
Chapter 2 

Literature Survey 

The purpose of this chapter is to provide an overview of the research fields relevant 

to this thesis. Three fields will be surveyed; they are: (1) 3D surface texture 

synthesis, (2) 2D texture synthesis and (3) surface representation methods for 

relighting. These research fields will be reviewed in more detail later in the thesis 

when required by the context.  

As introduced in chapter 1, 3D surface texture synthesis techniques can 

synthesise new texture images under different viewing and lighting conditions. The 

input sample data for 3D surface texture synthesis can be a set of intensity images or 

representations of the sample texture. The synthesised results can be relit using 

illumination directions and viewing angles that differ from those used in original 

sample images. Few publications are available so far in this research area. 

In contrast to 3D surface texture synthesis, the terminology 2D texture 

synthesis is exclusively used in this thesis to refer to synthesising a large image from 

a small intensity image of the sample texture. Thus, this term is equivalent to texture 

synthesis, which is commonly used in computer vision and graphics communities. In 

this thesis, we also use texture synthesis to refer to 2D texture synthesis since the 

former appeared in most relevant literature. There are many publications in this 

research area. 

 We use the terminology surface representation methods for relighting to 

refer to the techniques that can extract surface representations from a set of images 

and relight (render) these representations using illumination conditions that differ 

from those of the original. We also use the term surface relighting representations, 
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surface representations for relighting, or surface representation maps to refer to the 

extracted representations.  

2.1.  Three-dimensional surface texture synthesis  

Since the main objective of this thesis is to develop inexpensive and reliable 

approaches for the synthesis of real-world 3D surface textures, we first present a 

detailed review in this area. There are only five publications that can be classified 

into this area. They are [Zalesny2000], [Zalesny2001], [Liu2001], [Tong2002] and 

[Leung2001]. 

Zalesny and Van Gool’s work 

Zalesny and Van Gool in [Zalesny2001] present a multi-view texture model 

which can synthesise new texture images under different viewpoints. These 

synthesised images can catch the effect of foreshortening due to changing 

viewpoints. They propose a compact model that captures the first and second order 

statistics of different pixel pairs, which are named cliques [Zalesny2000]. For each 

clique type, the histogram of pixel value difference is calculated. The sample texture 

is first modelled for a single viewpoint, typically a fronto-parallel one. The result 

image is initialised by an independent noise with pixel values uniformly distributed 

in the range of sample image. Then, different clique types are collected to form a 

neighbourhood structure. In order to synthesis a texture image with a novel 

viewpoint, the neighbourhood structure is deformed by contracting and stretching 

according to the angle between the two views. Clique types in the deformed 

neighbourhood structure are used to extract new statistical parameters—difference 

histograms—from the sample image with the desired viewpoint. Finally, these 

statistical parameters are combined with the deformed neighbourhood structure to 

generate the result image. During synthesis process, statistics of each clique type in 

the neighbourhood structure are forced to keep consistent between the result image 

and the sample image.  

Their work did produce a compact multiview texture model that can capture 

viewpoint dependencies in the appearance of textures. They do not however, 

consider varying illumination which is the focus of this thesis. 

Leung and Malik’s work  
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The earliest publication that considers varying illumination in 3D surface 

texture synthesis probably is [Leung2001], in which Leung and Malik use 3D 

textons to represent the visual appearance of real-world surface textures. They first  

apply a set of linear Gaussian derivative filters on 20 images of a sample 3D surface 

texture with different viewing/lighting conditions (from CUReT database 

[Dana1999a]). Then they generate 3D textons that associate with appearance vectors 

containing the outputs of the filters. Each pixel in any sample image can be labelled 

with a 3D texton that associates with an appearance vector in a 960 dimensional 

space. The 3D textons can be used to reconstruct novel images under varying 

lighting/viewing conditions. Although they did mention that 3D textons can be used 

in the synthesis of 3D surface textures by modifying the 2D texture synthesis 

algorithm proposed in [Efros1999], the computation is very expensive because 

synthesis has to be performed in the 960 dimensional space. Furthermore, the 

algorithm in [Efros1999] uses Sum of Square Differences (SSD) as the similarity 

measurement, which produces large errors when matching is performed in a high-

dimensional space. Few synthesis results are shown in their paper.  

