
 

 

CHAPTER 6    

An Algorithm of Rotation Invariant Texture 

Classification  

 

 

 

6.1.   Introduction 
 

Many texture classification schemes have been presented that are invariant to image 

rotation so far. The major existing approaches include image rotation invariant 

statistical features, moment invariants, polarogram features, Hough transform 

features, iso-energy directional signatures in 2D Fourier spectra, autoregressive 

models, Gaussian Markov random field models, multi-channel filtering and wavelet 

transforms. Details can be found in Chapter 2. 

 

Image rotation invariant classifiers normally derive their features directly from a 

single image and are tested using rotated images. If the image texture results solely 

from albedo variation rather that surface relief or if the illumination is not directional 

or immediately overhead, then these schemes are surface-rotation invariant as well. 

However, in many cases rotation of a textured surface produces images that differ 

radically from those provided by pure image rotation (see Figure 6. 1). These images 

show that rotation of a 3D surface texture does not result in a simple rotation of the 

image texture. This is mainly due to the directional filtering effect of imaging using 

side-lighting [Chantler94a, Chantler94b]. Such changes in appearance can cause 

significant failures in image-base texture classifiers. For instance a rotation of 90° of 

the illuminant tilt angle can cause the mis-classification rate of a texture classifier to 

change from 4-5% to nearly 100% [Chantler94a]. In another way, rotation of the 
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physical texture surface under fixed illumination conditions can also cause 

significant changes to its appearance. It causes failure of classifiers designed to cope 

with image rotation as well [McGunigle98]. 

 

ϕ = 0° ϕ = 90°  
Figure 6. 1   Two images of the same directional 3D rotated surface texture with  
identical illuminant. The surface has been rotated through of 0º and 90º (indicated 
by the white arrows in the centre). The illuminant tilt is kept constant at τ=0° 
(indicated by the black arrows in white circles). 
 
In this chapter, we present a novel surface rotation invariant approach to texture 

classification. Our approach uses polarograms [Davis81] derived from surface 

derivative spectra. We use photometric stereo to obtain the required partial derivative 

fields. They are Fourier transformed and combined to provide a frequency domain 

function that does not contain the directional artefacts associated with partial 

derivatives. Polarograms of this function are compared with those of training classes 

using a goodness-of-fit measure to provide rotation invariant texture classification. 

 

 

6.2.   Surface Rotation-Invariant Texture Features  

 

In previous chapters, we have discussed that we can successfully obtain surface 

properties using photometric stereo and we will use these 3D surface properties in 

image properties for classification. The next step is to derive surface rotation-

invariant texture features from 3D surface properties that have the ability to provide 

discrimination between texture classes. 
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6.2.1   Related Work 
 

As previously stated in Chapter 2 many texture classification schemes have been 

presented that are invariant to image rotation [Port97] [Cohen91] [Mao92]. Few take 

into account the problems caused by illumination described in Figure 6. 1. 

Exceptions include Leung and Malik's classification system which is trained on 

textures that are each imaged under 20 different illumination and orientation 

conditions [Leung99]. This generalises the classifier but does not use explicit 3D 

surface texture information directly; Dana and Nayer describe histogram and  

correlation model for 3D surface texture and suggest how this might be used to 

provide a 3D surface texture feature, correlation length [Dana99a];  McGunnigle and 

Chantler proposed a model-based scheme that used photometric stereo to obtain 

gradient information [McGunnigle97]. Smith also uses 3D surface texture 

information directly [Smith99a]. He uses photometric stereo to acquire surface 

gradient information and suggests the use of features derived from the gradient 

space. More details about above methods can be recalled in Chapter 2. 

 

 

6.2.2   Development of Features in Frequency Domain 
 

Chantler [Chantler94a] notes that both the directional characteristics and the variance 

of images of three-dimensional textures can be affected by changing the illumination 

vector. A frequency domain model based on Kube and Pentland’s illumination model 

is presented and the results of simulations and laboratory experiments allow it to be 

evaluated. Moreover the model is further developed using empirical data and the 

resulting model used to design a set of tilt-compensation filters. These filters are used 

to pre-process images to reduce the effects of changes in the angle of tilt of the 

illumination (see Figure 6. 2).  
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Figure 6. 2   Chantler’s frequency domain compensation model for illuminant tilt 
variation 
 

The classifier is trained under a set of illumination conditions but it is used with 

arbitrary tilt angles. Application of the filters to the test image set reduced the 

classification tilt-related errors associated with directional textures only. His method 

is a simple implementation and avoids high training requirements; however, the 

illuminant tilt angle has to be known during both the training and classification 

process. In addition, we have to consider two aspects of illumination conditions: not 

only tilt angle but also slant angle variations, but he did not give a frequency domain 

slant compensation scheme. Finally, this single image scheme is not able to estimate 

signal components perpendicular to the illuminant direction due to the linearization 

inherent in Kube and Pentland’s model. 

 

McGunnigle [McGunnigle98] states that a technique which uses a representation of 

the physical surface as the basis for the generation of appropriate training data is 

appropriate. The surface derivative fields of the training surface are estimated using 

photometric techniques. This allows him to recover surface intrinsic characteristics 

from several images of the same surface taken at different illumination conditions. A 

rendering algorithm uses these estimates to simulate the appearance of the training 

surface when it is illuminated form an arbitrary direction. It is shown that where 

illuminant direction is varied this system is able to perform significantly better than a 

naive classifier, and in some cases approaches the level of accuracy obtained from 

training the classifier under the conditions at which classification is performed. 

