
 

 

CHAPTER 2    

Rotation Invariant Texture Classification 

 

 

 

The objective of the method presented in this thesis is surface rotation invariant 

classification of texture. This chapter survey work relevant to this goal. Definition of 

image texture and surface texture are reviewed, and rotation invariant classification 

techniques are surveyed. 

 

 

2.1.   What is Texture? 
 

Texture can be seen in many images from multi-spectral remote sensed data to 

microscopic photography. The term of texture is a somewhat misleading term in 

computer vision, which is not the normal meaning of the word. We recognise texture 

when we see it but it is very difficult to describe. Despite its importance, there is no 

unique and precise definition of texture in [Pratt78], Cross and Jain [Cross83]. Each 

texture analysis method characterises image texture in terms of the features it 

extracts from the image. Therefore, it depends not only on studying the images but 

also on the goal for which the image texture is used and the features that are 

extracted from the image. 

 

Despite the lack of a universally agreed definition, all researchers agree on two 

points [Jain96].  

1. There is significant variation in intensity levels between nearby pixels; that is, at 

the limit of resolution, there is non-homogeneity.  
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2. Texture has a homogeneous property at some spatial scale larger than the 

resolution of the image. 

 

2.1.1.   Some Definitions of Texture 
 

Texture is an important surface characteristic we use to identify and recognise 

objects. The texture of an image may be thought as something which describes the 

characteristic of the intensity surface of the image. Intensity can be measured at 

resolution of a single pixel, whereas texture can only be perceived from an image 

region which is large enough. Compared with intensity, texture is more of a global  

property. 

 

• The Longman Dictionary 

something composed of closely interwoven elements or an organisation of 

constituent particles of a body or substance; and the visual or tactile surface 

characteristics and appearance of something (e.g. fabric). 

 

• Haralick [Haralick79] 

The image texture we consider is non-figurative and cellular… An image 

texture is described by the number and types of its (tonal) primitives and the 

spatial organisation or layout of its (tonal) primitives… 

 

• Faugeras and Pratt [Faugeras80] 

The basic pattern and repetition frequency of a texture sample could be 

perceptually invisible, although quantitatively present … In the deterministic 

formulation texture is considered as a basic local pattern that is periodically or 

quasi-periodically repeated over some area.  

 

• Bovik, Clarke and Geisler [Bovik90] 

an image texture may be defined as a local arrangement of image irradiances 

projected from a surface patch of perceptually homogeneous irradiances.  
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• Jain and Karu [Jain96] 

Texture is characterized not only by the grey value at a given pixel, but also by 

the grey value `pattern' in a neighbourhood surrounding the pixel.  

 

For detailed discussions on what is and what is not texture, see Karu and Jain 

[Karu96]. For more definitions of texture, see Coggins [Coggins82], Tuceryan and 

Jain [Tuceryan93]. 

 

 

2.1.2.   Texture in Visual Perception 
 

Texture is the visual cue due to the repetition of image patterns, which may be 

perceived as being directional or non-directional, smooth or rough, coarse or fine, 

regular or irregular, etc. The following images in Figure 2. 1 illustrate this. The 

objective of the problem of texture representation is to reduce the amount of raw data 

presented by the image, while preserving the information needed for the task. 

 

(a). directional. vs. non-directional (b). smooth vs. rough

(c). coarse. vs. fine. (d). regular vs. irregular  
Figure 2. 1   Perception of textures. (a). directional vs. non-directional; (b). smooth 
vs. rough; (c). coarse vs. fine; and (d). regular vs. irregular. 
 

 

2.1.3.   3D Surface Relief and Albedo 
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The term of image texture, or simply texture, usually refers to the image of  a 

textured surface. Image texture can arise not only from surface albedo variations 

(2D) but also from surface height variations (3D). The distinction between 2D 

texture and 3D texture is explored in recent work by Dana and Nayar et al [Dana97],  

Stavridi and Koenderink [Stavridi97], Leung and Malik [Leung97]. However, there 

remains an absence of a clear distinction between surface  relief (geometry) and 

surface albedo (reflectance). 

 

Surface relief and albedo information are two important visual cues that provide a 

relatively large amount of information from surfaces in the scene. Although 

historically, they share a common role in the scenes, they have been studied 

separately in computer vision due to the difficulty that both properties present. To 

avoid any possible confusion, where applicable:  

• Surface relief is used only to refer to the topology of a 3D physical surface in 

which only the surface height varies; in contrast,  

• the term surface albedo refers to surface markings or surface reflectance. 