Liu et. al. ’s work 

Liu et. al. in [Liu2001] also exploit the CUReT database to develop a method 

for generating Bidirectional Texture Functions (BTFs). They firstly select and 

register four sample images from the CUReT image database, and then apply a 

shape-from-shading algorithm to recover the sample surface height and albedo maps 

by assuming the Lambertian reflectance. These are used to synthesise a larger height 

map and image templates by applying the 2D texture synthesis algorithm proposed 

in [Efros1999]. In order to produce the final image with a novel viewing/lighting 

condition, a reference image with the same viewing/lighting condition is selected 

from the BTF database and transformed into a grey scale image with the histogram 

equalised to that of the template image. Finally, the result image is synthesised by 

matching and copying blocks between the sample reference image and the template 

image.  

Several limitations exist in Liu et. al. ’s method [Liu2001]. Firstly, the 

method requires the registration of images because images in CUReT database are 

not registered. This is never a trivial task and can not guarantee every texture in the 
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database can be successfully registered. Secondly, they assume the Lambertian 

reflectance on the surface texture in order to perform shape-from-shading. 

Consequently, some real-world textures with non-Lambertian reflectance can not be 

used as input due to this assumption. Furthermore, applying shape-from-shading 

assumes integratibility on the surface, which does not always hold for real-world 

surfaces [Tong2002]. Finally, a sample reference image has to be used to provide 

pixel values for the output synthesised BTFs with the desired viewing and lighting 

conditions. This requires additional computation and memory space to store the 

sample reference image. Nevertheless, this paper shows realistic rendering results 

for Lambertian surfaces and is the most relevant to our work described in this thesis. 

We show the flow chart of this work in Figure 2.1.1. 
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Figure 2.1.1 The flowchart of the method introduced in [Liu2001] 

Tong et. al.’s work 
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Later work by Tong et. al. can synthesise BTFs on arbitrary surfaces by 

using surface textons [Tong2002]. Surface textons are defined by linear 

combinations of appearance vectors associated with 3D textons [Leung2001]. Tong 

et. al. suggest in [Tong2002] that the method proposed by [Liu2001] is not suitable 

for the synthesis of BTFs on arbitrary surfaces, because it is time consuming to 

reconstruct/render the appearance from the recovered sample geometry for all 

lighting and viewing settings. In addition, they suggest that it is impractical to 

directly synthesise 3D textons and reconstruct BTFs [Leung2001] on the surface of a 

3D model because of the huge memory space required for storing appearance 

vectors. Thus, they pre-calculate the dot product for each pair of appearance vectors 

and store the results in a matrix. This matrix is then used for searching the best-

matched pixel in sample BTFs for each vertex while the appearance vectors are 

discarded. Nevertheless, they still apply a fast searching algorithm for acceleration. 

The typical time consumed by their algorithm is 45 minutes for generating 3D 

textons and 21 minutes for synthesising a 96×96 image with 250k vertices on a 

700Mhz Pentium III.  

To summarise:  

We have reviewed five available publications related to 3D surface texture 

synthesis. Zalesny and Van Gool present a multi-view texture model which can 

synthesise new texture images under different viewpoints with a fixed illumination 

direction [Zalesny2000 & Zalesny2001]. Leung and Malik propose the use of 3D 

textons to synthesise new images under arbitrary viewpoints and illuminations with 

expensive computation [Leung2001]. Liu et. al. apply a shape-from-shading 

technique to recover the surface heightmap under the Lambertian assumption and 

then use it for the synthesis of BTFs [Liu2001]. In later work, Tong et. al. introduce 

a method to synthesise BTFs on arbitrary surfaces by using 3D textons [Tong2002]. 

However, these techniques are computationally complex. 

In contrast to previous work, our main objective in this thesis is to develop 

inexpensive approaches for the synthesis of 3D surface textures under varying 

illumination directions. We wish the synthesised texture representations to be 

capable of being loaded into graphics hardware and rendered in real-time on a 

modern desktop personal computer.   
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2.2.  Two-dimensional texture synthesis 

Although very few publications are available in the research field of 3D surface 

texture synthesis, many 2D texture synthesis techniques have been published during 

the past two decades. This section presents a brief survey of these 2D synthesis 

techniques. We will further review the relevant publications in more detail in chapter 

5. 

In [Xu2001], Xu et. al. present a short review on recent 2D texture synthesis 

approaches based on the underlying stochastic mechanisms employed by the 

sampling algorithms. Following their work, we also divide available publications on 

2D texture synthesis into two groups according to sampling strategies. The first 

group employs global sampling strategies, which decide result pixel values by 

matching global statistics between the sample and result images in feature space. 