 

The scheme was not rotation invariant. Later he proposed another photometric-based 

system, which is outlined in Figure 6. 3. This time, however, the gradient 

information was directly filtered using isotropic Gabor filters to provide a rotation 

 97



insensitive scheme [McGunnigle99a]. The filtered derivative fields pg(x,y) and 

qg(x,y) still contain the artefacts of directionality due to the differentiation. As they 

are only interested in the amount of energy contained in each frequency band, the 

post-processing stage of the norm function can be non-linear. The resulting quantity 

is free of the directional filtering effect. A filter approach is adopted to estimate the 

magnitude and followed by a low-pass filter. Finally, his classification is performed 

by the statistical discriminated maximum likelihood method. 
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Figure 6. 3   McGunnigle’s surface rotation invariant classification scheme 

 
In his scheme, firstly we note that he only use three images to estimate surface 

derivatives and ignores the shadowing effect. However, in general the shadowing 

will play an important role in the photometric stereo techniques. Secondly, he 

assumes that the surface is of approximately Lambertian reflectance and uniform 

albedo. He does not use any albedo information in his classifier, although albedo 

information can be isolated from the training data sets. Thirdly, his classification is 

only performed on the variations in illuminant tilt and the slant angle is kept 

constant. The effect of slant variation will also have a significant effect on 

photometric stereo techniques applied to 3D rough surface. 
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Quivy [Quivy98] presents a look-up table for CFFT based texture classification (see 

Figure 6. 4). The non-linear mapping between image irradiance and surface 

orientation is represented in a look-up table. He used a calibration object of known 

shape to generate data mapping the measured brightness values to the corresponding 

gradient. He then obtained the spectra of the texture gradient by applying a Complex 

Fast Fourier Transformation (CFFT) to the complex gradient combination p(x.y)+j• 

q(x,y). Finally, the classification is performed on the maximum of the normalised 

correlation coefficient between the featured test images and training images. He has 

to estimate the surface orientation angle by rotating one of the spectra images before 

comparing the data for classification purposes. Hence this scheme is computationally  

expensive. On the other hand, the classification accuracy is heavily dependent on the 

accuracy of the estimated rotation angle. In this circumstance, he reports that an 

isotropic texture could lead to potential misclassification due to failure of the angle 

estimation processing. 
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Figure 6. 4   Quivy’s lookup table and CFFT based texture classification 
 

Damoiseau [Damoiseau97] developed a correlation method based on polar spectra. 

She investigated its performance using a set of twenty Brodatz textures (see Figure 

6. 5). Using multiple frequency ranges on the polar spectra enabled estimation of 

surface orientation angles more accurately. The overlapping range defined on the 
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frequency range also improves the accuracy of the classifier, although they are all 

based on the same classification principal. The classification is based on features 

defined to be the maximum value of the cross-correlation between the polar spectra 

of the test sample and that of each training sample. We note that Damoiseau’s 

method is based on image data rather than on surface data and the location of the 

frequency ranges appears to be a very sensitive parameter. 
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Figure 6. 5   Damoiseau’s classification scheme using polar plot and correlation 
 

In general, Chantler’s single image scheme [Chantler94a] only gave a frequency 

domain tilt compensation but slant compensation, and it also share the significant 

weakness that stems from the linearisation inherent in Kube’s model 

[McGunnigle98]. In McGunnigle’s method [McGunnigle98], he ignored the effect of 

shadowing and kept the surface albedo and slant angle constant in his experiments. 
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Quivy’s method [Quivy98] is computationally expensive and heavily dependent on 

the accuracy of the estimated rotation angle, which results in the potential 

misclassification for an isotropic texture. Although the computation in Damoiseau’s 

method [Damoiseau97] is not expensive, it is based on image data but surface data. 

Therefore, we develop our surface rotation invariant texture classification scheme 

using photometric stereo. 

 

 

6.3.   Photometric Stereo in Frequency Domain Dual 

 

The aim of this chapter is to develop an algorithm of rotation invariant texture 

classification for 3D surfaces, so the directional effects which come from the 

illuminant conditions must be removed before the classification. In this section, we 

will discuss two of the difficulties in photometric stereo and how we remove the 

directional artefacts in the frequency domain. Finally we evaluate our algorithm on 

four synthetic textures and four real textures. 

 

 

6.3.1   Difficulties in Photometric Stereo 
 

As discussed earlier, we have to use the basic surface properties of the surface rather 

than the image intensity properties in order to eliminate the effects of illumination 

and enable the classifier to be robust to the surface rotation. We obtain the partial 

derivatives of the surface height function using photometric stereo, in which several 

images of the same surface are taken under different illumination conditions. The 

photometric stereo method enables us to estimate surface shape. It requires only one 

camera with a movable light source and can be easily implemented without extra cost 

in computation. In addition, there is no assumption of smoothness of the 3D surface 

as required in most single image shape from shading algorithms. We note, however, 

that there are two main difficulties associated with the surface derivatives: 
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1. The first is that the surface derivatives are vectors rather than scalar quantities. 

We will have to use these two surface derivatives together in classifier, rather 

than one scalar quantity. Recovery of the surface height map by integrating the 

surface derivatives may yield a scalar field which can be directly incorporated 

into an existing classifier. However the integration error may be well increase via 

accumulation. 

 

2. The other difficulty is that there is a direction-related factor, which is an artefact 

of the partial derivative operator. In this case, this directionality component 

should be removed before classification.  

 

These two difficulties mean that the partial derivatives of the surface cannot be used 

directly in a rotation invariant classifier; they must be processed first. 

 

 

6.3.2   Frequency Domain Dual 
 

This section proposes a method by which the partial derivatives may be combined in 

the frequency domain in such a way as to remove these directional artefacts. The 

surface gradient estimations provided by photometric stereo are normally in the form 

of the partial derivative fields p(x,y) and q(x,y). 

xyxzyxp ∂∂= ),(),(  ( 6. 1 )

yyxzyxq ∂∂= ),(),(  ( 6. 2 )

where z(x, y) is the surface height function of a texture in the x-y plane, 

and p(x,y) and q(x,y) are surface partial derivative fields along the x direction 

and y direction respectively. 