 

The term image texture in this thesis consists of intensity variations in the image 

plane that are due either to surface relief or to surface albedo variation or a 

combination of both. An example of extracting surface relief and albedo from a 3D 

surface is illustrated in Figure 2. 2. 
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(b). Surface relief (c). Albedo

(a). 3D Surface

 
Figure 2. 2   Extracting surface relief and albedo from 3D surface 

 

 

2.2.   Texture Features 
 

Texture feature extraction is the procedure of generating descriptions of a textured 

surface in terms of measurable parameters. The extracted features represent the 

relevant properties of the surface, and may be sued with a classifier. It is commonly 

agreed that textural features play a fundamental role in classifying textured surface 

and texture segmentation. 

 

 12



2.2.1.   Three Stages of Texture Classification System   
 

A general texture classification system can be summarised in Figure 2. 3. 

 

image
acquisition classificationfeature

extraction
 

Figure 2. 3   Texture classification system 
 

• Image acquisition 
 

The first and arguably most important stage is that of image acquisition. The 

application of suitable physical constraints to the observed scene may be used to 

significantly reduce the complexity of subsequent stage. Careful structuring of the 

lighting arrangement and camera position may be used to enhance the particular 

features of interest. 

 

• Feature extraction 
 

Feature extraction is concerned with the quantification of texture characteristics in 

terms of a collection of descriptors or quantitative feature measurements, often 

referred to as a feature vector. The choice of appropriate descriptive parameters will 

radically influence the reliability and effectiveness of subsequent feature 

qualification through classification [Awcock95]. 

 

Texture features and texture analysis methods can be loosely divided into two 

categories − statistical and structural [Haralick79].  

1. Statistical methods define texture in terms of local grey-level statistics which are 

constant or slowly varying over a textured region. Different textures can be 

discriminated by comparing the statistics computed over different sub-regions. 

2. Structural texture models try to determine the primitives which compose the 

texture. The extracted primitives and their placement rules can be utilised not 

only to recognise texture but also to synthesise new images with a similar texture. 

 13



• Texture classification 
 

Most natural surfaces and naturally occurring patterns exhibit texture. A texture 

classification system will therefore be a natural part of many computer vision 

systems. The problem is that, given a texture region, to decide which of a finite 

number of classes that it belong to?  

 

If the classes have not been defined a priori, the task is referred to as unsupervised 

texture classification. On the other hand, if the classes have already been defined 

through the use of training textures, then the process is referred to as supervised 

texture classification. In this thesis, only supervised texture classification will be 

considered, and classification accuracy can refer to the percentage of correctly 

classified texture samples. 

 

 

2.2.2.   Surveys    
 

There are several methods for defining textural features. Each method has its own 

way to define the features that are used in the classification problem. Many textural 

features proposed by researchers have been reported in the literature and are widely 

used in texture analysis. Haralick [Haralick79], Wechsler [Wechsler80], van Gool, 

Dewaele and Oosterlinck [VanGool85], Tuceryan and Jain [Tuceryan93], Reed and 

du Buf [Reed93] surveyed the state of the art in texture analysis.  

 

 

2.2.3.   Texture Feature Methods    
 

A wide variety of methods for describing texture features have been proposed. 

Tuceryan and Jain [Tuceryan93] divided texture analysis methods into four major 

categories: statistical, geometrical, model-based and signal processing methods. The 

following discussion provides brief introduction to each of the four categories. 
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• Statistical method 
 

Statistical methods analyse the spatial distribution of grey values, by computing local 

features at each point in the image, and deriving a set of statistics from the 

distributions of the local features. With this method, the textures are described by 

statistical measures. Depending on the number of pixels defining the local feature, 

the statistical methods can be further classified into first-order (one pixel), second-

order (two pixels) and higher-order (three or more pixels) statistics. The performance 

of these method have been evaluated by Conner and Harlow [Conners80].  

