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Abstract

This thesis presents a methodology for developargeptually relevant surface texture
retrieval systems. Generally such systems hava besearched using image texture
which has been captured under unknown or uncoattotionditions (e.g. Brodatz).
However, it is known that changes in illuminatidifeat both the visual appearance of
surfaces and the computational features extracted their images. In contrast this
thesis either uses surface information directly,computes features obtained from
images captured under controlled lighting condgion

Psychophysical experiments were conducted in whizkervers were asked to place
texture samples into groups. Multidimensional Bcawas applied to the resulting
similarity matrices to obtain a more manageablaiced perceptual space. A four-
dimensional representation was found to capturenthgority of the variability. A
corresponding feature space was created by linearhbining selected trace transform
features. Retrieval was performed simply by deteimg then closest neighbours to
the query’s feature vector. An average retrievatision of 60% was obtained in blind
tests.
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Chapter 1

| ntroduction

Efficient and perceptually relevant texture retakkias been and remains a challenging
and very important area of research. Due to thaimmsence of texture information
within our natural environments, image featureatney to different texture properties
have been extensively exploited by Content BaseagérRetrieval (CBIR) systems.
Additionally, with a number of specialised applioas such as medical diagnosis
dealing with large databases of texture imagesievel systems that provide robust

search and retrieval facilities are constantly esiought.

1.1 Maotivation and driving issues

Research in the field of CBIR has focused mosthfimding perceptual features to
represent textures in order to bridge the semaacbetween low-level image content
and high-level concepts used by humans in discatimg textures [Smeulders00]. All
approaches considered so far in building retrievaldels have used texture image
datasets where the conditions under which the im&gee been captured have been
completely neglected. The Brodatz dataset of idegittexture images has been used as
the de factosource of images to train and test retrieval mod®l textures. However,
the image capture conditions used have not beeasrided in the literature. Thus it is
not known that these surfaces were imaged undesistent lighting conditions. This is
unfortunate, because changes in illumination carseaignificant variations in both
observers’ perceptions and the values of comp@etire features [Chantler94]. Thus
the current work addresses the texture retrievabblpm by considering either surface
textures or texture images that have been genemate@r controlled and known
illumination and viewpoint conditions.

Another issue of this research is the unavailagbdita specific set of features that can
be universally related to different perceptual tfradf textures. Ever since work
performed by Tamurat al [Tamura78] in finding texture features relatigghltuman
perception, numerous attempts have been made dmd@rstructural information that
could represent different categories of textur&khough the texture features described

in the literature have proved to be successfuldmes areas of texture processing,



namely texture segmentation and synthesis; comased retrieval on the other hand
has failed to meet user expectations [Rui99, Sneesl) & Datta08]. Despite being
equipped with more powerful feature extraction teghes and indexing mechanisms,
retrieval systems have constantly been outsmagetidbefficiency and precision with
which the Human Visual System discriminates betwaifferent categories of textures.
Both frequency domain and spatial domain featusese lbeen investigated, however,
the challenge provided by the semantic gap stiflai@s. It has recently been argued by
Petrouet al [Petrou07] that the failure of having specific ig&is to represent textures
can be related to the fact that preconceived paraépttributes are kept in mind while
designing and extracting the feature sets. Thgelg biases and restricts the way the
textures can be represented, especially in theafasérieval. Thus the current research
does not assume any perceptual attributes of extunthin the feature extraction
phase, and addresses the problem of texture repatis@ by using a large set of
features.

In order to develop retrieval systems that are isterst with the way humans perceive
textures, recent research has investigated howreexieatures can be mapped to
perceptual dimensions such that the latter coul@éxpgoited for retrieval. Following
the excellent work undertaken by Ra&b al [Rao93b] in investigating perceptual
dimensions to create a taxonomy for textures, otesearchers such as Loeg al
[Long01l] and Payneet al [Payne05] have utilised results from psychophysical
experiments on texture similarity so as to constrperceptually robust retrieval
systems. However, all this research has beenedausing texture imagery captured
under unknown or varying conditions.

As in the case of Rao’s experiments, the curresgarch uses psychophysical data to
identify perceptual dimensions after which compotal features are mapped to those
dimensions leading to so called perceptual texgjr@aces. However, these data are
obtained using images of textures that have betairnsa under controlled conditions.



1.2 Goals

The focus of this thesis is to research technotogied methodologies for perceptually
relevant retrieval of surface textures. By peraafy relevant we imply retrievals that
users would perceive as similar to a given quergute. To achieve this primary
objective, it is important to investigate how hummgrerceive different categories of
textures and use the captured judgments in traiaingtfrieval model that can “mimic”
human perception. Thus the main goals of the reseae:

1. To select or create a database of surface heighs s@that controlled illumination
and viewpoint conditions can be applied to genertdgture images for
psychophysical studies.

2. To capture similarity judgments of different texdypairs taken from a set of texture
images illuminated under controlled conditions.

3. To derive methods for developing appropriate resisystems.



1.3 Scopeof thisthesis

The research focuses in developing an automatedvatmodel that takes as input an
“unknown” texture query and uses a selected setetdvant features to retrieve
perceptually similar textures. A broad overviewtloé processes involved in meeting

the goals set-out in Section 1.2 is given in Figude
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Figure 1.1 — Processes involved in retrieval ofgegtually similar surface textures



The current work deals mainly with surface texturaptured using a stills camera and
point light sources. Lack of sufficiently homogens natural textures means that
synthetic textures have also been generated taoderdor a texture dataset with a good
spread of different categories. A dataset of ghseid texture images captured in a
controlled environment was also made available lmaslbeen used to test the retrieval
models proposed.

The way in which humans judge similar textures xplered and the results of the
different observers are aggregated to fornNastimensional perceptual space, whire
represents the number of textures. Human judgmemetscaptured through properly
designed and implemented psychophysical experiments

Within the scope of this thesis we employ dimenaiiby reduction to reduce the high-
dimensional perceptual space to a more managé&abléeature space that is exploited
for automatic retrieval of textures.

Relevant features used in mapping the perceptaalesare chosen from a large pool of
features. Retrieval of textures similar to a quiemxture results from (1) mapping the
query feature into th€&-D feature space and (2) locating th@earest textures within

that space.

1.4 Novdtiesand Contributions

The main novelty of this thesis lies in the useswafface textures, rather than images, in
developing a perceptually consistent texture redtiesystem. To the author’s

knowledge no work has attempted to characterisacirtextures both in terms of

computational features and in terms of human pé&ep



1.5 Thesisorganisation

This thesis is structured in the following way.

Chapter 2 investigates how the computer vision and visiolersse community have
been dealing with the problem of finding percediuaklevant features for texture
retrieval. Based on the investigation providedistof tools and techniques used in
perceptual retrieval of texture is identified.

Chapter 3 covers the steps required in performing a psycysiphl experiment for
texture similarity. The chapter provides desigueés in creating the datasets to be used
in the experiment and also implementation proceslutlerough which human
observations are captured. The outcome of thiptehas high dimensional perceptual
data representing similarity information betweextuee pairs.

Chapter 4 provides an analysis of the high dimensional daltéained from the
psychophysical experiments. The first part of ttleapter investigates whether
structural information exists within the textureogps created by observers. Cluster
analysis is applied to high dimensional perceptiadah to create a random number of
groups and visual inspection allows us to investigar consistency within the groups.
The second part of the chapter demonstrates howrdilonality reduction is applied to
reduce the full perceptual space to lower dimeraispace. Consequently the reduced
perceptual space is examined to identify major gqer@l texture attributes that could
be exploited for retrieval purposes.

Chapter 5 investigates some popular texture description@ggres in order to select a
potential feature set to be used in mapping theuaed perceptual space to a
corresponding feature space.

Part | of Chapter 6 describes how the actual mapping of the featueeesgo the
Reduced Perceptual Spaces is performed. Retriéwats the corresponding feature
space are presented and analysed.

An alternative approach using the full perceptysce is presented in Part Il of this
chapter. The objective is to see whether a morecdiapproach would provide for
better retrieval performance. The results from tike approaches are evaluated and
discussed.

Chapter 7 summarises the work undertaken within the condéxhis thesis and relates
how the objectives set out in Chapter 1 have been rithe results from the previous

chapters are discussed and the contributions edtlin



Chapter 2

Texture Retrieval: Challenges, Approaches and

Technigues

2.1 Introduction

Search, retrieval or navigation of large databagesmultimedia information have for

long been very active areas of research. Howevidt,major advances in the fields of

data capture and data storage, the amount of obseark undertaken in the field of

Content Based Image Retrieval (CBIR) has movedsl@aga bounds within the last five

years. CBIR is a vast and wide area of researdhdatussing its progress is beyond

the scope of this thesis. However it is worth n@mhg, at this stage, some excellent
surveys made by Rt al. [Rui99], Smeuldergt al.[Smeulders00], and others such as

Dai et al. [DaiO4] and Liuet al. [Liu0O7] who have helped us to be up-to-date wité t

evolution of CBIR research.

The main objective of this thesis is to come uphvatsurface texture retrieval system

that can represent human judgements of texturedoasly as possible. In order to

achieve this objective, the goals set out for Cérapto are as follows:

1. To investigate the challenges that researchers taaeel and are facing to provide
texture retrieval systems that generate perceptaalisistent results,

2. To investigate how psychophysics has influencediéhé@ of content-based retrieval
and determine whether a new psychophysical expatimeeds to be performed to
capture how humans categorise textures, and,

3. To determine the requirements, in terms of toolsl &chniques, to build a
perceptual texture retrieval system.

Chapter two is organised in the following way: $mti2.2 addresses the challenges of

developing retrieval systems for texture. It sumses the challenges from two

different perspectives: (1) from the computer visimspect and (2) from the vision
science community point of view. Section 2.3 pdad a brief summary of the
computational approaches to texture retrieval, ed®rSection 2.4 looks into the
perceptual approaches. Tools and techniques ueedars by computer vision
researchers and cognitive scientists in capturamglysing and integrating human

judgments within a retrieval framework are presenite Section 2.5. Section 2.6



identifies the requirements in building a surfaextire retrieval system using
psychophysical data. Finally, Section 2.7 sumnearisow the goals for this chapter

were met.

2.2 Challenges in Texture Retrieval

Even if no universally accepted definition exists ftexture, it has always been
considered to be a very important aspect of vigsufarmation that humans constantly
use to analyse different scenes. Given the aburmtasence of textured surfaces in
natural environments, humans generally use knowledgout those surfaces to
discriminate between scenes coming from their emvirents. As reported by Gurnsey
et al [Gurnsey0l], studies for texture properties haitber been motivated for an
ecological cause or from a signal processing petsge Ecologically because of the
omnipresence of texture information in the real lbaand from a signal processing
perspective in order to examine how the human Visystem encodes texture
information.

Texture information was initially exploited withanvery narrow area of machine vision,
mainly in the early phases of remote sensing fdarar satellite image interpretation
[Haralick73]. Since then texture-based researchrapidly and widely spread to areas
of computer vision, image processing and computaplgcs, be it for the analysis of
texture information for image classification, th&traction of texture features for
segmentation purposes, or simply for the usexabite data for visualisation. Analysis
of texture information for synthesis purposes Has heen used by image compression
applications. Within that span of time, differéexture models have been proposed to
suit different applications. In their survey, Togn and Jain [Tuceryan98] classified
these models as statistical approaches, geometicatructural approaches, model-
based approaches and signal processing approacfidse survey published by
Smeulderset al. [Smeulders00] provides more insight into how muabrk has been
done till the year 2000 within the field of textumeformation representation and
processing. However, the area is growing at sufifightening pace that seven years
later the amount of work done on texture basedarekehas almost doubled compared
to research done pre year 2000.

This increase can be explained by the fact thatuteg, due to their aesthetical
properties, are nowadays very much involved in gores-oriented design, marketing

and selling of different products. Moreover exteasapplication of texture in medical



diagnosis and industrial inspection has put a f@mphasis on content-based retrieval
of texture images. With cognitive scientists realj that texture, as a visual cue, plays
a significant role in a variety of cognitive taskupled with the fact that current
texture retrieval systems are still perceptuallyoimsistent, strong interests have arisen
from the vision science community in the field ekture retrieval. The vision science
community is mostly interested in how the humaruaissystem discriminates among
different texture categories compared to the cosemputsion community which is
constantly trying come up with a computational nidtat allows the representation of
textures through a relevant feature space. Irdbeof this section are presented the
challenges faced by both the computer vision comtyuand the vision science

researchers in developing perceptually consistettite retrieval systems.

2.2.1 Challenges from the Computer Vision community

In computational vision, we try to model and imptrh the vision processes at a
conscious level rather than a subconscious levei #s case of human vision. Early
interests in texture from the computer vision comityurelate mostly to the derivation
of computational measures in analysing and syrthngstextures. Research in the field
of CBIR imposed more challenges to the texturenbei@ researchers. Those challenges

are discussed below:

* More features to represent larger categories ofueximages

The failure by CBIR systems to meet users’ expextathas led researchers to believe
that the main cause of this failure is the insughicy or incompleteness of the feature
set available to represent the textures (applicablamage retrieval in general).
Throughout the years, various representations g&fute information have been
proposed, namely power spectral features, Gabturtess wavelets, moments, fractals,
higher order statistics and so on. Even if thesgresentations have performed
sufficiently well in certain texture processing asesuch as segmentation and synthesis,
their application to retrieval has been largely uatessful. Most of the feature sets
presented in literature have been generated withrdeto specific perceptual attributes
of textures such as directionality, contrast, ragty and others. However, no universal
set of features has been identified so far thatiaegl by humans to distinguish between
different categories of textures. In a recentmafieto do so, Petroat al. [Petrou07]

have used the Trace Transform to generate verye laggs of features to represent



textures. They argue that since the perceptuabatits used by humans to categorise
textures are still an open problem, extracting Uesst based on specific perceptual
attributes biases and thus limits the texture spr&ations.

» Dealing with high dimensionality data

With more and more features used to representretihe obstacle that researchers
undoubtedly had to face is the curse of dimensitynal Processing thousands of
features drastically decreases the performancetagéval systems. Thus, researchers
have been working on different ways to reduce gelaet of features to a smaller subset
that can more accurately and efficiently repregbet dataset being investigated or
searched. Feature selection targets mainly thélgmo of high dimensionality;
however, it also allows the identification and remloof irrelevant and redundant
features that result in more accurate learning hsodé& good review of the evolution of

feature selection is provided by Léd al [Liu05].

* Find ways to compensate for varying data captumeddmns

Existing works on texture retrieval have so fardusets of texture images (mostly the
Brodatz dataset) where the viewpoint condition wnddich those images were
acquired is unknown. To solve the general viewpanvariance problem, several
translation, rotation and scale invariant featusdragtion techniques have been
proposed in literature. Alignment techniques andcsural descriptions have also been
employed to bypass the viewpoint problem. Morepkezent studies by Chantler al.
[Chantler94 & Chantler05] have also demonstratedinfiuence of texture appearance
under changing illumination. Thus, illuminatiorvariant texture representation is also

an active area of research.

» Multidimensional indexing techniques

Even after applying feature selection/reductiomtegues, the dimensions of the feature
space used to represent a dataset are quite I&rgditional data structures are proving

to be inefficient in storing and indexing the cumrerop of features or feature sets.

Sophisticated multidimensional indexing technigaes constantly being explored and

utilised to meet the computational demands of liighensional feature sets and also to
reduce the response time of retrieval systems.ebar, due to the interactive nature of
current retrieval systems, we can no longer asghaideatures are extracted and stored

in advance. A major challenge for researcherfimarea is to cater for scalable image
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and feature sets. Thus, much work is being dondymamic indexing strategies. Rui
et al. [Rui99], Smeulder®t al. [Smeulders00] and Datet al. [Datta08] provide very
good resumés on multidimensional indexing techrscqageused by CBIR systems.