 

The Fourier transforms of equation ( 6. 1 ) and ( 6. 2 ) are: 

P(u,v) = iuS(u,v) = iω(cosθ) S(ω,θ) ( 6. 3 )

Q(u,v) = ivS(u,v) = iω(sinθ) S(ω,θ) ( 6. 4 )
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where S(u,v) and S(ω,θ) are the surface magnitude spectrum in its Cartesian and 

polar forms,  

u,v are spatial frequency variables,  

and ω,θ are their polar equivalents. 

P(u,v) and Q(u,v) are the Fourier transforms of p(x,y) and q(x,y) respectively. 

 

Now equation ( 6. 3 ) and ( 6. 4 ) show that both derivatives act as directional filters 

due to the cosθ and sinθ terms. In particular the partial derivative of a surface rotated 

by ϕ is not simply a rotation of the original partial derivative, i.e. 

( ) ( ) ( ) ( )ϕθωϕθωθωθωϕ +≠+= ,,cos, PSiP  ( 6. 5 )

However, we may combine the partial derivatives to provide a function free of 

directional artefacts: 

[ ]222 ),(),(),(),( vuSvuQvuPvuM ω=+=  ( 6. 6 )

where M(u, v) is the corresponding gradient spectra. M(u, v) is the mathematic non-

linear combination between the surface partial derivatives P(u, v) and Q(u, v)  in the 

frequency main, in which the surface directional artefact apart from those directly 

inherent from the surface spectrum has been removed. In the other words, the 

directionalities of M(u, v) present the surface orientations only, which give us the 

ability to design the surface rotation invariant classification scheme. 

 

We can readily see that the orientation of gradient spectra M(u, v) only depends on 

the orientation of surface spectra S(u,v) since ω is a rotation invariant scalar. Note 

that gradient spectra M(u, v)  is not equivalent to the Fourier transform of gradient 

space G(p, q) presented in Chapter 5 where its directionality component is not 

removed. 

 

From equation ( 6. 3 ), ( 6. 4 ) and ( 6. 6 ), we note that the spectra of the derivative 

fields P(u,v) and Q(u,v) have the directionality of the derivative fields. While the 

gradient spectra M(u, v) is a combination of P(u,v) and Q(u,v) they do not have any 

directional component apart from those directly inherent from the surface spectrum 

S(u,v). Note that 
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( ) ( )[ ] ( )θωφθωωφθω φ ,,, 2 MSM =+=+  ( 6. 7 )

hence rotation of the surface should produce a pure rotation of the corresponding  

M(ω, θ) spectrum, shown in Figure 6. 7. 

 

Finally, it is interesting to note that the measures of M(u, v) spectrum presented in 

equation ( 6. 6 ) is obviously non-linear, and the following chapters no longer rely on 

the linearization presented in Chapter 3 and Chapter 4. 

 

 

6.3.3   Directional Characteristic of M(ω, θ) 
 

In this section, we will test the gradient spectrum M(ω, θ) on both synthetic textures 

and real textures in terms of its ability to discriminate and determine directionality 

for different kinds of textures. 

• Synthetic textures 
 

Firstly, we examine the gradient spectra M(ω, θ) of four synthetic textures, which 

have already been introduced and defined in chapter 3. The four textures in montage 

format (see Figure 6. 6) are rock (left-top), sand(right-top), malv(left-bottom) and 

ogil(right-bottom). 

sand

malv ogil

rock
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Figure 6. 6   Four synthetic textures in montage format at surface rotation ϕ = 0°  
with constant illumination tilt angle τ = 0° and slant angle σ = 50° 
 

 

ϕ = 30°

ϕ = 120°ϕ = 90°

ϕ = 60°

 
Figure 6. 7   Gradient spectra M(ω, θ) of 4 synthetic textures shown in montage 
format for 4 surface rotations ( ϕ = 30°, 60°, 90° and 120° ). The textures are rock 
(left-top), sand(right-top), malv(left-bottom) and ogil(right-bottom). 

 
From Figure 6. 7 , which shows the M(ω, θ) gradient spectra of four synthetic 

textures, it can be seen that rotation of each of the surface (ϕ = 30°, 60°, 90° and 

120°) produces a corresponding rotation of their gradient spectra M(ω, θ). On the 

other hand, the directionality in the directional (sand) or bi-directional (ogil) texture 
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surfaces results in the directionality of the distribution of gradient spectra M(ω, θ). 

This rotation variant property, Mϕ (ω, θ) = M(ω, θ + ϕ), is very important to our 

surface rotation invariant texture classification scheme, because the directionality of 

a surface is an important cue to its identification. 

 

Also, it is very interesting to note that whether the textures are isotropic ones or 

directional ones,  the nature or shape of distributions in the gradient spectra M(ω, θ) 

is insensitive to the variation of surface rotations. We note that, theoretically, the 

shape of the gradient distribution will be unique and unchanged for a certain texture, 

although it may be rotated due to surface rotation. 

ogil

sandrock

malv

Figure 6. 8   M(ω, θ) as a frequency distribution within a 3D gradient spectra 
domain for 4 synthetic textures (surface orientation ϕ = 30°). 
 

By plotting gradient spectra M(ω, θ) as a frequency distribution within a 3D gradient 

spectra domain, a distinctive representation of the distribution can readily be 

obtained as shown in Figure 6. 8.  
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We consider some of the useful information for texture description which can be 

interpreted from the gradient spectra M(ω, θ):  

(1) the prominent peaks in the gradient spectra give the principal direction of the 

texture surface;  

(2) the location of the peaks gives the fundamental spatial period of the texture; and 

(3) the gradient spectra are symmetric about the origin, so that only half of the 

frequency plane needs to be calculated.  

 

It is the nature of the observed distributions in the gradient spectra domain that gives 

us very useful descriptive signatures for the observed surface textures. Considering 

the different textures, each texture produces a distinctive gradient spectra. For 

example, rock produces a distribution of circular pattern with an impulse in the 

centre, while sand produces two impulses linear pattern. In this case, the form and 

parameter of the distribution may be analysed later on and we may apply and identify 

these characters of distribution in gradient spectra domain and incorporate them into 

our surface rotation invariant texture classification scheme.  