The second group uses local sampling strategies, which decide result pixel values by 

matching local statistics. Many different techniques have been used by the two 

sampling strategies. These techniques produce significantly different synthesis 

results and synthesis speeds. In later chapters, we will show that the taxonomy of 2D 

texture synthesis literature is related to the development of inexpensive approaches 

for 3D surface texture synthesis.  

2.2.1. Texture synthesis methods based on global sampling 

strategies 

A global sampling strategy means a texture synthesis algorithm generates result 

pixel values by matching global statistics between the sample and result images in 

feature space. The feature space is normally the multi-dimensional space spanned by 

feature images, which are produced by imposing a set of filters on the sample image; 

it may also be the 1D real space in which the pixel intensities of the sample image 

lies. This sampling strategy is called ensemble sampling in [Xu2001].  

Two-dimensional texture synthesis is highly related to modelling a sample 

texture in terms of texture perception, which was pioneered by Julesz’s conjecture. 

Julesz suggested that the Nth-order joint empirical densities of image pixels, e.g. the 

co-occurrence statistics for intensities, can statistically characterise a sample texture 
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[Julesz1962]. This has promoted a great deal of research in texture synthesis that 

employs global sampling strategies. These texture synthesis methods synthesise an 

output image according to statistical models. The models are derived from the 

sample image and employ a set of statistics. The output image is generated using the 

same statistics as those of the sample.  

The majority of texture synthesis approaches employing global sampling 

strategies combine the use of statistical models with a bank of filters and 

multiresolution image representations. The multiresolution representations can 

capture long-range and nonlinear spatial interactions and therefore reduce the 

computational complexity. The sample image is first transformed into a 

multiresolution representation, and then the result image is synthesised by matching 

statistics across all resolutions. Heeger and Bergen use the steering pyramid and the 

Laplacian pyramid for texture synthesis by matching histograms between the sample 

and result pyramids [Heeger1995]. Their method fails to synthesise textures with 

distinguishable features, e.g. highly structured textures. De Bonet uses the Laplacian 

pyramid and analyses the input texture by computing the joint occurrence across 

multiple resolutions in the feature space [De Bonet1997]; the output texture is 

generated by sampling successive spatial frequency bands from the input texture, 

conditioned on the similar joint occurrence of features at all lower spatial 

frequencies. Van Nevel develops a texture synthesis method that relies on matching 

the first and second order statistics of wavelet subbands [Van Nevel 1998]. Based on 

joint statistics of complex wavelet coefficients in the multiresolution framework, 

Portilar and Simoncelli propose a parametric texture model that can synthesise a 

wide range of artificial and natural textures [Portilla2000]. In [Copeland2001], 

Copeland et. al. use the gray-level co-occurrence (GLC) model coupled with 

multiresolution data structure for texture synthesis. They also employed ten human 

observers to test the correlation between the synthesis results and their texture 

similarity metric by performing psychophysical experiments. In [Campisi2002], the 

Circular Harmonic Functions are used to develop a mutiresolution approach for 

texture synthesis. It essentially extends previous work in [Jacovitti1998] by using 

multiresolution decomposition.  
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There are also several texture synthesis methods that employ statistical 

models derived from filtered images without explicitly using multiresolution image 

representations. Eom proposes a 2D moving average (MA) model for texture 

synthesis and analysis [Eom1998], and the result image is generated in frequency 

domain by using estimated parameters of the 2D MA model. Jacovitti et. al. use 

hard-limited Gaussian process to develop a twin stage texture synthesis-by-analysis 

[Jacovitti1998]. Zhu et. al. present a definition of texture as the Julesz ensemble, 

which is the set of all images sharing identical statistics, and texture synthesis is 

achieved by sampling the ensemble using a Markov chain Monte Carlo algorithm 

[Zhu2000]. Histograms of feature images are employed in their approach. 