* Advance query modelling facilities and interactystems

A common limitation of the early texture retrievaistems has been the rigid interface
provided for users to formulate their query. Tmeely the situation, researchers have
been working on several ways to expose the preofiske retrieval system in a more
intuitive and natural way. Recent researches Ipave lot of emphasis on ‘interactive
retrieval systems’ and techniques like relevaneeliack have been explored to capture
users’ needs through an iterative feedback andyqeéinement process [Rui98, Rui99,
& Lew06].

Besides providing more facilities for human intéi@c with retrieval systems,
researchers have also considered multimodal queniesrder to seek the best
description of users’ needs. Thus, novel usenrfetes, querying models and result

visualisation techniques are constantly being exepl¢Lew06].

* Semantic information extraction and learning-baspgroaches

Learning based approaches are being investigatddinplemented within retrieval
systems in order to dynamically modify feature smtsimilarity measures used in the
retrieval process. With the assumption that awmig@ature set cannot represent diverse
categories of texture images, learning methodsvate fine-tuning of image signatures
[Rui99 & LewO06].
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2.2.2 Challenges from a Vision Science perspective

Interest from psychophysicists and cognitive sessto study the visual perception of
textures is not new, however, as compared to thek \ilone on colour, the state of
understanding of perceptual texture properties usedexture discrimination and

categorisation is still very poor. With the indflyilof computer scientists to bridge the
semantic gap and to provide for similarity measwets that are perceptually
consistent, there has been fast growing interesh fihe vision science community to

meet the existing challenges in texture categaoisat

* Understand and model low-level human vision

The main interest by vision scientists lies in wiegiresentations and rules are utilised
by the human visual system to process texturesst M@ work at this level relates to
identification of cognitive mechanisms in the preseof texture segregation. Early
pioneers such as Julesz [Julesz62, Julesz75 &&@1kand Beck [Beck87] made use of
synthetic texture stimuli to explain the discrimrdy of textures. Julesz proposed the
“theory of textons” to explain the preattentive adiminability of texture. However,
most, if not to say all, of the earlier texture gagtion models were based on synthetic
textures and have proved difficult to formalise feal world textures. Thus, a large
chunk of research undertaken by vision scientsststiil dedicated in finding models
that could explain how the human visual system rohignates between different

categories of textures.

» Support findings from neurophysiology

Researches performed by neurophysiologists havgested that the cortical cells of the
human brain have receptive fields that are semsibvspatial frequency and orientation.
Inspired by those findings recent psychophysicaldiss have proposed different
processing mechanisms that could relate to the thaybrain decomposes an input
texture image [KourtziO6]. In order to mimic theevations of the visual cortex

psychophysicists have applied linear filters that selective for spatial frequency and
orientation. The common framework of the mechasissmployed consists of two

layers of filtering separated by a non-linearityitwthe first stage of filtering more

sensitive to higher spatial frequencies [Landy04J&hnson04]. However, those
mechanisms mostly focus on mapping statistical gnmogs of texture to the processing

of the visual cortex.
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* Identify salient features that capture human attent

Psychophysicists have tried, through different issidto understand and thus measure
perceptual similarity of texture. After initial woallowed the discovery that a limited
set of visual properties are used for the pre-atterdiscrimination of textures, vision
scientists showed lots of consideration in idemijythe salient features used by the
low-level visual system in analysing textures [M80, Heaps99 & Igbal99]. However,

it is important to point out that most work on ealty accounts for the speed and ease
with which the salient features are identified. eTt¢hallenge remains of how salient

features could account for dominant perceptual dsions.

» Identify perceptual texture dimensions

The identification of primary colours to represéin¢ whole colour spectrum has led
vision scientists to think that there might be sdwasic texture properties or terms that
can be used to represent all the visual propedigexture. Few have attempted to
solve this puzzle. To date, the work performeday and Lohse [Rao93a & Rao93b]
remain the most referenced and valued research woridentifying perceptual

dimensions to represent textures.

e Establish a standardised taxonomy to representitextategories

Along with efforts in finding dominant perceptuahtensions for texture representation,
psychophysical studies have also been performathderstand how humans classify
textures into meaningful and structured hierardhiesdiegories. Again, the work done
by Raoet al.[Rao93b] seems to be the only noticeable resdhatitould be accounted

for.
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2.3 Brief overview of Computational Approaches

Computational approaches towards texture charaateyn and texture processing relate
mostly to the application of mathematical modelat tban identify and explain the
perceptual qualities of textures in images. Tlut flaat no precise definition of texture
has been accepted so far by the research commueiiys that the models used to
describe texture have targeted different aspedisxtdire based on its perception and its
application. The properties of texture considdosgdcomputer vision researchers that
have aided them to formulate descriptive approaahes

1. Texture is an organised area phenomenon and cdmendefined at a single

point,
2. Texture is described by the type, the density ded the spatial distribution of
its primitives, and,

3. Texture is normally perceived at different scaled eesolutions.
Studies performed by Tamuret al. [Tamura78] and Laws [Laws80] identified a
number of perceptual properties that humans usdisgcriminate between different
categories of textures. The properties that thesestigated into were uniformity,
density, coarseness, roughness, regularity, lityeadirectionality, frequency, and
phase. Based on these conceptual propertiesyrafiffeomputational approaches to
texture representation and retrieval have beengsexpin literature. In an early review,
Haralick [Haralick79] summed up those approachesvim main categories: structural
and statistical/stochastic. Later surveys on textanalysis extended these two
categories with a third one: spectral approachasther similar taxonomy provided by
Tuceryan and Jain [Tuceryan98] outlined the apgreacas statistical, geometrical,
model-based and signal processing approaches.
Statistical approaches consist mainly of fittingthesnatical functions to the spatial
distribution of gray level values representing tixeture images. Haralick [Haralick79]
suggested the use of autocorrelation functionstiadpgray level co-occurrence
probabilities and autoregressive models to comsiatistical texture features. Variants
on these models, proposed later in literature, ideml either better texture
representation or used less memory and computatepeed to generate the same
results. The sum and difference histogram metipooisosed by Unser [Unser86] were
similar to Haralick’'s co-occurrence matrices, hoemrvthey used memory and
processing power in a more efficient manner. Davial. [Davis79] suggested the use
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of Generalised Co-Occurrence matrices to deschiespatial distributions of local
features, such as edges and lines, rather thap#iml distributions of intensity.

Another statistical method that has been commoskdufor texture analysis is the
Gray-Level Run Length method. Introduced by Gallgvi@alloway75], this method
identifies sets of consecutive, collinear imagengotihat have the same gray level and
computes the length of each run or set. Stochastrobabilistic measures have been
proposed in order to model the interdependenciespinéls together with their
neighbourhood.  Haralick [Haralick79] did exploihig property through his
autoregressive model. Other random field modele lso been given considerable
attention within the field of texture analysis. Mev Random Fields (MRFs) for
instance have been used due to their capabilitycapture the local contextual
information in an image [Tuceryan98]. Derin antidi [Derin87] used Gibbs Random
Fields to model and segment textured images. &saatue to their capability to model
properties such as roughness and self-similaritgifi¢rent scales, have been used
mostly in the generation of synthetic surfaces bi@ate very near resemblance to natural
surfaces such as plaster or rock. Due to thesistgtal properties fractals have also
been used a lot in analysing image textures.

Structural approaches model and describe texturessuming that textures are made
up of primitives or texture elements. It is imgem, within structural methods, to be
able to identify the primitives that make up thettee. The extracted primitives are
then used in two different approaches for analysi¥he “bottom-up” approach
computes the statistical properties of the primgivand defines the mutual spatial
relationship between them. The “top-down” approagtracts the placement rule that
describes the texture, mainly using the Fouriensi@m [Matsuyama83]. Structural
methods differ by their interpretation, extractaemmd representation elements.

Ever since the “theory of textons” was put forwagdJulesz [Julesz81], much research
has been undertaken in describing natural textbgesextracting primitives which
appear in near-regular repetitive spatial arrangesne Commonly referred to as
textons, texels, tokens or blobs, these primitaes basically homogeneous regions of
pixels with some invariant properties that may lefirced by their distribution of
intensity values or shapes. Voorhees and Poggimofiees87] used a bank of
Laplacian of Gaussian masks, applied at differeales and orientations, to extract
blobs for texture discrimination. Similarly Tucary and Jain [Tuceryan90] used
Difference of Gaussian filters to extract primisv&dom a texture image. They then
used the extracted primitives to generate a Voroessellation for the texture image
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considered and thereafter extracted features froamonbi polygons within the
tessellation. While these methods are mainly dootup”, some “top-down” have also
been proposed. Zucker [Zucker76] and Conners [Qgii8¢ used the gray-level co-
occurrence matrices of texture images to deterrttieg periodicity. Mathematical
morphology has also been used for structural reptason of textures. Haralick
[Haralick79] used structural elements of differehapes to erode a texture image and
extracted textural properties of the image as altred the erosion process. Zucker
[Zucker80] used semi-regular or regular tesseletiof ideal textures which are then
morphed to represent a real world texture.

In more recent versions of structural approachasious new types of textons have
been investigated to represent texture surfacesmaages. With the fact that changes
in illumination and viewpoint directions influendtke appearance of surface textures
heavily, textons that incorporate this element siual texture have attracted strong
interests. In order to model texture surface imgeof both reflectance and geometric
information, Wang and Dana [Wang04] have preseatatethod that defines the local
geometry of a surface texture in terms of a finiignber ofgeometric textons Lately,
Zhu et al. [Zhu05] provided a study of the geometric, dynamind photometric
structures of textons in order to account for moaad illumination variations.

The use of spectral approaches, or channel-baggdaaghes, was motivated by studies
of human perception revealing that the human visyatem decomposes the retinal
information into a number of channels with varyifiggquencies and intensities
[Beck87]. Several filter based approaches, prapasditerature, have tried to mimic
the way the visual cortex functions by decomposingnput visual stimuli through the
use of filter banks. Filter banks are designeduoh a way that they capture localised
information by targeting specific range of spafir@gquencies at different orientations.
Researchers have exploited both the spatial doaradrthe frequency domain (Fourier
domain in particular) for texture analysis viadiltbanks. Laws [Laws80] was one of
the first to apply filtering approaches for textudentification. Laws proposed a set of
twenty five separable masks that were derived ftlor@e simple one-dimensional non-
recursive filters and used the outputs from thesesk® as signatures for different
textures.

Based on the assumption that the energy distributidhe frequency domain uniquely
identifies a texture, a number of filtering methagigplied to the power spectral domain
were proposed. Coggins and Jain [Coggins85] apaliset of seven dyadically spaced
ring filters and four wedge shaped filters to estrf@atures for texture analysis. Banks
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of Gabor filters have been extensively used irasdhs of texture processing. Jain and
Farrokhnia [Jain91] presented multi-filtering apgeb to texture analysis that uses a
Gaussian shaped band-pass filters dyadically twaexkploit differences in dominant
sizes and orientations of different textures.

FRF (Filter-Rectify-Filter) models were used byuwmber of researchers to investigate
the effects of texture element shape, size andirgpan visual perception of textures
[Bergen88, Landy9l, and Graham92]. FRF modelsisbo$ three different stages:
(stage 1) a set of linear spatial filters, (stap@ point-wise nonlinearity, and (stage 3)
further linear spatial filtering. Malik and Perofidalik90] also used the model for the
preattentive analysis of textures.

The wavelet transform [Mallat89] and its variangjch as the discrete wavelet
transform and the wavelet packet transform, hase e¢ceived considerable attention
within the field of texture analysis. These ardically sampled filter banks that
allowed the decomposition of a texture image inteergation and scale sensitive
subbands[Kingsbury99].

Those models have mostly been utilised in the condé texture segmentation and
discrimination, however we will only point out theodels that have been used within a
texture retrieval perspective. In the context &R, texture was initially used as an
image feature in combination with colour and shiperder to provide for more robust
retrieval systems. QBIC, ImageRover, PhotoBookaly and MARS are some well-
known CBIR systems that have used texture featregldition to colour and shape
features, in order to provide for better retriepatformances [Veltkamp02]. However
with increasing availability of texture data ansl growing application in different areas
such as medical diagnosis or remote sensing, vatriased on texture features only is
being actively researched. This necessity hasghtotorward advances in textured

region descriptors such as affine and photometitstormation invariant features.

17



2.4 Perceptual Approaches to Texture Retrieval

Interests in the field of texture perception daéekbas far as the early 1950s through
work done by J. J. Gibson [Gibson50], however t& major step that brought the
scientific research community to draw more attentmit can be attributed to B. Julesz
more than a decade later. Most of his work wasceotmated basically on finding
spatial statistics of texture images that wouldphel preattentively discriminating
between a pair of texture samples with the samealigroperties, mainly brightness,
contrast and colour [Julesz62 & Julesz75]. Tohertenhance his findings on texture
discrimination Julesz proposed the “textons thedoytepresent local textural features
whose first and second order characteristics haeeceptual significance for
preattentive discrimination of textures [Julesz81].

The early investigations about texture perceptamu$ed mainly on the segmentation of
textures into homogeneous regions that contribotehe discriminability of those
textures. Departing from Julesz’s theory of testoimvestigators such as Beekal.
[Beck87] used synthetic textures constructed bycipa micropatterns onto
predetermined regular or random placement mapsviEstigate segregation of textures.
The micropatterns employed consisted of small Vistimnuli in the form of dots, line
segments,Ls, Ts and Xs Recent investigations on texture segregation lan
summarised in the work covered by Laredyal. [Landy04].

The use of artificial textures proved to be quiteful in the statistical modelling of
textures, however, given that these textures areapsesentative of the set of natural
textures encountered in real world, it did not waf@e research about how humans
perceive, analyse and categorise different textategories. The availability of the
Brodatz dataset [Brodatz66] allowed for more inttlegnd realistic analysis of texture
information and led to a number of investigatorggenterested in finding perceptual
cues that humans use to discriminate between ttur Early psychophysical
experiments performed by Tamued al. [Tamura78] enabled the latter to determine
some textural properties that humans commonly aseidcriminate different texture
categories. The experiments were performed usiogdz textures and Tamued al.
identified six textural properties to categoriseffedent texture groups, namely:
coarseness, directionality, regularity, roughnessitrast and line- or blob-like. In a
similar experiment to Tamura’s, Amadaseinal. [Amadasun89] asked human subjects
to rank a set of 10 texture images chosen fronBtbdatz aloum based on five different

perceptual properties of texture: busyness, cdntresarseness, complexity and
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strength. The findings from their experiment iraded a strong correlation between
computational features representing coarsenessextute strength, and also between
those representing contrast and complexity.

Psychophysical studies undertaken by Rao and Ltae93a] were a huge boost for
cognitive scientists in their attempts to provideagonomy for different categories of
texture. The experiments performed by Rao and é.@rsabled the latter to identify
high level features used to differentiate textureugs. They presented 30 texture
images chosen yet again from the Brodatz albumaskéd human subjects to group
similar ones together. Using a combination of dmehical cluster analysis and
multidimensional scaling, they identified that orthyee high-level perceptual features
could account for most of the variability in thetire samples they considered in their
experiment. These features were orientation, coxitgland repetition.

Raoet al then investigated the taxonomic relationshipsvbeh texture categories as a
follow-up to their previous work. In their new expeent they used 56 Brodatz textures
and asked human subjects to rank the texturessicale of 1 to 9, based on twelve
predefined perceptual properties. The subject® wleen asked to perform a sorting
task to create texture groups [Rao93b]. After gsiaf the psychophysical data, they
found out that only three orthogonal perceptualetisions were sufficient to represent
the 56 textures. They named the different per@mimensions with the following
high level terms: non-repetitive vs. repetitive,nsgranular vs. granular and non-
directional vs. directional.