 

Note that in this thesis we only consider the magnitude information in gradient 

spectrum M(ω, θ), while the phase information is ignored. 

 

• Real textures 
 

Here we examine the gradient spectra M(ω,θ) of real textures for their discrimination 

abilities and directionality. Figure 6. 9 shows the gradient spectra M(ω, θ) of four 

real textures (gr2, wv2, grd1, an4) at three surface rotations ϕ = 30°, 90° and 150° , 

with the surface orientations ϕ = 0°. In addition, in order to show that the M(ω, θ) 

functions of the rotated textures are simply a rotation of the original (ϕ = 0°)  M(ω, 

θ) function as predicted, we plot gradient spectra M(ω, θ) as a frequency distribution 

within a 3D gradient spectra domain for real textures wv2 at surface orientations ϕ = 

0°, 30°, 60°, 90°  (Figure 6. 10). This shows that the M(ω, θ) function simply rotates 

by the angle of surface rotation. 
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Figure 6. 9   Gradient spectra M(ω, θ) of 4 real textures (gr2, wv2, grd1, an4) at 3 
surface rotations ( ϕ = 30°, 90° and 150° ). The white arrows indicate the surface 
corresponding orientations. 
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ϕ = 30°

ϕ = 60°

ϕ = 0°
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Figure 6. 10   M(ω, θ) as a frequency distribution within a 3D gradient spectra 
domain for real  textures wv2 at surface orientation ϕ = 0°, 30°, 60°, 90°. 
 

 

6.3.4   Summary 
 

In the previous sections we note that in our surface rotation invariant texture 

classification scheme, we will directly use surface relief characteristics rather than 

image intensity characteristics so that the classifier will be robust to surface rotation. 

Therefore the surface partial derivatives are estimated using photometric stereo. It 

uses multiple images of the same scene obtained under different illumination 

orientations. However, the surface partial derivatives are not surface rotation 

invariant features. Moreover they represent a two dimensional vector quantity rather 

than a scalar field and contain directional artefacts. 

 

Firstly, we therefore transfer the surface partial derivatives into the frequency 

domain and form the gradient spectra function M(ω, θ) which is free of directional 
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artefacts. Secondly, we assess the discrimination ability and directionality of gradient 

spectra M(ω, θ) on both synthetic textures and real textures. The results show that a 

rotation of the surface produces a corresponding rotation of its gradient spectrum 

M(ω, θ). Also it is not surprising to note that the nature of gradient spectrum M(ω, θ) 

provides very useful information relating to the type of surface structure (isotropic, 

directional or bi-directional) and the predominant orientation of the surface textures. 

Hence we may use this distinctive information in our surface rotation invariant 

texture classification scheme. 

 

For classification we need to match the spectra of test and training textures in a 

rotation invariant manner. Comparing the gradient spectra of a test texture with those 

of the training classes over a complete range of rotations is computationally 

prohibitive. For example, for each rotated test texture sample, we have to perform 

180 rotations on its gradient spectra M(ω, θ) image in order to estimate its orientation 

angle between the test sample and training sample. 

 

In the next section, we therefore use a function to compress the data but maintain 

their major characteristics of directionality: the polar spectrum. The main motivation 

for using polar spectrum is that we reduce the number of feature measures compared 

with the gradient spectrum M(ω, θ). Polar spectrum also gives us the ability to 

estimate the surface orientation with less computation than those directly calculated 

from gradient spectra M(ω, θ). 

 

 

6.4.   Polar Spectrum 

 

6.4.1   Introduction 
 

In this section, regarding classification we must first decide which characteristics of 

the texture should be measured to produce descriptive parameters. The particular 

resulting parameter values comprise the feature vector for each texture object. Proper 

selection of the features is important since only these will be used to identify the 
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textures. Therefore, we will initially extract useful features from gradient spectra 

M(ω, θ) using the polar spectrum.  

 

The polar spectrum can be used to generate the rotation invariant features which are 

sensitive to texture directionality and capture the directionality of textures at different 

orientations. Davis [Davis81] introduces this new tool, known as a polarogram and 

uses it to achieve invariant texture features.  

 

We have to assess the discrimination ability of the polar spectrum, in which the 

features should be significantly different for the textures belonging to different 

classes. Regarding the surface rotation, the polar spectrum should have the ability of 

reliability in order to enable the classifier to be robust to variance of the surface 

orientations and also have the ability to estimate the surface orientation angle. The 

advantages and drawbacks of the polar spectrum are hence considered.  

 

Finally, we test the polar spectrum which is derived from gradient spectra M(ω, θ) on 

both synthetic textures and real textures.  

 

 

6.4.2   Definition of Polar Spectrum 
 

The polar spectrum is calculated by integration of all the contributions (or values) 

along a line of orientation θ passing through the origin in the image of gradient 

spectra M(ω, θ). We can then calculate the function of polar spectrum Π(θ) as: 

∫
∞

=Π
0

),()( ωθωθ dM  ( 6. 8 )

That means the polar spectrum adds the magnitudes of all frequencies in one certain 

direction θ to produce a measure for the intensity in this direction. All these 

frequencies are lying in a radial line. The output of the polar spectrum is the variance 

as a function of the angle θ. This plot is used for illustrating directionality in the 

image. We illustrate the definition of polar spectrum in Figure 6. 11 by 

demonstrating two textures (isotropic texture gr2 and directional texture grd1). 
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Figure 6. 11   Definition of polar spectrum Π(θ) on gradient spectra M(ω, θ) by  
demonstrating two textures, gr2(left column)  and grd1 (right column). (a). graphical 
representation of polar spectrum on gradient spectra M(ω, θ); (b). M(ω, θ); (c). 
Polar spectra. 
 