To summarise: 

For 2D texture synthesis, a global sampling strategy decides result pixel 

values by matching global statistics between the sample and result images in feature 

space. Among 2D texture synthesis approaches employing global sampling 

strategies, the majority apply multiresolution decomposition techniques and impose 

filters in multiresolution domain to generate the statistical descriptions of the sample 

image. The synthesis is then performed by matching statistics across multiple 

resolutions in feature space  [Heeger1995, De Bonet1997, Van Nevel1998, 

Portilla2000, Copeland2001 & Campisi2002]. Only few methods directly apply a 

bank of filters on the sample image without explicitly using multiresolution 

decomposition; the result image of these methods is synthesised by matching 

statistics in feature space [Eom1998, Jacovitti1998 & Zhu2000]. Table 2.2.1 shows 

the summary of typical texture synthesis methods employing global sampling 

strategies. 
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Table 2.2.1Characteristics of typical global sampling methods 

Reference Global statistics Number of 
pyramid 
levels 

Iterat-
ions 

Complexity/ 
time-

consumed/ 
speed 

[Heeger1995] Marginal histograms 4 5 Faster than 
[Portilla2000] 

[DeBonet1997] Joint occurrence of 
features 

Depends on 
the sample 
size 

1 Slower than 
[Heeger1995] 

[Eom1998] Moving average 
model parameters, 
elongation and 
orientation 
parameters 

1 1 unspecified 

[Nevel1998] Mean, histograms 
and the correlation 
matrix 

3 1 2 minutes for 
400 largest 
entries in the 
correlation 
matrix using a 
Sun UltraSparc

[Portilla2000] Marginal Statistics, 
coefficient 
correlation,  
magnitude 
correlation and 
cross-scale phase 
statistics 

3 50 20 minutes for 
a 256x256 
image using 
500Mhz 
Pentium 
workstation 

[Zhu2000] Marginal histograms 
of filtered responses 

Unspecified 20 to 100 Slower than 
[Portilla2000] 
according to 
[Xu2001] 

[Copeland2001] Co-occurrence 
matrix 

3 5  
(spin-flip 
algorithm) 

2.5 minutes 
using a Silicon 
Graphics Indy 
with a IP22 
processor 

[Campisi2002] First and second 
order statistics  

3 to 7 2 or 3 Computational 
complexity 
depends on the 
number of 
filters and 
iterations. 
Time-
consumed is 
not specified. 
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2.2.2. Texture synthesis methods based on local sampling strategies 

A local sampling strategy means the texture synthesis algorithm generates result 

pixel values solely by using local information in the sample and result images. A 

typical example is to compute local conditional distributions using certain 

neighbourhoods and synthesise pixels in the result image in raster order. The 

majority of texture synthesis methods with local sampling strategies make certain 

statistical assumptions. We further divide these synthesis approaches into two sub-

classes. One sub-class explicitly uses parametric statistical models for the synthesis. 

The other uses non-parametric methods. 

Representative texture synthesis approaches using local sampling strategies 

and parametric models include [Cross1983, Popat1993, Bader1995, Zhu1998, 

Zhang1998b and Kokaram2002]. These methods first estimate the parameters of the 

assumed statistical models for the input sample image, and then synthesise the result 

image using the statistical models. Cross and Jain use Markov random field models 

to represent the sample image [Cross1983]. Popat and Picard present a method that 

first performs clustering analysis on the sample data and then calculates the 

probability mass function using Gaussian parameters for texture synthesis 

[Popat1993]. Bader et. al. propose the use of scalable data parallel algorithms for the 

2D texture synthesis using Gibbs random fields [Bader1995]. Zhu et. al. develop a 

Markov random field model based on feature images, which are produced by a bank 

of filters with large image lattice; the result image is synthesised by using a Gibbs 

sampler [Zhu1998].  Zhang et. al. exploit the wavelet autoregressive model and 

radial basis functions in a multiresolution domain for texture synthesis 

[Zhang1998b]. Kokaram estimates the parameters of 2D autoregressive models and 

uses the models to synthesise missing gaps in images [Kokaram2002].  

Non-parameteric texture synthesis approaches have the advantage that the 

estimation of parameters in statistical models is not necessary. Thus, the 

computational complexity is normally lower compared with their parametric 

counterparts. In particular, the method proposed by Efros and Leung is widely used 
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in texture synthesis research [Efros1999]1. It assumes a Markov random field model 

and calculates the conditional distribution of a pixel given all its neighbours by 

querying the sample image and finding all similar neighbourhoods. It further 

inspired the work in [Wei2000], which improved the performance of the original 

algorithm by employing a multiresolution image representation and an accelerating 

algorithm. The methods in these two publications can produce excellent results 

while simplifying the whole synthesis process. Based on these two algorithms, 

several texture synthesis approaches have been developed and applied in different 

areas [Hertzmann2001, Efros2001, Parada2001, Ashikhmin2001, Harrison2001, 

Tonietto2002, Zelinka2002, Cohen2003, Zhang2003 and Nealen2003].  

