D texton representations 

are combined for the synthesis of BTFs. However, these methods require expensive 

computation. 

 In contrast, our main objective in this thesis is to develop inexpensive 

approaches for the synthesis and relighting of 3D surface textures.  In next chapter, 

we will introduce a basic framework that can combine 2D synthesis approaches with 

surface representation methods in a methodical manner to synthesise new texture 

images under arbitrary illumination directions. 
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Chapter 3 

Framework 

3.1. Introduction 

The goal of this thesis is to develop inexpensive approaches for synthesis and 

relighting of 3D surface textures. In chapter 2, we presented a survey and showed 

that few publications are available regarding 3D surface texture synthesis. However, 

many surface representation techniques and 2D texture synthesis methods have been 

published in recent years. The aim of this chapter is therefore to propose an overall 

framework for the synthesis and relighting of 3D surface textures. The framework 

will be capable of combining 2D texture synthesis methods with surface 

representation techniques in a methodical manner. Based on this framework, we will 

define the data environment that we need for all experiments in the thesis.  

The overall framework comprises three parts: 

1. extraction of a 3D surface representation from multiple images of the  

texture sample; 

2. use of the representation to synthesise a description of a larger area of the 

surface texture; and 

3. rendering (or relighting) of the synthesised surface representation 

according to a specified set of lighting conditions. 

For assessment purposes, we employ a set of images selected from the 

PhoTex database [McGunnigle2001].  The database contains many images per 
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texture that have been captured under varied illumination directions. These images 

form the basic data environment for this thesis.  

The chapter is organised as follows. Section 3.2 introduces the framework. 

Section 3.3 describes the data environment that we use for assessment. Finally we 

summarise the content of the whole chapter in section 3.4. 

3.2. A framework for the synthesis of 3D surface textures 

In this section, we introduce the overall framework for the synthesis of 3D surface 

textures.  

3.2.1. Framework 

The synthesis of 3D surface textures naturally deals with more information than its 

2D counterpart. The latter requires consistent texture patterns to be generated in a 

single image that has no perceptual difference from the original. Synthesis is 

therefore performed in an R1 (monochrome) or R3 (colour) space. In contrast, 3D 

surface texture synthesis either implicitly or explicitly requires generation of surface 

geometric information and reflectance properties.  A single sample image, which is 

used as input in 2D texture synthesis, does not normally provide enough information 

regarding surface topology and reflectance. Thus we have to employ multiple 

images (or their representations) of the sample 3D surface texture, which contain 

enough information regarding geometric and reflectance properties as the input data.  

Furthermore, we would like the sample image data set to be captured in an 

inexpensive way, i.e. using off-the-shelf digital cameras, and the synthesis results to 

be capable of being rendered in real-time on current desktop machines.   

Our main goal is to develop inexpensive approaches for the synthesis and 

relighting of 3D surface texture. However, the original image set is normally of large 

dimension. It is impractical to directly synthesise the original image set in a large 

dimensional space, because the time consumed by texture synthesis algorithms 

increases linearly with the dimensionality of input sample vectors 

[Xin2002][Efros1999][Turk2001]. On the other hand, surface representation 

techniques can be used to convert the original image set into relighting 

representations of low dimension. For example, Malzbender et. al. used a method to 
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convert 50 images into six Polynomial Texture Maps [Malzbender2001]. A PCA-

based method suggests 25 ±  eigenimages are sufficient to represent arbitrary 

lighting for the Lambertian and specular lobe although complex reflectance will 

increase the dimensionality [Epstein1995]. Thus, 3D surface texture synthesis can 

use the representations of the sample texture which are of lower dimension as input.  

Therefore, our framework for the synthesis of 3D surface textures comprises 3 

stages: 

Stage 1: Extraction of the 3D surface representation 

The first stage is to extract a suitable relighting representation of the sample 3D 

surface texture.  Surface representation (i.e. image-based relighting) methods can be 

applied to a set of images captured under different illumination directions. The 

representation should be of a low dimension and preferably capable of per-pixel-

rendering using a linear combination, which requires less computation and is 

compatible with modern graphics systems. Many techniques may be used for this 

stage, as reviewed in chapter 2.  A simple example is that we may generate two 

surface gradient maps and an albedo map by applying traditional photometric stereo 

techniques [Woodham1981] and use them to represent a Lambertian surface. Thus, 

each pixel location will be represented by a multi-dimension vector. 

Stage 2: Synthesis of the 3D surface representation 

In the second stage, we need to select and modify a 2D texture synthesis 

algorithm so that it can use multi-dimensional vectors as input and perform the 

synthesis in Rn space, where n is the dimensionality of the surface representation. In 

the case of a Lambertian surface, we can use two surface gradient maps , 

and an albedo map  to represent the sample 3D surface texture; the 

synthesis will take the three dimensional vector 

),( yxp

),( yxq ),( yxal

)),( ),,( ),,(( yxalyxqyxpV = as 

input, where  is the pixel co-ordinate. ),( yx

During the synthesis process, it is important to preserve the correlation 

between representation maps. Suppose we are synthesising surface gradient and 

albedo maps and the pixel values in the result representations originate from those in 

the samples. At a pixel location ),( 00 yx ′′  in the result map, the surface gradient 

values ),( 00 yxp ′′ , and albedo value ),( 00 yxq ′′ ),( 00 yxal ′′  must derive from the sample 
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surface gradients ,  and albedo  at the same location  

on all input sample maps.  

),( 00 yxp ),( 00 yxq ),( 00 yxal

),( 00 yx

Stage 3: relighting  

This is the final stage of the overall framework. We relight the synthesised 

representations using a specified set of lighting conditions to produce desired texture 

images. Relighting can be seen as an inverse process to the extraction of the 

representation maps.  Recall the previous example. Since we extract surface gradient 

and albedo maps using the Lambertion reflectance model, the relighting will use the 

same model as well. 

Figure 3.2.1 illustrates the overall framework. 

Sample texture
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Extract representation m
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Synthesis
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representation maps
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Large  texture images under
different lighting/viewing

settings

...
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Figure 3.2.1 The overall framework for the synthesis of 3D surface textures 

3.2.2. An example: the approach of [Liu2001] 

Previous work on 3D surface texture synthesis can be represented within the 

proposed framework. We present an example by using the method introduced in 

[Liu2001].  

Shum and his colleagues [Liu2001] exploited the CURet database to develop 

a method for the synthesis of Bi-directional Texture Functions. In the first stage, 

they applied a shape-from-shading algorithm to recover sample surface height and 

albedo maps under the assumption of Lambertian reflectance. Next, the 2D texture 

synthesis algorithm proposed in [Efros1999] is used to produce a large height map. 

In the final (relighting) stage, the synthesised height map is rendered to generate 

image templates. A reference image with desired lighting/viewing conditions is 

selected from the sample BTFs.  The result image is obtained by matching and 
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copying blocks between template images and the reference sample images.  Figure 

3.2.2 shows how this method relates to our framework.  
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Figure 3.2.2 The method introduced in [Liu2001] can be represent within our 

framework.  

3.2.3. Discussion 

It should be noted that we could use many alternative techniques in different stages 

of the framework. In the first stage, many methods are available to directly obtain 

relighting representations of the sample surface (without applying image-based 

techniques) [Rushmiere1998]. For example, 3D surface geometry can be acquired by 

using a 3D scanner; BRDF data of the sample texture might be measured although it 

is particularly difficult. Once we have the sample geometry and BRDF data, we can 

synthesise new geometry and corresponding BRDF data for a large surface area. 

Then the illumination techniques may be applied to produce the final images. 
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3.3. The image data environment for the thesis 

According to the proposed framework, we firstly need to extract a suitable 

representation of the sample texture from a set of pre-recorded images. This section 

will therefore introduce the image data sets that we will use throughout the thesis.  

In this thesis, we use a set of images selected from the PhoTex database 

(http://www.cee.hw.ac.uk/texturelab/database/photex/). The database contains many 

rough surface texture samples. For each texture sample, many images were captured 

using a fixed camera (a Vosskühler CCD 1300LN) while the rough surface was 

illuminated from various directions. Figure 3.3.1 shows the experimental set-up. The 

origin of the co-ordinate is at the centre of the sample surface. The camera is 

perpendicular to the sample surface, which is globally flat and lies in the x-y plane.  

The camera’s line of sight (axis) overlaps with the z axis. Thus, the illuminant 

direction is defined by a slant angle and a tilt angle. Slant is the angle between the z 

axis and the illuminant vector; tilt is the angle between the x axis and the vector 

produced by projecting the illuminant vector onto the x-y plane. More details about 

the PhoTex database can be found on its website. 

All images in the database are monochromatic with 1280x1024 resolution.  

Each pixel is stored in 12 bits. We call the images in the database photometric 

images, where the term photometric is in the context of photometric stereo: i.e. 

inferring information about a static scene by altering the lighting conditions 

[Woodham1981]. With image data sets selected from this database, surface 

representations can be extracted using various methods.  
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Figure 3.3.1 The imaging set-up  and definitions of the slant and tilt angle.  

We select image data sets according to two criteria. One is that the sample 

should comprise suitable granularity. Obviously, surface appearance can only be 

described by texture at certain scales [Dana1999a]. Large granularity in the sample 

tends to be perceived as individual elements. Suppose we are interested in the 

texture of rough rock surface. We would like the captured surface to cover a large 

area with small granularity on the rock. It makes no sense to focus on a tiny surface 

patch that has large granularity in the image. Thus, if original images in the database 

contain large granularity, it may be necessary to downsample. The other criterion is 

that selected texture types should cover a wide range. This is especially important if 

we want to evaluate our methods on real textures. The selected textures should 

include: 

1. rough and smooth surfaces, 

2. glossy and matte surfaces,   

3. non-shadowing and shadowing surfaces, and 

4. near-regular and stochastic patterns. 

In Appendix A, we show sample images of all the selected textures.  
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3.4. Conclusion 

In this chapter, we proposed a practical framework for the synthesis of 3D surface 

textures and introduced the image data environment for the thesis. The framework 

can combine surface representation techniques and 2D texture synthesis methods in 

a methodical manner to synthesise 3D surface textures. It comprises three stages: the 

first stage converts a set of pre-recorded images into a surface representation of a 

lower dimension; the second stage employs a 2D texture synthesis algorithm and 

extends it to Rn space; the final stage renders the synthesised representations 

according to a set of lighting conditions. Many surface representation techniques and 

2D texture synthesis methods can be used in the framework.  

Based on the framework, we introduced the image data environment used for 

all experiments in this thesis. We exploit the PhoTex database and select image data 

sets according to two criteria: the granularity and the need for a range of texture 

types.  
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Chapter 4 

Surface Texture Representations for Relighting  

4.1. Introduction 

In chapter 3, we proposed a framework for the synthesis and relighting of 3D surface 

textures. The framework can combine 2D texture synthesis algorithms and relighting 

techniques to synthesise new texture images under arbitrary illumination directions.  

The first stage of the framework abstracts a 3D surface texture representation 

from a set of sample images. This normally comprises two phases: (1) converting 

the set of pre-recorded images into surface relighting representations, and (2) 

rendering these representations according to desired lighting conditions. It is 

impractical to discuss the two phases separately. The goal of this chapter is therefore 

to study a set of candidate methods for extracting representations of the 3D surface 

texture sample and to investigate the relighting of these representations.  

We first propose the criteria for selecting the methods. Then we present a 

detailed review on candidate methods. According to our criteria, we select five low 

dimensional representations, which can be extracted from a set of images captured 

by a fixed camera and varied illumination directions. These methods are listed 

below. 

3I: This method uses three images of the sample texture taken at an 

illumination slant angle of 45° and tilt angles of 0°, 90° and 180° 

[Shashua1992].  
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Gradient: The second method uses surface gradient and albedo maps derived using 

photometric stereo [Woodham1981 and Rushmeier1997].  

PTM: This approach uses Polynomial Texture Maps (PTM), due to 

Malzbender et. al. [Malzbender2001].   

Eigen3: The fourth method uses the first three eigen base images [Epstein1995].  

Eigen6: This is identical to the previous method except that it uses the first six 

base images. 

Thus, the first half of this chapter selects five techniques for future study. 

The second half presents the results of a quantitative comparison of these 

approaches. We use two comparison metrics, namely Ability-of-reconstruction and 

Ability-of-prediction, to perform the analysis. Twenty-three real textures are tested 

for each method. We calculate the normalised root mean-squared (rms) errors by 

comparing relit images generated by each method with original real images. Based 

on the results, we show that Eigen6 produces the smallest normalised rms errors 

while 3I produces the largest. Those of Gradient, PTM and Eigen3 vary, depending 

on the texture.  

This chapter is organised as follows.  Section 4.2 proposes the criteria for 

selecting 3D surface texture representation and relighting methods. Section 4.3 

presents a detailed review on available methods of representing and relighting 3D 

surface textures. Section 4.4 describes the selected five methods. Section 4.5 

presents two approaches to quantitatively assess the five methods. Finally we 

conclude the work of this chapter in section 4.6. 

4.2. Criteria 

The choice of surface relighting representations has a significant impact both on the 

computational requirements and the quality of final results. According to the main 

objective of this thesis, we set the criteria for selecting the methods as follows:  

1. Practicality of physical data capture 

We would like the sample data to be captured in an inexpensive way, e.g. 

using off-the-shelf digital cameras, and the synthesised representations to be 

capable of being rendered in real-time on current desktop machines. 
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2.  Low dimensionality of representations 

The relighting representations of the sample 3D surface texture should consist 

of as few components as possible. 

3. Compatibility of  representations with graphic systems 

The surface relighting representations should be compatible with computer 

graphics packages or be able to be programmed into modern graphics 

hardware. For computer graphics packages, the common input is surface bump 

or height maps and albedo maps. For graphics hardware, it is preferable to use 

texture units and register combiners to speed up rendering by linear combining 

surface representations. Modern graphics hardware and APIs provides a 

number of texture units and register combiners that can efficiently process the 

relighting representation maps and perform linear combinations 

[Burschka2003]. The real-time rendering can be achieved by using these 

hardware acceleration facilities.  

4. Capability of dealing with complex reflectance including shadows and 

specularities 

Most real-world surface textures have complex reflectance properties. We 

would like the representation to be able to represent these more complex 

functions. 

In addition to the four criteria for selecting surface representation methods, we also 

need a criterion to assess the performance of different methods. Ideally, the relit 

images produced by different surface representations should be identical to the 

original images. This is however, not possible in practice. We therefore set the 

criterion for the assessment to be a measure of how close the relit results are to the 

original images. We use the normalised rms error as the numerical metric.  

4.3. A detailed review  and selection of surface 

representation and relighting methods 

The goal of this detailed review is to survey available surface representation 

methods using the criteria introduced in the previous section. Five methods are 

selected based on the review. 
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In 1977, Nicodemus et. al. introduced Bidirectional Reflectance Distribution 

Functions (BRDF) to accurately characterise surface reflectance properties 

[Nicodemus1977]. The BRDF is the ratio of the reflected intensity in the exitant 

direction to the incident energy per unit area along the incident direction. With full 

BRDF data and surface geometry information, images of the sample surface under 

arbitrary illumination can be produced. Dana et. al. further proposed the 

Bidirectional Texture Function (BTF) by allowing the BRDF to vary spatially across 

a surface location [Dana1999a]. The CUReT image database is constructed to 

describe BTFs and has included 61 sample textures with various reflectance 

properties. However, the measurement of BRDF or BTF is expensive and time-

consuming, because the BRDF and BTF depend on both the chemical composition 

and the roughness condition of the surface. Meanwhile, BTFs imply high 

dimensionalities due to numerous images required (e.g. the CUReT BTF database 

contains 205 unregistered images for each sample). Although the 3D textons are 

introduced to characterise the essential information of BTFs, they still need 960-

dimentional vectors to represent the sample surface [Leung2001]. The reconstruction 

of BTFs from 3D textons is expensive [Tong2002]. Several other techniques 

approximate BRDFs by projection into basis functions [Lalonde1997 and 

Lafortune1997]. 

Estimating surface representations using reflectance models only requires a 

relatively small number of sample images, which are inexpensive to obtain 

[Woodham1981, Horn1989, Nayar1990, Kay1995, Rushmier1997, Saito1996, 

Lin2000, Ikeuchi1991, Lu1995, Sato1997, Ramamoorthi2001 and Nishino2001]. 

Traditional Photometric Stereo techniques use three or more images to estimate 

surface gradient and albedo maps based on the Lambertian model [Woodham1981 

and Horn1989]. Integration techniques can be further used to obtain the depth 

information or the height map from surface gradient maps [Coleman1982 and 

Frankot1988]. In [Shashua1990], Shashua proves that three images captured under 

linearly independent illumination directions can represent a non-shadowed 

Lambertian surface. Nayar et. al. estimate the surface shape and reflectance of a 

hybrid model by photometric sampling [Nayar1990]. Saito et. al. recovers the 

parameters of the Phong model by fitting the pixel intensities into a sine curve 
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[Saito1996]. Based on the experiments, Kay and Caelli conclude that it is more 

difficult to estimate geometric and material parameters of a specular surface because 

specularities can only be captured using certain lighting and viewing angles 

[Kay1995]. Accordingly, many approaches make assumptions concerning the 

reflectance properties on the sample surface, e.g. uniform surface roughness 

[Saito1996 and Lin1999].  