Note that 

)(),(),()(
00

φθωφθωωθωθ φφ +Π=+==Π ∫∫
∞∞

dMdM  ( 6. 9 )

thus a rotation of ϕ of a surface produces a translation of ϕ in the polar spectrum. 
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The polar spectrum Π(θ) is derived from the gradient spectrum M(ω, θ) simply by 

expressing the spectrum in polar coordinates. It is obvious that the texture’s gradient 

spectra are rotation dependent and it is a periodic function of θ with a period of π. 

 

Recalling the Figure 6. 11, we may note that the polar spectrum of directional texture 

grd1 shows prominent peaks at intervals of 90°, which clearly correspond to the 

periodicity in the gradient spectra. Moreover, in the gradient spectra M(ω, θ) of 

texture grd1 is directional and so the polar spectrum Π(θ) tends to be a peak (at 

θ=30°, 120°). On the other hand, there are no peaks or marked directionality in the 

polar spectrum of isotropic texture gr2. This observation indicates the usefulness of 

the polar spectrum Π(θ) in summarising the directional properties of a texture. 

 

 

6.4.3   Drawbacks and Solutions 
 

Prior to discussing the properties of the polar spectrum in terms of directionality and 

the effects of surface rotation, we have to consider some of its drawbacks. 

 

• Interpolation 
 

The gradient spectra are calculated by using a discrete FFT. Hence the polar 

spectrum Π(θ) (equation ( 6. 8 )) is obtained by summing discrete coefficient values:     

∑
=

=Π
R

M
1

),()(
ω

θωθ  ( 6. 10 )

where R is the radius high frequency range of a circle centred at the origin. For an 

N×N gradient spectra M(ω, θ), R is typically chosen as N/2. 

 

Therefore, while calculating the value of Π(θ), noises will be introduced since the 

gradient data is produced in a Cartesian described from M(ω, θ) and has a finite 

resolution. In Figure 6. 12(a), we note that  some of the points on the calculating line 

of R2 at the polar angle θ  do not correspond to any points of the M(ω, θ) spectra, 
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compared to those points along the line of R1. An interpolation algorithm was 

implemented in order to estimate the new point values on the line of R2. Depending 

on the amount of detail present in the spectrum along with the final requirements of 

the images, an appropriate interpolation scheme may be employed. In our 

circumstance, since a pixel falling between locations will always be somewhere in 

between four valid pixel locations, four pixels (pt.1, pt.2, pt.3 and pt.4) surrounding 

the calculated pixel location (desired pt.) will be used to contribute to the estimation 

of the desired coefficient, shown in Figure 6. 12 (b).  
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Figure 6. 12   Illustrating effect of interpolation while calculating polar spectrum 
Π(θ) from discrete Cartesian M(u,v) spectra. (a). Effect on a grid square.  (b). 
Definition of the grid square. 
 

The simplest interpolation is bilinear interpolation in the grid square [Press92]. The 

aim of this interpolation is to estimate the function f(x,y) at some untabulated point 

(xi, yi). This can be performed using the values of the function at the four tabulated 

points that surround the desired interior point. This is illustrated in Figure 6. 12(b). 

This figure defines j and k as: 

x[j]  ≤  xi  ≤  x[j+1] 

y[k]  ≤  yi  ≤  y[k+1] ( 6. 11 )

and then 
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f1 = f ( x[j], y[k] ) 

f2 = f ( x[j+1], y[k] ) 

f3 = f ( x[j+1], y[k+1] ) 

f4 = f ( x[j], y[k+1] ) 

( 6. 12 )

 
The formulae of the interpolation is then given by : 

t
x x j

x j x j
i≡

−
+ −

[ ]
[ ] [1 ]  

u
y y k

y k y k
i≡

−
+ −

[ ]
[ ] [1 ]  

( 6. 13 )

( ) ( ) ( ) ( ) ( )y x y f t u f t u f u t f t ui i, = × − × − + × × − + × − × + × ×1 2 31 1 1 1 4  ( 6. 14 )

 

• Frequency range selection : low frequency flow 
 

One of the problems with the interpolation algorithm is that the estimated point 

values near the centre frequency (ω=1) provide poor angular resolution. Therefore, 

we modify the definition of polar spectrum Π(θ) in equation ( 6. 10 ) to a band-pass 

filter: 

∑
=

=Π
high

low

f

f
M

ω
θωθ ),(  )(  ( 6. 15 )

where flow and fhigh are used in the band-pass filter, which is illustrated in Figure 6. 

13. 
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u

v

flow

fhigh

 
Figure 6. 13   Frequency range selection of band-pass filter while calculating polar 
spectrum. 
 

This effect can readily been seen in Figure 6. 14, which plots the polar spectrums of 

texture “grd1” derived from calculations in different low frequency ranges (ω = 1, ω 

= 2, and ω = 8). For the size of N×N gradient spectra M(ω, θ),  fhigh is set to  N/2 as 

default, while we change the flow to the value of 1, 2 and 8 respectively. It is clear to 

see that the peaks of A1 and A2 in the polar spectrum with flow =1 are the correct 

ones derived from the dominant directionalities in gradient spectra M(ω, θ). 

However, the peaks of B1 and B2 come from the interpolation noise at certain  polar 

angles θ  of about 45° and 135° respectively and do not correspond to the 

directionality in the gradient spectra M(ω, θ). On the other hand, increasing the low 

frequency range flow to the value of 8, the noise disappears due to the increased 

angular resolution at this frequency.  
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Figure 6. 14   Polar spectrums of texture “grd1” derived from calculating in 
different low frequency ranges (ω = 1, ω = 2, and ω = 8). 

 

It is worth noticing that increasing the low frequency range results in decreasing the 

polar spectra magnitude or energy. This is illustrated in Figure 6. 15.  
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Figure 6. 15   Increasing the low frequency range results in decreasing the polar 
spectra magnitude or energy as more and more components of M(u, v) are neglected 
(low frequency value flow starts from 4 to 64) for texture grd1. 
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In general, the estimated point values near the centre frequency (ω=1) provide poor 

angular resolution (Figure 6. 14). On the other hand, increasing the low frequency 

range results in decreasing the polar spectra magnitude (Figure 6. 15). We decide to 

set the low frequency range starting at the value of 8. 