Still as a continuity to Rao and Lohse’s work, Bfaset al. [Bhushan97] performed
further studies in order to establish a corresponoddetween texture words and texture
images. To do so, they first performed a grougrgeriment on 98 texture words from
the English Language to determine any underlyingnroon structure. Using
hierarchical cluster analysis, they identified elewnajor clusters and they termed those
groups ranging from ‘random’ to ‘repetitive’. Insecond experiment they used the
categories of texture images obtained from Rao lasitse’s earlier studies [Rao93a
&Ra093b] to determine any systematic correspondbetgeen the different categories
of texture words (verbal space) and texture imggesial space). They deduced that
the categories in the visual space and the vepaaleswere strongly associated.

More experiments were conducted by Heaps and H4heelps99] that contributed to
the attentive analysis of textures. The authorfopmed experiments to investigate the
model that would best conceptualise the attentinelarity of natural textures. The
experiments performed by Heaps and Handel usedahdaaxtures from two specific
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datasets: VisTex dataset and the Brodatz datale¢. VisTex dataset consisted of 24
textures chosen from the Media Laboratory’s Visi@xture dataset [VisTex95]. The
textures were chosen so that some of them resertiiderodatz textures used by Rao
and Lohse [Rao93a]. The sets of Brodatz textusesl by Heaps and Handel were
exactly the same as the ones used byd&®at Through their experiments, Heaps and
Handel reached the conclusion that perceived gityiles context dependent and that
the perceptual dimensions provided by Rao and Lamghkeir respective study were
somewhat meaningless.

In recent years, psychophysical studies aimed ptawing the performance of texture
retrieval systems have been investigated. Long lsewv [Long01], for example,
identified the low performance of retrieval systeassbeing related to the perceptual
inconsistency of computational features used fottute similarity measurements.
Thus, they used psychophysical experiments in oroldsuild a perceptual space to
represent human judgments and presented a novealnwochap computational features
onto the perceptual space.

Payne et al [Payne05] have performed a human study in orderptoduce a
perceptually-derived ranking of similar Brodatz gea that could be used as a
benchmark to evaluate retrieval performance. Iditemh they proposed a “mental
map” derived from human judgments to provide aeséal psychophysical distance and
aid visual comparison of image similarity.

In a more recent study, Petretial [Petrou07] question the idea of using preconakive
texture properties, such as coarseness, direatignadgularity and others, in order to
capture human judgments and then using computtiea#ures representing these
properties to classify textures. The authors arthad such preconception severely
biases the way human subjects would judge diffetexitires when requested to do so.
To avoid such problem, they propose the use ofddwods of computational features
that are not directly related to any high-leveltte® property. They then perform
feature selection in order to identify the featuttest correlate with the human rankings
obtained through 11 individuals asked to createilaingroups from 56 Brodatz

textures.
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2.5 Tools and Techniques for Perceptual Texture Retries

In order to reduce the Human Perception Subjegtivésearchers in the field of CBIR
have considered including the humans in the redliprocess. Cognitive scientists have
made use of psychophysical experiment to underdtamdhumans categorise textures
whereas computer vision researchers have inclugediser in the query formulation
process and integrated the human judgments as tweighoptimised computational
models. We present the different ways which havenbemployed to capture human
judgments of texture. This section also presemt@w of how psychophysical data is

analysed and mapped to computational features.

2.5.1 Techniques to capture human judgments

Pairwise comparison

Pairwise comparison involves the presentation of itwages or objects to a user who is
asked to compare the two images according to soreseip ranking criteria. This
technique has mostly been used to identify peredpaatures within images. In most
cases, human subjects are presented with a usadffyiinterface where the images to
be compared are displayed together with a scalealt@vs the subjects to judge the
level of similarity between them. Generally usedfate recognition and retrieval
systems, pairwise comparison has also been appligddn the context of CBIR.
Rogowitz et al. [Rogowitz98] used paired comparison to investigdte perceptual
similarity between each pair of a set of 97 imag8sce pairwise comparison requires
n(n —1)/2 comparisons for a set of n images, Rogowitzl. [Rogowitz98] used a
modified version in order to reduce the complexity.fact they compared a chosen
texture image with eight other texture images presk to human subjects at once.
Payneet al. [Payne05] performed a similar comparison of Bradaktures by placing
the test texture image at the centre of the screamounded by other textures.
Volunteers were then asked to select four textureecreasing order of similarity with

respect to the test texture.

Perceptual grouping

Perceptual grouping is a term that was initialljned by Gestalt psychologists in order
to represent the ways in which humans group sinstauctural elements within an

image. The Gestalt theory related grouping to @rigs such as similarity, proximity,

continuation, closure and symmetry [Lowe85]. Tihisory was used by Julesz where
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he simulated textures made up of a combinatiorextons in order to investigate how
humans segregate homogeneous texture regions vaithimage. As such perceptual
grouping was initially used on a preattentive basid for segregation purposes only.
Attentive studies of texture perception led to petaal grouping being applied as a
method to capture human judgments.

Perceptual grouping, as explained by psycholodlstsve85], refers to the human’s
visual ability to derive relevant groupings or stures from images without any prior
knowledge of the image content. Perceptual graypas been applied by a number of
computer vision researchers in order to deal witin&n perception subjectivity. Even
if most of them focused on finding regions of i\t&s within images, some researchers
have also referred to perceptual grouping as anigob to group together texture
images that are visually similar. In this conteRao and Lohse [Rao93a] used
perceptual grouping to identify the relevant higey features humans use to group
similar textures. Rogowitet al. employed this technique to measure the similaritie
between any pair of images from a set of 97 phafagc images representing a range

of semantic categories, of viewing distances anours.

Perceptual Ordering

Perceptual ordering also forms part of the “lawd” perceptual organisation as
established by Gestalt psychologists. In this gasehologists were mainly concerned
with how the human mind unifies and orders the @aical environment when
presented with a visual stimulus [Lowe85 & Wengérderceptual ordering in the
context of CBIR basically refers to a process thgtowhich human subjects order a set
of images when presented with a query image. Tée& of perceptual organisation
relies heavily on prior knowledge that the subjestsuld have on the query image.
They tend to ask questions lik&there did | see something like this befag@me CBIR
systems have exploited this perceptual capabilithwonans in order to improve the
performance of the retrieval engines. These syswmspecifically known as ‘Query-
By-Example’ (QBE) CBIRs. QBE systems normally captuhe user's needs by
presenting them with images that are representativall the categories within the
database being searched and allow the user tot sglecor more images as query
image. IBM’s QBIC for instance allows the formulation of queries dzth®n objects
within an image (e.g. find images containing cars), based on specific image
characteristics (e.g. retrieve images with a cerparcentage of red or blue), or even
based on specific shots within a video segment &hgts with a high percentage of
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movement). Other well-known systems that have ewygul this strategy are MIT’s
PhotoBook the Virage technology which is used by Altavista’s PhotoFind@ANDID
developed at the Los Alamos National laboratory avahy others. Veltkampt al
present a list of thirty nine CBIRs in [VeltkampQ2®jowever their list is by no means

exhaustive with more work being done in this ar@hiwthe past five years.

Using Perceptual/Graphical cues

Graphical or visual cues have been employed by CBt#ems developers in order to
give more flexibility to users to formulate theiueyies. The interfaces are designed in
such a way that provides users with tools thatesgmt perceptual features that the
developers want to use in the retrieval procesaniptes of tools provided are colour

palettes, sketch pads, list of natural languagewkeys, shape representations,
directional indications for textures mostly, or Bva grid image in order to indicate

position [Sclaroff99]. This type of query formulati demands more attention and
expertise from the user; however the latter israquired to have any prior knowledge
about the perceptual features being sought by theldpers. Such kind of query

formulation facilities have been applied in somdlikeown CBIR systems such as

QBIC, VisualSEEK, Virage and WISE [Veltkamp02].

Relevance Feedback

In order to further reduce the human perceptionjestibity and to allow better
integration of the user within the retrieval prasagsearchers in the area of CBIR have
focused on an interactive mechanism that allowstéeb understanding of the users
need to be obtained. Known as Relevance FeedlMiaiskiechnique can be closely
related to QBE techniques whereby users are peestamples to formulate their
queries. However, the main difference is the adgve part where the interaction of
the user is not a crisp one-off process, but maanlyterative one whereby the user is
allowed to repeat the process of query selectidil arsatisfactory result is obtained.
Users thus provide feedback on the results retulmethe retrieval system and this
feedback is used to enhance retrieval performaRcg8]. Recent advancements on
the use of relevance feedback show the uspositive and negativequery examples
[Kherfi03 & Franco04]. When query images are delécas positive examples, the
common features among these images are given strovgjghts so that all the target
images having the same features are ranked highthe retrieval phase. Negative
examples were used in order to resolve the sodcplige zero problemwhich is the
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situation where the initial query images presemtedsers are all irrelevant. As a result
negative or very low weights would be allocatedsétected negative examples so that
they don’t appear in the retrieval results [Scl&®F.

2.5.2 Techniques for analysing psychophysical data

Analysis of psychophysical data is performed eitioedetermine structure information
within a dataset or otherwise to identify any doamnperceptual dimensions that retain
the maximum variability within a set of texturedaronsequently that can be associated
to some high level attributes used by humans tegoaise texture. The similarity space
which represents the psychophysical results is rgigea sparse, high-dimensional
space that is very difficult to visualise and asse$hus, a reduced and more compact
perceptual space is required.

Cluster analysis has been commonly used to ideatifystructural information whereas
several dimensionality reduction techniques havenbemployed to investigate
perceptual dimensions within low-dimensional space$he two approaches are

presented in the remaining part of this subsection.

Cluster analysis

Cluster analysis is a tool that allows the pamiing of data into meaningful subgroups
despite the lack of information concerning the nambf subgroups or the other
information about their composition [Fraley98]. the context of psychophysical
studies, cluster analysis has mostly been useerity\the meaningfulness of acquired
perceptual judgments.

The main goal in using the clustering process isreweal whether “sensible or
believable” groupings exist within the dataset tlean provide insight about any
structural information in the dataset. In an esiem survey done by Jaet al.[Jain99],
the latter identify two main categories of clusteritechniques: partitional and
hierarchical clustering. Following strong inteee$tom psychophysicists to come up
with a taxonomy of texture categories, the maimfaf cluster analysis that has been
used to analyse psychophysical data is hierarcbiaster analysis.

Hierarchical approaches proceed by creating diftesequences of data partitions, with
each sequence corresponding to a different nunfodusters. They either proceed by
merging smaller number of clusters into larger peaed agglomerative approaches or
by splitting larger clusters into smaller ones lemldivisive approaches [Gordon87].
Divisive approaches are generally impractical bseaiti is impossible to restrict the
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number of splittings. Agglomerative approacheskamended by the number of groups
in the first clustering stage. Additionally, agglerative approaches are more intuitive
to the way that humans create groups.

Dimensionality analysis

Psychometric method

Early work on finding perceptual features for taetperception has used psychometric
methods to find the correspondence between human camputational rankings.
Popular researches undertaken by Tanmeftral [Tamura78] and Amadasuet al
[Amadasun89] have mainly considered this methodhe Tatter mainly consist of the
computation of a representative ranking for theuexfeatures being analysed by using
the rankings performed by humans. The represeatainkings are then used to
determine the correspondence between computatranéings and human rankings.
Thus an indication of which texture feature coroesfs better to human judgment is
obtained. This technique has recently been usedldiadeniet al [AbbadeniO5] to
test how well their autocovariance-based featuredopm with respect to human

perception of texture images.

Principal Component Analysis

Principal Component Analysis (PCA) is a dimensigagateduction technique that
extracts the principal components of a feature ephg performing a variance
optimising rotation of that space. For the purposa@nalysing psychophysical data,
PCA was initially applied by Raet al. (Rao93b) in order to investigate how much of
the total variance of the physical texture spaceedich of the 12 perceptual properties
considered (coarseness, granularity etc...) acctarnt More recently, Paynet al.
[Payne05] applied PCA to the ranking scales alkatdty human subjects to compare
the similarity of regular textures. The aim wasotfwld, first to extract principal
components so as to have a view of the overalllaiityi of textures and second to

investigate any structure in the similarity of ta@king scales.

Classification and Regression Trees (CART)

CART is a nonparametric regression technique atlliso select variables, and their
interactions, from a large set of variables basedaw well the variables can explain an
expected outcome. This technique has been usedyrhophysical based studies in

which ratings or scales are provided to users t@emadgments. Rao and Lohse
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[Rao93b] employed CART to determine if the ratingfstwelve scales provided to
human subjects to categorise textures could prélgectmembership of textures within

clusters generated using hierarchical clustering.

Multidimensional Scaling

Multidimensional Scaling (MDS) has been extensiveged in literature to identify
major perceptual dimensions through which the peecesimilarity between textures
can be represented and also as a visualisatiortitabkllows for visual inspection of
the perceptual space in order to investigate exgstef structural information within the
dataset. A major assumption associated with MD®Bas the latter can transform the
original perceived similarity space into some kofd‘psychological space” where the
distances between textures approximate their pexdesimilarities. The perceptual
space resulting from the application of MDS is laeoh by orthogonal dimensions that
can be represented by independent perceptual ésaturldentification of these
perceptual features thus allows the creation oifffardnt spatial domain that has been
termed as the Perceptual Texture Space (PTS). inReétrceptual Spaces or Perceptual
Texture Spaces, smaller distances between textmgples imply larger similarity
values.

The use of MDS for texture perception was origynatiotivated by the fact that it was
successfully applied for colour perception. ShegH&hepard62] demonstrated that
applying MDS on similarity judgments of colour pagés could reveal the internal
organisation of the colour space within only a 2&rgeptual space. The latter 2D
representation became commonly known as the Coltheel that has been associated
with colour opponent mechanisms. In connectionhwigxture perception, most
research works available in literature relate to3/&s an exploratory technique used to
characterise the process of mental representdti@unmssey99].

In the context of psychophysical studies, the agsiom that perceived similarity values
behave like distances is too restrictive, espgcialien human judgments are involved.
As a result a non-metric version of MDS has beesdusithin studies investigating
perceptual dimensions. Harvey and Gervais [Hartpg®plied MDS to similarities
obtained by performing triadic and pairwise comgami of 30 artificial textures to
investigate the relationship between the appeasaatéhose visual textures and their
fourier spectra. Rao and Lohse [Rao93a & Rao93bHWMDS in an effort to obtain a
taxonomical arrangement of texture categories alwmb do identify perceptual
dimensions that would account for most of the \ality in 56 of the Brodatz textures.
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MDS was also used by Gurnsey al. [Gurnsey99] in an attempt to examine the
representational system that determines the appearaf isolated patches of visual

texture.

Direct Magnitude Estimation (DME)

DME is a standard psychophysical rating procedoae assumes that the human mind
processes information as magnitudes and that ¢egrsategorisation is a means of
delimiting magnitude information [Dewangan05]. the field of texture perception,
DME has been used as a standard rating proceduegth which human subjects are
asked to assign a number or value to a texture Isawipen compared to a reference
texture based on some texture property such asardglor coarseness. A rating value
is pre-assigned to the reference texture and tmeahusubjects can allocate a value

greater or smaller in order to quantify the textoreperty being tested.

2.5.3 Mapping computational features to a perceptual spaz

A very important stage in building a perceptualriestal system is being able to
integrate human judgments in the retrieval procédsis stage can also be viewed as a
learning stage where the retrieval system ‘leatmsw capable the computational
features representing the texture dataset are a@digting a retrieval outcome when
presented with a query image.

Staying in the context of a “perceptual space” épresent perceptual similarity of
texture images, we lay down different approachegpleyed by researchers to map
computational features to a perceptual space. nNath has been done in this aspect
and the purpose for constructing a perceptual texgpace has been split between
classification and retrieval. Payee al. [Payne99], for instance, have used Kendall's
tau to correlate human rankings of Brodatz textyredormed by 24 subjects with
retrievals of the same textures via the use ofrabau of different features. In this case
no mapping was done and the psychophysical data usad only for evaluation
purpose.