In general, the above techniques are more practical to implement if the 

reflectance models are accurate enough to describe the sample. The estimated 

surface geometric and reflectance representations lie in low-dimensional space and 

are compatible with graphics systems. For example, a Lambertian surface can be 

effectively represented in 3-dimensional space (surface gradient and albedo maps) or 

even 2-dimensional space (surface height and albedo maps) [Woodham1981 and 

Horn1989], and the Nayar model needs a 7-dimensional representation [Kay1995]. 

Furthermore, the albedo map and surface normals, which can be obtained from 

surface gradient maps, are standard inputs for rendering the Lambertian reflectance 

models or the Lambertian component in reflectance models [Blinn1978, Phong1975 

and Cook1982]. However, many reflectance models only characterise certain classes 

of surfaces. The accuracy of the extracted representations therefore depends on 

whether the models are capable of accurately describing the reflectance properties of 

the sample surface [Koudelka2001].  

Without using a reflectance model, many mathematically based methods 

have been developed to represent images of a surface illuminated from different 

directions. Huang employs Fourier Series to approximate the pixel values of a set of 

images under different illumination directions [Huang1984]. The number of 

harmonics, or the dimensionality of the surface representation, depends on the 

reflectance complexity. Epstein et. al. suggest that five eigen basis images (plus or 

minus two) can be effectively used to represent arbitrary lighting for many different 

objects, although specular spikes and cast-shadows require more base images 

[Epstein1995]. The relighting is achieved by a linear combination. Basri and Jacobs 

use 9-demension spherical harmonics to represent a convex Lambertian surface 

under distant and isotropic lighting [Basri2001]. The Polynomial Texture Maps 

proposed in [Malzbender2001] use a 6-dimensional representation to capture the 
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colour variance for a surface exhibiting shadows and interreflections with varied 

illumination directions. Instead of using a physically based reflectance model, a 

quadratic function is employed to relight a Lambertian surface. In 

[Ramamoorhi2001], spherical harmonics are used to estimate isotropic BRDFs 

based on certain assumptions, including known geometry, distant illumination and 

curved objects without interreflections. Ashikhmin uses a set of 49 steering basis 

functions to relight bumpy surfaces, which exhibit shadows and interreflections 

[Ashikhmin2001]. McAllister et. al. use the Lafortune BRDF representations, which  

is capable of representing Fresnel reflection, off-specular peak and retro-reflection, 

to perform real-time rendering in graphics hardware [Lafortune1997 and 

McAllister2002]. 

In theory, these mathematically based methods can be seen as data 

approximation functions. Thus, the dimensionality is related to the accuracy 

required. Normally using more base images achieves more accurate relighting 

results. The linearly based representations, such as eigen base images, spherical 

harmonics, Polynomial Texture Maps and steering basis functions, can be 

effectively programmed into graphics systems, as the relighting is performed in 

linear space.  

More recently, several image-based relighting (rendering) techniques were 

proposed and showed realistic relighting results for scenes with complex reflectance 

properties [Matusik2002, Koudelka2001, Wong2002 and Lin2002]. These methods 

require a great number of sample images for relighting and even complex hardware 

set-up. Matusik et. al. built a system that can acquire and render surface reflectance 

fields under varying illumination from arbitrary viewpoints [Matusik2002]. They 

captured 53136 images using an array of cameras and lights, and perform a weighted 

linear combination to generate new images. Wong et.  al. propose the plenoptic 

illumination function that can be also used to support relighting and view 

interpolation  [Wong2002]. They need to employ compression techniques to reduce 

the storage space. Lin et. al. define the reflected irradiance field as the relighting 

representation [Lin2002]. They show that the method can produce accurate 

relighting results on surfaces with complex reflectance properties e.g. steel and 

anisotropic surfaces, but their relighting representation requires 240MB to 320MB 
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storage space. All these methods have the advantage that they do not assume a 

particular reflectance model. However, they have extremely high dimensionalities 

due to the number of images required for interpolation. Since common graphics 

cards designed for desktop PCs can not provide unlimited memory, these techniques 

are less practical for synthesis and real-time relighting applications on desktop PCs. 

To summarise:  

We have reviewed typical surface representation and relighting methods based 

on the criteria introduced in section 4. 2. These methods have different merits and 

drawbacks under different criteria. In general, the surface geometric and material 

parameters estimated using reflectance models are the most compact representations 

and compatible with graphics systems. The drawback is that existing models can not 

represent complex reflectance. Representations in linear sub-spaces, such as eigen 

base images, Polynomial Texture Maps (PTM), steering base functions and spherical 

harmonics, can be used for representing surfaces with complex reflectance, but 

specularities require more base images. Although the Bidirectional Texture 

Functions (BTF) and some image-based relighting/rendering techniques are able to 

produce accurate relighting results, they are too expensive to be used for the purpose 

of this thesis. Figure 4.3.1 shows the analysis of typical surface representations using 

different criteria. 

Practicality of physical data capture

1 2 3 4 5 6

Dimensionality of representations

7 8

1 23 45 67 8

Compatibility of representations with graphic
systems

1 2 3 4 5 67 8

Capability of dealing with complex reflectance

1 23 4 5 6 7 8

Low High

Weak Strong

Weak Strong

More Less

 

Figure 4.3.1 Different representations v.s. criteria. (1)Estimated surface geometry 

and reflectance parameters using reflectance models [Woodham1981]; (2) Eigen-

based methods [Epstein1995]; (3) Polynomial Texture Maps 
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(PTM)[Malzbender2001]; (4) Steering basis functions [Ashikhmin2002]; (5) 

Spherical harmonics [Basri2001]; (6)Opacity hulls[Matusik2002]; (7)3D texons 

[Leung2001]; (8) BRDF/BTF [Dana1999a].  

Since our main concern in this chapter is to select inexpensive surface 

representation approaches, we need to trade-off the expense and performance 

between different methods and criteria. We have chosen five methods that can 

produce efficient relighting representations. The first two methods—3I and 

Gradient—are based on the Lambertian reflectance model: the 3I method uses three 

images of the sample texture taken at an illumination slant angle of 45° and tilt 

angles of 0°, 90° and 180° [Shashua1992], while the Gradient method uses surface 

gradient and albedo maps derived from photometric stereo techniques 

[Woodham1981 and Rushmeier1997]. We also select the PTM method that employs 

Polynomial Texture Maps (PTM) to represent a surface exhibiting shadows and 

interreflections under different illumination directions [Malzbender2001]. Finally, 

we select the Eigen3 and Eigen6 methods, which use the first three and six eigen 

base images respectively, to represent a surface with complex reflectance.  

We summarise the selected methods in Table 4.3.1 and provide further 

details in the next section.  
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Table 4.3.1. Summary of the selected surface representations vs. criteria  

 Practical to obtain? 

Compatible of using 

linear combinations 

in graphics 

hardware? 

  Capable of 

capturing shadows?

Capable of dealing 

with specularity?
Dimensionality  

3I 
 

Yes 

 

Yes 

 

No 

 

No 3 

Gradient 
 

Yes 

 

Yes 

 

No 

 

 

No 

 

3 

PTM 
 

Yes 

 

Yes 

 

Yes 

 

No 6 

Eigen3 

 

Yes 

 

Yes 

 

Yes 

 

No 3 

Eigen6 

 

Yes 

 

Yes 

 

Yes 

 

Yes 6 

4.4. The selected methods 

4.4.1. Mathematical framework 

In section 4.3, we selected five methods, which all use a set of images as input in 

order to extract surface representations for relighting. In this section, we propose a 

mathematical framework that can be used to describe and compare these methods. 

This framework summarises the common properties of the five methods—the point 

of departure is the known image intensity matrix, which contains all images of a 

sample texture captured under different illumination directions. The lighting matrix, 

which contains lighting elements, is also analysed when a reflectance or lighting 

model is assumed. 

 We first briefly introduce Singular Value Decomposition (SVD), which is 

commonly used in matrix analysis. It is the appropriate tool for analysing a mapping 

from one vector space into another vector space, possibly with a different dimension. 

Most systems of simultaneous linear equations fall into this category. Thus, SVD 

can be used to for solve most linear least squares problems, e.g. an over-constrained 
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linear or well-constrained equation group [Press1988]. SVD is based on the 

following theorem of linear algebra: 

 Any m ×n  matrix whose number of rows ′ ′ m′  is greater than or equal to its 

number of columns , can be written as the product of an × column-

orthogonal matrix , an n

n′ m′ n′

U ′ × n′  diagonal matrix  with positive or zero elements, 

and the transpose of an ×n

W

n′ ′  orthogonal matrix V . That is  
TUWVM =   (4.4.1) 

where  and is the unit matrix. The elements on the diagonal of 

 are called singular values. The pseudoinverse of M is expressed as  

EVVUU TT == E

W
T11 UVWM −− = . 

 For a group of linear equations bxM =⋅ , where  and 

 are two vectors, we can solve  according to equation (4.4.1) 

T
nxxx ),, ,( 21 ′= Kx

T
nbbb ),, ,( 21 ′= Kb x

bUVWbMx T11 −− ==  (4.4.2)  

 

The mathematical framework is based on the analysis of the image data 

matrix. The image data matrix contains all images under multiple illumination 

directions. Assume each image has m pixels and we have total of n images per 

sample texture. To simplify notations, let  denote the intensity value of pixel j in 

the k

jki
th image, where  and mj ≤≤1 nk ≤≤1 . If we use two-dimensional co-ordinates 

(x, y) to denote the pixel location, then index j can be calculated by using 

ywxj +−= *)1( , where w is the image width. Then we write all image intensity data 

 into an m×n matrix  jki
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where each column represents an image captured under a certain illumination 

direction and each row represents the intensity values of a pixel location under 

different illumination directions.  

The framework expresses the image data matrix as a product: 

21MMI =  (4.4.4) 
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where M1 and M2 are two matrices. M1 is the surface relighting representation 

matrix that we want to extract. Thus, if we know M2 and assume a certain 

reflectance/lighting model, we can solve M1 by using SVD according to (4.4.2). The 

Gradient and PTM methods fall into this category. For the 3I method, M1 is simply 

the original image data matrix I. If we do not know M2 or do not want to assume any 

reflectance/lighting model, we can directly use SVD to analyse the image data 

matrix I and obtain M1 and M2, as will be shown in the eigen-based methods 

(Eigen3 and Eigen6). 

 Thus, the relighting process can be expressed as a product of the surface 

representation matrix M1 and a vector c related to the required illumination 

direction: 

cMi 1=   (4.4.5)  

where is the image data vector and   are pixel values. T
miii )(i  , , , 2 1 K= miii ,,, 2 1 K

4.4.2. Lambertian methods--3I and Gradient 

At a pixel location, the Lambertian reflectance function is expressed as 

ln ⋅= λρ),( yxi       (4.4.6) 

where:  

),( yxi  is the intensity of an image pixel at position (x, y) 

λ  is the incident intensity to the surface 

α  is the albedo value of the Lambertian reflection 

l  is the unit illumination vector at position (x, y) and can be expressed as  
TT

zyx lll )cos  ,sinsin  ,sin(cos), , ,( σστστ==l  

 τ  is the tilt angle of illumination 

σ is the slant angle of illumination 

n  is the normalised surface normal at position (x, y) and can be expressed as 

 TT
zyx

qpqp
q

qp
pnnn )

1
1 ,

1
 ,

1
() , ,(

222222 ++++

−

++

−
==n  

p and  are the partial derivatives of the surface height function in the x and 

y directions respectively and defined by:  

q

 45



                    
y

yxsyxq
x

yxsyxp
∂

∂
=

∂
∂

=
),(),(,),(),(  

),( yxs  is the surface height function 

If the incident intensity to the texture surface λ  is constant—as assumed in this 

thesis, we can treat λ  as a scalar and merge it with albedo α . To simplify notations, 

we use ρ  to represent λ α . Thus, the image data matrix I can be expressed as: 

I=ANL (4.4.7) 

where: 
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is the surface albedo matrix; 
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is the surface normal matrix; 
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is the lighting matrix.  

We further define a new matrix Na which is the product of the surface normal matrix 

and the albedo matrix A: N

ANNa = . 

This matrix contains the set of “scaled surface normals” [Drbohlav2002]. Thus we 

can simply express the image data matrix as   

LNI a=  (4.4.8). 

It is convenient to use equation (4.4.8) to introduce Lambertian based methods—3I 

and Gradient. 

The 3I method—a linear combination of three photometric images 
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Shashua shows that an image of a convex object can be represented as a 

linear combination of three base images under the assumption of Lambertian 

reflectance [Shashua1992]. We call this method 3I. The three base images can be 

obtained by positioning the light at three linearly independent directions. These three 

base images are called photometric images. Thus, if we recall the equation (4.4.5), 

we only need to decide the vector c, which contains the coefficients used for the 

linear combination. This can be achieved by using (4.4.8) and calculating the inverse 

lighting matrix.  

 Since we have three known linearly independent lighting vectors, and we can 

express it using the lighting matrix 
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Accordingly, we can also write the image data matrix as an m×3 matrix 
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which is also the surface representation matrix M1.  Thus, according to (4.4.8), we 

have , where  can be easily calculated because it is a non-singular 

square matrix. Note SVD can also be used here to obtain . 

a
1 NIL =− 1L−

1L−

Given any illumination direction with the corresponding lighting vector   
TT

zyx lll )cos  ,sinsin  ,sin(cos,, σστστ== ) (l , 

 the new image i  can be expressed as  

lILi 1−=   (4.4.9) 

where is the image data vector.  T
miii )(i  , , , 2 1 K=

By equation (4.4.5) in the mathematical framework, we have . Then 

(4.4.9) becomes  

lLc 1−=

IccMi 1 ==   (4.4.10) 

which means an image under a given lighting vector can be expressed as a linear 

combination of three images. The vector c is called the coefficient vector.  
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In our case, we capture three images with illumination tilt angles separated 

by 90°. Thus, the illumination is provided at a common slant (45° in our case) and at 

tilt angles of 0°, 90° and 180°. The reason for using these three tilt angles is that they 

simplify the inversion of L for use in photometric stereo [McGunnigle1998] and 

provide near optimum results [Spence2003]. We calculate the inverse lighting vector 

 and express the coefficient vector in terms of the illumination tilt angle 1L− τ  and 

the illumination slant angle σ of the new image:   
T

3c c c ),,( 21=c  (*) 

where °°° +−=
45cos2

cos
45sin2

sinsin
45sin2

sincos
1

σστστc  

°=
45sin
sinsin

2
στc  

°°° −−=
45sin2

sinsin
45sin2

sincos
45cos2

cos
3

στστσc . 

Thus, the new image is calculated using (*) and (4.4.10). 

The Gradient method—using surface gradient and albedo maps as the surface 

representation for relighting 

According to Lambert’s law (4.4.6), surface gradient and albedo maps can be 

used to represent 3D surface textures for relighting. We call this method Gradient. 

Traditional photometric stereo techniques [Woodham1981] use three images to 

estimate the gradient and albedo maps of a Lambertian surface. Additional images 

lead to an over-constrained system, which may be solved using least squares 

techniques (e.g. SVD) to provide potentially more accurate solutions. The Gradient 

method uses 36 images under different known illumination angles for each texture in 

the image database.  Thus, in equation (4.4.8) 

LNI a= , 

the image data matrix I becomes a known m×36 matrix and the lighting matrix L is a 

known 3×m matrix. Comparing equation (4.4.8) with equation (4.4.4), we have  

a1 NM =  and LM 2 = . 

The matrix Na, which contains surface gradient and albedo information, is the 

unknown.  
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It is trivial to obtain Na by using SVD.  We first decompose the lighting 

matrix as: 
T

LLL VWUL = . 

Then we have 
T

L
1

LL
1

a UWIVILN −− ==  

By relighting Na, which contains surface gradient maps scaled by albedo, we can 

generate new images under arbitrary illumination. The Lambertian model is used 

again for relighting: 

lNi a=  

where  is the image data vector and 

 is the lighting vector.  

T
miii )(i  , , , 2 1 K=

T)cos  ,sinsin  ,sin(cos σστστ=l

The advantage of the Gradient method is that the albedo map and the surface 

gradient maps, which can be calculated from Na, or the displacement map, which 

can be further generated from surface gradient maps, are compatible with computer 

graphics programming or packages for rendering [Robb2003 and Burschka2003]. 

To summarise: 

Based on the assumption of Lambertian reflectance, the 3I method uses three 

photometric images to represent 3D surface texture for relighting. A linear 

combination of the three images can produce new images under arbitrary illuminant 

directions. This provides the simplest way to represent a 3D surface texture for 

relighting. However, this method can only achieve accurate results for unshadowed 

Lambertian surfaces.  

 The Gradient method uses surface gradient and albedo maps to represent a 

Lambertian surface for relighting. The surface gradient and albedo maps are 

generated by using SVD to solve an over-determined system. This surface 

representation method only has three dimensions and provides the most common 

format used in computer graphics programming or packages. 

4.4.3. The PTM method 

The PTM method uses Polynomial Texture Maps [Malzbender2001] as surface 

representations for relighting. Malzbender et. al. proposed a luminance model that 
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employs a quadratic function of the lighting vector to capture variations due to self-

shadowing and interreflections. It is based on the Lambertian assumption and uses 

the first two elements of the unit lighing vector 

 to form a new six-dimensional 

lighting vector  

TT
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llllll
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The image data matrix is expressed as  

ptmptmLAI =    (4.4.11) 

where   and  
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Each row of matrix Aptm ( 61 aa − ) represents six coefficients of the luminance model 

at each pixel location. These coefficients are stored as spatial maps and called 

Polynomial Texture Maps (PTM). We call Aptm the PTM matrix and Lptm is the 

lighting matrix. Although the lighting matrix contains quadratic terms, it can be pre-

calculated offline. In accordance with equation (4.4.4) in the mathematical 

framework, Aptm and Lptm are equivalent to M1 and M2 respectively. 