 

• Frequency range selection : high frequency fhigh 
 

Regarding equation ( 6. 15 ), the band-pass filter is applied to the gradient spectra. In 

this case we will also lose some of the information in high frequency range. 

However, most of the image power is concentrated in the low frequency components. 

This is highlighted by circles superimposed at different radii on the gradient spectra. 

We calculate the proportion of the total sum of gradient spectra M(ω, θ) over the 

entire domain contained within each circle, then we find the relationship shown in 

the Table 6. 1 ( flow= 1). We note that with the high frequency fhigh set to 64, the 

image width of gradient spectra will be 128 and we still have most of the power 

(99.35%) of the image. Therefore, we will set gradient spectra size to 128 × 128 

pixels as the default setting in further investigations, since it will give us enough 

information for the post-processing. 

 

 
2 × fhigh

(cycles/image-width)
% image

power

2 71.80%
4 81.95%
8 84.71%

16 89.92%
32 96.33%
64 99.35%

128 99.98%

Table 6. 1   The percentage of gradient spectra power M(ω, θ) with increasing high 
frequency fhigh  for texture grd1 ( flow= 1). 
 

 

6.4.4   Polar Spectrum is a Function of Texture Directionality 
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In this section, we will test the polar spectrum as a function of texture directionality 

using four synthetic textures and four real textures. 

 

• Synthetic textures 
 

Polar spectra of the four selective synthetic textures (rock, sand, ogil and malv) 

defined in chapter 3 on gradient spectra M(ω, θ) at surface rotation of ϕ = 30° are 

shown in Figure 6. 16. It is interesting to note that there are no marked peaks on the 

polar spectrum for isotropic texture rock and malv, while there is a sharp peak A at 

the polar angle θ = 30° on the polar spectrum of the directional texture sand. There 

are two peaks, B1 at the polar angle θ = 30° and B2 at the polar angle θ = 120°, on 

the polar spectrum of the bi-directional texture ogil, although B2 is not the dominant 

direction having viewed the original surface. In general, all of the peaks appearing on 

the polar spectrum do correspond to the directionality of the original textures. 

 

• Real textures 
 

We repeat this process on four selective real textures (gr2, wv2, grd1 and an4). The 

results are shown below in Figure 6. 17. The same conclusions can also be made: the 

polar spectrum is a function of texture directionality. It is obvious that for a given 

texture surface, the texture directionality varies with change of orientation. These 

changes in directionality can be captured by the polar spectrum. For example, the 

directionality of texture wv2 can be characterised by peak A, on the other hand, the 

directionalities of texture an4 may be presented as peaks D, E and F in its 

corresponding polar spectrum Π(θ). 
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Figure 6. 16   Polar spectrums of four selective synthetic textures (rock, sand, ogil 
and malv) on gradient spectra M(ω, θ) at surface rotation of ϕ = 30°. (a). surface at 
constant tilt angle τ = 0°;  (b) gradient spectra; (c) polar spectrum. 
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Figure 6. 17   Polar spectrums of four selective real textures (gr2, wv2, grd1 and 
an4) on gradient spectra M(ω, θ) at a surface rotation of ϕ = 30°. (a). surface at 
constant tilt angle τ = 0°;  (b) gradient spectra; (c) polar spectrum. 
 

 

6.4.5   Polar Spectrum at Different Surface Orientations  
 

Note that while both gradient spectra M(ω,θ) and its polar spectrum do not 

theoretically contain any directional artefacts such as a directional filtering effect, 
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they are, rotationally sensitive. That is, if the surface is rotated by an angle ϕ then a 

new gradient spectra Mϕ(ω,θ) and a new polar spectrum Πϕ(θ) will result (see Figure 

6. 18), such that in theory: 

Πϕ(θ) = Π (θ +ϕ) ( 6. 16 )

This implies that a rotated texture’s polar spectrum Πϕ(θ) is equivalent to a 

translation of its polar spectrum Π (θ) by the same amount ϕ along the orientation 

axis. For comparison images taken under surface rotation are shown individually and 

all captured images are at a constant illuminant tilt angle τ = 0° (90° and 180° 

illuminant tilt angle images are also captured for the photometric stereo process but 

are not shown here). Comparison of the images at ϕ = 0° and ϕ = 90° shows that 

they are not simple rotations of each other. In the image corresponding to ϕ = 0° the 

vertical lines of the texture are clearly presented. While in the image corresponding 

to ϕ = 90° the texture has been attenuated and the lines which should be horizontal 

are no longer visible.  

 

On the other hand, this is not surprising. Figure 6. 19 illustrates the relationship 

between Πϕ(θ) and Π (θ + ϕ). By depicting the polar spectrums of the rotated “wv2” 

surface, this shows that a rotated texture’s polar spectrum is an approximate 

translation of the unrotated texture’s polar spectrum, and that the degree of each 

translation approximates to the corresponding rotation of the surface. 

 

 

6.4.6   Estimation of Surface Orientation via Polar Spectrum 
 

Obviously since the polar spectrum is rotationally sensitive, we cannot directly use 

polar spectra for surface rotation invariant classification. We have to estimate the 

surface orientation angle first for each test texture and then compare the test texture’s 

polar spectrum to the training textures’ polar spectra. This is done by translating each 

by the estimated surface orientation angle. 
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In the section, we will estimate the surface orientation angle of the polar spectrum by 

using the simple sum of squared difference metric. The estimation process will be 

presented in the next section. We also discuss surface orientation estimation obtained 

from gradient spectra and gradient space. 

 

• Estimation of surface orientation 
 

ϕ = 0° ϕ = 60° ϕ = 90°ϕ = 30°
(a) surface

(b) gradient spectra

Figure 6. 18   Textures “wv2” on gradient spectra M(ω, θ) at different surface 
rotations of ϕ = 0°, 30°, 60° and 90° (the white arrows indicate the surface 
orientations).  (a) surface at constant tilt angle τ = 0°; (b) gradient spectra.  
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Figure 6. 19   Polar spectrums of real textures “wv2” at surface rotations of ϕ = 0°, 
30°, 60°,  90°, 120°  and 150°.  
 