Other typical non-parametric approaches unrelated to the two algorithms 

proposed in [Efros1999 and Wei2000] include [Paget1998, Ashlock1999, Bar-

Joseph2001, Xu2001, Liang2001 and Gousseau2002]. In [Paget1998], Paget and 

Longstaff propose a non-causal, non-parametric and multiscale Markov random field 

model for 2D texture synthesis; they employ the Parzen-window density to estimate 

the frequency of occurrence. In  [Ashlock1999], generic algorithms are used to track 

the basic texture elements and produce a non-parametric partially ordered Markov 

random field model for texture synthesis. In [Bar-Joseph2001], Bar-Joseph et. al.  

construct a tree representation of the input signal in multiresolution domain and 

generate a new tree representation by learning and sampling the conditional 

probabilities of the paths in the original. Their method can synthesise static and 

time-varying textures. In [Xu2001], a patch-pasting algorithm is introduced for the 

fast texture synthesis. Later work in [Liang2001] extends it by sampling patches 

according to a non-parametric estimation of the local conditional MRF density 

function; the performance is also improved. More recently, Gousseau presents a 

texture synthesis method by sampling from level sets [Gousseau2002]. 

To summarise: 

Texture synthesis approaches based on local sampling strategies have 

attracted much attention in recent years. Several parametric methods have been 

proposed to firstly model the sample image and then synthesise the result using the 

                                                 
1  Note: in [Efros2001], it has been pointed that a nearly identical algorithm was proposed in 

[Garber1981] but discarded due to its then computational intractability. 
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parameters [Popat1993, Bader1995, Zhu1998, Zhang1998 and Kokaram2002]. 

However, many researchers employ non-parametric methods that are capable of 

producing promising results with less computation [Efros1999, Wei2000, 

Hertzmann2001, Efros2001, Parada2001, Ashikhmin2001, Tonietto2002, Bar-

Joseph2001, Xu2001, Liang2001, Gousseau2002, Zelinka2002, Cohen2003 and 

Nealen2003]. In particular, the algorithms in [Efros1999 and Wei2000] have 

promoted further work in different research directions.  

2.2.3. Summary 

In section 2.2.1 and 2.2.2, we reviewed recent publications on 2D texture synthesis. 

These publications can be divided into two classes depending on whether global or 

local sampling strategies are used. Most texture synthesis approaches with global 

sampling strategies synthesise a result image by matching global statistics in feature 

space and multiresolution domain.  Among texture synthesis methods with local 

sampling strategies, both parametric models and non-parametric models can be used. 

Recent publications suggest that some non-parametric texture synthesis methods can 

produce good synthesis results with less computation.  

2.3.  Surface representation methods for relighting 

As introduced in chapter 1, varying the illumination directions can produce 

significant effects on images of a 3D surface texture. These images can exhibit 

remarkable differences, which present challenges in both computer vision and 

computer graphics. It is therefore important to extract surface representations of the 

sample texture under arbitrary illumination directions. Once the representations are 

available, they can be relit to generate new images with arbitrary lighting conditions. 

This section briefly reviews relevant publications in this research area, which 

involves reflectance distribution modelling, model-based and image-based relighting 

(rendering) techniques.  
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2.3.1. Extracting surface relighting representations using 

reflectance models 

The most accurate surface relighting representations can be described by 

Bidirectional Reflectance Distribution Functions (BRDF) [Nicodemus1977]. With 

full BRDF data, images of the sample surface or object under arbitrary illumination 

can be produced. However, full BRDF data are difficult to obtain because the 

measurement of BRDF is very expensive and time-consuming. Various local-based 

reflectance models have been used in computer vision and computer graphics to 

describe how lights are reflected from a surface and reach to the observer. 

Commonly used models include the Lambertian model, the Torrance-Sparrow model 

[Torrance1967], the Phong model [Phong1975], the Cook-Torrance model 

[Cook1982], the Nayar model [Nayar1991] and other models [He1991 and 

Oren1994]. Obviously, extracting surface representations using reflectance models is 

equivalent to estimating the models’ parameters, which normally represent surface 

geometric and material properties. However, these models can only be seen as 

approximations of the ground-truth, as the physics of light reflection involves 

extremely complicated nonlinear processes.  