 

One commonly applied and referenced method is the co-occurrence method, 

introduced by Haralick [Haralick73]. In this method, the relative frequencies of grey 

level pairs of pixels separated by a distance d in the direction θ combined to form a 

relative displacement vector (d, θ), which is computed and stored in a matrix, 

referred to as grey level co-occurrence matrix (GLCM) P. This matrix is used to 

extract second-order statistical texture features. Haralick suggests 14 features 

describing the two dimensional probability density function pij. Four of the most 

popular commonly used are listed in [Haralick73] [Strand94]. They are ASM 

(Angular Second Moment), Con (Contrast), Cor (Correlation) and Ent (Entropy): 
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where µ µ σ σx y x, , ,  and y  are the means and the standard deviations of the 

corresponding distributions; and N is the number of grey levels.  
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The another most widely used statistical method is the grey level differences method 

(GLDM) introduced by Weszka et al. [Weszka76]. It estimates the probability 

density function for differences taken between picture function values.  

 

Other statistical approaches include an autocorrelation function, which has been used 

for analysing the regularity and coarseness of texture by Kaizer [Kaizer55]. This 

function evaluates the linear spatial relationships between primitives. The set of 

autocorrelation coefficients shown below are used as texture features: 
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where p, q is the positional difference in the i, j direction, and M, N are image 

dimensions. 

 

Alternatively, the autocorrelation function can be determined in the frequency 

domain from the power spectrum method (PSM) of the Fourier transform 

[Castleman96]. Average values of energy of wedges or rings of Fourier spectrum can 

be used as features, shown in . Ring features measure coarseness or fineness, 

whereas wedge features measures directionality. 

 

 
Figure 2. 4   Partitioning of Fourier Spectrum. (a). ring Filter;  (b). wedgy filter.  
 

Grey level run length features were introduced by Galloway [Galloway75], they 

estimate the length of identical runs where an identical run is defined as a set of 

connected pixels having the same grey level. The element r(I, j|θ) of the grey level 
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run length matrix specifies the number of times a picture contains a run of length j 

for grey level i in the angle θ direction. Tang [Tang98] demonstrated that textural 

features extracted from a new run-length matrix can produce improved classification 

results over traditional run-length techniques.  

 

 

• Geometrical model 
 

The geometrical models of texture are based on the view that textures are made up of 

primitives with geometrical properties, In these models, it is common either to 

compute statistical features, or to identify the placement rules that describe the 

texture. These structural methods model textures as consisting of primitives that 

appear in certain patterns. A texture is then defined by these primitives and some 

displacement rules [Rosenfeld70]. In general, it is difficult to extract these elements 

from a real textures. Structural methods may also be used for texture synthesis. 

 

The primitives may be extracted by edge detection with a Laplacian-of-Gaussian or 

difference-of-Gaussian filter [Tuceryan90], by adaptive region extraction 

[Tomita90], or by mathematical morphology [Matheron75] [Serra73]. Once the 

primitives have been identified, the analysis is completed either by computing 

statistics of the primitives (e.g. intensity, area, elongation, and orientation) or by 

deciphering the placement rule of the elements [Fu82].  

 

The structure and organisation of the primitives can also be presented using Voronoi 

tessellations [Tuceryan90]. Image edges are an often used primitive element. Davis 

et al. [Davis81] defined generalised cooccurrence matrices, which describe second-

order statistics of edges. Dyer et al. [Dyer80] extended this approach by including the 

grey levels of the pixels near the edges into the analysis. An alternative to 

generalised cooccurrence matrices is to look for pairs of edge pixels, which fulfil 

certain conditions regarding edge magnitude and direction. Hong, Dyer and 

Rosenfeld [Hong80] assumed that edge pixels form a closed contour, and thus  

extracted primitives by searching for edge pixels with opposite directions (i.e. they 
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are assumed to be on the opposite sides of the primitive), followed with a region 

growing operation. Properties of the primitives (e.g. area and average intensity) were 

used as texture features.  

 

 

• Model-base methods 
 

Model-based texture methods try to capture the process that generated the texture. 

With model-based features, some image model is assumed, its parameters estimated 

for a subimages, and the model parameters or attributes derived from them , are used 

as features. There are currently three major model based methods: Markov Random 

Fields (MRF) by Dubes and Jain [Dubes89], fractals by Pentland [Pentland84], and 

The multi-resolution autoregressive (AR) features introduced by Mao and Jain 

[Mao92]. For detailed discussions of image models see Kashyap [Kashyap86], and 

Chellappa et al. [Chellappa93].  

 

Features extracted from Markov random fields are both descriptive and generative. 