Long and Leow [LongOl] used a neural network ofvénant and perceptually
consistent mapping” to create a perceptual texdpeee to represent a dataset of target
texture images for retrieval. The first layer dfetnetwork takes as input the
computational features which consist of Gabor festiextracted at different spatial

frequencies and orientations. The features are fassed to a layer consisting of
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several translation invariant maps in order to cteteme patterns in the Gabor inputs.
The results from those maps are then projectedhisicale and orientation invariant (but
not illumination invariant) feature space. Longldreow then used a set of nonlinear
regressions, implemented using Support Vector Meshito map the invariant features
to the perceptual similarities of textures.

Petrouet al. [Petrou07] used the perceptual groupings perforinethe human subjects
in order to compute a stability measure for the potational features considered. The
stability measure accounts for the variability iacke class while applying different
features. This method allows the authors to asaiget of weights to each feature
representing how well it can represent each pewe¢ptass. Petroat al. then used a
weighted distance function as a similarity measure.
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2.6 Assessing requirements to develop a Perceptual Texe
Retrieval System

The previous sections have helped us to reachra pbunderstanding of the research
in the field of Perceptual Texture Retrieval. Timeestigation of perceptual approaches
provided in Section 2.4 shows that even if thergraaving interest to develop retrieval
systems that satisfy the end-users’ needs, the mmol psychophysical studies
performed to understand and learn human’s peraepsicstill very limited. Indeed,
literature shows that the psychophysical studiesfopeed by Rao and Lohse,
undertaken more than a decade ago, are still beifeyenced by researchers, for
example Long and Leow. Recently Pawteal[Payne05] and Petroet al[Petrou07]
have also performed human studies of texture pgacghowever they used the same
texture samples as Rad al. and their studies were for comparative purposdn wit
respect to Rao’s results.

2.6.1 Reliability of Rao and Lohse’s psychophysical rests

The fact that very few psychophysical experimeragehbeen performed to investigate
perceptual dimensions for texture retrieval wagself a big motivation in undertaking
this research. However, an important issue to idensvas whether Rao and Lohse
psychophysical results could be employed withinst@pe of this thesis.

The main factor that drove us in questioning tHebdity of Rao and Lohse’s results
was the dataset used by the latter to perform theiran studies. Since its inception in
1966, the Brodatz album has always been a startgrchmark for texture processing.
Rao and Lohse used 56 Brodatz texture photograpiperform their psychophysical
study. The intensive use of the Brodatz textuesot hide the fact that the conditions
under which those photographs were taken are wtiknown and the effects of
illumination variation have largely been ignored.

However, recent studies in the field of Photomegtereo performed by Chantlet al.
[Chantler94 & Chantler05] have clearly demonstratedt changes in illumination
conditions can drastically change the appearandextfire surfaces and significantly
affect the output of the majority of texture featsir Figure 2.1 and Figure 2.2 are used
to illustrate this statement.

Visual inspection of the two images in Figure Zfraduces a bias whereby the image
to the left appears to contain vertically oriensérdictures whereas the one the right does

not appear to contain any apparent primitive tlegteats itself, though some global
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directional information can still be perceived. iFkontrasting description of the two
images would heavily influence the decision of hansubjects in putting the two
images in the separate groups even if they origifratn the same surface.

Figure 2.1- Effect of changing illumination direation appearance
of surface

It can be argued that the Human Visual System peagocomplex processing that
allows humans to reconstruct missing or distortedormation resulting from
illumination variation and thus predict the type teiture that they are viewing.
However, when computational measures to extradutexfeatures are involved, the
influence of illumination is very drastic. Thisgaiment is strengthened by the work
done by Chantleet al. [Chantler05] on how the output of linear textueatires behave

with changing illumination conditions.
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Chantleret al developed a sinusoidal model that explains theeddency of texture
features on lighting direction. The outcome ofitlexperiments is illustrated in Figure
2.2. The plots in Figure 2.2 demonstrate how thpwt of texture features vary when
they are repeatedly applied to the same physicdlre sample but under varying
illuminant tilt angles. The curves show the béstihusoids to the measured outputs.
The plots are clearly indicative of the fact thdtem the illuminant tilt angles change,
the outputs of the texture features follow a sigaiit change. Hence, unless the texture
features are extracted from the surface texturensbé/es or from texture images
generated under controlled illumination, any kirfdpoocessing done on the textures
would be heavily biased and are not reliable, aafigdor retrieval.

As a matter of fact, Rao and Lohse psychophyseslilts cannot be considered as a
reliable source of human judgements to investigaeeptual dimensions for texture
retrieval. Hence, this leads to the strong coimwicthat psychophysical experiment
performed under controlled conditions is imperatisad has, more than ever,
strengthened our motivation in performing this ezsh.

Additionally, researchers [Long0l1l, Payne05 & Pddfjuhave also used ‘identical
textures from the Brodatz album to test for pergaity consistent retrieval systems.
While all subimages from a Brodatz original wouldve been formed under almost
identical imaging conditions, the same is not toeéveen Brodatz originals. Thus, the
retrieval systems that are tested using the ‘idefititexture approach can exploit the
differences in imaging conditions in addition te ttifference between textures. As we
have seen from Figure 2.1 and Figure 2.2, variatiomaging conditions (particularly
those concerning changes in illumination tilt apgb@an radically affect the power
spectra and associated features of image texttitence texture features should be
computed (where possible) from the height infororatf surface textures, or otherwise
from texture images that have been under consigiemination conditions.

In the remaining subsection, we identify the reguments for a new psychophysical
study. We also identify tools required in analgsand applying psychophysical data to

obtain perceptual dimensions and for texture redfie

'For the purpose of this thesis we have define dentical’ set of image textures to be those cropped
from the same parent image of a homogeneous textimes we can produce 9 ‘identical’ textures by
dividing an image into 9 non-overlapping (or ovpgang) subimages.
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2.6.2 Dataset for a new psychophysical experiment

Eliminating the use the Brodatz dataset and thecested psychophysical studies brings
up a major concern: which dataset to use such ithahination and viewpoint

conditions can be taken into consideration. Apann the Brodatz dataset, several
other texture datasets have been made public alskdtconstantly in other areas of
texture processing. A very brief review follows ae to determine whether these

databases could provide texture samples to befasachew human study.

CUuRET (or CuRRET) -Columbia-Utrecht Reflectance afd@xture Database

The CuRET database consists of three specific texdatasets that have been used to
investigate the appearance of real world textufBsBRDF (bidirectional reflectance
distribution function)dataset, (2) BRDF parameter database and (3)(Biblirectional
texture functiondatabase. Besides visual appearance, the CuRHEIrdexhave also
been used extensively for texture analysis anchegig. However, the texture surfaces
have been captured with both changing illuminatow viewing directions, which is
not very practical for retrieval (we would like @lirfaces to be viewed from the same
position). Moreover, the datasets combine botlcidpe and diffuse surfaces which
imply different reflectance models to generateithages. In order to avoid any bias in
human judgements only one reflectance model ieped. And most importantly, the
surface texture height maps are not available teigege texture samples for the human
study. However, texture images generated undesdh®& condition can be selected,

thus making the CURET dataset a potential candidatgsychophysics.

VisTex — Vision Texture Lab database at MIT

The VisTex database was conceived with the intant® provide large set of high
quality textures that would be used for, and by thmamsnputer vision algorithms in
texture processing. However, this set was captwét varied studio lighting
conditions including daylight, artificial-fluoresee and artificial-incandescent.
Additionally, it does not conform to any rigid friah perspective. Hence, this makes its
use for a human study, where controlled illuminagmd viewpoint are prime concerns,

quite irrelevant.
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OuTex - University of Oulu Texture database

This database was generated to test texture segtoenand classification algorithms.
The textures captured reflect changes in illumargtisurface rotation and resolution.
Texture images captured at three different illuriorapositions are available; however
these three illumination positions are coplanar @nthot be used to recover the surface
height map through photometric stereo. Howeveandke case of the CURET dataset,
if texture images are chosen such that they ak lthg same capture condition, then the

OuTex dataset is also a potential candidate tesbdar human study.

MeasTex

MeasTex is a texture image database that is aceoaetpawith quantitative
measurement framework for image texture analysissynthesis. MeasTex is solely a
collection of 2D texture images with the illumiraii and viewpoint condition being

unknown.

PhoTex — Photometric Texture database at TexturéolLa

The PhoTex database consists of a set of rouglacasfthat have been captured at
different illumination directions and viewpoints. This database satisfies our

requirements of acquiring height maps that can dssluo generate controlled texture
images, however, since it contains only one categbtextures (rough surfaces such as

plaster or rock), it does not contain sufficienti&hility for our purposes.

The above investigation in the available texturtablases shows that very few texture
surfaces can be ‘borrowed’ to create a dataset fmw human study. Additionally, this
small set comes from the PhoTex database.

The OuTex and the CuRET datasets can provide imggeerated under the same
condition, which makes them likely candidates faman study, however additional
selection criteria need to be investigated to detez whether new samples need to be

captured. The other selection criteria are comsitien Chapter 3.
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2.6.3 Selecting tools for the capture and analysis of pskiophysical data

A review of the different techniques to capture lammudgements has already been
presented in section 2.5.1. Pairwise comparisenblegn used by several researchers;
however the fact thatm(n — 1)/2 comparisons are required to obtain perceived
similarity, this method is not very practical whiange datasets are considered. Even if
the modified versions applied by Payateal. and Rogowitzt al. do reduce the number
of comparisons, they, however, only help in incmegsthe complexity of the
psychophysical setup. The modifications imply tfigta suitable interface needs to be
designed to accommodate a test texture with sevargéts, and (2) there is a main
concern about which target textures should be ptedewith the test sample.

Perceptual ordering, relevance feedback and perakepgues have been thoroughly
exploited by CBIR developers. However, they allesheto be employed in a
computational context and cannot be considereth®oanalysis of psychophysical data.
Perceptual grouping, on the other hand, has alrbady used successfully in the field
of texture perception to determine perceptual dsiers (cf. Rao and Lohse). It also
does not require any complex setup and can beeabgimatch or compare any size of
texture images. Additionally, by providing the hammnsubjects with a view of all the
images in the database, perceptual grouping altbessubjects to relate to the context
in which the experiment is performed. This techi@lso has a couple of limitations.
Firstly it works well when the number of samplesisall. For large datasets (>300) it
becomes difficult to present observers with all shenples at once. Secondly grouping
large number of samples may also result in boredanh fatigue in observers, hence
contributing to biased results. However, the athges of this technique overshadow
its limitations thus making it a strong candidaiedapturing judgments.

Further motivation to use this technique comes fthenfact that in comparison to other
popular techniques such as pairwise comparisonpga does not need to remember
previous judgments as all the images remain irhérdield of vision, whether grouped
or ungrouped. Grouping also eases redundancytieducAs mentioned before natural
textures contain a lot of redundant informationowdver, while comparing the texture
samples, subjects need to ignore the redundantmation and identify only common
features. This process is more difficult when wae comparison is performed,
whereas with the grouping, task comparison is easi¢he subject can use information

from as many samples as required to perform the tas
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The main objectives in analysing psychophysicah @aé mainly:

1) To identify relevant structure in the comparisongi@upings performed by human
subjects,

2) To represent the texture samples (judged by thgestish in a low-dimensional
‘psychophysical’ space such that the separatiotheftextures within that space
represents as closely as possible the perceivalhstynof textures.

Hierarchical analysis has been used by severahmesers to satisfy the first objective,

mainly because, it provides a simple and inexpensieans to create cluster that could

be verified “visually” and additionally it allowshé investigation of how clusters of
similar samples are related. The idea of movingngbdown a hierarchical tree causing
the merging and splitting of texture categoriesfgmtly with the aim of deriving
homogeneous and sensible enough texture groupshwtonld be part of an
interpretable taxonomy [Gordon87].

In the case of dimensionality analysis, Multidimensl Scaling, especially its

nonmetric version, has proved to be very successftiansforming high-dimensional

sparsely sampled spaces to lower dimensional spadesreby the similarity
information being assessed, is still preserved fBao& Rao93b]. Moreover, the
values generated by MDS do not have any specifianmng with only the spatial
configuration represented by those values beingtefest. Besides, MDS also allows

the graphical representation of the structure ajraplex dataset.
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2.7 Conclusion

In this chapter, we identified the challenges fadwd researchers from various
communities in developing perceptually consistegitieval systems. Based on the
review of perceptual approaches to texture rettjewa can conclude that very few
psychophysical studies have been undertaken taifiggrerceptual dimensions for
texture retrieval. Additionally, the existing stesl were all performed using texture
images obtained under unknown illumination and yiewnt conditions.
The visual appearance and the numerical valuesowinmon texture features can be
dramatically affected by changes in direction kfiination, hence
e texture features should be computed (where po3sibiem height
information or, if this is not possible, from costgintly illuminated samples,
» observers should be provided with images obtaineden consistent
illumination conditions for psychophysical studies.
Perceptual grouping is an easy and intuitive wagajature human judgments. It is also
a practical approach for deriving similarity dating a reasonable number (circa 100)
of textures.
Hierarchical Cluster Analysis is a useful technifprethe analysis and visual inspection
of similarity data whereas Multidimensional Scalisgga commonly used technique for
dimensionality reduction of large perceptual spa@es high-dimensional similarity
data).
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Chapter 3
Design and Implement the Psychophysical

Experiment

3.1 Introduction

The previous chapter established that the numbgrsgEhophysical surface texture
experiments reported in the literature is low. Maapers cite Rao’s work [Rao93a] as
the main source for texture dimensions and manyeh use Rao’s data to train their
retrieval or classification systems. However,tasas been pointed out in Chapter two,
all the psychophysical experiments performed sohtare presented human subjects
with texture images whose illumination and viewpaimformation are unknown, and

uncontrolled. As explained previously, this iselk to have biased the calculation of
texture features and provided potentially confusstighuli to the observers. However,
these papers have shown that ‘perceptual groupsng’ useful tool for economically

producing similarity data.

Thus, the main objectives of this chapter are:

(a) to develop two databases that are suitable forhmpftysical experiments and
that in particular use images that have been cagtwnder controlled and
known conditions,

(b) to design and perform perceptual grouping experistdrat will use these data,
and

(c) to derive similarity matrices from these experinsent

Figure 3.1 shows a breakdown of the steps consldeeeessary for performing such

experiments.
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[ Determine basic psychophysical approach (s3.2) ]

'

| specify stimuli (s3.3) |

'

[ Acquire stimuli (s3.4) ]

'

[ Design experiment (s3.5) ]

.

[ Perform experiment & collect data (s3.6) ]

'

[ Aggregate data (s3.7) ]

Figure 3.1 - Steps required for psychophysical erpent setup

The first step, discussed in Section 3.2, consitter®verall approach to the experiment
from the pragmatic point of view of how to determgimilarity data using a reasonable
sized database of around 100 samples. Sectionan®l33.4 specify the necessary
characteristics of the stimuli and determine slgtaources. The next section considers
the detailed design of the experiments while SacB8® covers its implementation and

Section 3.7 describes the aggregation of the reguliata.