Methods for estimating the parameters of reflectance models has been 

extensively investigated in recent years.  Photometric stereo is one of the major 

techniques used to obtain surface geometric and material properties [Woodham1981, 

Horn1989, Nayar1990, Kay1995, Rushmier1997, Saito1996 and Lin1999]. This 

approach requires a fixed camera, several lighting conditions and a static object. 

Traditional photometric stereo methods assume the Lambertian reflectance function 

and use three images to obtain surface gradient maps and an albedo map 

[Woodham1981 and Horn1989]. If the sample surface exhibits both diffuse and 

specular components, more complex reflectance models are required. Consequently, 

more images are needed in order to estimate the parameters [Nayar1990, Kay1995, 

Rushmier1997, Saito1996 and Lin1999]. By firstly separating diffuse and specular 

components, both diffuse and specular parameters can be estimated using 

photometric stereo techniques. The combined use of range and intensity data is 

another popular technique that can be used to extract surface relighting 

representations from existed reflectance models [Ikeuchi1991, Lu1995, Sato1997, 
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Ramamoorthi2001 and Nishino2001]. For example, Sato et. al. use multiple range 

images to recover surface shape and then estimate reflectance parameters of the 

Torrance-Sparrow model [Sato1997]. Polarisation techniques can also be use to 

separate reflection components so that surface representations can be estimated 

[Nayar1996].  

The surface geometric representations estimated from reflectance models are 

usually expressed as surface normals or surface gradient maps. Extracting surface 

normals from an intensity image is also the aim of shape-from-shading [Horn1989]. 

Integration techniques can be further used to obtain the depth information or the 

height map from surface normals [Klette1996]. Both local and global integration 

approaches have been proposed in the past [Coleman1982 and Frankot1988]. Global 

approaches are more robust to noise than local approaches [Gullón2002].  

2.3.2. Extracting surface relighting representations using other 

techniques 

There are also a great number of other techniques that can be used to obtain surface 

relighting representations without directly employing reflectance models. The 

surface relighting representations derived from these techniques are not, in general, 

geometrical and material properties of the surface.  

Image-based relighting (rendering) techniques can generate realistic images 

from pre-recorded images without using complex rendering processes as in 

geometry-based computer graphics [Kang1997, McMillan1999, Koudelka2001, 

Lin2002, Matusik2002 and Wong2002]. In [Kang1997], Kang presents a survey on 

early image-based rendering techniques. In [Matusik2002], Matusik et. al. introduce 

a system that can acquire and display high quality graphical models of objects using 

opacity hulls; both effects produced by changing view and illumination conditions 

are considered.  In [Wong2002], Wong et. al. define the plenoptic illumination 

function that can relight images while supporting view interpolations. However, 

many image-based rendering techniques can only synthesise new images under 

different viewpoints, while the illumination remains fixed [Chen1995, Levoy1996 

and Gortler1996].  
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 The representation of varied BRDF on a surface requires numerous sample 

images. Researchers have developed several methods to approximate this model by 

projecting these images into general base functions so that the representation is more 

compact for practical applications [Lalonde1997, Lafortune1997 and 

McAllister2002]. Lalonde and Fournier use wavelet coefficients to represent large 

anisotropic BRDF data sets [Lalonde1997]. The Lafortune representation consists of 

a diffuse component and several specular lobes which are generalised Phong lobes 

[Lafortune1997]. McAllister et. al. employ the Lafortune representation for 

rendering the Spatial BRDFs using register combiners in an Navidia Geforce 4 

graphics card [McAllister2002]. 

Eigen-based methods are broadly used to extract surface relighting 

representation [Epstein1995, Zhang1998a, Georghiades1999 and Nishino2001]. 

These methods apply principal component analysis (PCA) or singular value 

decomposition (SVD) on a set of pre-recorded images and extract base images as the 

surface relighting representations. New images under arbitrary illumination 

directions can be generated by linearly combining these base images. Obviously, 

eigen-based approaches also belong to the class of image-based techniques. In 

addition, they can be used in pattern recognition and image impression 

[Nishino2001, Turk1991 and Belhumeur1997].  