Thus they have been found to be very useful for texture classification, image 

segmentation, and other applications by Khotanzad and Kashyap [Khotanzad87]. 

Random field models analyze spatial variations in two dimensions. Global random 

field models treat the entire image as a realization of a random field, whereas local 

random field models assume relationships of intensities in small neighbourhoods. A 

widely used class of local random field models type are Markov random field models 

.The Markov Random Fields model for texture assumes that the texture field is 

stochastic and stationary and satisfied a conditional independence assumption.  

 

The auto-regression model provides a way to use linear estimates of a pixel’s grey 

level, given the grey levels in the neighbourhood containing it. For coarse textures, 

the coefficients will all be similar. For fine textures, the coefficients will vary widely. 

Various types of models can be obtained with different neighbourhood system. One-

dimensional time-series models, autoregressive (AR), moving-average (MA), and 

autoregressive-moving-average (ARMA), model statistical relationships by 
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McCormick & Jayaramamurthy [McCormick74], and Box [Box76]. General class of 

2D autoregressive models has been applied for describing textures and subsequent 

recognition and classification by [Sarkar97]. The power of the auto-regression linear 

estimator approach is that it is easy to use the estimator in a mode that synthesises 

texture from any initially given linear estimator. Its weakness it that the textures it 

can characterise are likely to consist mostly of micro textures.  

 

Mandelbrot [Mandelbrot83] proposed describing images with fractals, a set of self-

similar functions characterized by so-called fractal dimension, which is correlated to 

the perceived roughness of image texture [Pentland84]. In contrast to autoregressive 

and Markov models, fractals have high power in low frequencies, which enables 

them to model processes with long periodicities. An interesting property of this 

model is that fractal dimension is scale invariant. Several methods have been 

proposed for estimating the fractal dimension of an image [Keller89] [DuBuf90]. 

Fractal models of surfaces have been employed in image analysis where the objects 

are rough, irregular, and multi-scale such as cloud, trees and natural textures 

[Huang90] [Peli90]. 

 

 

• Signal processing 
 

Signal processing methods perform frequency analysis of the textures. This is 

achieved by using spatial filters or through filtering in the frequency domain. Randen 

[Randen99] presented a comparative study of filtering for texture classification. 

Some well known signal processing method are based on Law’s Filter [Law80], 

Gabor filters [Bovik90] [Jain91], and pseudo-Wigner distribution [Jacobson82]. 

 

Laws [Law80] observed that certain gradient operators such as Laplacian and Sobel 

operators accentuated the underlying microstructure of texture within an image. This 

was the basis for a feature extraction scheme based on a series of pixel impulse 

response arrays obtained from combinations of 1-D vectors shown in Figure 2. 5.  
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Level L5 =  [  1    4    6     4      1] 

Edge E5 =  [ -1  –2    0     2     1 ] 

Spot S5 =  [ -1    0    2     0   –1 ] 

Wave W5 =  [ -1    2    0   –2     1 ] 

Ripple R5 = [  1   –4    6   –4    1 ] 

Figure 2. 5   Five 1-D arrays identifed by Laws. 
 

For each mask, a texture feature is extracted using the following steps: 

• convolve the image with the mask (i.e., position the mask at each pixel, compute 

the sum of products of mask elements and corresponding pixel values, and then 

assign the sum to the central pixel). 

• compute the average of the squared values at all pixels in the convolved image 

(except border pixels) 

• the average value is saved as the texture feature. 

Law’s energy filters are tested in texture classification by Pietikainen 

[Pietikainen82], Greenhill and Davis [Greenhill93], DuBuf [DuBuf90], et al. 

 

Another class of spatial filters are moments, which correspond to filtering the image 

with a set of spatial masks. The resulting images are then used as texture features. 

Tuceryan [Tuceryan92] used moment-based features successfully in texture 

segmentation. Multi-resolution analysis, the so-called wavelet transform, is achieved 

by using a window function, whose width changes as the frequency. If the window 

function is Gaussian, the obtained transform is called the Gabor transform [Bovik87].  

 

A two-dimensional Gabor filter is sensitive to a particular frequency and orientation. 

An example of a Gabor filter in spatial domains is given in Figure 2. 6.  