3.2 Basic Approach

The objective of this thesis is to develop percalyuelevant texture retrieval systems.
Ideally this would make use of an exhaustive nundfezxample retrievals performed
by a reasonable number of observers on a databasewbs representative of all
possible surface textures. Clearly this is nolisga given the resources available to the
individual researcher. The collection of suitaldamples is surprisingly time-
consuming and so the use of databases containprg»amately one hundred textures
was considered to be an obtainable goal. Unfotélyaven for this number of samples
it is unrealistic to expect observers to provideefree retrievals of say 30 ordered
textures using each of the 100 samples as a qu#nnwhe 30-40 minutes that it was
thought they could maintain their concentration. owdver, a pilot ‘grouping’
experiment showed that it was feasible for an oleseio sort this number of textures
into an arbitrary number of perceptually similaogps. Furthermore, if such a task is
performed by several observers then a similarityesbetween any two samples can be

estimated by counting the number of times that ese have placed the pair within
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the same group. The ‘ideal’ retrieval for any quenay then be estimated by
identifying the remaining textures in the databaserder of their similarity scores.
Originally it was intended to provide observershamoving imagery of each surface —
however, it was quickly realised that even thetneddy large TFT displays available
today do not contain sufficient pixels for the disgpof the number of textures required
at reasonable screen resolutions. Thus the oagpibach decided upon comprised:
e capture or obtain images of around 100 sample fextwbtained under
controlled and known illumination conditions;
* perform experiments in which observers were askedroup photographs of
the samples into an arbitrary number of groupsptiig criterion being that the
members of a group should be perceptually similar;

» construct similarity matrices from the observenrgigpings.

3.3 Specification of the Stimuli

Most researchers agree that texture is a highly pt@nmphenomenon. However,
Chapter 2 reported that the number of psychophlysicaies on the psychophysical
aspects of surface texture retrieval reported énlitlerature is surprisingly low. It was
therefore decided to keep stimuli as simple as iplessto control environmental
conditions as far as was practicable, and to fqmuely on the core issue: surface
texture retrieval. With this strategy in mind tr@ldwing criteria for the stimuli were
drawn up:

a) Two databases would be used: a general datasetirgpwes wide range of
surface textures as was practicable, and a moreiaiped set covering a
particular application domain. These datasets raferred to as Texl and
MoMA.

b) The datasets should contain around 100 sample®ssr + so as to allow
observers to complete the grouping task withirtyhiminutes.

c) The datasets should consist primarily sirface textures and not contain
confusing surface markings — and so at least Tehduld contain purely
monochrome, constant albedo, lambertian surfaces.

d) Samples should contain a single homogeneous texsoreas to ensure that
observers were not using different parts of a sanplfind a ‘match’ with

different textures.
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e) The samples should be of approximately the sameugaty (or scale) and
roughness — as these two texture dimensions hagadgl been investigated in
depth.

f) The datasets could be generated syntheticallye @aptured from real surfaces,
but in either case the observers must be ablevisage the imagery as being of
believably reakurfaces.

g) The imagery must be of sufficient resolution armk dor the observers to be able
to perceive the characteristics of the surfacautextand yet small enough, such
that they could manipulate and view all of the sk®gimultaneously on a large
table.

h) The imagery presented must be generated undergée sset of illumination
conditions.

i) Height data should be available for at least Texlltow the generation of
texture features unbiased by illumination condiion

j) The height-data requirement could be relaxed foMMa@roviding that uniform
imagery illumination conditions is used so théhsing of the texture features

would be consistent across the dataset.

3.3.1 Dataset consisting mainly of believable surface taxes

In order to get an understanding of how humansgcaitse texture surfaces, it is
important to present them with imagery that they eavisage as being of real surfaces.
A simple definition of “believable textures” woulik: textures that originate from our
environment, or could be thought of as originatirgm our environment. The main
reason for this criterion is that the human vist@tex is likely to be highly non-linear,
and tuned or optimised for such type of visual gtim Interpolation between non-
ecologically valid stimuli is therefore not guaraedl to produce consistent results.

3.3.2 Granularity and Roughness

An initial pilot study demonstrated that humansdtém group together all fine-granule
textures, independent of the structure of the texelements or even their placement
within the surface plane. However, granularity $oale) has been identified in all of
the previous studies as a major dimension of textand as the datasets were to be
limited to around 100 samples it was decided tousoon the more challenging
characteristics of surface texture. Likewise fmughness. It was therefore decided to

try and limit the range of roughness and granylamthibited by the samples.
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3.3.3 Controlled lllumination and viewpoint conditions
This can be considered as the most important dasgye in selecting or generating
samples for perceptual grouping. Chapter two Hamwve that all psychophysical
experiments performed so far for texture surfacecqgion have considered only
texture images generated under unknown illuminateod viewpoint conditions.
However, Figures 2.1 and 2.2 clearly show that:
(a) illumination can dramatically bias the outputs ofrtmon texture features, and
(b) the perceived qualities of a surface can changeifsigntly with changes in

illumination direction.

3.3.4 Variety of texture samples

As discussed previously, the failure to generatdficeent samples for the
psychophysical experiment can seriously bias tlseilt® of the experiment. When
texture surfaces are considered, the issue is migtatout having enough samples to
perform the experiment, but also about having eugfit categories of textures covered
by the experiment. The studies performed by &aal [Rao93a & Rao93b] have been
of enormous help in achieving this objective. Eufehe dataset used by Rabal was
not generated under controlled conditions, it igemteless valuable in the variety of
textures it presents.

For Tex1 we have therefore tried to obtain as vaideariety of surfaces as was feasible.
This requirement was relaxed for the MoMA datashictv is application specific and

was taken as provided by domain experts.

3.3.5 Matte surfaces

Gloss is a specific surface appearance property ithalescribed in terms of the
reflectance of a material surface. In the casspetular reflection light is directed at an
angle opposite to the incident light where as &nlbertian reflection, light is diffused

equally in all directions. Figure 3.2 illustratesw an incident light is scattered on two

different surfaces.

N

Figure 3.2— Lambertian reflection (left) and spexuleflection (right) on somewhat matte
and mirror-like surfaces respectively
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It has been shown that the degree of ‘glossynégsifisantly affects our perception of

surface characteristics [Ho08] and the presenggosk can influence our perception of
the global structure of surfaces by making themeappmore curved [Todd97 &

Ming86]. It is important that the grouping expeeim is performed without any bias
resulting from the surface properties themselv@a/en that in the first instance we are
primarily interested in how humans perceive andegatise surface textures, the
surfaces used for Tex1 are rendered using a sibrgtebertian reflectance model (i.e.

considering only matte surfaces).

3.3.6 Constant albedo surfaces

Albedo information characterises the reflectanceaafiven surface and it basically
represents the amount of light which is scatteredhfthat surface when an array of
light is incident on it. Thus, areas of high albaxh a surface would reflect most of the
incident light and they look brighter than areasemhthe albedo is low due to
absorption of light energy by the surface [Lin99s in the case of surface reflectance,
natural surfaces, in practice, are composed ofhpatthat have different light energy
absorption capabilities. Thus, the variation isabption level means varied brightness
level across the same surface. This phenomenomfitaence the judgments of human
observers comparing samples. Therefore for TexXemndered all surfaces as having

constant albedo.

3.3.7 Size of the datasets

In order to obtain a fair and unbiased judgmentftbe human subject, it is crucial that
the decision for grouping textures is performed aindo influence of fatigue,
fluctuations in mood or even boredom, therefore, slze of the dataset cannot be too
large. We found that datasets of around 100 sasrgaeld be grouped by the average
observer in 20-30 minutes.

3.3.8 Size and resolution of images

As mentioned in Chapter two, most psychophysicg@leerments have used digitised

versions of the Brodatz album. The latter normedipsisted of photographs occupying
a picture area of about 19.5 by 24 cm. The dgjiigersions used by psychophysical
studies varied in the number of pixels and ranggrey levels used. Resolutions of 384
by 384 pixels with 256 grey levels and 256 by 2b&is with 64 grey levels are most

common in literature [Tamura78, Amadasun89 & Ra@93a

Naturally the resolution required is a functiorntloé viewing distance and the size of the

photographs. In [Rao93a], Rat al. used a 4 by 5 inch picture area to represent the
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Brodatz textures for their psychophysical studi#ge have also found that this kind of
size of photograph gives a good compromise betweeviding a large enough sample
for assessment purposes, but is still small endlghit is practicable to manipulate and
layout around 100 photographs on a conference.taMe have therefore generated all
pictures at 4 by 4 inch. Given this size of phoapdps it was found that 512x512 eight
bit images gave sufficient resolution when laid aut a table and viewed from a
standing position.

3.4 Acquisition of Stimuli

As previously discussed it was decided to obtam datasets:

Tex1: the primary dataset comprising at least amedled samples drawn from as
wide a range of surface textures as was practi¢cagkther and

MoMA: an application specific dataset defined byndan experts and focusing on a

narrow set of texture types.

It was decided that the exacting height-map requerg would only be applied to Tex1
and that images taken under controlled and comsistenditions would suffice for the
MoMA set.

These sets both had to comply with the criteriotaitel in the previous section. These

are summarised in Table 3.1 for convenience.

C1. Number of samples 50-150

C2. Surface reflectance characteristigsLambertian, Monochrome, constant albedo

C3. Homogeneity Single level homogeneous textures required

C4. Realism Imagery should believably represent real surfaces
C5. Resolution and size 4" x 4” at least 512x512x8bit

C6. Height data Should be available for at least Tex1

C7. Consistent environmental lllumination conditions and viewing geometry must
conditions be consistent throughout each dataset

C8. Roughness and granularity Approximately constant throughout each data set

Table 3.1- Summary of criteria for dataset selectio
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3.4.1 Sourcing the Datasets

Chapter 2 surveyed the publicly available dataseis identified two possibilities:
CUReT and Outex. Unfortunately neither of thestaskets forms suitable candidates
for Tex1l as neither contains height data, or sléta#mage sets for reliably deriving
height data. Neither are they suitable as ourrgkepplication specific dataset as they
contain a wide range of randomly collected texturésrthermore, many of the samples
in both of these databases violate criteria C2,a08,C8.

A) The application specific dataset

A chance contact from the Museum of Modern Art, Néavk revealed that they had a
collection of photographic papers that they hadectéd and imaged using a flatbed
scanner in order to emphasise their surface textAsethese textures covered a narrow
range of texture types and as they were obtaineerudentical imaging conditions it
was decided to use this source for the secondetat&sirthermore, staff and associates
of MOMA were very keen to participate in the psyghgsical experiments. Images of
the MoMA dataset are shown in Appendix A (Figurd And Figure A.5).

B) The Tex1 dataset

Reluctantly it was decided that for Tex1 the dataul have to be generated by the
author. Originally the aim was to obtain height sap real samples using photometric
stereo — a cheap and fast method of obtaining fexteight data. However, it was
found that the number dfomogeneousexture samples of the appropriate scale, size
and roughness that could be brought into the ldboravas surprisingly low. Texture
synthesis was therefore used to augment this datatbethe proviso that the resulting
imagery should be as believable as that obtained f real surface (i.e. meet criteria
C4).

The rest of this section describes the acquistifdmeight information from real samples
where this was possible and the generation of syictldata when capture was not
feasible. The complete Tex1l dataset consistsfiyftivo natural textures and sixty-
eight synthetic ones, for a total of hundred anénty surface textures. The Texl
dataset is provided in Appendix A (Figure A.l1 tguiie A.3). The Tex1 textures are
denoted in the following way: “T” + index (for exge T31). The labels of the Texl
textures in Appendix A are subscripted with an tm"a “t” to distinguish between the

natural and synthetic textures.
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3.4.2 Tex1 — Capturing height-maps of real surfaces
The use of surface height maps instead of imagekseaprimary source provides two
main advantages:

(i) texture features calculated directly from heightpmareindependenof any
imaging conditions used to view the surfaces (#nlikkose features shown in
Figure 2.2);

(i) if height maps of glossy textures with varying albeéhave been obtained then

they may be rendered to meet criterion C2.

The method selected for surface height capturephasometric stereo [Woodham80].
It is a cheap, fast method that has been usecei ¢tture Lab over the last ten years
[McGunnigle01 & Dong05]. The theory assumes:
* an orthographic projection system with the cameta being perpendicular to
the plane of the surface,
» the light vector and intensity that is constantrabe surface,

« that shadowing and occlusion are negligible, aedstirface is Lambertian.

Surface
height map

Surface

Figure 3.3 —Capture geometry

Figure 3.3 illustrates the relevant geometry. Thmera’s optical axis is along the Z
axis and the texture surface lies in the plane X-Yhe light source is placed at a

distance far from the surface relative to its sizerder to approximate orthographic

light projection.t denotes tilt angle and represents the angle thdtuaminant vector
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projected ontothe surface plane makes wiX axis, whereas the slant angl,
represents the angle tilluminant vector makes with th2 axis. Based on the above
assumptionshe image functioiis defined as follows:

. -p(x,y)costsinc- q(x,y)sintcos o+ coso
i(y)= = E (3.1)
VP G+ ¢ Gyt 1

The setup shown iIFigure 3.3 results in only one imagelo recover the surfac
topology of a given texture material wrequire at least threenages taken at different
(non coplanar) angles This provides three simultaneous equations of tenfof
equation (3.1yhich can be solved to provide an estimate of t-pixel scaled surface
normals. These in turn can be used to derive the unit serfarmals and albedo

values.

Hence Photometric stereo has been employed to eed¢be real world textures to
used in the psychophysicexperiment. Figure 3.4 shows a eéfphotometric image
taken at tilt angles®0 9@ and 186. It is important that the three photometric ima
provide enough change in illumination gradient Isat tthe partial derivatives for tl
surface can be estimate

Figure 3.4 -Photometric images for the anaglypta surface taktes fixed slant of £ and
tilt angles G, 9¢° and 180

A summary of the nthematical derivation follows:he reflectance functions for tl

three images amgiven, in matrix format, b’

i;(x,y) = p(lgn) vd e {1..r} (3.2)
i;(x,y) represents threflectance intensity at poi(x,y) for a given illumination vectc
1,4, r represents the number of photometric images redj¢@en our casen(x,y) is the

surface normal unit vector at a given posii(x,y) in the surface plane and is definec

— (prql_l)T . - . . .
n= Torroin with p andq being the partial surface derivatives.
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Assuming (i) the surface albede, to be uniform and (ii) a non-singular illuminatio

matrix L whereL = (1;,1,,15)7, then the scaled surface normals are estimated by

taking the inverse of the illumination matrix adldws, m=L"I, withI being the
reflectance matrix derived from the photometricg@s The vectom=(m,,m,,m;)" is

then used to derive the partial derivatives ofdhdace being recovered w'yﬂ#% and
3

g==2. Further details can be obtained from [Gull6riD8ng03, & Wu03].

m3
Once the partial derivatives have been estimatedstinface is recovered using a non
iterative version of Frankot and Chellapa’s intéigramethod [Frankot88]. Figure 3.5
shows height maps of some natural surfaces that Ibeen considered in this thesis.

Figure 3.5 - Row 1 shows the height maps of somalenerld surfaces and row 2 shows their
corresponding images

3.4.3 Tex1 — Synthetic texture generation

Synthetic textures have been intensively used idetgtanding the mechanisms of
texture segregation. Pioneering research undertdike Juleszet al [Julesz81 &
Caelli78] focused on the use of randomly placedutexelements in order to identify
which pair of texture elements would segregatelyasrhe micropatterns or texture
elements that were used to generate the syntleatierés consisted mostly of dots, lines
and stimuli in the form of Ls, Xs, and Ts.
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Even though the computational theories put forvtardxamine the discriminability of
such textures have been seen to work well, syrthetiures constructed on the basis of
micropatterns are not representative of naturaltes that we encounter in day to day
life and so violate criterion C4 concerning realisithe challenge, therefore, is to come
up with synthetic textures that are similar to remples.

Texture synthesis has been used extensively torgieneealistic texture images or
surfaces. 2D texture synthesis methods have mdstbn categorised as being
parametric or non-parametric. Parametric synthes#hods perform synthesis by
matching global or local statistics between a saniplage and result images in a
feature space. Some well-known parametric methomgee been implemented by
Gagalowicz and Ma [Gagalowicz85], Heeger and Berfijdaeger95], De Bonet
[DeBonet97] and Zhuet al. [Zhu98]. Most parametric methods are based on
multiresolution approaches that use a bank ofréilend sampling strategies for the
statistical encoding of textures. A well referesh@pproach is the one proposed by
Portilla and Simoncelli [Portilla00].