In the literature regarding surface representation methods, many other 

mathematical models are also exploited to express the sample images as linear or 

nonlinear combinations of a set of base functions, such as Fourier Series 

[Huang1984 and McGunnigle2001], spherical harmonics [Basri2001 and 

Ramamoorthi2001] and steering functions [Ashikhmin2002]. These base functions 

normally form base images and can be used to synthesise new images under 

arbitrary illumination conditions. 

2.3.3. Extracting 3D surface texture representations for relighting 

Rough surface textures can be seen as a finer scale geometric description with 

regular or random components. In theory, methods surveyed in section 2.3.1 and 

2.3.2 can all be used to extract relighting representations of 3D surface textures. 
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Nevertheless, researchers have proposed special methods to represent 3D surface 

textures under arbitrary illumination directions. 

Representing the appearance of 3D surface textures only received attention in 

recent years [Koenderink1996, Stavridi1997, Dana1999a, Dana1999b, Leung2001, 

Malzbender2001 and Ashikhmin2002]. In [Dana1999a], Dana et. al. define 

Bidirectional Texture Function (BTF) that can represent 3D surface textures under 

varied illumination and viewing directions; they construct the CUReT database that 

contains many images from over 60 samples. Dana and Nayar further investigate 

three BTF models, including the histogram model, the correlation model and PCA 

models [Dana1999b]. Leung and Malik exploit the CUReT database and employ a 

bank of 48 filters coupled with clustering analysis to derive 3D textons, which can 

be used to represent and recognise the visual appearance of 3D surface textures 

[Leung2001].  Malzbender et. al. propose a quadratic lighting model that uses 

Polynomial Texture Maps(PTM) to reconstruct the surface colour under varying 

lighting conditions [Malzbender2001]. Ashikhmin uses a set of steering basis 

functions for relighting bumpy surfaces [Ashikhmin2001].  

2.3.4. Summary  

We have presented a brief review of methods that can be used to extract surface 

relighting representations from a set of pre-recorded images. As the most compact 

representations, surface geometric and material properties can be obtained by 

estimating the parameters of various locally-based reflectance models  

[Woodham1981, Horn1989, Nayar1990, Kay1995, Rushmier1997, Saito1996, 

Lin1999, Ikeuchi1991, Lu1995, Sato1997, Ramamoorthi2001 and Nishino2001]. 

They can then be relit using corresponding reflectance models to generate new 

images under different illumination conditions. Image-based relighting/rendering are 

also commonly used techniques that can convert the pre-recorded images into 

relighting representations [Kang1997, McMillan1999, Koudelka2001, Lin2002, 

Matusik2002 and Wong2002]. Other methods employ mathematical models to 

express a set of sample images using linear or nonlinear combinations of basis 

functions, such as eigen-based methods [Epstein1995, Zhang1998a, 
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Georghiades1999, and Nishino2001], Fourier serious [Huang1984] and spherical 

harmonics [Basri2001]. 

In recent years, special interest has been given to the research into 

representing the appearance of 3D surface textures. Several methods have been 

proposed and shown great promise in computer vision and computer graphics 

[Koenderink1996, Stavridi1997, Dana1999a, Dana1999b, Leung2001, 

Malzbender2001 and Ashikhmin2002]. 

2.4.  Conclusion 

This chapter has briefly reviewed the related research fields to this thesis. These 

comprise the literature on: 

(1) 3D surface texture synthesis approaches, 

(2) 2D texture synthesis approaches, and 

(3) surface representation methods for relighting. 

Based on this survey, we conclude that very few publications are available regarding 

3D surface texture synthesis, while there are a great number of methods in the fields 

of 2D texture synthesis and the extraction of surface representations for relighting.  

 Among the 3D surface texture synthesis approaches, Zalesny and Van Gool’s 

work can only synthesise new images with varied viewpoints, while the illumination 

direction is fixed [Zalesny2000 and Zalesny2001]. Liu et. al. use a 2D texture 

synthesis algorithm based on [Efros1999] and Lambertian surface representations 

for the synthesis of BTFs [Dana1999a]; In [Tong2002] and [Leung2001], a 2D 

texture synthesis algorithm based on [Efros1999] and the 3D texton representations 

are combined for the synthesis of BTFs. However, these methods require expensive 

computation. 

 In contrast, our main objective in this thesis is to develop inexpensive 

approaches for the synthesis and relighting of 3D surface textures.  In next chapter, 

we will introduce a basic framework that can combine 2D synthesis approaches with 

surface representation methods in a methodical manner to synthesise new texture 

images under arbitrary illumination directions. 
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