Since the image data matrix I and the lighting matrix Lptm are known, we can 

use SVD to solve the over-determined system (4.4.11) and obtain the PTM matrix 

Aptm. This is similar to solving for surface gradient representations described in 

section 4.4.2. Given an illumination direction and recalling equation (4.4.5), the relit 

image can be expressed as  

ptmptm1 lAcMi ==  

where  is the image data vector and lT
miii )(i  , , , 2 1 K= ptm is the PTM lighting vector. 

Thus, the relighting is achieved by linear combinations of PTMs. 

To summarise: 
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Polynomial Texture Maps (PTM) can be used to represent 3D surface 

textures with self-shadowing and interreflection under varied illumination. They are 

actually the six coefficient maps of a quadratic luminance model based on 

Lambertian assumption. PTMs can be obtained by solving an over-determined 

system using SVD. 

Since relighting is implemented using a linear combination of pre-computed 

quadratic terms, they are suitable for real-time rendering applications in graphics 

hardware. 

4.4.4. The eigen-based methods (Eigen3 and Eigen6) 

Eigen based methods are widely used by many researchers to model the effect 

due to varying illumination e.g. [Dana1999, Epstein1995, Nishino2001 and 

Zhang1998a]. These methods have the advantage that an assumption concerning 

surface reflectance is not required. Based on experiments, Epstein et. al. in 

[Epstein1995] suggested that five base images (plus or minus two) can be effectively 

used to represent arbitrary lighting for many different objects. They concluded that 

this approach could accurately model Lambertian surfaces with specular lobes, while 

specular spikes, small shadows and occludes can be treated as residuals. Naturally 

both the specularity and the complexity of surface geometry increases the number of 

base images required.  

 We have elected to use 3 base images and 6 base images in eigen-space to 

represent 3D surface texture for relighting. Three eigen base images can represent 

3D surface texture with Lambertian reflectance, while six eigen base images can 

further capture certain specularities and shadows [Epstein1995]. We apply SVD to 

generate base images in eigen-space.  The image data matrix is expressed as  
T

III VWUI =  

Each column in UI therefore is an eigen vector of corresponding to the singular 

value in W

TII

I. UI is used to construct eigen base images and  contains coefficients 

for linear combinations. We can write 

T
IV

),...,,( 21 nwwwdiag=IW , where  is the 

singular value of the image data matrix  and . An important property of 

W

iw

I 1+≥ ii ww

I is that the singular values decrease dramatically. If we use the following 
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definitions as the measurement for information accounted for by individual 

eigenvector [Epstein1995]:  

)()(
1

22 ∑
=

=
n

i
ikindi wwkf    (4.4.12) 

and cumulative eigenvectors [Zhang1998a]:  
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==

=
n

i
i

k

i
icumu wwkf    (4.4.13) 

we find that the first few eigenvectors account for more than 99% of the total 

information contained in the image data matrix I . For illustration, we show the plots 

of information accounted by eigenvectors for two textures “aar” (with near 

Lambertian reflectance) and “ach”  (with specularities) in Figure 4.4.1. 
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 Figure 4.4.1 Information accounted for by the first ten eigenvectors. Texture 

“aar” has a near-Lambertian surface; texture “ach” has a specular surface. In (a), 

f(k)—Information Accounted(Individual) is calculated using (4.4.12); In (b), f(k)—

Information Accounted(Cumulative) is calculated using (4.4.13). 

 Since singular values decrease rapidly and the first few eigenvectors account 

for most of the information, we approximate the original WI by  

)0,,0,,,,( 21 KK
)

  w w wdiag k=IW , 

where k is the number of  singular values that we want to keep. We then obtain an 

approximation of the image data matrix I  that can be expressed as 
T

III VWUI
))

=  (4.4.14) 

Recalling equation (4.4.4) in the mathematical framework we can write 

II1 WUM
)

= . We let M1 be an m×k matrix, since the last kn − columns of II WU
)

 are 

zeroes. Similarly, we create a k×n matrix M2, which only contains the first k rows of 

, because the last rows of  can be assigned zeroes due to the fact that 

the last  diagonal elements of 

T
IV kn − T

IV

kn − IW
)

 are equal to zeroes.  Thus, we obtain a set of 

k base images in eigen-space which are the k columns of M1. These base images are 

called eigen base images. Matrix M2 provides the coefficients for the linear 

combination of eigen base images to produce those original images in I . We write 

21n21 MM)i , ,i ,(iI == K  (4.4.15) 

where  are image data vectors that represent those original images 

captured under different illumination directions. In our case, we use 36 images and 

therefore . 

n21 i , ,i ,i K

36=n

 If we use coefficients that differ from those in M2, the linear combinations of 

these base images allows us to generate new images under new illumination 

directions. Thus, we can use these eigen base images as representations of 3D 

surface textures for relighting. In our case, we use 3 eigen base images to represent 

3D surface textures with Lambertian reflectance and 6 eigen base images to 

represent 3D surface textures with complex reflectance. 

Interpolation  
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 Although the linear combinations of eigen base images can produce novel 

images under illumination conditions that differ from those of the original, there are 

no direct links between the coefficients used for the linear combinations and 

illumination slant and tilt angles. Many researchers naturally employ interpolation 

techniques to relate the illumination directions with the coefficients because they are 

inexpensive, practical and able to produce reasonable results (with limitations) 

[Epstein1995, Zhang1998a, Wong2002].  Therefore, we also apply an interpolation 

technique to generate new images under given arbitrary illumination directions. 

 The illumination direction is specified by the slant angle σ and the tilt angle 

τ . We apply the bilinear interpolation method to generate a novel image with a 

given tilt angle τ  and a slant angle σ . It is obvious that πτ 20 ≤≤  and 20 πσ ≤≤ . 

Since images are captured under different illumination slant and tilt angles for each 

texture, these illumination slant angle and tilt angle pairs form a sampling grid. In 

order to simplify further explanation, we use an image data vector  to denote an 

image obtained under illumination tilt angle 

)σ,(τ jii

iτ  and slant angle jσ . Thus each  

corresponds to an image vector in  of (4.4.15). Firstly, we search for the 

intervals that contain 

)σ,(τ jii

n21 i , ,i ,i K

τ  and σ  such that 1+≤≤ ii τττ  and 1+≤≤ jj σσσ . Then we 

define )/()( 11 iiit ττττ −−≡ +  and )/()( 12 jjjt σσσσ −−≡ + . Finally we calculate the new 

image with the illumination direction (τ , σ ) using the algorithm from [Press1988]: 

)σ,(τ)σ,(τ)σ,(τ)σ,(τσ)(ττ 1ji1j1ij1iji iiiii ++++ −++−+−−= 21212121 )1()1()1)(1( tttttttt  (4.4.16) 

where  i and  (τi an be approximated by linear combinations of  

eigen base images using equation (4.4.15). Thus, ),( στi  is also a ear combination of 

eigen base images.   

),σ(τ jii , )σ,(τ j1ii +
, )σ,(τ 1j1i ++

 
1ji +
 c

 lin

)σ,

To summarise:  

The Eigen3 and Eigen6 methods use 3 and 6 eigen base images respectively 

to represent 3D surface textures for relighting. These methods do not assume a 

particular reflectance model. The eigen base images are generated by using SVD. 

New images under arbitrary illumination directions can be constructed by a bilinear 

interpolation. These two methods are compatible with the input requirement of 

computer graphics hardware because the relighting can be expressed as a sum of 

products. 
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4.4.5. Summary 

In sections 4.4.1 to 4.4.4, we introduced a mathematical framework and five 

inexpensive methods to extract 3D surface texture representations for relighting. The 

mathematical framework expresses the image data matrix as a product of two 

matrices; one is the surface representation matrix and the other can be either a 

lighting matrix or a coefficient matrix. With the exception of the 3I method, the 

surface representations can therefore all be obtained using SVD. The five methods 

are: 

3I:  This method uses only three images of the sample texture taken at an 

illumination slant angle of 45° and tilt angles of 0°, 90° and 180° 

[Shashua1992]. It can produce accurate results for Lambertian surfaces 

with no shadows. 

Gradient: The second method uses surface gradient and albedo maps, which are 

obtained by solving an over-determined linear system, to represent a 3D 

surface texture for relighting [Woodham1981].  

PTM:  This approach uses Polynomial Texture Maps (PTM), due to 

Malzbender et. al. [Malzbender2001].  PTMs are obtained by solving an 

over-determined linear system. Malzbender et. al. report that this method 

requires the assumption of a Lambertian surface, but it can capture the 

intensity variations due to surface self-shadows and interreflection. 

Eigen3:  The fourth method uses the first three eigen base images. Eigen base 

images are generated using SVD. Three eigen base images can capture 

the Lambertian component under varied illumination directions 

[Epstein1995]. New images with different illumination can be 

constructed by using linear combinations of base images. A bilinear 

interpolation is used to relate the illuminant slant and tilt angles with the 

coefficients of linear combinations.  

Eigen6:  This is identical to the previous method except that it uses the first six 

base images. This method can be used to represent 3D surface textures 

with specular components [Epstein1995].  

 55



We will further assess and compare these methods in next section. 

4.5. Quantitative assessment of 3D surface texture 

representation methods  

In Section 4.4, we introduced five inexpensive methods that can extract 3D surface 

texture representations. This section evaluates these methods by testing the ability-

of-reconstruction and ability-of-prediction. The ability-of-reconstruction indicates 

the capability of these methods in reconstructing images that have already been used 

for the extraction of surface representations, whereas the ability-of-prediction shows 

the capability of these methods in predicting new images which are not used for the 

extraction of surface representations.  We perform a quantitative assessment by 

comparing the relit results with original real images. In order to assess the 

performances of these methods on textures with different reflectance, we select 23 

different textures from the PhoTex database (shown in Appendix A). Some of these 

textures have near-Lambertian surfaces; some have complex surface reflectance 

including self-shadowing, interreflectance and/or specularities. The normalised root 

mean-squared (rms) errors are used as the metric for the assessment, since large rms 

errors are not as noticeable in high variance textures as in low variance textures.  

4.5.1. Normalised root mean-squared errors 

The reason we use the normalised root mean-squared (rms) error as the metric is 

that we wish to assess the performances of the five methods on different textures. 

Gullón showed that this metric could produce reasonable assessment results 

[Gullón2002]. Because we have captured 36 images under different illumination 

directions for each texture, the normalised rms errors are averaged across 36 images 

per texture. It is expressed as  

∑
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=
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1 )(36
1

k

k

kVar
e

η        (4.5.1)

  

where:  
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)(kVar
ek  is called the normalised rms error 
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2),(),(1  is the rms error 

)(kVar is the standard deviation of original image k 

NM is the size of the images in pixels 

i(x,y) is the intensity of an input image pixel at position x,y 

r(x,y) is the intensity of a relit image pixel at position x,y 

The relit image has the same illumination condition as that used in one of the 

original input images.  

Assessment of the ability-of-reconstruction 

When assessing the ability-of-reconstruction of each method, we use all 36 

images per texture as input to extract surface representations. Then the surface 

representations are relit to reconstruct 36 images using the same illumination 

conditions as those used in original images. The normalised rms error is calculated 

based on the 36 relit images and 36 original input images. It is obvious that for the 

3I method we only use three images, although we produce 36 relit images using the 

same illumination conditions as those used for the other methods. 

Assessment of the ability-of-prediction 

We would like to evaluate the ability of these five methods in predicting new 

images with illumination conditions that differ from those used for the extraction of 

surface representations. We employ a leave-one-out method, which leaves one 

image out of the 36 images that we have captured for each texture and tests it as an 

unknown.  Thus, for Gradient, PTM, Eigen3 and Eigen6, thirty-five images of each 

texture are used as a training image set to extract surface representations. For the 3I 

method, we simply select three images with illumination directions that differ from 

those in predicted images. The surface representations are then relit using the same 

illumination condition as that used in the image which is not included in the training 

set. This process is repeated 36 times for each texture, and each time an image with a 

different illuminant direction is left out of the training set and then is tested. We 

therefore still produce 36 relit images in total, which are compared with 36 original 

images to calculate the normalised rms error.  
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4.5.2. Assessment results 

Figure 4.5.1 shows the assessment results of these five methods across 23 textures.  
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(b) 

Figure 4.5.1 Relighting error vs texture for the five approaches: (a)Ability-of-

reconstruction; (b)Ability-of-prediction(Leave-one-out). 

From Figure 4.5.1 it can be seen that the 3I method produces the worst 

performance. This is not surprising given that it uses three input images whereas the 

other four methods use 36. Of the remaining methods, two (Eigen6 & PTM) use 
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more expensive R6 representations while Gradient & Eigen3 use R3. We would 

therefore expect the first pair of techniques to outperform the latter, and on 

aggregate the Eigen6 method does indeed provide the best figure. However, the 

performance of the PTM approach can not really be separated from that of its 

cheaper Eigen3 competitor.  

We further subtract the normalised rms errors produced by testing ability-of-

prediction from those produced by testing ability-of-reconstruction. The difference 

is shown in Figure 4.5.2.  Since all the difference are positive, it can be concluded 

that these methods perform better in reconstructing original training images than in 

predicting new images. Among these five methods, Eigen6 has the largest difference 

between its ability-of-reconstruction and ability-of-prediction, while Gradient has 

the smallest difference in general.  

Subtraction of normalised rms errors 
produced by testing ability-of-reconstruction and ability-of-prediction 
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Figure 4.5.2 Subtracting normalised rms errors produced by testing ability-of-

prediction from those produced by testing ability-of-reconstruction. 

 Example output images and their absolute difference images are shown in 

Figure 4.5.3 to Figure 4.5.8. We select three textures from the PhoTex database for 

the illustration. They represent Lambertian, Lambertian with shadows, and specular 

surfaces respectively. For each texture, we show the reconstructed and predicted 

images together with their corresponding error images (difference between original 

and relit images). 
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Figure 4.5.3 Texture “aar”: Reconstructed images and their error (difference 

between original and rendering) images. Bright areas in the error images represent 

reconstruction inaccuracies.  
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Figure 4.5.4 Texture “aar”: Predicted images (produced by using leave-one-out) 

and their error (difference between original and rendering) images.  Bright areas in 

the error images represent prediction inaccuracies.  
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Figure 4.5.5 Texture “add”: Reconstructed images and error (difference between 

original and rendering) images. Bright areas in the error images represent 

reconstruction inaccuracies.  
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 Figure 4.5.6 Texture “add”: Predicted images (produced by using leave-one-out) 

and error (difference between original and rendering) images.  Bright areas in the 

error images represent prediction inaccuracies.  
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Figure 4.5.7 Texture “ach”: Reconstructed images and error (difference between 

original and rendering) images. Bright areas in the error images represent 

reconstruction inaccuracies. The 3I method produces very large errors. Because all 

error images are displayed in the same scale, errors produced by the other four 

methods are not noticeable comparing with those from the 3I method. 
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 Figure 4.5.8 Texture “ach”: Predicted images (produced by using leave-one-out) 

and error (difference between original and rendering) images.  Bright areas in the 

error images represent prediction inaccuracies. The 3I method produces very large 

errors. Because all error images are displayed in the same scale, errors produced 

by the other four methods are not noticeable comparing with those of the 3I method. 
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4.5.3. Discussion of the assessment results 

This section analyses the assessment results and discusses the relevant problems in 

different methods. In particular, we investigate the integration and differentiation 

algorithms when discussing the Gradient method. We also compare the relighting 

results of the selected five methods and a heightmap-based relighting method, in 

which surface gradient maps are integrated to generate the heightmap.  

The 3I method 

The 3I method produced the worst performance in the assessment. It is 

obvious that it can only produce accurate results when the textures have pure 

Lambertian surfaces with no shadowing. However, since this method only uses three 

images, it provides the most economical way to approximate real textures.  

The Gradient method 

The Gradient method performs much better than the 3I method in 

representing real textures, because it uses all 36 images of a sample texture and 

approximates these images in the least squares sense (Figure 4.5.1). However, its 

performance is affected by several factors: the approximation of Lambertian 

reflectance, noises in sample images and the intergratibility of surface gradient 

maps. These effects can be detected by testing the relationship between two surface 

gradient maps in frequency domain.  

We first take Fourier Transform on the spatial surface gradient maps p(x,y) 

and q(x,y). We use  and  to denote p(x,y) and q(x,y) in frequency 

domain respectively, where  is the 2D spatial frequency co-ordinate. By 

Fourier theories, we have the following equations:  

v)P(u, v)Q(u,

v)(u,

v)S(u,v)P(u, ju=      (4.5.2) 

v)S(u,v)Q(u, jv=      (4.5.3) 

where  is the frequency domain denotation of the spatial surface height map 

s(x, y) and j is the square root of minus one. 

v)S(u,

Thus,  

v)(u,Qv)P(u, uv =      (4.5.4) 
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However, most real textures do not have pure Lambertian surfaces, and the 

surface might not be integrable. These limitations cause equation (4.5.4) not to hold. 