Figure 6. 19 shows polar spectra of real textures “wv2” at surface rotations of ϕ = 

0°, 30°, 60°,  90°, 120°  and 150°, some examples of corresponding gradient spectra 

M(ω, θ) are shown in Figure 6. 18. As the polar spectrum provides a measurement of 

texture directionality. It can be used to estimate its orientation. From Figure 6. 19, 

we note that a rotated texture’s polar spectrum is approximately a translation of the 

non-rotated  texture’s polar spectrum. Thus we must compare polar spectrums over a 

range of angular displacements (ϕtest = 0°, 1°, 2°, ….180°) in order to determine the 

degree of correspondence and the relative angle of two surfaces. We use the sum of 

squared difference metric function SSD to measure the distance between two polar 

spectrums: 

}{  ] )(    )(  [   min)( 2
180

0
θϕθϕ

θ

unrotatedtestrotatedtestSSD Π−+Π= ∑
°

°=
 ( 6. 17 )

where ϕtest = 0°, 1°, 2°, ….180°. When the cost function of SSD(ϕtest) is minimised 

the angular displacement ϕtest in the polar spectrum will be the relative angle of these 

two surfaces.  
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• Estimation results from directional and isotropic textures 
 

Table 6. 2 shows the estimated angles of surface orientation for real and directional 

texture “wv2” obtained from polar spectra. Four sample images are constructed from 

the images of the textures rotated individually in Table 6. 2 (a). We note that the 

results of estimated angles in Table 6. 2 (b) shows good performance for this 

directional texture “wv2”, while the maximum error in the angle is 2°. 

 

On the other hand, Table 6. 3 gives the estimated angles of surface orientation for the 

real isotropic texture “gr2” obtained from polar spectra. We can see that the 

estimation that took place with the surface orientation angle ϕ = 90° has failed, and 

the error in the angle increased to 82°.  

 

ϕ = 0° ϕ = 90°ϕ = 60°ϕ = 30°
(a)

(b)

Original surface rotation
angles ϕ 30° 60° 90° 120° 150° 180°

Estimated angles obtained
from polar spectrums 30° 60° 90° 122° 152° 179°

Error 0° 0° 0° +2° +2° -1°

Table 6. 2   The estimated angles of surface orientation for the real directional 
texture “wv2” obtained from polar spectra. (a) some rotated surface samples at 
orientation angle of ϕ = 0°, 30°, 60° and  90°, while the tilt angle τ is kept constant 
at 0°; (b) estimation error. 
 

 125



ϕ = 0° ϕ = 90°ϕ = 60°ϕ = 30°
(a)

(b)

Original surface rotation
angles ϕ 30° 60° 90° 120° 150° 180°

Estimated angles obtained
from polar spectrum 30° 60° 8° 121° 151° 181°

Error 0° 0° -82° +1° +1° +1°

Table 6. 3   The estimated angles of surface orientation for the real isotropic texture 
“gr2” obtained from polar spectra. (a) some rotated surface samples at orientation 
angle of ϕ = 0°, 30°, 60° and  90°, while the tilt angle τ is kept constant at 0°; (b)  
estimation error. 
 

Regarding the isotropic texture, it would be difficult to achieve better  accuracy than 

the directional texture, because there are no obvious peaks within the polar spectrum. 

In this case, translating the polar spectrum Π(θ) may not give the correct estimation.  

This means that we cannot estimate the direction of an isotropic texture from the 

polar spectrum Π(θ). 

 

• Comparison with those estimated from gradient spectra and gradient space 
 

Figure 6. 20 shows the estimates of the surface orientation angle for four synthetic 

textures (rock, sand, ogil and malv) obtained from polar spectrum Π(θ), gradient 

spectra M(ω, θ)  and gradient space G(x, y). Regarding   the four different textures, 

the estimated orientation angle obtained by the polar spectrum Π(θ) has the highest 

accuracy. In this case, most of the error angles are under 2°  apart from one at an 

angle of 8°. Those obtained by the gradient space G(x, y) have the worst estimation 

results. While the resulting estimation angle obtained by the 2D gradient spectra 

M(ω, θ) can be thought of as reasonable. 
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Comparing results for the different textures, the performance of the estimation on the 

isotropic ones (rock and malv) is worse than that for the directional ones. We also 

note that the estimation processing failed for the isotropic texture rock and malv in 

the gradient space G(x, y). This is because the distribution of the gradient space for 

those textures does not relate well to the surface orientation and leads to the failure of 

the surface rotation at an angle of about 0°. As previously mentioned, our estimation 

results based on the frequency domain methods (gradient spectra and polar spectrum) 

are much better than those obtained with the spatial domain method (gradient space). 
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Figure 6. 20   Comparing the estimations of the surface orientation angle for four 
synthetic textures (rock, sand, ogil and malv) obtained from polar spectrum Π(θ), 
gradient spectra M(ω, θ)  and gradient space G(x, y). 
 

 

6.4.7   Summary 
 

In the section, the polar spectrum technique was introduced. It enables us to reduce 

the dimension of feature space from 2D gradient spectra M(ω, θ) to a 1D polar 

 127



spectrum Π(θ), while maintaining the majority of useful characteristics. In addition, 

it also avoids the heavy computation resulting from comparing the gradient spectra 

M(ω, θ) of a test texture with those of the training textures over a complete range of 

rotations.  

 

Noises due to the discrete Cartesian nature of M(ω, θ) were investigated and reduced 

using interpolation and a low frequency integration limit. Next, two of the main 

properties of the polar spectrum were investigated: 

• the polar spectrum as a function of texture directionality, and 

• the polar spectrum as a function of surface orientation. 