Non-parametric methods are sometimes referred teyashesis by example’. Paget
and Longstaff [Paget96 & Paget98] proposed a nosaiasynthesis algorithm based on
Markov Random Field (MRF) to model arbitrary texsir Others such as Efresal.
[Efros99] and Weket al. [Wei00] used a neighbourhood search strategy mbhsgise
textures. Efros and Freeman [Efros01] also prapas@ge quilting which consisted of
synthesising new textures by stitching togetherlispadches of existing images. Other
patch-based approached were proposed by Leang. [Liang0l] and Kwatraet al
[Kwatra03].

Even if all the methods available in literaturefpen well when tested with specific
texture samples they have not been generalisetk @n a large variety of textures.
Additionally methods such as the one based on M##kGh can be used to synthesise a
large variety of natural textures, are normally pomationally expensive. Patch-based
approaches have the disadvantage that patchesesetecsynthesise a texture contain
limited amount of information and cannot provide fgpod statistical description of
real-world textures that normally contain featusgswidely varying scales. Due to
those issues, we have decided against using thleesym methods available in literature
and instead we have used some basic approachg4 itz inexpensive to implement
and execute and (2) are more suitable to geneyatbetic textures that are closer in
appearance to the existing natural textures. Tpeoaches correspond to frequency
domain synthesis of textures and are presentdukinest of this subsection.
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A) Frequency domain synthesis — 1#hoise

One-over-fBeta-noise (random phase fractals) haes lwidely used to model textured
surfaces given that they can be easily generatdchathe same time the surface relief
produced appears to be that of natural surfaces8fipel®4]. These surfaces are fully
represented by the power spectrum, and hence ailg ganerated by synthesising a

suitable power spectrum function:

§,(w,0)= % (3:3)

and combing it with random phase.

SA(w,0) represents the power spectrum of the fractal serfg is a constant that

controls the surface variance apdis the power roll-off factor [Kube88]. Other
variations of this model have been defined in dtere that split the power spectrum
into two fractal dimensions. Examples are the Muoky and the Ogilvy models.
Surfaces generated using the Mulvaney model hdla¢ spectrum at lower frequencies
and a roll-off value of 3.0 at high frequencies ve@s the Ogilvy model allows the
generation of directional surfaces with differerdwgr spectrum characteristics for
different directions [Gullon03 & McGunnigle01]. dtire 3.6 illustrates two texture
images obtained after rendering a Mulvaney suréak an Ogilvy surface. While the
Ogilvy surface seems to contain some directiorfakmation, the surface relief for both

surfaces are very isotropic.

Figure 3.6 — (a) Mulvaney surface (b) Ogilvy sudac

B) Other frequency domain functions
Gluckman [GluckmanO5] created visual patterns bas®d combination of discrete
frequencies in the power spectral domain in ordezxtamine the ability of using filter

based statistics to discriminate between an arbiset of visual stimuli.
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Thus the power spectrurR(w), of a given pattern is a combination of a setunictions
(f1, ..., f), with each functiorf; being a set of integer frequency pairgi{(v1) ... (Un,
Vm)}. Figure 3.7 illustrates this approach; thetfisw presents different power spectral
functions generated by combining two functidngblue spots) ané (black squares),
whereas the second row provides the correspondatigrps generated using those

power spectrums.

Figure 3.7— Row 1 shows different distributionrefjiencies and row 2 shows resultant patterns

Such methods can be extended to placing 2D Gawgssighe power spectrum, which,
when coupled with random phase can produce sandiygee surfaces. While the
results generated using these methods do not appearealistic on there own, they
can be used for the basis of generating realistikihg surfaces.

C) Generating structural information

Even if a limited number of “natural looking texést' can be generated using power
spectrum approaches it is evident that they laeK'structural” characteristics of many
man-made and biological (as opposed to minerafasairtextures. Hence we need to
generate synthetic textures whereby structurabinédion can be clearly perceived.
Figure 3.8 shows some textures captured using pfeitec stereo that contain
significant phase information.
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Figure 3.8 — Phase rich textures

We now introduce three techniques that can be egbi combination or individually,
that introduce phase information into textures rigdi in the power spectrum: folding,

thresholding and placement.
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Folding

The term “folding” is used in this thesis to dentte process that allows a non-linearity
to be introduced on surfaces that have been gedefmised on specific Power law
parameters. The folding process operates bydiesting a line/plane across the height
distribution of a given surface (or signal) basedam input threshold value. All the

values below the folding line are mapped aboveat {or all height values lower than

the threshold). The mapping is basically a reftecibout the folding line. Figure 3.9

illustrates how the folding is performed on 1D &tdl signals. The amount of folding

controls the amount of non-linearity introducedtie height map generated. The

function used to generate the height maps hasreéelled as follows

Hxy)=H(xy)+2%f -H(xy)) itandonlyif Hy)<f, (3.4)

It is easily implemented using mean shift and alisofunctions. After performing
folding of the height map using equation (3.4), thwmamic range of the surface is

normalised in the range [0, 1].

Folding line Folding line Folding line
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Figure 3.9— (a) 1D signal folding (b) correspondifaiding within a 2-D plane representing
the same signal

Thresholding

Folded, or unfolded power spectrum surfaces mayiserl as a probability map to
control the placement of simple texture elemenifthe simplest approach being to
threshold such ‘control surfaces’. Random or seamdom placement of texture
elements then only occurs in areas in which thetrobisurface is greater than the
threshold.

52



3
Bt
+

Figure 3.10 — Dark regions identify the placemamssurfaces with varied high frequency
information

Figure 3.10 shows example surfaces that have beseragted by keeping different
amounts of high-frequency information (a circuldtef is applied to the magnitude
information to achieve this). The dark regionstio@ surfaces represent the placement
regions for primitive mapping and are given by irgteg height values above a certain

cut-off value.

Texture primitive placement

Once placement rules have been determined as lbked@above, they may be used for
placing or generating simple texture elements. tEx¢ure elements used within this
research are either half hemispherical textonsréwige for more general structural
appearance or otherwise they comprise ellipsoidaitons that provide some
directionality. Where primitives overlap we takeetmaximum of the height of any

primitive at thatx-y position.

Sls))

Figure 3.11 — Texture primitives

Figure 3.11 shows some primitives used in genggahe synthetic textures. Different
sizes of these primitives oriented at different lagagare used to provide for diverse
varieties of texture surfaces.

D) Summary of structural information generation

The different stages required to create synthektutes are summarised in Figure 3.12.
Figure 3.13 shows height maps of natural textucegether with height maps of
synthetic textures generated to resemble the riaamaples.

Figure 3.14 shows images of the real and syntihetight-maps when illuminated using

the lambertian model and with uniform albedo.
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Stage

Height Map

Description

(1

Original height map is generats
either for random placements

regular placements.

or

(I1)

This stage shows the resultant surf
after the folding function in equatiq
(3.4) has been applied to the frag

surface generated in stage (I).

ace
n

tal

()

The aft

thresholding the folded surface

surface  generated

stage (II) and mapping primitives.

er

in

(V)

Texture image  generated
rendering the resultant surface a

slant angle of 45and a tilt angle o

135 (from the top left corner) and

with uniform albedo.

Figure 3.12 — Stages (I) to (Ill) illustrate theroplete process of applying folding, thresholding
and primitives mapping to generate a syntheticasigf Stage (V) represents the illuminated

surface.
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Figure 3.14 ¢(columnl) natural texture images and (column2) alisusimilar
synthetic texture images
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3.4.4 Preparation of samples for experiment

The psychophysical studies, performed within thetext of this thesis, employ texture
samples that are presented to human subjects ifotmeof photographic prints. Each
print occupies an area of 4 by 4 inches and wagqutiat a resolution of 512 by 512
pixels using a laserjet printer. An example isvehdigure 3.15.
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Figure 3.15 — Tex1 sample photograph provideddaseovers for
psychophysical experiment

The use of photographs facilitates the grouping§ s it allows observers to have a

shapshot of the whole texture dataset thus alloviliegn to situate themselves within
the context of the experiment.

57



3.5 Experiment Design

One of the fundamental tasks in setting up the Ipsyeysical experiment was to
determine the assessment method to be employekeblyuman subjects to group the
textures in both the Texl and MoMA datasets. Girappto summarised the different

assessment techniques that have been utilised by fasearchers.

3.5.1 Grouping task

As discussed in Chapter two, perceptual groupimgciples have been employed to
solve a number of practical vision problems, angl dkdvantages that motivated us to
choose this method are summarised below.

a. Perceptual Grouping has already been used suclhggsfihe field of
texture perception to determine perceptual dimerssio

b. It does not require any complex setup and can Ipdeabto match or
compare any size of texture images.

c. By providing the observer with a view of all theages in the database,
it allows the observer to relate to the contexivhiich the experiment is
performed.

d. As compared to other well known techniques such Pasrwise
comparison, the user does not need to remembeilopeejudgments as
all the images remain in his/her field of visionhether grouped or
ungrouped.

e. Finally, the technique allows observers to carriytbha experiment in 30-

40 minutes: thereby preventing undue fatigue.

3.6 Implementation of experiment

The grouping experiment was performed using the different datasets of texture
surfaces, namely the MOMA dataset and the Texl1sdataEight observers were asked
to perform the experiment for the Tex1 datasetis Ghoup consisted of both naive and
expert observers. For the MoMA dataset, nineteginjests were used. In this
particular case all nineteen subjects were exggvisn that they all, in some way or
another, had knowledge about the type of sampksthiey were going to be exposed

to.
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The same procedure was followed by all the obssri@mperform the grouping task.
The steps are summarised below.

a) Observers were presented with samples in the fofnphotographs. The
samples were randomly located on a flat surfadbaithe subjects were able to
view all of them at the same time. All photograpese orientated in the same
direction, so that the illumination under which yhkad been captured was
consistently portrayed and where possible this waigned with the room
illumination. A table was used in the case of Tlex1 samples and, given that
larger photographs were used for the MOMA datdkese samples were placed
on the floor.

b) The observers were asked not to rotate the phqtbgraut they could pick them
up and move them around.

c) Observers were asked to create as many groupsewnsmimted by physically
moving the photographs into groups.

d) No group size constraint was imposed on the obegrve., they were free to
create as many groups as they felt necessary angrolips could be of any size
including singletons. They were only requested toatreate any “oddball” or
“left-over” group, rather that such samples shdddeft as singletons.

e) Once the grouping was completed, the observatioee wegistered by the
experimenter.

No similarity criteria were imposed on the subjeantsl they were free to take as long as
they required to perform the grouping task. Appemishows the instruction sheet that
was provided to subjects.

3.6.1 Comments collected on the experiment

After the grouping experiment was performed, observwere asked to provide
feedback on the criteria they used to group théutex presented to them. Their
remarks are summarised below.

A) Tex1 grouping

The expert subjects who performed the experimenitdd for some perceptual cues
from the texture samples. Perceptual attributes sis directionality and regularity of
texture elements were considered. Additionally subjects identified textures with
respect to the type of texture primitives.

Naive subjects were also influenced by the stratinformation of the texture samples.

However, their main criterion of grouping the texsi was the type of material that the
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samples represented, such as fabrics, wood, roaltpapers and consequently their
application like wallpapers for kitchen walls.

The eight subjects took on average 35 minutes aomthe 120 texture photographs
presented to them. An average of 22 groups waserteby the 11 subjects, with a
minimum size of 8 and a maximum of 35.

B) MoMA grouping

Grouping for the MoMA textures were performed byjsgts who have substantial

knowledge on the textures and the type of mateeaig considered. The subjects are
mainly conservators of photographs, with some @ithbeing paper, sculpture and
painting conservators. Since the MoMA textures ragnly photographic papers, the

first criterion used by the subjects was the eff#ctising the papers for photographs,
printing or painting purposes. Another equally ortant criterion employed by some

of the subjects was the source of the photograpdper itself.

Subjects could identify different papers with regpe their knowledge about different

manufacturers such as Kodak, Agfa, Unicolor ancersth The 19 subjects for the

MoMA grouping experiment took on average 50 mindtesreate texture groups from

81 samples. The size of the groups created ramged X0 to 43, with an average of 24

groups being created by the subjects.
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3.7 Aggregate Data (generate similarity matrices)

The output of the experiment was a set of groupated by each observer. These data
need to be aggregated so that they could be used:
a) to check the consistency of the experiment,
b) to discover any structural information in the daigrovide insights, or methods
for the generation of a retrieval system, and
c) to determine ‘ideal’ retrievals for performance

analysis. T T, Ty

The procedure was as follows: T;

i) N*N occurrence matrices were created for each

observer.N is the number of samples in a

dataset: for MOMAN is 81 where as for the T; 1

Tex1 N dataset is 120. The occurrence matrix, Ty

as illustrated in Figure 3.16, is a binary matrix
Figure 3.16— Occurrence Matrix

whereby a ‘1’ represents whether any texftlire
is grouped together with any other textilife

i) Two similarity matricesS, were created (one for each dataset) by aggrepalin
of the occurrence matrices for each dataset. A pa@prepresentation of the
similarity matrix for Tex1 textures is presentedippendix C.

i) The similarity matrices were normalised in the @ to 1 so that they are

independent of the number of subjects.

The values composing, are referred to as the similarity coefficientsthwithe
coefficientS(i,j) indicating the similarity of texture samplés,andT;. The higher the
value ofS(i,j) the more alike the texturdsandT; are judged to be. The values of the
matrix can be summarised by the following condsion

(S1) &)=<l

(S2) Saii) =1

(S3) Sd.j)=S(.i)
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3.8 Conclusions

Chapter three has presented the procedure by wdiharity matrices have been

produced for two collections of surface textures:

Tex1 - a general dataset containing 120 samplas/rdifrom a wide variety of
texture types, for which the height maps have bdsained or generated,
and

MoMA - a specialised collection of 81 samples obtagraphic papers collected under
consistent illumination conditions

To the author’s knowledge this is the first timatteuch data have been produced using

homogeneous textures that were collected under krama consistent conditions.
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Chapter 4
Psychophysical Data Analysis

4.1 Introduction

The objective of this thesis is to produce methimiddeveloping perceptually relevant
surface texture retrieval systems. The previousiptr used psychophysical
experiments to derive similarity matrices for twarface texture datasets: Texl and
MoMA. In their current form these data are repnése in high dimensional spaces that
are unsuited for either visual inspection, or th@cpcable computation of appropriate
feature sets. Indeed, without a method for inspgcthese data it is difficult to
determine whether or not the psychophysics hasusemtinon-random results.
Thus the objectives of this chapter are:
) to inspect the similarity data for evidence of stawe that indicates that
the psychophysical experiments have produced nuera results;
i) to inspect these data for evidence of natural grmsp
1)) to investigate the number of dimensions that thds¢a can be
represented in; and
iv) to examine the major dimensions of the data forals/traits that could

be useful for the design of retrieval systems.

Chapter two identified Hierarchical Cluster AnalygiHCA) and Multidimensional
Scaling (MDS) as suitable tools to be used forymiglpurposes. Section 4.2 describes
the format in which the similarity matrices are lgeHCA and MDS. In Section 4.3
we use HCA to investigate issues (i) and (ii). ®ec#.4 uses MDS to investigate the
dimensionality of the datasets and Section 4.5 be#stechniques to look for obvious

traits in the main dimensions of the data.
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4.2 Datarepresentation

HCA requires that the input data be presented enftiim of anN by N matrix of
pairwise dissimilaritiesp = (dj), where each elemeu; represents the dissimilarity
between thé™ and thej™ textures andN is the number of textures available in the
dataset. Any dissimilarity valud; needs to satisfy certain minimum conditions as
follows: dj >0, d; = 0 andd; = d;.