 

Other spatial/spatial-frequency method includes the pseudo-Wigner distribution 

introduced by Jacobson and Wechsler [Jacobson82]. Texture description with these 

methods is performed by filtering the image with a bank of filters, each filter having 

a specific frequency (and orientation). Texture features are then extracted from the 
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filtered images. For a detailed discussion on spatial/spatial-frequency methods see 

Reed and Wechsler [Reed90]. 

 
Figure 2. 6   A directional Gabor filter in the frequency (left) and spatial(right) 
domains 
 

 

2.3.   Image Rotation Invariant Features 
 

2.3.1.   Introduction 
 

Our problem associated with texture classification is the task of identifying an 

isotropic or  directional texture at different surface orientations. Unfortunately most 

techniques assume that the textures are captured from the same viewpoint. This is an 

unrealistic assumption in the real world. Robust rotation invariant features are the 

need of the day [Tan95]. In many applications, it is very difficult and impossible to 

ensure that surfaces captured have the same rotations between each other and such an 

assumption is rather restrictive in many practical applications. Therefore we consider 

rotation invariant texture features. 

 

Numerous approaches have been developed that use rotation invariant texture 

features. A review of invariant texture features can be found on [Porter97] 

[Fountain98] [Zhang2002a] [Chantler94a]. As it is very difficult to include all the 

work in such a review of rotation invariant features. Major representative work can 

be divided into two categories:  

• statistical methods; 

• model based method and  
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2.3.2.   Statistical Methods 
 

With statistical methods, the stochastic properties of the spatial distribution of grey 

levels in an image are characterised. Many of the methods are based on the fact that 

the human visual system uses statistic features for texture discrimination, which are 

broadly classified into first-order statistics, second-order statistics, and higher-order 

statistics. 

 

The simplest rotation invariant image statistics are the mean value, variance of the 

pixel intensities and intensity histogram. However they are very poor in performance, 

as there is a limited amount of textural information contained within them. More 

reliable rotation invariant image statistics are moment invariant firstly introduced by 

Hu [Hu62]. In addition, it is demonstrated by Wang and Healey [Wang98] that 

Zernike moments perform well in practice to obtain geometric invariance. In their 

method, Zernike moments of multispectral correlation functions characterise the 

texture. The classification accuracy rate is reported to be up to 100% for their 

database which contained seven textures. 

 

The approach was adopted by Haralick [Haralick73] who suggested that the values 

of grey-level co-occurrence matrix features should be averaged over all directions. 

The problem with this approach lies that directionality, an important characteristic of 

the texture, is lost when an isotropic feature is considered. Some work had also been 

made to extract rotation invariant features from different textures. A better technique 

would be one which would enable a characterisation of the directionality of the 

texture, whilst avoiding a dependence upon the texture orientation.  

 

Polarogram introduced by Davis [Davis81] is a polar plot of texture features as a 

function of orientation. When the image is rotated, the corresponding polarogram is 

translated by that angle. However the shape and moment features of the polarogram 

are invariant to rotation. A flat  polarogram indicates a texture which is isotropic with 
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respect to the underlying texture feature. In his experiment by using image rotation, 

the correct classification rate is obtained up to 90%. Unfortunately Davis does not 

however consider the effects of illumination or physical surface rotation in his 

experiment.  

 

Rotation invariant texture classification is achieved by Alapati and Sanderson 

[Alapati85] by filtering input images with a set of 2D complex filters which are 

rotation invariant. Such filters have been known as circular harmonic function  

filters. The response profile of each circular harmonic filter is polar separable. The 

algorithm is tested on only four textures from the Brodatz database [Brodatz66] and 

achieves a classification accuracy of 90%. 

 

You and Cohen [You93] extend Laws’ scheme for rotated and scaled textured 

images. The method uses standard deviation of pixel grey scale within a specified 

window computed after convolution with a texture “tuned” mask. Texture energy is a 

useful measure of texture features, but varies with orientation of the image. A tuned 

mask on samples overcomes this problem over a range of ration changes to produce a 

high clustering texture energy term. Although the classification accuracy achieved is 

91% using the Brodatz textures [Brodatz66], the amount of training to tune the 

masks is significant. 