 

Regarding these two important aspects, we confirm that a rotated texture’s polar 

spectrum is an approximate translation of the non-rotated texture’s polar spectrum 

and that the degree of each translation approximates to the corresponding rotation of 

the surface. This property of the polar spectrum allows us to estimate the surface 

orientation or rotation angle by comparing the polar spectrums over a range of 

angular displacements using the sum of the squared difference function. Finally, we 

discuss a comparative study on the estimation of surface orientation angles obtained 

from polar spectra Π(θ), gradient spectra M(ω, θ)  and gradient space G(x, y). The 

results of estimation based on the polar spectrum Π(θ) gives the best accuracy.  

 

In the next section, we will develop classifier using features obtained from the polar 

spectrum and illustrate how it works. 

 

 

6.5.   Classifier 

 

In this section we will illustrate how the classifier works based on the goodness-of-fit 

measurement and also consider the corresponding estimated surface orientation 

obtained by this method. 
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In Figure 6. 21, we illustrate the goodness-of-fit measurement of the test texture’s 

polar spectrum (wv2 at ϕ = 60°) and compare it to four training textures’ polar 

spectra obtained at the surface orientation angle ϕ = 0°. Consequently, the sum of 

squared difference (SSD) metric between the test texture wv2 (ϕ = 60°)  and four 

training textures (ϕ = 0°), and their corresponding estimated surface orientation 

angles are listed in Table 6. 4. We note that the minimal value of SSD (1.14e+11) is 

only achieved between the polar spectrum of the test texture wv2 and its training 

polar spectrum. Moreover the estimated surface orientation angle  ϕtest (60°) is 

exactly equal to the  angular displacement between the test polar spectrum and the 

training one for texture wv2. While on the other hand, the estimated surface 

orientation angle ϕtest between the test texture wv2 and the other two directional 

training texture (an4 and grd1) is also found to be 57° and 55°  respectively. This is 

because all of them have a peak of distribution at a  polar angle of approximately 0°. 

This illustrates that SSD evaluation can be effective. 
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Figure 6. 21   Goodness-of-fit measurement for testing a texture’s polar spectrum 
(wv2 at ϕ = 60°) against four training textures’ polar spectra obtained at the surface 
orientation angle ϕ = 0° 
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Training textures (ϕ=0°) an4 gr2 grd1 wv2 

SSD 8.17e+11 1.74e+12 1.15e+12 1.14e+11
Testing texture 

wv2 (ϕ=60°) Estimated 
angle ϕtest

57° 23° 55° 60°

 
Table 6. 4   Sum of squared difference (SSD) values between the test texture wv2 (ϕ 
= 60°)  and four training textures (ϕ = 0°), together with their corresponding 
estimated surface orientation angles.  
 

 

6.6.   Summary of the Complete Algorithm 

 
6.6.1   Surface Rotation Invariant Classification Scheme Using 

Photometric Stereo (Surface Information) 
 

Now it is time to illustrate the complete surface rotation invariant classification 

scheme in Figure 6. 22. The process is as follows: 

1. A photometric image set of the texture to be classified is captured by a digital 

camera which is fixed above the 3D rotated surface texture sample (i.e. three 

images are taken at illuminant tilt angles of  0°, 90° and 180° respectively).  

2. The photometric stereo algorithm uses this image set to estimate the surface 

partial derivatives p(x,y) and q(x,y). This enables us to use surface relief 

characteristics rather than the image intensity characteristics so that the classifier 

is to be robust to surface rotation. 

3. However, the surface partial derivative p(x,y) and q(x,y) are not surface rotation 

invariant features and they are vectors containing directional artifacts as well. 

Therefore, they are Fourier transformed into P(ω, θ)  and Q(ω, θ), and combined 

to provide the corresponding gradient spectra M(ω, θ) which are free of 

directional artifacts. 

4. Gradient spectra M(ω, θ) are processed to provide polar spectra Π(θ). This 

compresses the data from 2D to 1D while maintaining the major directional 

characteristics. It also avoids the heavy computations involved in comparing the 

gradient spectra M(ω, θ) of a test texture with those of the training texture over a 

 130



complete range of rotations. 

5. The polar spectrum is compared with the polar spectra obtained from training 

images over a range of angular displacements (ϕtest) using a sum of squared 

differences metric. The comparison results in the corresponding surface 

orientation angle since a rotated texture’s polar spectrum is an approximate 

translation of the non-rotated texture’s polar spectrum.  

6. The total sum of squared difference metric calculated from step 5 and the best 

combination provides a classification decision based on the goodness-of-fit 

measurement  and an estimate of the relative orientation of the test texture. 
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Figure 6. 22   The complete surface rotation invariant classification scheme 
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6.6.2   Texture Classification Scheme Using Image Information Only 
 

In order to give the comparison of performance of 3D surface rotation invariant 

classification using surface information (presented in Figure 6. 22) and image 

information respectively, we therefore present a classification scheme which only 

uses image information rather than surface information. The image-based texture 

classification for 3D surface is illustrated in Figure 6. 23. 

 
Figure 6. 23   The image-based texture classification for 3D surface 

 

The process is as follows: 
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1. An image of the texture to be classified is captured by a digital camera which is 

fixed above the 3D rotated surface texture sample, while the illuminant tilt angle 

is fixed to 0° during the whole experiment. Note that, for this image-based 

texture classification scheme, we only use a single image as the test set. On the 

other hand, for surface-based texture classification scheme, we use three input 

images to obtain the surface information by photometric stereo. 

2. The captured single image is Fourier transformed into I(ω, θ). 

3. I(ω, θ) is therefore processed to provide polar spectrum Πtest(θ). 

4. The polar spectrum Πtest(θ) is compared with the polar spectra Πtraining(θ) 

obtained from training images over a range of angular displacements (ϕtest) using 

a sum of squared differences metric.  

5. The total sum of squared difference metric calculated from step 4 and the best 

combination provides a classification decision based on the goodness-of-fit 

measurement. 
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