Therefore, we can treat the surface gradient maps as images containing 

intergratibility noise. If we force the equation (4.5.4) to hold by changing  

and , we obtain the perfect synthetic surface gradient maps in frequency 

domain for a Lambertian surface. By taking inverse Fourier Transform, we can 

compare these synthetic surface gradient maps with their original counterparts. 

v)P(u,

v)Q(u,

Figure 4.5.9 shows examples of a sample texture. 

 

 

Figure 4.5.9 The comparison of real surface gradient maps and their synthetic 

counterparts. The first column shows the two surface gradient maps calculated 

using the Gradient method; the second column shows the corresponding synthetic 

surface gradient maps generated using equation (4.5.4); the third column shows the 

absolute difference images, which are generated by subtracting synthetic maps (the 

second column) from corresponding real maps (the first column).   

The noise in surface gradient maps will further affect the height map 

generated by integrating surface gradient maps. In order to obtain the surface height 

map, surface integratibility is assumed. We have used a frequency domain approach 

to generate the surface height map from gradient maps [Frankot1988]. We evaluate 

the integration problem by relighting the surface height and albedo maps using the 

Lambertian model (4.4.6) and calculating the normalised rms errors as introduced in 

the previous section.  

 The surface height map in frequency domain can be expressed as: 
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22

v)Q(u,v)P(u,v)S(u,
vu

jvju
+
−−

=    (4.5.5) 

In order to use the Lambertian model (4.4.6), we need to differentiate the surface 

height map to obtain gradient maps. We have used two approaches when 

differentiating the surface height map: a frequency domain approach and a spatial 

domain approach. Equation (4.5.2) and (4.5.3) are used for the differentiation in the 

frequency domain, while the differentiation in spatial domain can be approximated 

by: 

),(),1(),( yxsyxsyxp −+≅     (4.5.6) 

),()1,(),( yxsyxsyxq −+≅     (4.5.7) 

 The two differentiation methods produce slightly different surface gradient 

maps. Figure 4.5.10 shows two pairs of example output surface gradient maps and 

their absolute difference images. Furthermore, we have found that smaller 

normalised rms errors are produced if we relight the gradient maps that are derived 

from differentiation in frequency domain. Figure 4.5.11 shows the comparison 

across 23 textures.  

 

Figure 4.5.10 The comparison of differentiation methods. The first and second 

columns are gradient maps produced by differentiation of the surface height map in 

frequency and spatial domain respectively. The third column shows the absolute 

difference images.  
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(b) 

Figure 4.5.11 Comparison of two differentiation methods: (a)Ability-of-

reconstruction; (b)Ability-of-prediction(Leave-one-out). 

However, even if we use the differentiation method in frequency domain, the 

relighting results generated using surface height and albedo maps still have larger 

normalised rms errors compared with those produced by the Gradient method. In 

Figure 4.5.12 we show the comparison of the height map based method with the 

other five methods that we have introduced in the previous section. This comparison 

is also based on measuring ability-of-reconstruction and ability-of-prediction, which 

uses the leave-one-out method. It can be seen that the performance of the height map 
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based method is even worse than the 3I method for some textures. This is also the 

reason that we did not select a height based surface representation method in this 

thesis. Nevertheless, it provides the cheapest surface representation which only has 

two dimensions for a Lambertian surface. 
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(b) 

Figure 4.5.12 Comparison of height-based relighting and other five methods: (a) 

Ability-of-reconstruction; (b) Ability-of-prediction (Leave-one-out). 

The PTM method 

Figure 4.5.1 shows that the PTM method performs better than the 3I and 

Gradient methods in general. One possible reason for this is because it uses a 

quadratic lighting function, which employs an R6 representation—Polynomial 

Texture Maps (PTM). In contrast, the Lambertian model is a linear lighting function, 

which only uses an R3 representation. Furthermore, the PTM method was designed 
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to capture the variation of image intensities due to surface self-shadowing and 

interreflections. It did perform well in our experiments: for texture “ada”, “adc”, 

“add” and “adf”, which contain obvious self-shadowing and interreflections, the 

normalised rms errors are smaller than those produced by the 3I and Gradient 

methods (Figure 4.5.1). 

The Eigen3 and Eigen6 methods 

The eigen-space based methods (Eigen3 and Eigen6) are actually derived 

from the pure analysis of the image intensity matrix using the SVD method. 

Therefore, it will provide the best least square approximation to the original data 

matrix (Figure 4.5.1). It can also be observed that the bilinear interpolation method 

produced reasonable relighting results. The normalised rms errors produced by 

Eigen6 are the smallest for all textures. The performance of the Eigen3 method, 

which only uses three-dimensional representation maps, can not even be separated 

from that of the PTM method. 

4.6. Conclusion 

This chapter has selected five inexpensive methods for extracting surface relighting 

representations. This is the first stage in our overall framework for synthesis and 

relighting of 3D surface textures.  

We first presented a review of available relighting representations of 3D 

surface textures. Since our main goal is to develop inexpensive approaches for 

synthesis and relighting of 3D surface textures, we select five low-dimensional 

relighting representations, comprising: a set of three photometric images (3I); 

surface gradient and albedo maps (Gradient); Polynomial Texture Maps (PTM); and 

two eigen-based representations using 3 and 6 base images (Eigen3 and Eigen6). We 

presented a mathematical framework which summarises the common mathematical 

properties of these five methods. The 3I and Gradient methods require the 

Lambertian model. The PTM method assumes the surface has Lambertian 

reflectance but uses a quadratic lighting function to model the variation of image 

intensities due to surface self-shadowing and interreflections.  In contrast, Eigen3 

and Eigen6 do not assume any reflectance models. The Eigen6 method in particular 

is better able to cope with specular surfaces, although the surface geometry is 
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required to be simple. These methods are compatible with modern graphics systems; 

the extracted surfaces representations can be programmed into graphics hardware so 

that relighting can be achieved in real-time by using linear combinations through 

texture units and register combiners in graphics processing chips.  

We used 23 real textures to quantitatively assess the performances of the five 

methods by measuring the ability-of-reconstruction and the ability-of-prediction. 

The latter employs a leave-one-out test method. We compared relit images produced 

by different methods with original real images and calculated normalised rms errors. 

The results show that the 3I method produces the worst performance and Eigen6 

method produces the best. The R6 PTM representations perform better than R3 

Gradient representations, although it cannot be considered more superior to the 

cheaper Eigen3 representations in R3 space. 
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Chapter 5 

Synthesis Algorithms 

5.1.  Introduction 

In Chapter 4, we investigated five inexpensive methods for extracting surface texture 

representations from a set of sample images. The aim of this chapter is to select an 

efficient 2D texture synthesis algorithm that can be easily extended for the synthesis 

of 3D surface texture representations. This is therefore equivalent to the second 

stage of our overall framework, as highlighted in  

.  

Sample texture
images

Extract representation m
aps

Synthesis

3D surface texture
representation maps

Large  surface texture
representation maps

R
endering/relighting

Large texture images under
different lighting/viewing

settings

...

...

 

Figure 5.1.1 The selection of synthesis algorithm in the overall framework.    

Since the main objective of this thesis is to develop inexpensive approaches 

for the synthesis of 3D surface textures, the choice of 2D synthesis algorithms is 

particularly important with respect to computational complexity and quality of final 

results. We set two criteria for the selection of 2D texture synthesis algorithms: (1) 

the suitability of the algorithm for extension to deal with multi-dimensional 
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representations, and (2) the capability of producing good results while requiring little 

computation. 

We first present a detailed survey of recent publications on 2D texture 

synthesis. Then we investigate two popular approaches based on [Wei2000] and 

[Efros2001] respectively. The first approach synthesises images from small sample 

textures at pixel scale by employing a multi-resolution decomposition technique. 

The second approach synthesises the result image by ‘stitching’ together small 

patches selected from the sample image. We propose simple modifications to these 

two methods, which can reduce the computation and produce similar synthesis 

results to the originals. On comparing the two approaches, we select the modified 

Efros’ 2D texture synthesis algorithm as our basic algorithm, as it can produce better 

results while requiring less computation. In particular, we analyse the effects on 

output images produced by varying the four input parameters of the selected 

algorithm.  

The rest of this chapter is organised as following. Section 5.2 presents a 

detailed survey on 2D texture synthesis methods. Section 5.3 describes the two 

selected approaches and compares them in terms of computational complexity and 

quality of results.  Section 5.4 analyses the input parameters of the selected 

algorithm, and finally we conclude our work of this chapter in section 5.5. 

5.2. A detailed survey of synthesis algorithms  

The goal of this section is to survey 2D texture synthesis algorithms using the 

criteria that we proposed in the previous section. In Chapter 2, we divided 2D 

synthesis algorithms into two groups according to the sampling strategies. 

Accordingly, this survey is also based on this taxonomy. Two algorithms are 

selected for further investigation at the end of this section. 

5.2.1. Texture synthesis methods based on global sampling 

strategies 

As discussed in Chapter 2, texture synthesis algorithms employing global sampling 

strategies synthesise new images by matching global statistics between the sample 

and result images in feature space. In general, these texture synthesis methods are 
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not preferable for the use of synthesising surface relighting representations in multi-

dimensional space. One reason is that the surface relighting representations normally 

consist of multi-dimensional vectors with correlation existing between the elements. 

For the synthesised surface representations, the correlation is unlikely to be 

maintained during global sampling process. Meanwhile, these methods essentially 

amount to a multi-parameter and non-linear optimisation process over a single 

image. As shown in Table 2.1.1, two typical methods [Zhu2000 and Portilla200], 

which produced good synthesis results over a wide range of sample textures, require 

more than 20 minutes for computing. Extending these approaches to multi-

dimensional surface representations would require iteration and optimisation over 

inter as well as intra image parameters. Consequently, the computation may be 

expensive. 

Many 2D texture synthesis methods synthesise result images by matching 

marginal or joint histograms between the sample and result images [Heeger1995, 

Van Nevel 1998, Zhu2000 and Copeland2001]. For 3D surface texture synthesis, the 

input consists of multi-dimensional vectors that represent the sample surface texture 

under arbitrary illumination. Thus, the one-dimensional histograms in 2D texture 

synthesis algorithms will become multi-dimensional histograms in 3D surface 

texture synthesis. During the matching process, the element values of the result 

multi-dimensional vectors are changed according to the sample histograms. This 

might destroy the correlation between the surface relighting representations. For 

example, if we use surface gradients and albedo maps as the representation of a 

Lambertian surface, the matching process will change the result surface gradients 

and albedo values by purely comparing the sample and result histograms. In order to 

maintain the relighting characteristics, the interrelationship [e.g. cross correlation 

between components (elements)] of the multi-dimensional data must be kept for an 

iteration method. This results in a complex multi-dimensional optimisation problem. 

Meanwhile, if the number of bins is large or the dimensionality is high, there might 

be too few pixels in each bin for a multi-dimensional histogram. For instance, if we 

calculate a six-dimensional histogram using six 64x64 representation maps and each 

dimension is divided into 10 bins, we only have, on average, 6*64*64/106=0.025 

pixels in each bin.  Thus, it is difficult to accurately estimate the multi-dimensional 
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histograms. A similar problem might exist in those methods that synthesise new 

images by matching various statistics, e.g. [Jacovitti1998, Portilla2000 and 

Campisi2002]. 

In general, 2D synthesis algorithms that employ global sampling strategies 

become more complex when being extended to use multi-dimensional vectors as 

input. The method proposed in [Eom1998] estimates the parameters of a 2D moving 

model; it would be more difficult if implemented in high dimensional space. 

Although De Bonet’s method can be easily extended to take surface relighting 

representations in multi-dimensional space as input, it is not clear whether the filter 

bank is sufficient to capture the characterisations of the sample representations [De 

Bonet1997].  

To summarise: 

Two-dimensional texture synthesis algorithms that employ global sampling 

strategies are generally not suitable as the basis of algorithms in 3D surface texture 

synthesis approaches. The main reason is that these algorithms become too complex 

or have difficulty to preserve the correlation between surface relighting 

representations when they are extended to multi-dimensional space.  

5.2.2. Texture synthesis methods based on local sampling strategies 

As introduced in Chapter 2, texture synthesis methods based on local sampling 

strategies synthesise new images by matching local information between the sample 

and result images. These methods can be further divided into two sub-classes 

depending on whether they employ a parametric and non-parametric model.   

In general, parametric methods require expensive computation due to the 

estimation of the parameters. Zhu et. al. estimate the parameters of the FRAME 

model for texture synthesis; they report that the computational cost increases 

proportionally with the size of the filter window and long iterations are required to 

achieve accuracy [Zhu1995]. Bader et. al. implement parallel algorithms for the 

synthesis in order to reduce the computing time [Bader1995]. Zhang et. al. estimate 

the parameters of the wavelet autoregressive model and the radial basis function 

network for modelling and synthesising texture images [Zhang1998b]. Their 

multiresolution AR model has a total of 91 parameters. If multi-dimensional surface 
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representations are used as input in these methods, both the models and the 

computation become more complex.  

 Non-parametric texture synthesis methods are less complex compared with 

their parametric counterparts because they do not need to estimate the parameters of 

statistical models [Efros1999, Wei2000, Hertzmann2001, Efros2001, Parada2001, 

Ashikhmin2001, Harrison2001, Tonietto2002, Zelinka2002, Cohen2003 

Nealen2003, Paget1998, Ashlock1999, Bar-Joseph2001, Xu2001, Liang2001 and 

Gousseau2002].  Thus, these methods are more suitable for extension to use multi-

dimensional representations as input. However, several methods still require 

expensive computation. Paget and Longstaff require parallel algorithms for the 

synthesis using non-causal, non-parametric and multiscale Markov random field 

[Paget1998].  Ashlock and Davidson apply tandem generic algorithms for texture 

synthesis based on non-parametric partially ordered Markov models; their method 

need several hours to compute [Ashlock1999]. On the other hand, recent non-

parametric synthesis approaches have been reported to be able to produce good 

results with less computation [Efros1999, Wei2000, Bar-Joseph2001, Xu2001, 

Liang2001, Hertzmann2001, Efros2001, Ashikhmin2001, Harrison2001, 

Tonietto2002, Zelinka2002, Cohen2003 and Nealen2003]. In these approaches, pixel 

values in the synthesised results are obtained from the sample images. The 

correlation between synthesised surface representations can be kept. Therefore, these 

methods are more suitable for the synthesis of surface relighting representations in 

multi-dimensional space. In particular, several patch-based synthesis algorithms 

([Efros2001, Xu2001 and Liang2001]) have one of the smallest requirements in 

terms of computational complexity.  

 The algorithm proposed in [Efros1999] is a highlight in the research field of 

texture synthesis. It assumes a Markov random field model and calculates the 

conditional distribution of a pixel given all its neighbours by querying the sample 

image and finding all similar neighbourhoods. The conditional probability density 

function  can be estimated using the following set: )|),((
RNresult IyxIp

}*)1(*    :{)),(( mindIIGIIyxI
Rss NNsampleNresult ε+≤−⊂=Ψ  (5.2.1) 

where:  

 77



),( yxIresult  is the intensity value of the pixel (x, y) to be synthesised in the 

output result image 

  is the neighbourhood centred at pixel (x, y) in the output image 
RNI

  is a neighbourhood in the input sample image 
SNI

)(*
SR NN IIG −  is a weighted Sum of Squared Differences (SSD) by a 

Gaussian kernel G between pixel values in an sample neighbourhood and 

the result neighbourhood , which is centred at   

sN

RN ),( yxIresult

mind  is the minimum SSD between pixel values in the input and the output 

neighbourhood, weighted by a Gaussian kernel G 

 ε  is the error threshold and is set to 0.1 

The centred pixel values of neighbourhoods in )),(( yxIresultΨ  provide an estimated 

histogram for . Thus, the algorithm first finds the best-matched 

neighbourhoods (within certain error tolerance 

),( yxIresult

ε ) in the sample image for the result 

neighbourhood  centred by . Then a best-matched neighbourhood is 

randomly selected and its centred pixel value is assigned to .  Although 

the algorithm is simple and not fast, it can produce promising synthesis results. 

Based on this algorithm, Wei and Levoy employed image pyramid representations to 

develop a new synthesis algorithm and used the tree-structured vector quantization 

for acceleration [Wei2000].  

RN ),( yxIresult

),( yxIresult

The work in [Efros1999 and Wei2000] has received broad attention in the 

computer vision and computer graphics communities. Later work based on these two 

algorithms includes [Ashikhmin2001, Hertzmann2001, Efros2001, Parada2001, 

Tonietto2002, Zelinka2002, Cohen2003 and Nealen2003]. In [Ashikhmin2001], 

Ashikhmin modifies the algorithm of  [Wei2000] and achieves faster synthesis 

speeds, which allow direct user input for interactive control over the synthesis 

process. In [Hertzmann2001], Hertzmann et. al. propose an image processing 

framework called image analogies, which can learn the analogy between the original 

and filtered input images to produce new image pairs. Their algorithm is based on 

[Wei2000 and Ashikmin2001]. In [Parada2001], Parada and Ruiz-del-Solar use self-

organizing maps to improve the algorithm of [Wei2000]. In [Efros2001], Efros and 
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Freeman develop a patch-based texture synthesis algorithm, which is based on 

[Efros1999] but produces better results with much less computation. In 

[Tonietto2002], a local-controlled synthesis algorithm is proposed that can generate 

texture in which the basic elements have different sizes, e.g. the skin of a cheetah. In 

[Zelinka2002], a jump map is first generated to store the matching input pixels and 

then used to synthesise a new texture image in real-time. In [Cohen2003], Wang 

tiles are employed and combined with the algorithm of [Efros2001] for texture 

synthesis. In [Nealen2003], a pixel-based algorithm and a patch-based algorithm are 

combined to improve previous synthesis methods.  