 

 

2.3.3.   Model Based Methods 
 

In addition to statistical rotation invariant methods, another approach to the problem 

is to apply a model to the texture image and then to derive a classification algorithm 

from the model. In most statistically oriented techniques, the image is modelled as a 

Markov Random Field (MRF) of pixels. In these approaches, the relationships 

between the intensities of neighbouring pixels are statistically characterised. These 

are computationally intensive compared to feature based approaches. The challenge 

is how to achieve rotation invariant schemes. Rotation invariance can be achieved in 

one of two ways, either by extracting rotation-invariant features or by the appropriate 
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training of the classifier to make it learn invariant properties. Since general MRF 

models are inherently dependant on rotation, several methods were introduced to 

obtain rotation invariance. To identify the class of an arbitrarily rotated sample, the 

likelihood function associated with the Fourier transform of the image data is 

maximised with respect to the rotation parameters. This determines the class of the 

sample as well as the rotation angle the test sample has undergone. 

 

Cohen, Fan and Patel [Cohen91] modelled textures as Gaussian Markov random 

fields (GMRF) and used the maximum likelihood method to estimate the rotation and 

scale parameter. Their model essentially parameterises a planar texture model based 

on second order statistics with three-dimensional spatial parameters. Wu  and Wei 

[Wu96] have use a classical dyadic wavelet decomposition on spiral resampling 

lattice, the phase and therefore the rotation of the spiral is removed in the 

decomposition thus enabling rotationally invariant measures to be produced from the 

resulting subbands, where rotation invariance was achieved by translation invariance. 

The correct classification rate of 95.1% is obtained. They explicitly do not consider 

topological texture or illuminant effects. In addition, the problem of these approaches 

to rotation invariant texture analysis is their computational complexity (e.g. in 

[Cohen91] [Chen95]), which may render them impractical. Finally, using a large 

number of features to describe each texture can lead to an unmanageable size of 

feature space [Chen95]. 

 

Kashyap and Shotanzad [Kashyap86] proposed a circular symmetric auto-regressive 

(CSAR) model for extraction of rotation invariant texture features. Spatial interaction 

models such as this represent the grey level values at  a pixel as a linear combination 

of its neighbours plus a noise component. This method is tested on differently 

oriented textures and a 80- 90% classification accuracy was achieved. However, this 

method is computationally inefficient. On the basis of this model Mao and Jain 

[Mao92] developed a multivariate rotation invariant simultaneous autoregressive 

(RISAR) model and extended it to a multi-resolution (MR-RISAR) model. However, 

the training sets in those experiments contain samples of different orientations. The 
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performance of those features, when applied to samples with different scaling and 

orientation than those in the training set, is not clear. 

 

A multi-channel filtering technique based on Gabor filters in the frequency domain is 

used to acquire rotation invariant texture features. Haley and Manjunath [Haley96] 

propose an isotropic form of the 2D Gabor function. Here the Gabor function is 

extended in a 2D form in the frequency domain, it is the product of a set of 1D 

analytic function of radial frequency and a Gaussian function of orientation θ provide 

a set of filter. Using these features the classification performance is tested on a set of 

13 Brodatz textures, and achieved a 96.4% correct classification rate. In other 

techniques, features based on Gabor filters are extracted, that allow the formulation 

of a rotation invariant model [Leung92]. The central step of their approach is to 

identify the rotation angle of the test sample with respect to a reference orientation, 

and then transforming the test sample to the reference orientation before 

classification. 

 

Greenspan et al [Greenspan94] employed a set of oriented filters which are complex 

exponential functions modulated by Gaussian filter acting on the Laplacian pyramid. 

Feature vectors are formed from the outputs of the oriented filters, describing the 

local characteristics of the original images. A DFT of the feature vector in orientation 

dimension is insensitive to this circular shift of points. This provides the rotation 

invariant features used in the study. A set of thirty textures from Brodatz is used for 

validation and the best classification accuracy is 91.5% for K-nearest classifier. 

 

In the earlier studies, the testing was done in such a way that rotated samples of the 

textures were included in both the training and the classification stage. Recently, 

Pietikainen et al. [Pietikainen00] suggest that the rotation-invariant algorithm should 

be able to classify the texture classes even if the training procedure is to run on the 

texture samples for only one rotation. Ojala et al. [Ojala00] showed that such an 

approach is much more challenging. We have therefore followed the second 

principle in this thesis. Recently, Pietikainen and Ojala [Pietikainen00] introduced a 

set of related measures, including two local centre-symmetric auto-correlation 
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measures, with linear (SAC) and rank-order versions (SRAC), together with a related 

covariance measure (SCOV). A distribution-base classification approach is applied 

to rotation invariant texture classification. A difficult classification problem of fifteen 

different Brodatz textures and seven rotation angles is used in experiments. It was 

reported that the best results were achieved with distributions of joint pairs of 

features. 