MDS requires ‘proximity’ data that defines the ‘ne@ss’ in space of a pair of textures.
Ideally the proximity measure should be a distamemasure with a value close to zero
representing textures with similar characteristind vice versa for large values. Thus,
since MDS is to be applied to our perceptual datasiagain necessary to use
dissimilarity matricedD derived from psychophysical data. However forsprgation
purposes (e.g. in dendrograms) we often scale ttiatse by the number of observers
that have taken part in the experiment for easetefpretation.

The similarity values are converted to dissimilastusing the transformatialy = 1-

S;. Similarity coefficients from all the psychophgal results presented in this thesis
are scaled in the range (0, 1) and this rangedsepved for dissimilarity coefficients
when the transformation is applied.

When dealing with psychophysical data, the asswmgtiat dissimilarities behave as

distances is not valid. For dissimilarities to dmnsidered as metric data, they should
satisfy the following conditions: (1J; = O if and only ifi=j, (2) dj = d; forall 1<1i, j <

N, and (3)d; < di + dy for all 1<1i, j,k < N. However, the dissimilarities do not satisfy
condition (3) which is the transitivity conditioorf metric data. Thus, the dissimilarity

matrix used within the context of this thesis isiymetric.
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4.3 Cluster Analysis

Results from hierarchical clustering algorithms gemerally presented in the form of
tree diagrams. The dendrogram is the cluster aisalysl that is used to investigate the
clustering tendency for the Tex1 and MoMA datasetkin this thesis and is presented
in Section 4.3.1.

To analyse the clustering represented by the dgraimts, we can either partition the
dendrograms at a given dissimilarity level or otvise partition them with respect to
the number of groups required. Section 4.3.2 aecti® 4.3.3 analyse the groups
formed when the dendrograms for the Tex1 and th¥IMdatasets are partitioned into

six groups.

4.3.1 Dendrograms
The use of dendrograms allows us to easily pantiti@ dataset into as many clusters as
we would like and to visualise the relationshipsn{&rities) between these groups.
This allows us to qualitatively assess the consigteof the results of the
psychophysical experiments and to check that tisempparent structure within the data.
The only disadvantage of using dendrograms thatldhme noted here is that they are
normally crisp approaches to clustering (i.e. texttan be allocated to only one group
at a time), however since our objective is puredpal inspection for consistency, rather
than discrimination between groups, it is not @uéshere [Baker75 & Ding02].
Together with displaying grouping information, desgtams have an additional
property: the height information shows level of gamty or dissimilarity between
clusters.
Definition. A dendrogram is an n-tree on a set of obj€zts {O,, O.... Oy} and is
given by a set T of subsets@fsatisfying the following conditions [Gordon87]:
. QeT,0¢T,{0}eT forall {O;} €Q

Il. ANBe{p,A B} forallA,BET

1l ANB#@, h(A)<h(B)— ACB forall A,BET

V. h; < max (hy,hy) for all O;, O;, O € Q
Conditions | and Il specify a hierarchically nesteet of subsets, with each subset
representing a class of similar samples. Conditlbrprovides information for the
heighth associated with each internal node such thatdoh @air of objects (©OG), h;
represents the height of the internal node spegfiine smallest class to which objects
O and @ belong to.
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The height of the internal node represents howlairttie objects within the groups are.
Thus, the smaller the value laf, the more similar objects;@nd @ are. Condition IV

is an ‘ultrametric’ condition implying that the Ilgit of any class to which two objects
O and Q belongs to is less than the height of the samectdbpssociated with any other

object Qnot in the class.

AT AT AT T

Figure 4.1- Ideal dendrogram

If the dissimilarity data represents a number cfady defined groups then the
dendrogram should provide clear indication of thssillustrated in Figure 4.1. Note

however, that Texl samples were chosen in orderaximise the apparent variability

within this dataset.

In order to construct the dendrogram from the thdarity matrices, agglomerative

clustering has been applied. Agglomerative clusgeuses a bottom-up approach to
create clusters. Starting framhsingletons, a recursive procedure is used to nmeeger

of clustersC; andC; based on a pairwise linkage function [Ding02].

As the data is non-metric, only a selected numlbdinkage functions can be used to
create the dendrogram. The most common of thestharsingle linkage, the complete
linkage and the group average linkage functionsase8 on a general definition

provided in [Gordon87], these three functions caméfined as follows:
d(C; U C;,C) = a;d(C;, Ci) + a;d(C;, Ci) + v|d(Ci, C) — d(C;, Cr)| (4.1)

Whered(Ci, Cj) represents the dissimilarity between any two clégeC;, a andy are

parameters whose values identify the clusteringtesgtes. Table 4.1 shows the
parameter values for each clustering algorithmy. represents the number of samples

that a particular clagg contains
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Linkagefunction a; 14
Single link 1/, -1/
Complete link 1/2 1/2
Group average link o 0
(Wl- + W]-)

Table 4.1- Linkage functions and associated paramedlues

The linkage functions differ in the way they chaegise the similarity between a pair of
clusters (or singletons). For single linkage, distance between two clusters is given
by the minimum distance between all pairs of teegutrawn from two clusters where as
for complete linkage it is the maximum. Group ags linkage uses the distance
between the centroids of a pair of clusters. Tomplete linkage function produces
tightly bound and compact clusters [Jain99] as cmexb to the single and group
average linkage and has also been successfullyhysBaoet al. [Rao93a] to generate

dendrograms for psychophysical data. Thus a cdmplgage function is used in this

thesis.

4.3.2 Analysing the Tex1 Dataset

The dendrogram illustrated in Figure 4.2 shows tlwsvtexture samples from the Tex1
dataset are clustered into different groups. Haeds from the dendrogram represent
the individual textures. As we move up the dendaog groups of textures are formed
based on the data available from the dissimilarigtrix. The following observations
can be made.

(a) The topology of the dendrogram shows no distintib§elominant groupings —
indicating that the samples are reasonably wettidiged across the range of
textures considered.

(b) The dendrogram ‘breaks’ into a significantly largegmber of small groups
below a dissimilarity level of 5 indicating thatetmumber of groups created by
the average number of subjects is quite large.

For visual inspection purposes, a clustering caoirgithe six main perceptual groups

has been obtained by placing a cutting line jusiwelissimilarity level 6 (Figure 4.2).
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Dissimilarity Level

The line crosses the subtrees of the dendrogranrewheconsiderable number of
subjects have agreed on the groups formed (indidatehe significantly larger heights
as compared to the rest of the dendrogram). Figu8e illustrates the reduced
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Figure 4.3- Dendrogram showing the dissimilarigyél when 6
‘major’ clusters are considered

68



Randomly chosen samples from each cluster are slwwangure 4.4. Each column
represents a different group. The representatweptes shown are chosen randomly
from the clusters created, with some clusters @oinmiga a considerably larger number of
textures than others. The complete groups areigedvn Appendix D (see Figure D.1
to Figure D.6). Moving from left to right in Figer4.4 leads to the following
observations.

(1) The internal members from each group show perclpsimilar characteristics, i.e.
they are visually consistent. It seems unlikelgttthese groups could have been
created at random and therefore it is probable tti@jpsychophysical experiments
have produced meaningful results.

(2) The six main groups displayed in Figure 4.4 shoat the Tex1 dataset comprises
mainly of horizontdl textures (group 6), vertical textures (group 4jular textures
(group 2), irregular textures (group 1), patchytuwess (group 3) and circular
textures (group 5).

(3) Elements from various groups appear to be distialtidifferent even though some
overlaps may exist between the groups. For examopéslaps exist between the
regular and irregular groups or between the paécitycircular groups.

(4) Reducing the six groups to create larger textute iseply that we would need to
merge groups 3 and 5 together, then group 6 amd 4@ups 1 and 2.

The dendrogram in Figure 4.3 is “parsed” to invgete whether there exists any kind of

visual consistency when the groups from Figureatelmerged together to create the

whole Texl dataset. To do so several cutting lines applied to the reduced
dendrogram at levels where a split occurs. Thengulines are referred to as levels L1
to L5 and would help to visually assess how thepgirceptual groups merge to form the

complete Tex1 dataset.

Level L5

This level shows the six groups discussed in olagienv (4). In addition to height
which shows the level of observer disagreementséparation of the groups along the
cutting lines also indicates how cohesive pairsgadups are and their tendency to
merge. Thus the patchy textures (group 3) andileircdextures (group 5) are most

similar to each other and provide the first paicafhdidates for merging if required.

! Note that the names of these groups have beeemrlbysthe author purely to facilitate discussichey
have not been identified using psychophysical erpants.
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Level L4

At this level the patchy and circular textures haverged. Visual inspection of the
samples of the two groups indicates the preseng®bél information such as large and
randomly placed patches from the samples in thehgaijroup and large and randomly

placed circular structures for the textures indineular group.

Level L3
Group 6 (horizontal textures) and group 4 (vertteatures) merge at this level to create

one main group of unidirectional textures.

Level L2

Line L2 from Figure 4.3 shows that the whole Teriadet can be represented into only
three groups with groups 1 (regular) and 2 (irraguinerging to form one larger group
of textures. Visually inspecting the pairs of gueuformed at this level, we can
summarise the dataset into the following categos&sictured (regular and irregular),

unstructured (patchy and circular) and unidirecldqmertical and horizontal).

Level L1

The two supergroups created by merging groups 12asmtd groups 3 and 5, merge to
create an even larger group. The resultant groupsists of the structured and
unstructured textures as presented at Level L2.calieobserve that the merging occur

at a relatively high level of dissimilarity.
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Figure 4.4 - Groups 1 to 6 from dendrogram reprdedrby columns 1-6

71



4.3.3 Analysingthe MoMA Dataset
As described in Chapter three, compared with Teké, MOMA database is more

specialised, and moreover the number of subjects participated in the grouping
experiment was higher (recall from Chapter 3: 18jextts). Figure 4.5 shows the
dendrogram obtained when a complete linkage clnsters performed on its
dissimilarity matrix.

Analysing the dendrogram in Figure 4.5 in a top-dawanner (i.e. starting from the
root) shows that five out of the nineteen obsencensgld not decide how the whole
MoMA dataset could be split into more than two greuThis is indicated by the level
of indecision in the dendrogram of Figure 4.5. &tdl 1 all 19 observers agreed that all
the MoMA textures could not be placed in only omeup whereas level 2 shows that
approximately 14 agreed that the MoMA textures ddug placed into more than two
groups.

As compared to the dendrogram for MOMA datasetotiee the Tex1 dataset (shown in
Figure 4.2) splits very quickly into two or moreabches indicating that the observers
could easily perceive the variability among thetuexs in the dataset. These
observations from the two dendrograms (in Figuiahd Figure 4.5) provide further

indication that the MOMA dataset is more compaantthe Tex1 dataset.
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Figure 4.5 — Dendrogram representing linkage betwg®MA textures to form groups
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A cutting line (denoted as P1 in Figure 4.6) shtveslevel of dissimilarity at which the
dendrogram for the MoMA dataset could be split tatach six main groups. As
indicated by P1 only eight out of the nineteen saty agreed that MoOMA textures
could be placed into six groups. The remaining etesould find enough variability in
the textures in order to split them into smalleyugps.

Figure 4.6 shows the reduced dendrogram after aqgpbutting line P1. The six groups
obtained are again used to investigate the visoasistency of the data. Randomly
chosen textures for the six groups are shown inrEig.7. With the MoMA texture
representing only photographic paper surfaces,d@stinction among the six groups is
more subtle. From Figure 4.7 only group 1 appéarsontain textures with regularly
arranged elements, whereas the other groups afmpdédfer based on the roughness of

the surfaces.
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Figure 4.6— Reduced dendrogram for MOMA textureshtmw Six main groups

The complete groups for the MoMA dataset are predith Appendix D (see Figure
D.7 to Figure D.12)
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4.4 Dimensional Analysis

The dendrograms presented in the previous sectionide an effective way of
visualising the psychophysical data and show they tlo appear to contain meaningful
(or at least non-random) data. However, they pl@yew insights into the number of
dimensions that these data can or should be regessen. Such a property facilitates
practicable computational approaches to codingsstiaation, segmentation, and the
subject of this thesis: retrieval. Hence in thecteon we apply Multidimensional
Scaling to the dissimilarity matrices in order:
(@) to determine whether there is evidence that owgptions of surface texture
can be encoded into a particular (and low) numbeirensions;
(b) to investigate the effect that reducing the nundfedimensions has on the
variability encoded in the data; and
(c) to investigate whether or not any of the major disens derived have an
obvious interpretation.
Recall that the data is purely ordinal and thus-ma&tric MDS must be used. This can
be considered as a two-fold optimisation proceas fibst finds an optimal monotonic
transformation of the dissimilarity data and sedpi@rives an optimal configuration to
represent the data such that the dissimilaritié@d®n the points in that configuration
match as closely as possible the scaled dissityilaiues.
Two metrics are commonly used to assess how widrdnt configurations produced
by MDS represent the original data: Alignment Eramrd Stress. We use these
measures to investigate issues (a) and (b) abokie wisual inspection is used to

address (c).

4.4.1 Alignment error

The “alignment” of the two matrices is performedngsa technique called Procrustes
analysis. The latter is normally used to compar®Sviresults from two different
configurations. However, within the context ofstihesis it is employed to compare the
full and reduced representations. The Procrustelysis dilates, translates, reflects and
rotates the distances from the chosen configuraticorder to match the dissimilarity
values [Cox00]. Alignment error is thus the sumsqtiared errors that result while

performing those linear transformations and is cateqh as follows

N
Alignment error = Z(yr —x) Ty — xp) (4.2)

r=1
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yr andx; in the equation above are the off-diagonal elesnénim the Procrustes and
dissimilarity matrices. We use the term “Procrasteatrix” to represent the distances
between texture pairs in the reduced dimensionatespvhich is subject to Procrustes
analysis. With a set of affine transformationsf@ened on the Procrustes matrix, the

mapped distances are given by:
x,. = pATx, +b (4.3)

wherep is a scaling coefficient, the matri accounts for rotation ank is a rigid
translation vector. Taking into account those dfarmations, the alignment error is

now given by:

N
Alignment error = Z(yr —x1) Ty — x7) (4.4)

r=1
Thus the alignment error is the error that remaiitsr the rotationA) and translation

(b) transformations have been applied to the Proesusiatrix.

Alignment error — results

Figure 4.8 shows the alignment error between theafd reduced perceptual spaces as
a function of the number of dimensions (of the pEtliperceptual space) for both the
Tex1l and MoMA datasets.
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Figure 4.8— Graph showing how alignment error dases as dimensionality increases
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The decline in the alignment error of the two detsss relatively smooth from four
dimensions onwards and there are no obvious braatkpat which to curtail the
dimensionality for use in practical applicationslt is noticeable that at lower
dimensionalities the alignment errors of the MoMgaeses are less than those of Tex1,
indicating that the former can potentially be rejerged using fewer dimensions. In
addition we see that a dimensionality of ten idicigiht to encode most of the original
information for either dataset. Ten dimensions éwaav, is still a relatively unwieldy

number for either visualization or for the autoroatevelopment of retrieval systems.

442 Stress

Stress is the term coined by Kruskal [Kruskal64b]denote the loss function used to

minimise nonmetric MDS models. StreSsis defined as

S*
Stress= ’—* (4.5)
T

S is called the raw stress of the configurationeesindT” is a normalising factor that

allows the stress value to be dimension free. Batins are defined as follows

St = Z(drs - ars)z (4.6)

=) dk @.7)
7.8

d,s represents the dissimilarity values defined orNaoy N dissimilarity matrix such
that the mapping is always monotonic wheralasrepresents the distances computed
from points in the spatial configuration being ddesed. Since its conception by
Kruskal, stress has been widely used as a measuthd goodness of fit of a chosen
configuration. Guidelines to judge the goodnesditodre summarised in Table 4.2
[Kruskal64a].