To summarise: 

 Since estimating the parameters of statistical models in multi-dimensional 

space is complex, parametric texture synthesis methods with local sampling 

strategies are not suitable for synthesising multi-dimensional surface relighting 

representations. On the other hand, most non-parametric synthesis approaches can be 

easily extended to dealing with multi-dimensional representations, and they can 

produce good results with little computation.  Thus, we select two non-parametric 

texture synthesis approaches based on [Wei2000 and Efros2001] for future 

investigation.  

5.2.3. Summary 

We have surveyed 2D texture synthesis approaches using the two criteria: (1) the 

suitability of the algorithm for extension to deal with multi-dimensional 

representations, and (2) the capability of producing good results while requiring little 

computation. Texture synthesis algorithms employing global sampling strategies 

have difficulty to synthesise the multi-dimensional surface representations because 

they tend to become excessively complex, and the correlation between the result 

representations may be damaged. On the other hand, non-parametric synthesis 

algorithms with local sampling strategies are capable of taking multi-dimensional 

vectors as input and producing good results with less computation. We therefore 

select two non-parametric approaches based on [Wei2000 and Efros2001] as 

candidate basic algorithms for 3D surface texture synthesis.  
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5.3. Two Approaches 

This section investigates two 2D texture synthesis approaches based on  [Wei2000] 

and [Efros2001]. 

5.3.1. The first approach and modification—a pixel-based multi-

resolution approach   

The first approach employs a pixel-based multi-resolution texture synthesis 

algorithm, which is based on a non-parametric sampling method [Wei2000]. The 

algorithm in [Wei2000] can be seen as the extension of the work in [Efros1999]. It 

also assumes a Markov random field texture model, which means a pixel value at a 

certain location only depends on its immediate neighbourhood. If we recall the 

expression (5.2.1), the algorithm in [Wei2000] essentially uses neighbourhoods 

across different resolutions and synthesises pixel values from lower to higher 

resolutions incrementally. The size of the neighbourhood is a parameter of the 

algorithm and must be chosen taking into account the granularity of the subject 

texture. When choosing the value of the next pixel in the output image the algorithm 

uses the populated portion of the pixel’s neighbourhood to exhaustively search for 

the ‘best’ matched region in the sample image.  

However, in our approach, for a certain percentage of the selections we use 

the ‘next column neighbour pixel’. Supposing we have just found a best-matched 

pixel and stored this in the result image, since we are synthesising texture in raster 

order, an obvious candidate for the next best match is the neighbouring pixel located 

in the next column of the sample image. Figure 5.3.1 shows an example. 

 

 
 

 

…  (i,j) (i,j+1) … 

 

…… (m,n) (m,n+1) …… 

Sample image 

                                                                                    Result image 
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Figure 5.3.1 The next column neighbour of last best-matched pixel can be used as 
the current best match. Pixel (i,j) in the sample image is the best match of pixel 

(m,n) in the result image. When we are synthesising pixel (m, n+1) in result image, 
we grant pixel (i,j+1) in the sample image is the best-matched without performing 

an exhaustive search. 

The use of the ‘next column neighbour pixel’ as opposed that derived by 

exhaustive search is controlled. It cannot be used for boundary conditions. In these 

cases we always perform an exhaustive search. In addition for certain randomly 

selected pixels we force the algorithm to use exhaustive search.   The percentage of 

the random selections is controlled by a parameter set by the experimenter. If we set 

the exhaustive search rate to 100%, the algorithm is the same as Efros and Leung’s 

[Efros1999] and Wei and Levoy’s [Wei2000]. We can also trade off synthesis 

speeds against synthesis quality. This modification approach is similar to the 

synthesis algorithm in [Ashikhmin2001] and can be seen as a simplified version. 

The whole synthesis process 

First we decompose the input sample image to obtain a set of multi-scale 

images by applying a Low-pass filter, i.e. Gaussian filter [Burt1983] to obtain a 

pyramid data structure. Let L represent the level of the lowest scale in each pyramid 

and 0 represent the level of the highest scale. Corresponding to the sample pyramid, 

we construct a result pyramid data structure, in which all elements are 0. The 

synthesis process begins from the lowest scale (level L), pixel by pixel, in raster 

order. For an output pixel, we first construct a neighbourhood as defined in  

[Wei2000]. The neighbourhood is shown in Figure 5.3.2. In the top pyramid level 

(the lowest scale), the neighbourhood uses only local populated neighbour pixels to 

perform exhaustive search. In the lower pyramid levels, it uses local populated 

neighbour pixels plus pixels immediately above (i.e. in the upper level). A 

neighbourhood is also constructed for each pixel in the sample pyramid. All of the 

pixels involved in the neighbourhood form the neighbourhood vector, which is used 

to perform exhaustive search to find the best matches for pixels in the result 

pyramid. During the exhaustive search, in order to determine the pixel value at a 

location (x,y) in the result pyramid, its neighbourhood is compared against all 

possible neighbourhoods in the sample pyramid. If pixel (i,j) has the most similar 
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neighbourhood, the value of pixel (i,j) in the sample pyramid is assigned to pixel 

(x,y) in the result pyramid. We use the Sum of Absolute Differences (SAD) to 

measure the similarity between neighbourhoods. More details about the exhaustive 

search algorithm can be found in [Wei2000]. 

 

P P P P P
P P P P P
P P X P P P

P Y P
P P P

 
                                                           l                         l+1 

Figure 5.3.2. The neighbourhood defined by Wei and Levoy [Wei2000]. The current 
level of pyramid “l” is shown at left and the upper level “l+1” is shown at right. It 

uses local populated neighbour pixels (marked as “P” in level “l”) plus pixels 
immediate above in the upper level (marked as “P” in level “l+1”).  All of marked 
pixels form the sub-neighbourhood. The current output pixel is marked as X, which 
locates at (x, y) in the lth pyramid level. Its “parent” pixel in the l+1 pyramid level 
locates at (x/2, y/2), which is marked as Y. Since the level “l+1” is complete, this 
sub-neighbourhood can contain all pixels around Y.  The sub-neighbourhood is 

constructed for each sample pyramid and result pyramid.  

We use the ‘next column neighbour pixel’ as the best-matched pixel 

whenever allowed. Now suppose we have synthesised the pixel located at  (m,n) in 

level X (X<=L), and its best-matched pixel locates at (k,l) in level X of the sample 

pyramid. Let {X, (m, n)} represent the pixel location in the result pyramid and {X, (k, 

l)} for the pixel location of the sample pyramid. We are going to find the best match 

for next pixel. Suppose the next pixel locates at {X, (m, n+1)} of the result pyramid. 

Intuitively, we consider the next column neighbour pixel of {X, (k, l)} in the sample 

pyramid as the candidate of the best match of pixel {X, (m, n+1)}. If {X, (k, l+1)} 

exists in the sample pyramid, we grant the neighbourhood of {X, (k, l+1)} as the best 

match for that of {X, (m, n+1)} in the result pyramid. The pixel value of {X, (k, l+1)} 

of the sample pyramid is assigned to the pixel value of {X, (m, n+1)} of the result 

pyramid (Recall Figure 5.3.1). However, there are three cases in which exhaustive 

searches must be performed. They are: (1) pixel {X, (m, n+1)} of the result pyramid 

is randomly selected for exhaustively searching; (2) pixel {X, (m, n+1)} does not 
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exist in the result pyramid, which means {X, (m, n)} is the last pixel of the mth row; 

and (3) pixel {X, (k, l+1)} of the sample pyramid does not exist. Figure 5.3.3 shows 

these three cases.  

The synthesis process will continue until all pixels in the result pyramid are 

assigned values from the lowest scale to the highest scale. In the highest scale (level 

0), the required result image is synthesised. The pseudocode is shown in Table 5.3.1. 

For most textures, the ratio of exhaustive search is from 40% to 70% given good 

results. The quality of synthesis results is similar to previous work by using 100% 

exhaustive search [Wei2000][Efros1999], but the computational complexity is 

reduced. Figure 5.3.4 shows example results from using 100% exhaustive search 

algorithm and our algorithm. The acceleration technique can still be applied in the 

modified algorithm [Wei2000]. 

 

(k,l)

  (m,n)
(m,n+1_)   (m,n)

(m+1,0_)

Result Pyramid

(level X)

Result Pyramid

(level X)

…...…...

Sample Pyramid

(Level X)

…...

(1)

(3)

(2)

 

Figure 5.3.3.  Three cases that must perform exhaustive search. (1) Pixel at {X, (m, 
n+1)} of the result pyramid is randomly selected for exhaustive search, (2) Pixel at 
{X, (m, n+1)} does not exist in the result pyramid, which also means {X, (m, n)} is 
the last pixel of the mth   row  and (3) Pixel at {X, (k, l+1)} of the sample pyramid 

does not exist. 
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Figure 5.3.4 Comparison of synthesis results. The image in the left is  the  sample. 
The image in the middle is the synthesised result by using 100% exhaustive search. 

The image in the right is the synthesised result by only using 40% exhaustive search. 
All of other parameters are same.  

 

SamplePyramid = buildPyramid(SampleImage); 

ResultPyramid = Null;          //result image pyramid 

Input   rate = exhaustive search percentage; 

RandomPixels = randomSelectPixels(rate); 

Loop l :=  the highest pyramid level L to the lowest pyramid level 0  

Loop through all pixel locations (x, y) in result pyramids in level l, 

(i, j) = FindBestMatchLocation ( SamplePyramid,  

                                                        x, y, l, ResultPyramid); 

Result_PixelValue (x, y)  = Sample_PixelValue (i, j); 

While     (i, j+1) exists in sample pyramids   

                && (x, y+1) exists in result pyramids 

                 && (x, y+1) not belong to  RandomPixels 

{ 

  Result_PixelValue (x, y+1)  = Sample_PixelValue (i, j+1); 

 j :=  j+1;  

 y := y+1; 

} End while 

 End loop 

End loop 

ResultImage = writeImage (ResultPyramid); 

Table 5.3.1 The pseudocode of the first approach  
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To summarise: 

We have investigated a 2D texture synthesis approach proposed by 

[Wei2000]. It assumes a Markov Random Field texture model, which means a pixel 

value at a certain location only depends on its immediate neighbourhood. A multi-

resolution scheme is applied to construct the neighbourhood around a given pixel. 

The algorithm synthesises a result image in pixel scale by finding the best-matched 

neighbourhoods in the sample image. We modified the original algorithm by using 

the ‘next column neighbour pixel’ as the best-matched pixel for a certain percentage 

of pixel locations. The modification can produce similar results with less 

computation. 

5.3.2. The second approach and modification—A patch-based 

approach  

The second approach is based on the image quilting method proposed by Efros and 

Freeman [Efros2001].  The method synthesises a new image by ‘stitching’ together 

small patches from the sample image. It requires little computation and can produce 

remarkable synthesis results. This method is also an extension of the previous work 

in [Efros1999]. 

The method in [Efros2001] synthesises a result image block by block in 

raster order.  Square blocks are used to capture the primary pattern in the sample 

texture. The size of the block is a parameter of the algorithm and must be chosen 

taking into account the granularity of the subject texture. First, a block is randomly 

selected from the sample image and pasted into the new image beginning at the first 

row and the first column. Then another block is selected as a candidate neighbour. It 

is placed next to the first block so that they overlap one another. The overlapping 

area between the two blocks is used to test the goodness of fit of the candidate using 

an L2 norm (Sum of Squared Differences). This is repeated for different candidates 

to find the minimum difference metric (distance). The final neighbour is randomly 

selected from those blocks whose distance lies in a certain range of the minimum 

distance. The range is controlled by a predefined error tolerance. A minimum error 

boundary cut is calculated in the overlapping area between the overlapping pixels so 

that the boundary looks smooth, as shown in Figure 5.3.5. Both vertical and 
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horizontal overlapping areas are used for selecting best-matched blocks inside the 

new image. This whole process is repeated until an output image of the required size 

has been generated. 

We have made two modifications to this quilting algorithm. First, instead of 

locating the best-matched block using exhaustive search, we select the ‘next column 

neighbour block’, which is the corresponding neighbour of last selection, and assign 

it as the current best-matched block, providing it exists in the sample image. This 

modification is similar to that introduced for the first approach. During the synthesis 

process, after a best-matched block is found in the sample image, we store its 

location in an array. When a new block in the result image is being synthesised, we 

check the best-matched block locations of its already generated neighbours. If there 

exists a block that is adjacent to all the best-matched block locations in the sample 

image, this block is selected as the current best-matched block. Figure 5.3.6 

illustrates this process. Suppose we are going to synthesise block h’ in the result 

image. We first check the best-matched blocks of its existing neighbour blocks e’, f’ 

and g’. If their best-matched blocks e, f and g are adjacent in the sample image, then 

block h, which is the neighbour of e, f and g, is selected as the best-matched block 

for h’. Obviously, for the first block row or column in the result image, only one 

neighbour block is checked. This simplification can increase the speed of the 

algorithm without apparently affecting the output. It can also be seen as an extension 

of the method used in [Ashikhmin2001].   

The second modification to the original algorithm is that we use an error 

metric based on the Sum of Absolute Differences (SAD) rather than more expensive 

L2 norm (square of SAD). They produced similar results in our experiments. 

Although both the L2 norm and the SAD are not perfect as perceptual metrics, the 

existing perceptual metrics might not be completely reliable and require more 

expensive computations [Sebe2000, Bolin1998, Ramasubramania1999 and 

Ashikhmin2001]. Figure 5.3.7 shows example output images produced by the 

modified and original algorithms respectively. The pseudocode of the whole 

algorithm is listed in Table 5.3.2. 

 

 86



 

Figure 5.3.5 The boundary cut process of Efros’ 2D texture synthesis approach. The 
curve shows the best boundary cut. 

 

e f
g

h
h'

f'e'
g'

Sample image

Result image

Completed blocks
(grey)

 

Figure 5.3.6. The neighbour of previous best-matched blocks. The grey area in the 
result image represents those blocks that have already been synthesised.  

 

Figure 5.3.7 The comparison of results produced by the modified and original 
algorithms. The first column shows sample images (texture “aar” and “aaf”). The 

second column shows synthesis results produced by the original algorithm. The third 
column shows synthesis results produced by the modified algorithm. 
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ResultImage = Null;          //result larger image 

Input   SampleImage, BlockSize, OverlapSize 

A_RandomBlock = randomSelectBlock(SampleImage); 

PixelValue(ResultImage, FirstBlockLocation) = PixelValue(SampleImage,  

A_RandomBlock); 

Loop through the ResultImage in raster order in steps of one block 

SampleBlockLocation = FindBestMatchLocation ( SampleImage, ResultImage,   

ResultBlockLocation, BlockSize, OverlapSize); 

 SampleBlock=PixelValue(SampleImage, SampleBlockLocation); 

PixelValue (ResultImage, ResultBlockLocation)  = BestBoundaryPath 

(ResultBlockLocation, NeighbourResultBlocks,  

SampleBlock, OverlapSize) ; 

While     (SampleBlockLocation+1) exists in sample pyramids   

                && (ResultBlockLocation+1) exists in result pyramids 

{ 

SampleBlock=PixelValue(SampleImage, SampleBlockLocation+1); 

PixelValue (ResultImage, ResultBlockLocation+1) =  

BestBoundaryPath(ResultBlockLocation+1,  

NeighbourResultBlocks, SampleBlock, OverlapSize); 

ResultBlockLocation :=  ResultBlockLocation+1; 

SampleBlockLocation := SampleBlockLocation+1; 

} End while 

End loop 

Table 5.3.2 The pseudocode of the first approach 

To summarise: 

 The second 2D texture synthesis approach is based on the image quilting 

algorithm proposed by [Efros2001]. This approach can produce high-quality 

synthesis results while requiring little computation. We made two modifications to 
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the original algorithm. The modified algorithm can produce similar results to those 

from original algorithm while the computation is reduced.    

5.3.3. Comparison of the two approaches 

In section 5.3.2, we investigated two 2D texture synthesis approaches. Since the 

main goal of this thesis is to develop inexpensive approaches for the synthesis of 3D 

surface texture, we need to select one method which requires less computation while 

producing reasonable results. Therefore, we first compare the two approaches 

according to the computational complexity and synthesis results.  

The computational complexity of the original algorithm in [Wei2000] 

without acceleration is O(N), where N is the number of pixels in sample image. It is 

obvious that our modified algorithm has the computation O(a%*N), where a the 

input percentage of total pixels that the algorithm should perform exhaustive search. 

In contrast, the second approach, which is based on [Efros2001], has the 

computational complexity at most O(B), where B  is the number of blocks in the 

sample image. The number of blocks is usually much smaller than the number of 

image pixels.  For example, if the block size is 13×13, for a 64×64 sample image, 

the block number is only 24 compared with the pixel number 4096. Even if we set 

the percentage of total pixels that perform exhaustive search as 40% (a=40), the 

computational complexity of the first approach is O(1638) whereas that of the 

second approach is O(24).  Obviously, the second approach requires much less 

computation. We report the time consumed in a typical experiment without using the 

acceleration technique in Table 5.3.3. The experiment was performed on a normal 

desktop PC with a 600MHz Intel Pentium III CPU. Note same acceleration 

techniques are available for both algorithms [Efros2001 & Wei2000].  