 

Note that the accuracy of classification presented in this section are not comparable 

each other, since they use different texture data as test and training set. 

 

However, it should be noted that the above classifications are performed using image 

rotations rather actual physical surface rotation. The objective of this thesis is to 

analysis surface rotation invariant texture classification. We will discuss surface 

rotation invariant features in the next section. 

 

 

2.4.   Surface Rotation Invariant Features  
 

Leung and Malik present a classification system which is trained on textures that are 

each imaged under 20 different illumination and orientation conditions [Leung99]. 

Their textures were obtained from the Columbia-Utrecht Reflectance and Texture 

Database [Dana99b]. Such natural textures arise from spatial variation of two surface 

attributes: (1) reflectance and (2) surface normal. The main idea is to construct a 

vocabulary of prototype tiny surface patches with associated local geometric and 

photometric properties. They call these 3D textons. This generalises the classifier but 

does not use explicit 3D surface texture information directly. 

 

Dana and Nayar describe a correlation model for 3D surface texture and suggest how 

this might be used to provide a 3D surface texture feature, correlation length. They  

present a model which uses surface statistical parameters to predict the change in the 

correlation length with illumination directions. They do not, however, use this for 

texture classification purposes [Dana99a].  
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Varma and Zisserman [Varma02] [Varma02a] present a classification method which 

is based on the statistical distribution of filter responses in a low dimensional space. 

They perform their texture classification from a single image acquired with both 

unknown viewpoint and illumination directions. Therefore, the classification results 

achieved via clustering are comparable to the results achieved by using the PDF and 

that representing a texture by its distribution of texture elements (textons) is not 

detrimental to classification. They also demonstrate that it is possible to reliably 

measure a rotationally invariant co-occurrence orientation statistic. 

 

Smith also uses 3D surface texture information directly [Smith99a]. He uses 

photometric stereo to acquire surface gradient information and suggests the use of 

features derived from the gradient space (including attitude, principal orientation, 

shape factor, and shape distribution) for the “quantitative analysis of repetitive 

surface textures”. He does not go as far as applying this approach to the task of 

classification of rough surfaces using a conventional classifier - although it would be 

very interesting to see the results on the detection of surface faults. His method is 

summarised below in Figure 2. 7. We note, however, this still includes a directional 

filtering effect and suppression of a significant amount of surface information. 
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Figure 2. 7   Smith’s surface rotation invariant segmentation scheme 
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McGunnigle and Chantler [McGunnigle97] [McGunnigle98] have developed a novel 

approach to classification. It uses photometric stereo to determine the surface 

gradients. Their work is very important as it separately verified that simple three-

point photometric methods are effective at separating albedo patterns from surface 

gradient information. This will enable classification to be performed by comparing 

texture features computed directly from surface properties rather than image intensity 

values. Thus they can for instance compare surface relief against surface relief rather 

than pixel patterns against image data. The scheme was not rotation invariant. Later 

they proposed another photometric-based system, however, this time the gradient 

information was directly filtered using isotropic Gabor filters to provide a rotation 

insensitive scheme [McGunnigle99a].  

 

 

2.5.   Summary 
 

In this chapter, the survey of rotation invariant texture classification is presented. 

Before we discuss the texture analysis and rotation invariant texture feature, some 

definitions of texture, surface relief and albedo are given.  

 

Our problem associated with texture classification is the task of identifying an 

texture at its different surface orientations. Therefore, a general survey of texture 

feature analysis and particular rotation invariant feature analysis are given 

respectively. We note that most of rotation invariant feature methods are based on 

image rotation rather than physically surface rotation, where our main interest exists. 

Furthermore, most of approaches discussed above assume that images are captured in 

a frontal-parallel setup so that rotation only occurs around the optical axis, and there 

are few methods in which the effect of changing illumination conditions are taken 

into account.  

 

In Chapter 3, the process form surface to image is presented, which enables us to 

estimate surface properties but image properties using photometric stereo in Chapter 

4. Furthermore the gradient space is introduced in Chapter 5. Therefore we may 
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propose a rotation invariant texture classification scheme based on the features of 

polar spectra on gradient spectra in Chapter 6. 
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