Approach The first The second 
Sample size 65×65 65×65 

Result size 129×129 129×129 

Computational complexity O(4225) O(6)—With block size  26×26 

Time consumed 5374 seconds 6 seconds 

Platform where experiments 

performed 

A 600MHz desktop PC with a Pentium III CPU, Linux OS. 

Table 5.3.3 The comparison of two 2D texture synthesis algorithms 
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 Efros et. al.  have already shown the comparison of some synthesis results 

produced by their method [Efros2001] and the method of [Wei2000].  They report 

that their algorithm is particularly effective for semi-structured textures, which were 

always difficult for statistical texture synthesis methods. In Figure 5.3.8, we show 

two synthesis result images produced by the two approaches using a sample texture 

from our database.  

 

Figure 5.3.8 Two example synthesised images produced by the two approaches 
using a sample texture “acd” from our database. The image in the left is the input 

sample (65×65). The image in the middle is the synthesis result of the first approach. 
The image in the right is the synthesis result of the second approach. The size of 

result images is 256×256. 

5.3.4. Summary 

We have investigated two 2D texture synthesis approaches. The first approach 

synthesises a new image by decomposing the input sample into a multi-resolution 

image set and searching the best-matched neighbourhood for every pixel in the result 

image. The second method generates a new image by ‘stitching’ together small 

patches from the sample image. Since the second approach can produce better 

synthesis results while requiring less computation, we select it as our basic algorithm 

for the synthesis of 3D surface textures.  

5.4.  Analysis of the selected synthesis algorithm 

In last section, we selected a patch-based 2D texture synthesis approach as our basic 

algorithm for the synthesis of 3D surface texture. The selected approach requires 

four parameters as input, comprising: (1) a sample image, (2) a block size, (3) an 

overlap size and (4) an error tolerance. The four input parameters will affect the 

computation required by the algorithm and the quality of final synthesis results. 
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These effects are very important to the synthesis of 3D surface textures. This section 

will therefore analyse the algorithm in terms of computation and synthesis results by 

varying the input parameters.  

5.4.1. Sample image size  

Efros et. al. suggest that the input sample texture should contain enough variability 

[Efros2001]. Thus, the more stochastic patterns the sample texture contains, the 

larger sample image the algorithm should use. The reason is that a larger sample can 

provide more information and more choice when searching for best-matched blocks. 

If the sample texture contains many irregular elements, e.g. different beans of 

different sizes and shapes, we should use a larger sample.  Otherwise, a smaller 

sample will cause mismatching between blocks and then lead to discontinuities in 

the result image. However, since the computational complexity of the synthesis 

algorithm is proportional to the total number of blocks contained in the input sample, 

a large sample requires more computations. We may trade off the quality of 

synthesis results against synthesis speeds by selecting an appropriate sample size. 

Figure 5.4.1 shows synthesis results using sample images of different sizes.  

 

Figure 5.4.1 Synthesis results produced by using different input sample sizes. The 
size of sample images is 65×65 in the first column and 128×128 in the third column. 

The size of result images is 256×256. The three textures from top to bottom are 
“abj”, “add” and “adf” respectively. 
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5.4.2. Block size  

The second input parameter required by the synthesis algorithm is block size. This 

parameter is crucial to the quality of synthesis results and speed. As reported in 

[Efros2001], the block should be large enough to capture the relevant structures or 

pattern in the sample texture. However, it must also be small enough so that the 

interaction between these structures is left to the algorithm.  The overlarge block size 

will introduce more matching errors and may cause the result image losing the 

stochastic properties. On the other hand, it will reduce the computation required by 

the synthesis algorithm, since a large block size results in the sample image 

containing fewer blocks. Figure 5.4.2 shows the synthesis results using two example 

textures of different input block sizes. All other input parameters remain constant 

throughout the experiments.  

 

Figure 5.4.2 Synthesis results produced by using  different input block sizes. The 
images in the first column are input sample images. In the first row (texture “ach”), 

the second to the fourth image uses block size of 4,8 and17 respectively. In the 
second row (texture “abj”), the second to the fourth image uses block size of 5,10 

and 20 respectively. 

5.4.3. Overlap size 

The third input parameter of the selected algorithm is the overlap size—the size of 

overlapping areas between neighbour blocks. We use the ‘width’ to represent the 

size of a vertical overlapping area and use the ‘height’ to represent the size of a 

horizontal one.  The reason we can make this simplification is that the length of the 

other edges of overlapping areas is decided by the block size, which is constant in 

the synthesis process. Efros and Freeman report that they use 1/6 of a block size as 

the proper overlap size in their experiments [Efros2001].   
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Inappropriate overlap sizes will cause faulty matching during synthesis 

which will introduce discontinuities in the synthesis results. The reason is that pixels 

in overlapping areas are used for searching for the best-matched blocks. The 

algorithm calculates Sum of Absolute Differences (SAD) using those pixels in the 

overlapping areas; a block with the minimum SAD will be selected as the best-

matched block. If the overlap size is too small or too large, there are either too few 

or too many pixels that can be used to calculate SAD. In either case, the minimum 

SAD might not represent the real best-matched blocks due to the sum effect. For 

example, suppose the best synthesis results are achieved by using a size that leads to 

each overlapping area containing 200 pixels. For each block location, the algorithm 

calculates 

∑
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where: 

jΩ  is the overlapping area containing 200 pixels covered by block j  in the 

sample image and the already synthesised pixels in the result image 

),( ii yx  represents the ith pixel in the sample image covered by the 

overlapping area  jΩ

),( ii yx ′′  represents the ith pixel in the result image covered by the overlapping 

area  jΩ

  is the i),( ii yxI th pixel value in the sample image  

 is the i),( ii yxI ′′′ th pixel value in the result image.  

Suppose another overlap size that makes the overlapping area contain 600 pixels. 

Then the following statement is not guaranteed to hold: 
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where: 

jΩ′  is the overlap area containing 600 pixels covered by block j  in the 

sample image and the already synthesised pixels in the result image 
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),( ii yx ′′′′  represents the ith pixel in the sample image covered by the 

overlapping area  jΩ′

),( ii yx ′′′′′′  represents the ith pixel in the result image covered by the overlapping 

area jΩ′  

  is the i),( ii yxI ′′′′ th pixel value in the sample image 

 ),( ii yxI ′′′′′′′ is the ith pixel value in the result image. 

 Furthermore, small overlap sizes can not provide enough choice for the boundary 

cut, which is designed to produce smooth transitions in overlapping areas. All of 

these will lead to discontinuities or even ‘garbage’ in the result image. Figure 5.4.3 

(a) and (b) show example synthesis results of two sample textures using different 

input overlap sizes. The results contain discontinuities and artefacts due to either 

oversmall and overlarge overlap sizes.  

However, varying overlap size does not have significant impact on the 

synthesis results of semi-structured textures. This is obvious because semi-

structured textures contain simple patterns which can be easily ‘stitched’ together.  

An example is shown in Figure 5.4.3 (c). In general, we found based on our 

experiments that using an overlap size between 1/6 to 1/3 of the block size can 

produce reasonable results.  

 

(b)

(a)

(c)  
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Figure 5.4.3 Synthesis results produced by using different input overlap sizes. In 
each row, the first image is the sample image; the second to the fourth images are 

result images produced by using different overlap sizes:  (a) (Texture “abj”)1, 6 and 
15;  (b)(Texture “aam”)1, 6 and 15  and (c)(Texture “ach”) 1, 5 and 10 

respectively. All other input parameters are kept constant.  

5.4.4. Error tolerance 

The fourth parameter of the algorithm is the error tolerance, which allows the 

algorithm to randomly choose a block from those that have similarity metrics within 

a certain range of the minimum one. Thus, more randomness may be introduced in 

the synthesis results. However, larger error tolerances will introduce more matching 

errors. Efros and Freeman used 0.1 in their experiments as the error tolerance when 

selecting best-matched blocks [Efros2001]. In our experiments, we have found that 

using the error tolerance between 0.0 to 0.1 does not produce much difference for 

synthesis results. Figure 5.4.4 shows two examples with a set of error tolerances.  

 

Texture:aar

Error tolerance              0.0                            0.1

Error tolerance               0.3                           0.5

Texture:aar
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Texture:ace

Error tolerance              0.0                            0.1

Error tolerance               0.3                           0.5

Texture:ace

 
 

Figure 5.4.4 Synthesis results produced by using  different error tolerances. The 
small images are samples (64x64); the large images (256x256) are synthesis results 

with different error tolerances. The error tolerances are listed under the result 
images.  

5.4.5. Strength and weakness  

As reported in [Efros2001], this algorithm performs remarkably well on semi-

structured textures, which normally contain obvious boundaries between repeated 

near-regular patterns. These obvious boundaries and near-regular patterns can 

simplify the matching between blocks. Therefore better synthesis results can be 

produced. Figure 5.4.5 shows two highly structured textures and their synthesis 

results.  

 

Figure 5.4.5 Example synthesis results of two highly structured textures (texture 
“ach” and “acd”).  

The algorithm has problems when synthesising textures with irregular 

elements, e.g. a texture that comprises beans of different sizes and shapes. Figure 

5.4.6 shows an example. Texture “ada” comprises lentils, which have different 

individual shapes and are randomly layout. Discontinuities and artefacts are obvious 

in the result image.   The reason is that the algorithm employs a square block with a 

 96



constant size. Irregular granularities make matching and obtaining the best boundary 

cut difficult; more flexible patch shapes should be used to produce seamless 

boundary cuts. Recent research has shown promising results to solve this issue. 

Kaplan and Salesin developed an algorithm to solve the “Escherization” problem 

[Kaplan2000]. Their algorithm can find a new closed figure similar to the sample 

and use it to tile the plane. Kwatra et. al. use graph cuts for choosing irregular 

patches and can seamlessly paste the patches during texture synthesis [Kwatra2003]. 

However, it is still difficult to develop efficient methods for selecting auto-adaptive 

block during synthesis process. This algorithm remains one of the best choices for 

the synthesis of 3D surface textures in terms of synthesis speeds and the quality of 

results. 

 

Figure 5.4.6 A failed example (Texture “add”).  The algorithm has problems when 
synthesising textures that comprise irregular elements. 

5.4.6. Summary 

We analysed the selected 2D texture synthesis algorithm in terms of the inputs 

required: the sample image size, block size, overlap size and error tolerance.  The 

larger sample image contains more information and can produce better synthesis 

results, but it also increases computations. The block size should be big enough to 

capture the basic structures or patterns in the sample image. The overlap size should 

be between 1/6 to 1/3 of the block size. Inappropriate overlap sizes will introduce 

discontinuities or artefacts to the result image. The error tolerance between 0.0 and 

0.1 does not produce much effect on the synthesis results. 

 The selected algorithm can produce remarkable synthesis results for semi-

structured textures, whereas it has difficulties to synthesise textures with irregular 

elements or granularities. The reason is that the algorithm uses a fixed square block 

in order to capture the basic texture structures.   
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5.5. Conclusion 

The aim of this chapter is to investigate available 2D texture synthesis methods and 

select an efficient algorithm that can be easily extended for use with relighting 

representations of 3D surface textures. This is the second stage of our overall 

framework.  

We first presented a detailed review of 2D texture synthesis approaches based on 

two criteria: (1) the suitability of the algorithm for extension to deal with multi-

dimensional representations, and (2) the capability of producing good results while 

requiring little computation. Then we investigated two popular algorithms proposed 

by Wei et. al. [Wei2000] and Efros et. al. [Efros2001]. Since the latter produces 

better results while requiring less computation, we selected it as our basic synthesis 

algorithm. In addition to the sample image, the algorithm requires a block size, an 

overlap size and an error tolerance as inputs. We analysed the effect on the quality of 

synthesis results when varying the four input parameters. Based on [Efros2001] and 

our experiments, the primary conclusion is that the block should be bigger than basic 

texture patterns/granularities perceived by human vision and the overlap size should 

be between 1/6 to 1/3 of block size. 

In next chapter we will describe how to combine surface relighting 

representations that we introduced in the previous chapter with the synthesis 

algorithm described in this chapter to synthesise and relight 3D surface textures.  
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Chapter 6 

Synthesis and Relighting 

6.1. Introduction 

In chapter 4, we introduced five methods for representing and relighting surface 

textures. In chapter 5, we selected a 2D texture synthesis algorithm. In this chapter 

we present five approaches that combine the surface representation methods with the 

2D texture synthesis algorithm to synthesise images of 3D surface textures under 

arbitrary lighting directions. We will compare these synthesis approaches according 

to the quality of their output results. The criterion for the comparison is the 

resemblance, as perceived by human vision, between output results and input 

samples. The work described in this chapter corresponds to the final stage in our 

overall framework, as highlighted in Figure 6.1.1. 

Sample texture
images

Extract representation m
aps

Synthesis

3D surface texture
representation maps

Large 3D surface texture
representation maps

R
endering/relighting

Large texture images under
different lighting/viewing

settings

...

...

 

Figure 6.1.1 The final stage of the overall framework 
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We modify the 2D texture synthesis algorithm selected in chapter 5 so that it 

can take sample surface representations as input and perform synthesis in multi-

dimensional space. We propose five approaches for the synthesis of 3D surface 

textures that correspond to the five surface representation and relighing methods 

introduced in chapter 4:  

The 3I synthesis approach: This approach uses three images of the sample texture 

as input and it relights the synthesised images using the 3I relighting method. 

Synthesis is performed in R3 space.  

The Gradient synthesis approach: The second approach uses surface gradient and 

albedo maps as input and it relights the synthesised surface gradient and 

albedo maps using the Gradient relighting method. Synthesis is also 

performed in R3 space.  

The PTM synthesis approach: This approach uses Polynomial Texture Maps 

(PTM) as input and it relights synthesised PTMs using the PTM relighting 

method. Synthesis is performed in R6 space.   

The Eigen3 synthesis approach: The fourth approach uses the first three eigen base 

images as input and it relights synthesised base images using the Eigen3 

relighting method.  

The Eigen6 synthesis approach: This is identical to the previous approach except 

that it uses the first six base images as input. Thus, synthesis is performed in 

R6 space.  

For our experiments we use the same 23 textures as those used in chapter 4. 

We are also interested in the performances of these five approaches 

concerning the quality of their synthesised results. In chapter 4, we performed a 

quantitative assessment of the five surface representation and relighting methods. 

However, we can not perform a similar quantitative comparison here because ground 

truth data is not available. We therefore qualitatively assess the five synthesis 

approaches. We perform psychophysical experiments to rank these five approaches 

based on human perception. Based on the rank data, we use Fredman’s 

nonparametric two-way Analysis of Variance followed by a multi-comparison 

method to test their significance. The conclusion is that the Gradient and Eigen3 
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approaches outperform any of the other approaches if both the synthesised results 

and computational cost are considered.  

The chapter is organised as follows. Section 6.2 introduces the five synthesis 

approaches. Section 6.3 describes the psychophysical experiments for the qualitative 

comparison of the five approaches. Finally in section 6.4 we draw conclusions from 

the results of this chapter. 

6.2.  The five synthesis  approaches 

This section introduces five synthesis approaches: 3I, Gradient, PTM, Eigen3 and 

Eigen6. They employ the same basic algorithm—the modified Efros and Freeman’s 

2D texture synthesis algorithm. However, they use different inputs, which comprise 

different multi-dimensional vectors that represent a sample surface texture under 

arbitrary illumination directions. During the synthesis process, each pixel location on 

the sample surface is represented by multi-dimensional vectors that are extracted 

using the surface representation methods introduced in chapter 4. The synthesis 

algorithm uses the multi-dimensional vectors as input to synthesise new surface 

representation maps. They are finally relit using the relevant relighting methods to 

obtain new images under different illumination directions.  

6.2.1. The general algorithm for the synthesis of surface texture 

representations 

The general algorithm for the synthesis of surface texture representations is an 

extension of the 2D synthesis algorithm that we selected in chapter 5. The algorithm 

synthesises a result representation by ‘stitching’ together small blocks from a sample 

representation. It uses a Sum of Absolute Differences (SAD) as the metric for 

selecting best-matched blocks in the sample. For 2D texture synthesis, the 

calculation of SAD only uses pixel intensity values. In the case of 3D surface texture 

synthesis, each pixel location on the sample surface is expressed as a multi-

dimensional vector. The general algorithm therefore uses multi-dimensional vectors. 

The SAD that we use for multi-dimensional surface representations is:  
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where: 

  represents a sample pixel location ),( yx

 ),( yx ′′  represents a result pixel location 

  is a pixel value at  in the i),( yxmi ),( yx th sample representation map 

 ),( yxmi ′′′ is a pixel value at ),( yx ′′  in the ith result representation map 

jΩ  is an overlapping area covered by block j 

n is the dimensionality or the total number of sample representation maps. 

The best-matched blocks are found by minimising the SAD between the overlapping 

windows of the sample and result representation maps.  

 The sample surface and output representations are stored as multiple images. 

The number of images is equal to the dimension of the representations. Thus 

synthesis in R3 space involves three input images and three output images, as shown 

in Figure 6.2.1. 

Same locations

samples

results

 

Figure 6.2.1 Each group of best-matched blocks in synthesised results comes from 

the same location in samples  

The synthesised representation maps are then relit using corresponding relighting 

methods to produce the final results.  

Matching errors 
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It should be noted that matching errors exist during the selection of best-

matched blocks by calculating the minimum SAD in Rn space. Suppose we are 

observing two synthesis processes. The first process synthesises only one 

representation map in R1 space using pixel values as input; the second synthesises 

all representation maps simultaneously in Rn space. All other parameters are 

identical. At the same locations of two output representation maps, the best-matched 

block obtained in R1 space might be different from its counterpart in the group of 

best-matched blocks that are produced simultaneously in Rn space (using n-

dimensional vectors as input). In the other words, the group of best-matched blocks 

produced in Rn space does not guarantee each individual in the group is the same as 

the best-matched block produced in R1 space. Figure 6.2.2 illustrates this process. 

Each large image (output) in Figure 6.2.2 (a) is synthesised independently in R1 

space. For the framed blocks in output images, their best-matched blocks in the 

samples have different locations. These locations also differ from those in the 

sample images of (b), in which synthesis is performed in R3 space. In (b), all framed 

blocks in output images lie in the same location.  

Sam
e block locations

Best-matched
block

Best-matched
block

Best-matched
block

Location 1

Location 3

Location 2

 
(a) 
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(b) 

Figure 6.2.2 The group of best-matched blocks produced in R3 space does not 

guarantee each individual in the group is the same as the best-matched block 

produced in R1 space. (a) Each large image (output) is synthesised separately in R1 

space; all framed blocks in the output images lie in the same location but their best-

matched blocks have different locations in the samples. (b) Synthesis in R3 space. All 

framed blocks lie in the same location in output images and are identical to those in 

(a), but their best-matched block group has the same location in the samples. This 

location differs from each of those in (a). 

The reason for producing matching errors is that the minimum SAD, which 

decides the best-matched blocks, is normally greater than zero when synthesising 

real-world surface texture representations. Thus, the following mathematical 

statement is obvious:  
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The left side of equation (6.2.2) represents the minimum SAD calculated using n-

dimensional vectors, while the right side is the sum of the minimum SAD calculated 

in R1 space.  The matching error can be seen as the difference between the two sides 

of equation (6.2.2). The higher the dimensionality of input vectors is, the larger the 
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matching errors might be. Matching errors will introduce discontinuities in the 

result representation maps. 

6.2.2. The 3I synthesis approach 

The 3I synthesis approach first synthesises three output images from three sample 

photometric images, which are captured under linearly independent illumination 

directions. The synthesis is therefore performed in R3 space. The three synthesised 

photometric images are then relit to generate new images under arbitrary 

illumination directions using a linear combination—the 3I relighting method, as 

introduced in chapter 4. Figure 6.2.3 shows the process in R3 space. 

Camera

 Three-im
age-based relighting

Synthesis

Input 
photometric set

Intermediate synthesised
photometric set

Example output images
relit at different illumination directions

Sample  

Figure 6.2.3 The 3I synthesis approach 

6.2.3. The Gradient  synthesis approach 

The Gradient synthesis approach synthesises output surface gradient and albedo 

maps from sample maps. These are generated using the Gradient representation 

method.  Synthesis is also performed in R3 space. Since pixel values in surface 

gradient maps are normally smaller than those in the albedo map, all pixel values are 

transformed into same scale during synthesis process. This gives the surface gradient 

and albedo maps the same weight when calculating Sum of Absolute Difference 

(SAD). However, the synthesised surface gradient and albedo maps still use pixel 

values from the corresponding original sample maps. They are relit using the 

Lambertian model to generate final images under arbitrary illumination directions. 

Figure 6.2.4 shows the whole synthesis process. 
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Figure 6.2.4 The Gradient synthesis approach 

6.2.4. The PTM synthesis approach 

This PTM synthesis approach performs synthesis in R6 space.  The six-dimensional 

sample Polynomial Texture Maps are also transformed into same scale so that they 

have the same weight when calculating SAD. The synthesised PTMs are relit using 

the PTM relighting method [Malzbender2001] to produce final images under 

different illumination directions.  
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relit at different illumination directions

...
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6 coefficient maps
(PTM)

Synthesis of PTM
 

...
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Figure 6.2.5 The PTM synthesis approach 

6.2.5. The Eigen3 and Eigen6 synthesis approaches 

The Eigen3 or Eigen6 approach uses the first 3 or 6 eigen base images as input to 

synthesise output eigen base images. The sample eigen base images are generated 
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using the Eigen3 or Eigen6 surface representation method. They are also 

transformed into the same scale during synthesis process so that they have equal 

weight in calculating SAD between samples and results. The synthesised base 

images are relit using a bilinear interpolation—the eigen-based relighting methods 

described in chapter 4 to generate new images under varied illumination directions.   

R
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Synthesis of base im
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Figure 6.2.6 The Eigen3 and Eigen6 approaches 

6.2.6. Summary 

We have presented five approaches for the synthesis and relighting of 3D surface 

textures. They use surface representation maps extracted from a set of sample 

images as input to synthesise new surface representations. The synthesised 

representations are then relit using the corresponding relighting methods to generate 

final result images under arbitrary illumination directions. We summarise the five 

approaches in Table 6.2.1. Synthesis results of 23 textures with illumination angles 

of (τ =60°, σ =60°) and (τ =120°, σ =60°) are shown in Appendix B. 
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Table 6.2.1 Summary of the 5 approaches 

Approach 1st phase 2nd phase 3rd phase 

3I  
No processing required in this 

phase as the three images are used 
directly 

R3 synthesis 
(produces 3 output photometric 

images) 

Image-based relighting 
(produces final image) 

Gradient  

 
Produces sample gradient(p,q) and 
albedo maps (al) using all sample 

images  

R3 synthesis 
(produces output gradient and 

albedo maps) 

Gradient-based 
relighting 

PTM  Generates sample Polynomial 
Texture Maps   

R6 synthesis 
(produces output Polynomial 

Texture Maps) 
PTM- based Relighting 

Eigen3 Generates 3 base images of sample 
in eigen-space 

R3 synthesis 
(produces output eigen base 

images) 

Eigen-based relighting 
 

Eigen6 Generates 6 base images of sample 
in eigen-space 

R6 synthesis 
(produces output eigen-base 

images ) 

Eigen-based relighting 
 

 

 

6.3.  Qualitative assessment of the five approaches 

Section 6.2 described five approaches for the synthesis and relighting of 3D surface 

textures. This section evaluates the performances of these methods concerning the 

quality of their synthesis results. In chapter 4, we have quantitatively assessed the 

surface representation and relighting methods. The conclusion is that the 3I 

representation method produces the worst performance and the Eigen6 method 

produces the best. The R6 PTM representations perform better than R3 Gradient 

representations, although it can not be considered superior to the computationally 

cheaper Eigen3 representations in R3 space. We are interested in whether the 

qualitative performance1 of the five synthesis approaches is consistent with the 

quantitative assessment results of relighting methods.  

 Despite the significant quantity of research on texture synthesis approaches 

little has been published concerning their assessment. The majority of researchers 

therefore simply display their results alongside those of their competitors and leave 

                                                 
1 Note that unlike the assessment of surface representation and relighting methods, we can not 

perform a quantitative comparison because no ground-truth data is available. 
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the comparison to readers [DeBonet1997, Wei2000, Efros1999, Xu2001, Efros2001 

and shikhmin2001]. Few provide any experimental support. Copeland et. al. did use 

a psychophysical experiment with ten observers to assess the ability of a numerical 

error metric to model the perceptual differences between texture patterns 

[Copeland2001] but very little has been published on the systematic qualitative 

assessment of texture synthesis results per se. In this section, we introduce a simple 

qualitative approach which uses nonparametric statistical tests and psychophysical 

experiments.  

6.3.1. Design of the psychophysical experiments 

Since we are interested in comparing the performances of the five synthesis 

approaches concerning the quality of synthesis results, we use rank (ordinal) data as 

the scale of statistic measurement. An ordinal scale of measurement represents an 

ordered series of relationships or rank order. In our case, we wish to know which 

methods outperform others or which one can achieve the best, second, or third 

performance. Unlike precise measurement, rank data is suitable for qualitative 

measurement. Furthermore, the advantage of using rank data is that it can be simply 

obtained from observation. 

We asked a set of ten human observers to rank different synthesis approaches 

by comparing output images with input samples. The main concern is the 

resemblance between the samples and results under multiple illumination directions. 

In order to avoid distraction from other effects during comparison, we simply place 

the sample images alongside results with same illumination conditions. Although we 

have performed the synthesis on 23 sample textures and we can generate images 

with arbitrary illumination directions, we only select a representative subset from the 

results for the psychophysical experiments so that observers are relieved from 

exhaustive comparison. The subset comprises eleven textures (near 50% of all 

textures) with two illumination directions. These textures include surfaces that 

exhibit near Lambertian reflectance, Lambertian reflectance with shadows and 

interreflections, and specular reflectance. These textures also include surfaces with 

stochastic and structured patterns. 

For each texture, we used each of the five approaches to synthesise two output 

images under illumination angles of (τ =60°, σ =60°) and (τ =120°, σ =60°). These 
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images are shown in Table 6.3.1 and labelled as “aaj”, “aas”, “ace”, “adc”, “add”, 

“aar”,  “acd”, “aai”, “ach”, “aci” and “abj”. Observers were asked to compare real 

sample images with synthesised images and rank the results for each of the eleven 

textures from the best to the worst. The illumination directions are indicated by 

block arrows in the figure. No other instructions were given concerning as to what 

qualities to look for when comparing methods. Thus we collect 110 sets of rankings 

(10 observers x 11 textures).  
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Table 6.3.1Synthesis and relighting results from the five methods for 11 textures. The 

small images in each cell are the samples; the large images are synthesis results. Arrows 

indicate illumination directions  (τ =60° and τ =120°). 

3I Gradient PTM Eigen3 Eigen6

Texture “aaj”

Texture “aas”

Texture “ace”
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3I Gradient PTM Eigen3 Eigen6

Texture “adc”

Texture “add”

Texture “aai”

Texture “acd”
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3I Gradient PTM Eigen3 Eigen6

Texture “aar”

Texture “ach”

Texture “aci”

Texture “abj”
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6.3.2. The test of significant difference—Friedman’s nonparametric 

two-way Analysis of Variance 

We firstly would like to know whether there are significant differences between the 

performances of these approaches according to the rankings. Since observers 

performed their rankings independently, we use Friedman’s nonparametric two-way 

Analysis of Variance (ANOVA) to test for significance.  

Friedman’s nonparametric two-way Analysis of Variance (ANOVA) is designed 

to determine if we may conclude from sample evidence that there are differences 

between treatment effects (which in our case are the five approaches). We therefore 

construct a matrix which contains one column for each approach.  Each column 

contains 110 rank data (10 observers x 11 textures). Friedman’s test compares the 

means of these columns (see [Daniel1990] for more details).  The null hypothesis H0 

is that there are no significant differences between the five methods, while the 

alternative hypothesis H1 is that at least one is different. The test statistic is defined 

as: 
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where: 

b is total number of  rank data for each method (110) 

k is  the number of methods to be compared (5), and 

jR  is the sum of rank data for each method. 

The test results indicated that there is at least one method which performs 

significantly differently from the others at a confidence level of 100%.  

6.3.3. The multiple comparison 

Since there is significant difference between the performances of these approaches, 

we are interested in which approaches perform better than others. We therefore use a 

multiple comparison test of means that is designed to provide an upper bound on the 

probability that any comparison will be incorrectly found to be significant 

[Hochberg1987]. The multiple comparison compares each pair of approaches and 

outputs the confidence interval for the difference at certain confidence level.  
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We use the Statistic Toolbox in Matlab to perform the multiple comparison. 

The result is shown in Figure 6.3.1. Each group mean is represented by a small circle 

within an interval. Two means are significantly different if the associated intervals 

are disjoint, and are not significantly different if their intervals overlap.  

 

Eigen6

Eigen3

PTM

Gradient

3I

 

Figure 6.3.1 Multiple comparison test of the five approaches. Small circles and lines 

represent the group means and their intervals. The horizontal axis indicates rank 

values. Two means are significantly different if their intervals are disjoint. 

Based on the results of this test in which the confidence levels of the intervals 

are 99%  ( 01.0=α ) we make the following observation. There are no significant 

differences between the performances of the Gradient, Eigen3, and Eigen6 

approaches. However, each of these methods does outperform both 3I and PTM, 

while the PTM method outperforms the 3I. 

Although Eigen6 produced the best quantitative relighting results, its qualitative 

performance in the synthesis experiments was not significantly better than its two 

nearest competitors: Gradient and Eigen3. This is maybe because synthesis is 
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performed in R6 space which is more prone to matching errors. These errors often 

introduce discontinuities, which are particularly noticeable to human observers.  

Consequently, when the samples and results with same illumination directions are 

being compared, the effect due to discontinuities might counteract the good 

performance produced in relighting. Therefore, the overall performance of Eigen6 is 

lowered to the same level as Eigen3 and Gradient in the qualitative assessment. 

Correspondingly, although PTM performed better than Gradient in the relighting 

assessment, it failed to outperform Gradient in the qualitative comparison of 

synthesis results.   

If we take computation complexity into account, we find that synthesis in R6 

space is of course the most expensive. It exactly doubles the computation time 

compared with R3 synthesis. Thus we conclude that the Gradient and Eigen3 

approaches on average offer as good a performance as of any of the other methods 

and incur low computational cost. However, if image-acquisition requirements have 

to be kept low then the 3I synthesis approach, which uses only three photometric 

images, provides relighting at the cost of lower quality output.  

6.4. Conclusion  

In this chapter, we proposed five approaches for the synthesis and relighting of 3D 

surface texture. The five approaches—3I, Gradient, PTM, Eigen3 and Eigen6 use 

the corresponding surface representations of a sample texture as input to a modified 

version of Efros and Freeman’s image quilting method. The synthesised surface 

representations are relit to produce new images under arbitrary illumination 

directions. For the 3I, Gradient, and Eigen3 approaches, synthesis is performed in 

R3 space, while the PTM and Eigen6 approaches perform synthesis in R6 space. 

We qualitatively compared the five approaches by employing psychophysical 

experiments. We asked ten observers to rank different synthesis approaches by 

comparing output images with input sample images.  The ranked data were first 

tested using Friedman’s nonparametric two-way Analysis of Variance. The test 

suggests that there is at least one significant difference between the performances of 

these five approaches. A multiple comparison was then applied to determine which 

approaches outperform others. The conclusion is that, at the confidence level 99%, 
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the Gradient, Eigen3 and Eigen6 approaches perform better than 3I and PTM. If 

computation complexity is taken into account, the Gradient and Eigen3 approaches 

are preferable.  
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Chapter 7 

Conclusion and Discussion 

7.1. Summary  

The aim of this thesis is to develop inexpensive approaches for 3D surface texture 

synthesis. This is motivated by the desire for realistic texture synthesis in augmented 

and virtual reality applications. The synthesised results should be able to be rendered 

under varied illumination directions. They should also be compatible with the input 

requirement of computer graphics programming and software packages so that real-

time rendering can be achieved using personal computers with modern graphics 

cards. 

In chapter 2, we presented an overview of the research fields related to this 

thesis. We have surveyed three fields: (1) 3D surface texture synthesis, (2) 2D 

texture synthesis, and (3) surface representation methods for relighting. The research 

into 3D surface texture synthesis only received attention in the past three years. 

Among the available five publications [Zalesny2000, Zalesny2001, Liu2001, 

Tong2002 and Leung2001], the methods described in [Zalesny2000 and 

Zalesny2001] aim to synthesise new texture images under different viewpoints with 

a fixed illumination direction.  In [Liu2001], Liu et. al. develop a method that can 

synthesise Bidirectional Texture Functions (BTF) of Lambertian surfaces by 

combining a shape-from-shading technique with a 2D texture synthesis algorithm. In 

later work [Tong2002], Tong et. al. define surface textons by linearly combining 

appearance vectors associated with 3D textons [Leung2001] and use them for 
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synthesising BTFs on surfaces of 3D models. Although there are only five 

publications regarding 3D surface texture synthesis, a great number of techniques 

have been published in the research fields of both 2D texture synthesis and 

extraction of surface representations.  

Therefore, we proposed an overall framework for the synthesis of 3D surface 

textures in chapter 3. The framework essentially combines surface representation 

methods with 2D texture synthesis algorithms to synthesise new surface 

representations. They then can be relit to generate new images under arbitrary 

illumination directions. In chapter 3, we also defined the data environment for all 

experiments in the thesis. We selected 23 textures according to two criteria: one is 

the requirement of suitable granularities; the other is the coverage of different 

texture types. Thus, the selected textures comprise rough and smooth surfaces, 

glossy and matte surfaces, non-shadowing and shadowing surfaces as well as near-

regular and stochastic patterns. 

In chapter 4, we selected five low dimensional methods for extracting 

representations of the 3D surface texture sample and investigated the relighting of 

these representations. We first introduced our criteria for the selection of surface 

representations. These criteria include the practicality of physical data capture, the 

low dimensionality of representations, the compatibility of representations with 

graphics systems and the capability of dealing with complex reflectance including 

shadows and specularities. Then we surveyed the literature and selected five surface 

representations, namely the 3I, Gradient, PTM, Eigen3 and Eigen6 methods. The 

3I uses three images of the sample texture taken at an illumination slant angle of 45° 

and tilt angles of 0°, 90° and 180° as surface representations. The Gradient method 

uses surface gradient and albedo maps derived from photometric stereo techniques. 

The PTM method employs Polynomial Texture Maps (PTM) to represent 

Lambertian surfaces exhibiting shadows and interreflections. The Eigen3 and 

Eigen6 methods use the first three and six eigen base images respectively to 

represent a surface with complex reflectance. These five methods were evaluated by 

testing the ability-of-reconstruction and ability-of-prediction. The ability-of-

reconstruction indicates the capability of these methods in reconstructing images 

that have already been used for the extraction of surface representations, whereas the 
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ability-of-prediction shows the capability of these methods in predicting new images 

which are not used for the extraction of surface representations. The evaluation 

results were analysed. Our overall conclusion in chapter 4 is that the 3I method 

produces the worst performance and Eigen6 method produces the best. The R6 PTM 

representations perform better than R3 Gradient representations, although it can not 

be considered more superior to the cheaper Eigen3 representations in R3 space. 

In chapter 5, we selected an efficient 2D texture synthesis algorithm as the basis 

algorithm for the synthesis of 3D surface texture representations. We first surveyed 

available 2D texture synthesis algorithms according to two criteria: (1) the suitability 

of the algorithm for extension to deal with multi-dimensional representations, and 

(2) the capability of producing good results while requiring little computation. Then 

we selected two popular 2D texture synthesis algorithms based on [Wei2000 and 

Efros2001] as candidates. We investigated the two algorithms and proposed our 

simple modifications that can improve the synthesis speeds without affecting 

synthesis results. By comparing the two algorithms, we finally chose the algorithm 

based on [Efros2001] as the basis algorithm for the synthesis of 3D surface texture 

representations. We analysed the effects on output images produced by changing 

input parameters to the basis algorithm.  

In chapter 6, we proposed five 3D surface texture synthesis approaches by 

extending the basis algorithm in multi-dimensional spaces. The five synthesis 

approaches use the five surface representations introduced in chapter 4—3I, 

Gradient, PTM, Eigen3 and Eigen6—as input. The synthesised representations are 

then relit to generate new images under different illumination directions. In order to 

assess the performances of the five synthesis approaches, we employed 

psychophysical experiments to qualitatively compare the relighting results. We 

asked ten human observers to rank these five approaches according to the 

resemblance between the sample and synthesised images under same illumination 

directions. Based on the rank data, we used Fredman’s nonparametric two-way 

Analysis of Variance followed by a multi-comparison method to test their 

significance. The conclusion is that there are no significant differences between the 

performances of the Gradient, Eigen3, and Eigen6 approaches. However, each of 
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these methods does outperform both 3I and PTM, while the PTM method 

outperforms the 3I. 

7.2. Conclusion 

We have developed five inexpensive approaches for the synthesis of 3D surface 

textures. Unlike conventional 2D texture synthesis techniques, these approaches 

allow the synthesised results to be relit under arbitrary lighting directions. In 

literature, there are only five relevant publications in this research field. Our 

approaches essentially extend a 2D texture synthesis algorithm into multi-

dimensional spaces and use five inexpensive surface representations as input. The 

synthesised representations can be linearly combined to generate new images under 

arbitrary illumination directions [Dong2002a]. These approaches require 

inexpensive computation. The synthesised results are compatible with computer 

graphics systems and therefore can be applied in real-time rendering applications.  

We have investigated five surface representation methods [Dong2002b]. A 

mathematical framework has been developed to describe these methods. We 

quantitatively assessed the five surface representation methods by comparing the 

original and relit images. It has been shown that the Eigen6 method, which employs 

the first six eigen base images to represent the sample texture, outperforms all other 

methods. The 3I method, which uses three photometric images as surface 

representations, produces the worst performance. The Eigen3 (using the first three 

eigen base images) and PTM (using Polynomial Texture Maps) methods outperform 

the Gradient method, which employs surface gradient and albedo maps to represent 

Lambertian surfaces. However, the performance of the PTM representations can not 

really be separated from that of its cheaper Eigen3 competitor. We also discussed the 

problem of integration and showed that a heightmap-based representation, which is 

obtained from the Gradient method, produces even worse performance than the 3I 

method.  

We have developed a simple method that can qualitatively compare the five 

synthesis approaches by employing psychophysical experiments based on the rank 

data [Dong2003a]. The experiments showed that although the Eigen6 surface 

representation method produced the best performance in representing sample 
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surfaces in the quantitative assessment, there are no significant differences between 

the Gradient, Eigen3 and Eigen6 synthesis approaches. However, each of these 

approaches does outperform both the 3I and PTM approaches, while the PTM 

approach outperforms the 3I. Therefore, if we take into computational complexity 

into account, the Gradient and Eigen3 synthesis approaches, in general, provide 

better performances. 

7.3. Discussion 

In this section—the last section of this thesis, we discuss the use of the synthesised 

representations or images in computer graphics applications. We briefly introduce 

relevant references and basic techniques in real-time graphics programming 

regarding rendering the synthesised surface texture representations. We will also 

illustrate the use of the synthesised results in a simple computer graphics package.  

7.3.1. Using the synthesised 3D surface texture representations in 

real-time graphics programming 

For the synthesised surface gradient and albedo maps, per-pixel bump-mapping can 

be applied using consumer-level graphics cards to achieve real-time rendering. In 

[Robb2003], Robb et. al. introduced the method of rendering surface gradient and 

albedo maps using the NVIDIA GeForce Ti4600 graphics accelerator.  First, the two 

surface gradient maps are converted to surface normal vectors. Then a vertex 

program is used to obtain the tangent normal and binormal of each vertex as well as 

the location and direction of the current light source in the tangent space. Finally, 

per-pixel lighting is performed using the register combiner units of the Ti4600 

graphics chip, where the diffuse colour is calculated in the form of dot product 

between the lighting vector and the surface normal. In addition, the ambient, diffuse 

and specular lighting values can also be calculated and added together to achieve 

realistic rendering results. Figure 7.3.1 shows two still images from a real-time 

sequence of rendering synthesised surface gradient and albedo maps on a 3D teapot 

model using the method described in [Robb2003]. Both the lighting and viewing 

conditions are different in the two images. 
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 For the 3I, PTM, Eigen3 and Eigen6 methods, the synthesised surface 

representations can be relit by linear combinations. Given a lighting direction, the 

coefficients for the linear combinations (that are used to generate the relit image) can 

be calculated using the methods introduced in chapter 4.  The linear combinations 

can be seen as the dot products between the coefficients and surface representations. 

Thus, the synthesised representation maps together with the coefficients can be 

firstly loaded into texture units. Then register combiners can be used to calculate dot 

products. However, depending on the graphics hardware, multi-pass 

implementations may be required. For example, the NVIDIA GeForce3 chip does 

not support signed addition. Thus, two passes are needed to achieve the whole linear 

combination process. More detail can be found in [Burschka2003] regarding the 

implementation of linear combinations using NVIDIA graphics cards. 
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Figure 7.3.1 Two still images of a real-time sequence produced by rendering 

synthesised surface gradient and albedo maps using the method described in 

[Robb2003].  The images were generated by Michael Robb using synthesised 

surface gradient and albedo maps supplied by the author.  

Three-dimensional surface textures with specularities can also be represented 

by surface geometrical and material parameters of certain reflectance models. Many 

methods can be used to estimate these parameters [Nayar1990, Kay1995, 

Rashmier1997, Saito1996, Lin2001 and Dong2003b]. The estimated parameters can 

then be used as input for the synthesis according to our overall framework described 

in chapter 3. In [Dong2003b], we introduce a simple method for the capture and 

synthesis of 3D surface textures with specularites. The synthesised representations 

can also be programmed into graphics hardware for real-time rendering. However, 

while the diffuse component can be calculated using dot products in graphics chips, 

current consumer-level graphics hardware can not directly perform the exponential 

calculation involved in the specular components of the reflectance models. To solve 

this problem, a lookup table storing the pre-calculated exponentiation can be used 

for the acceleration. More detail can be found in [Kautz2000 and McAllister2002].  
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7.3.2. Using the synthesised 3D surface texture representations in 

graphics software packages  

The synthesised representations can be input into graphics software packages to 

perform texture mapping on 3D models. If the packages can not directly use the 

synthesised representations, certain transformation is required. We briefly introduce 

the use of the synthesised 3D surface gradient and albedo maps (output of the 

Gradient synthesis approach) for texture mapping in a simple 3D graphics 

package—Micrografx simply 3D 2. This package can accept height (displacement) 

and albedo maps for bump mapping. Thus, we first integrate the synthesised surface 

gradient maps to generate the surface heightmap (displacement map) using the 

method described in chapter 4. Then, we use the height map together with the albedo 

map for the rendering on 3D models. Figure 7.3.2 (b) shows two example output 

images produced by mapping synthesised height and albedo maps on a 3D model 

with different illumination directions. For the purpose of comparison, Figure 7.3.2 

(a) shows the sample surface gradient and albedo maps, alongside the mapping 

results using the sample height and albedo maps, which is generated by integrating 

sample gradient maps. 

Sample surface
gradient and albedo

maps

Mapping the sample
surface height and
albedo maps on a

3D model

 

(a) 
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(b) 

Figure 7.3.2 Texture mapping using Micrografx Simply 3D 2. (a) Left: the sample 

surface gradient and albedo maps; right: mapping the sample surface height and 

albedo maps on a 3D model. The sample height map is generated by integrating 

gradient maps. The sample size is 128×128. (b) Mapping the synthesised surface 

height and albedo maps on a 3D model. The height map is generated by integrating 

synthesised gradient maps (size: 512×512). The texture label is “acc”. 

Alternatively, we can firstly integrate sample surface gradient maps to 

generate a sample height map. Then, the sample height and albedo maps can be used 

as input for synthesising large height and albedo maps. This method is described in 

more detail in [Dong2002a]. Figure 7.3.3 shows two example images of mapping the 

synthesised height and albedo maps on the 3D model. 
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Figure 7.3.3 Texture mapping using Micrografx Simply 3D 2. The inputs are 

synthesised surface height and albedo maps (size: 512×512). They are generated 

using the sample albedo map and height map, which is produced by integrating 

sample gradient maps. The size of all samples is 128×128. These images are taken 

from [Dong2002a]. 
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Appendix A: Texture samples  

 
aaa aab aaf aai aaj 

aam aan aao aap aar 

aas aba abj abk acc 

acd ace ach aci ada 

 
adc add adf 
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Appendix B: Synthesis and relighting results from the five methods for 23 
textures. Arrows indicate illumination directions  (τ =60° and τ =120°). 
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Appendix C: Rank data of the five synthesis approaches  

3I Grad ient PTM Eigen3 Eigen6
1 3 2 5 4
5 3 4 1 2
5 2 4 1 3
4 3 5 1 2
4 3 5 1 2
4 2 5 1 3
1 5 2 4 3
5 3 4 1 2
4 1 5 2 3
5 1 4 3 2
4 3 5 1 2
5 2 4 1 3
4 5 3 1 2
4 5 2 3 1
5 2 4 3 1
5 2 4 3 1
4 1 5 2 3
4 3 5 1 2
4 5 2 1 3
5 4 1 2 3
1 2 5 4 3
5 4 3 1 2
5 1 4 2 3
4 1 3 5 2
5 3 4 1 2
4 1 5 3 2
4 2 1 5 3
5 1. 5 4 3
5 2 3 1 4
5 2 1 4 3
5 2 4 3 1
4 2 5 1 3
5 1 4 2 3
4 3 2 1 5
5 1 4 2 3
5 2 4 1 3
4 2 5 3 1
4 1 5 3 2
4 1 5 2 3
4

1. 5

5 1 2 3

Rank of MethodsTexture 
Label  

aaj

aas

ace

add
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3I Grad ient PTM Eigen3 Eigen6
5 3 4 2 1
4 1 5 2 3
5 4 1 2 3
4 1 5 2 3
5 2 4 1 3
5 1 4 2 3
5 3 4 2 1
5 3 4 2 1
3 1 5 2 4
4 5 2 3 1
5 1 4 2 3
5 4 1 3 2
4 1 5 3 2
5 2 4 1 3
5 3 4 1 2
5 3 4 1 2
5 3 4 2 1
5 1 4 3 2
5 3 4 2 1
4 2 3 1 5
5 1 3 2 4
5 2 3 1 4
5 1 3 4 2
5 3 4 2 1
5 1 3 2 4
4 5 3 2 1
4 3 1 5 2
5 2 1 4 3
5 4 1 3 2
1 4 2 3 5
2 5 1 4 3
5 2 1 3 4
4 1 3 2 5
5 1 4 2 3
5 4 3 1 2
3 4 5 2 1
5 3 4 1 2
3 2 1 5 4
1 5 2 3 4
2 4 1 3 5

Texture 
Label  

Rank of Methods

adc

aai

acd

aar
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3I Grad ient PTM Eigen3 Eigen6
4 1 3 2 5
5 1 2 4 3
4 3 1 2 5
5 1 4 3 2
5 2 4 3 1
5 4 3 2 1
5 3 2 4 1
5 4 3 2 1
5 1 4 3 2
5 1 2 4 3
5 1 2 4 3
5 3 4 1 2
5 3 1 2 4
5 3 4 1 2
5 3 4 2 1
5 3 4 2 1
5 2 4 3 1
5 2 4 3 1
4 5 3 1 3
5 4 1 2 3
2 1 4 5 3
5 1 4 3 2
4 1 2 3 5
5 2 1 4 3
4 3 5 2 1
3 4 5 2 1
2 1 3 5 4
1 2 3 4 5
3 5 1 4 3
3 4 2 5 1

Texture 
Label  

Rank of Methods

ach

aci

abj

 
 
Note: 1-best; 5-worst. 
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Appendix D: List of publications by the author  

Capture and synthesis of 3D surface texture 
Junyu Dong and Mike Chantler 

 

Abstract  

This paper presents and compares six novel approaches for capturing, synthesising 

and relighting real 3D surface textures. Unlike 2D texture synthesis these techniques 

allow the captured textures to be relit using illumination conditions, and viewing 

angles, that differ from those of original. Our approaches each comprise two stages: 

synthesis and relighting. Synthesis can be applied either before or after relighting. 

The relighting stage is implemented in three different ways: using image-based, 

gradient-based, and height-based approaches. Thus there are a total of six different 

ways in which we may combine these functions. We present a representative set of 

results selected from our experiments with 30 textures. The best images are obtained 

when image-based or gradient-based relighting is used after synthesis. 
 

Published in the Proceeding of the 2nd International Workshop on Texture Analysis & Synthesis. 1 

June 2002, Copenhagen, Denmark, pp.41-45. 
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Capture and synthesis of 3D surface texture 
Junyu Dong and Mike Chantler 

 

Abstract  

We present and compare five approaches for capturing, synthesising and relighting 

real 3D surface textures. Unlike 2D texture synthesis techniques they allow the 

captured textures to be relit using illumination conditions that differ from those of 

the original. We adapted a texture quilting method due to Efros and combined this 

with five different relighting representations, comprising: a set of three photometric 

images; surface gradient and albedo maps; polynomial texture maps; and two eigen 

based representations using 3 and 6 base images.  

We used twelve real textures to perform quantitative tests on the relighting 

methods in isolation. We developed a qualitative test for the assessment of the 

complete synthesis systems. Ten observers were asked to rank the images obtained 

from the five methods using five real textures. Statistical tests were applied to the 

rankings.   

The six-base-image eigen method produced the best quantitative relighting 

results and in particular was better able to cope with specular surfaces. However, in 

the qualitative tests there were no significant performance differences detected 

between it and the other two top performers. Our conclusion is therefore that the 

cheaper gradient and three-base-image eigen methods should be used in preference, 

especially where the surfaces are Lambertian or near Lambertian.  
 

Submitted to International Journal of Computer Vision: special issue on texture analysis and 

synthesis,  November, 2002. 
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Comparison of five 3D surface texture synthesis methods 
Junyu Dong and Mike Chantler 

 

Abstract 

We present and compare five approaches for synthesizing and relighting real 3D 

surface textures. We adapted Efros’s texture quilting method and combined it with 

five different relighting representations, comprising: a set of three photometric 

images; surface gradient and albedo maps; polynomial texture maps; and two eigen 

based representations using 3 and 6 base images. We used twelve real textures to 

perform quantitative tests on the relighting methods. We develop a systematic 

qualitative test for the assessment of the complete synthesis systems. Our conclusion 

is that the cheaper gradient and three-base-image eigen methods should be used in 

preference to the other methods, especially where the surfaces are Lambertian or 

near Lambertian.  

 
Published in the Proceeding of the 3rd International Workshop on Texture Analysis & Synthesis. 17 

October 2003, Nice, France.  
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Estimating Parameters of Illumination models for the synthesis of 

3D surface texture 
 

Junyu Dong  Andrew Spence Mike Chantler 

 

This paper proposed a method to estimate the parameters of an illumination 

model and then use these parameters for the synthesis of specular surface textures. 

We used the relationship between surface gradient maps in frequency domain as a 

constraint for the separation of diffuse and specular components. During the 

estimation, we always keep errors between the real images and reconstructed images 

as small as possible. The estimated parameters form sample surface representation 

maps, which are then used as inputs for the synthesis of large representation maps. 

The synthesised representations are finally relit using the illumination model to 

produce new images under arbitrary illumination directions.  

 
Research memoriam 2003/03, Department of Computer Science, Heriot-Watt University, 

Edinburgh,UK. 
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