Stressvalue Goodness measure
Above 0.20 Poor
0.10 Fair
0.05 Good
0.025 Excellent
0.0 Perfect

Table 4.2— Stress values with corresponding
goodness of fit interpretation
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Stress analysis — results

Candidates for the number of dimensiahssuitable for representing a perceptual space
are most commonly determined by identifying “elbbwsScree plots (see Figure 4.9).

A Scree graph is a plot of stress values against¢sions.
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Figure 4.9 - Scree plot showing “elbow” effect

The ideal “elbow” is a sharp drop in error valuedlowed by relatively small
decrements. For instance if the data were deffinad colour experiments, we would
expect a significant ‘elbow’ at = 3. The identification of an “elbow” is accompligshe
by visual inspection of the Scree plot.

To determine the number of dimensions for the Molt#Al the Tex1 datasets, only the
first twenty dimensions are considered. Figuré4lliistrates the Scree plots for both
datasets. The behaviours of the stress valued)dttr datasets, show no significant
change in the pattern of the goodness of fit messufThis observation confirms the
behaviour of the alignment errors as presentedignré 4.8 and strengthens the case
that there is no clear cut dimensionality that barchosen to represent the MoMA and
the Tex1 datasets.

However, Figure 4.10 shows that from dimensiondbtyr onwards the stress values are
less than 0.1 — indicating a “good” fit in the caddex1. For MOMA, the stress values
indicate a “very good” fit even at lower dimensiargl we can observe that the decline
of the stress for the number of dimensions greatan three is very smooth. Hence a
three-dimensional perceptual space may be enoucgptare the information within the

dataset required for this application domain.
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Figure 4.10- Normalised stress for the first 20 éirsionalities used to represent the MoMA
and Tex1 datasets

Unfortunately neither plot exhibits a clear-cut@iband hence it is not possible to rely
on the stress values for dimensionality selectidHowever, it seems likely that a
perceptual space of between 4 and 10 dimensionkivbeuadequate for the majority of

texture processing applications.

45 Traitsin major dimensions

This section uses both the MDS and clustering tesalexamine if there are any major
traits within the main dimensions of the data. Fdimensional perceptual spaces were
used for this purpose as they represented a gadd-uoff between manageability and

the use of the majority of the variability in thatd.

451 TheTex1 dataset

Figure 4.11 shows the arrangement of the Tex1 tegtwithin the first two dimensions
of a 4D reduced perceptual space. The colour godidicates the grouping obtained
from the dendrogram in Figure 4.3 and shows thasdhmajor groups are well

represented within the first two dimensions (alleih some overlap).
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Figure 4.11 — Spatial representation of datase¢rat20*120 Similarity Matrix is reduced to a
2D space using MDS

Figure 4.12 provides more details of these datavimgoaround the quadrants shows
that the shift from one texture category to anoikdairly consistent. In the top left
quadrant we have all unidirectional textures, allwBvided into 2 groups: mainly
horizontal and vertical textures. Except some mowerlaps we can observe that even
the horizontal and vertical textures are quite wefparated. As we move anticlockwise
from the top left quadrant we notice that the umiclional textures are followed by
bidirectional, structured textures in the bottorfb dgiadrant.

Moving towards the bottom right quadrant the privei$ in the textures become less
apparent. The quadrant contains some coarse ésxivith primitives at relatively high
frequency but still apparent to the naked eye. fEneaining textures are generally fine
and isotropic. The last quadrant (top right), eom some irregular textures consisting
of large patches or circular structures. In thasecthe global information (or longer
range structure) is more apparent.

While the transitions appear obvious to the eye itot immediately apparent how they

might be easily incorporated into the automatedgtesf retrieval systems.
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Figure 4.12 — Span of different categories of teedwhen the first two dimensions are considered
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452 TheMoMA dataset

Figure 4.13 shows the spatial distribution of theNlA textures within the first two
dimensions of a 4D perceptual space. The six grqupsented have been obtained

after cluster analysis of the psychophysical dath@rrespond to the groups shown in
Figure 4.7.
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Figure 4.13— Spatial arrangement of MOMA texturea 2D plane

Again we can see that the first two dimensions stitevdendrogram groups as distinct
clusters. However, unlike Tex1l the MoMA texturesnfi more compact groups and are
less scattered in the 2D plane. This is likelpedbecause the MOMA dataset contains a
smaller range of more specialised textures.

Although the groups appear to be less cohesiveahdg that the groups can be easily
broken into smaller and more compact groups, tlaeeefewer overlaps among the
groups than in the case of the Tex1 dataset. @y®ire present mainly in the case of
groups 1, 5 and 6. Increasing the number of dimassand splitting the datasets into
more groups contribute in increasing the compastreesl separation levels of the
groups.

Trend lines TL1 and TL2 have been investigatedaioy obvious visual traits. The
results of moving along the trend lines TL1 and Tdr2 displayed in Figure 4.14 and
Figure 4.15 respectively. As discussed in Chaftethe MoMA dataset does not
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contain many texture samples that exhibit muchctire (non-random phase artefacts).
It can be noticed, while moving along TL1 in Figuel4 that those textures are
clustered close to rough textures containing samuetsiral information. As we move
up TL1, we get smoother textures.

As the coloured outlines of the thumbnails showtuiee samples from different groups

do overlap, but when inspected visually, we notiwg the samples are very consistent
in appearance.
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Figure 4.14-Variation of different texture categesialong trend line TL1
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The groups of texture samples that occur alongdtigme TL2 appear to be more
compact than the ones along TL1.

M Group 2
A Group4

> Dimension2 [~

Dimepﬁon 1

Figure 4.15- Variation of different texture categs along trend line TL2

Again however, there is no immediately obvious wagxploiting these trends for the
design of a retrieval system.
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46 Conclusons

This chapter has used hierarchical clustering, wemedms, and Multidimensional
Scaling to investigate the nature of psychophysiedh derived from two different sets
of surface textures: Tex1 and MoMA. In summaryrésults from this analysis are:

(@) that the dendrograms show that there is obvioustsire in the similarity
matrices and they are certainly non-random,;

(b) that there is a wide spread of texture types inlTaxd to a lesser extent in
MoMA but that in both cases there is no obvious bemof groups that
should be extracted;

(c) that these data can be represented well betweanafwl ten perceptual
dimensions; but that
() there is no ‘elbow’ in the stress graphs that satgythat any particular

number of dimensions ithe dimensionality that should be used for all
applications,

(i) these dimensions do not have any simple interpoetdahat indicates a
particular feature set will provide the optimumnaar optimum retrieval
performance.

Thus while the similarity matrices have been shdéavencode useful information, and
MDS has been shown to be a valuable tool for reduthie complexity of the problem
there is no really concrete evidence that sugdesismany dimensions should be used
or which features should be employed. This mag bensequence of using a relatively
low number of texture samples dictated by the pspblgsical approach selected to
probe what may be an exceptionally complex per@space. For application specific
problem, the number of dimensions can be selectetyuidomain criteria. Examples

are provided in chapters six and seven.
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Chapter 5

|dentifying features for texture retrieval

5.1 Introduction

The previous two chapters described the psychopdlystudies performed to capture
how observers perceive and group together suriaxtire. The next step involves
creating a corresponding feature space for texetregaval.

The dimensionality analysis performed in Chapter fdemonstrated that, although the
first two dimensions do cover the majority of theriations in the dataset, no obvious
texture characteristics were apparent that couttlyebe directly exploited for feature

selection.

In similar research Petroet al. [Petrou07] concluded that the best approach was t
perform automated feature selection on a large geeeral thousand) set of features.
Here we also follow this approach. Thus our fasterion for feature selection is the

availability of a large feature set.
In this chapter we examine four feature familiesl@tail and select one for use in the

texture retrieval experiments. However, before digcuss these features, we first

present the major criteria used in this selection.
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5.2 Feature Selection Criteria

The perceptual dimensions investigated in Chapter fid not lead to any dominant
texture feature set that can be exploited for textepresentation and mainly retrieval.
In order to avoid any bias in selecting texturecdgsors and to allow any retrieval
model the freedom to select its own relevant femtua large soup of features is more
appropriate for representing the texture sampleghbevestigated.

Moreover, the feature set used within the scopthisfthesis needs to be one that has
already been investigated and well describedeénditire, i.e. no new feature description
method will be investigated. In order to come ughwsome potential feature
descriptors, a number of feature selection critereadeveloped. These are explained in

the remainder of this section.

5.2.1 Phase sensitive features

It has already been demonstrated that the phas#ramecontains most or all of the
structural information in an image. The phase Spet is very important in
determining the placement of bright and dark spotsiages. The complex cells in the
primary visual cortex are very sensitive to thisikiof information [Hubel68 &
Haynes04], thus the phase information contributemeénsely in helping people to
recognise and interpret objects within an imagéis Ean be illustrated by Figure 5.1,
which shows a checkerboard image together witmignitude only and phase only
reconstructions. Even if the magnitude only imhgs the same variance as the original
image, it appears to be visually different from dnigginal checkerboard image, whereas
the phase only image can be “visually” classifisdrathe same category as the original

one due to the main structural information stilingepresent.

)

(@)

Figure 5.1 - Magnitude only, (b), and phase onty, (epresentations of a
checkerboard, (a)
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In order to be able to reliably discriminate betweldferent texture images or surfaces,
it is important that the features or feature setseim to represent those textures be able
to encode not only the magnitude information in thege but also the phase

information.

5.2.2 Power Spectrum sensitive features

The power spectrum has been extensively used t@semt textures since different
textures normally generate different energy distidns in the frequency domain, and
that variation can be very easily and efficienthptured within the power spectrum,
which represents the strength of each spatial éequ Hence, if the spatial frequency
domain is sliced appropriately, it is possible &present different textures using

different spectral energy signatures.

5.2.3 Position independent features

One type of invariance that we require from theuess used is position invariance.
Position or translation invariance has mostly bassociated with features for object
recognition. The human visual system already msesea highly developed ability to
fixate objects of interests and hence influencelarity judgements whenever position
independence is concerned. Thus, when human ssibgge presented with two

samples composed of the same texture primitivesdisglaced by a certain amount,
they can readily associate the two samples as b&@mdar, as long as the texture
primitives are not distorted and the placementsridee preserved. Making such a
judgment requires no such effort on behalf of a &ansubject, however finding

invariant descriptors to mimic human behaviour r@®aa constant struggle for

researchers.

5.2.4 Generating large pool of features

Using learning models to build retrieval systemfigy new to the CBIR community
and has really gained interest within the last fygars or so. However, the use of
computational features to describe textures catmdoed back more than two decades.
Most of the features applied in the field of teetuprocessing can be related to
segmentation of either stationary or non-stationtgyture images. Due to the
subjectivity of human perception, we noticed thsoagtion of low-level features with
high level descriptors such as directionality, seaess, regularity and so on. However,
this has not helped to reduce the semantic gapeiists between how humans perceive
different categories of textures and the way a agatpnal model emulates the human

judgment. One of the main reasons lies in thetfeattwe are not able to understand the
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mechanisms that the human brain employs in desgibnd discriminating textures.
Likewise, associating high-level features with ataie type of texture helps only in
limiting the way of “computationally describing” ah texture [Petrou07]. Thus, the
smaller the number of features employed, the gretdie prejudice or bias in
representing the different texture categories.orkber to reduce those prejudices, we
start from the idea that we don’'t know what thehHigvel descriptions are for the
available textures. We assume that any low-levaelufes required to represent these
high-level descriptions would be made availablarfra very large pool of features
extracted from the texture samples. Hence anyilegmmodel applied would use this
huge set of features to train a retrieval systeat girovides the same decisions as

humans do.

5.2.5 Avoiding Redundant Features or Feature Sets

Approaches that use combinations of feature extractechniques are common.

However, this strategy can introduce irrelevancd eedundancy within the set of

features available [YuO3]. Irrelevance as defimedYuO4] can only be determined

when learning the retrieval system, and cannot \s@dad at the stage of feature
extraction if a large set of features is requirddedundancy, on the other hand can
either be considered as the presence of highlyeleded features, or otherwise the
presence of two or more relevant features thatributé in the same way to describe a
given texture characteristic. Redundant featursonly increase the computational
complexity of a retrieval system, but also degrdde performance of the system.
Ideally we want features that are orthogonal shelh ¢thanges in any particular feature

do not trigger a change in any other feature sedettt represent the texture samples.

5.2.6 Features that are inexpensive and simple to compute
This characteristic is required because of theipusvcriterion that we require large

feature sets.
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5.3 Investigating Feature Extraction Methods

Using the criteria described in the previous sectwwe now investigate four feature sets
in more detail. These are:

(1) Local Binary Patterns,

(2) Gabor wavelets,

(3) Synthesis features of Simoncelli and Portilla, and,

(4) Trace Transform features.
Local Binary Patterns were selected because of thaularity in the literature and
their non-linear characteristics [Ojala96].
Gabor wavelets were selected, again because ofekieinsive use in the literature, and
for the more limited use of ‘Gabor phase’ [BovikQ@ppenheim91].
Simoncelli and Portilla’s features were selectedabise of their excellent performance
for synthesis of phase rich imagery [Simoncelli9®&ttilla00].
Trace transforms were selected because they haveused in similar work reported by
Petrouet al.[PetrouQ7].

5.3.1 Local Binary Patterns

Local Binary Pattern (LBP) operators generate lyicades that describe how the local
texture pattern is built and was first introducedaacomplementary measure for local
image contrast [Ojala96]. LBP operators are vespypar because they are fast to
compute and are also invariant to monotonic chamggeey-scale.

LBP operators label each pixel of an image by usin®l by N mask to threshold the

neighbourhood around each pixel. The result of thresholding operation is a local
binary pattern which is interpreted as a binary bem Occurrences of different

patterns are aggregated into a histogram anddmssfthe texture descriptor.

Threshold Multiply
\4 \ A /
8 10 12 1 1 1 1 2 4 1 2 4
6 8 14 0 1 8 16 0 16
4 2 8 0 0 1 32 64 128 0 0 128

LBP=1+2+4+16+128=151

Figure 5.2 - Original LBP operator with associategights
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Figure 5.2 shows how the binary codes are computesh a 3*3 mask is applied. A
predetermined mask of weight is applied to the Hyineode obtained from the
thresholding process to generate a unique LBP reatln order to provide for rotation
invariant LBP features [Ojala02], circular symmetrneighbourhood sets are used as

shown in Figure 5.3 .
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P=8, R=1.0 P=12, R=2.5 P=16, R=4.0

Figure 5.3 - Circular symmetric neighbour sets ugederated at three different scales

In addition to providing rotation invariance, vargithe number of sampleB, and the
radii, R, of the neighbour sets allow the extraction of tieohle LBP codes. The
operators used to generate multiscale codes aretetbrby LBRr The use of
multiscale neighbour sets can result in LBP hisiogg of containing very large
numbers of bins.

To reduce the size of the histograms Ogtlal. [Ojala02] proposed the use of the so-
called “uniform patterns”. These are based on asme of uniformity that depends on

the number of 1/0 or 0/1 transitions in the pagern

Strengths of LBPs
LBP operators are simple to design and implemdrite operators can be specifically
tuned by the use of “uniform patterns” to represdifferent image primitives such as

lines, corners, joints etc...More importantly, theg aomputationally cheap.

Weaknesses of LBPs
1) If used in its original form, i.e. features extedtion a 3 x 3 neighbourhood, LBP
operators cannot capture large-scale featuresmtigixtures.
2) The operator is also not very robust to local clesngp texture, such as those
originating from variations in illumination direots; however, this limitation

can be ignored since we deal with a controllednihation environment.
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3) The use of multiscale LBP operators may resultparse sampling of a 2D
texture plane, which may not result in an adeqegteesentation of the texture.

4) Moreover, sampling, as exploited by LBP operatoray mesult in aliasing
effects.

5) Using the full LBP patterns can result in histogsawith a large number of bins
(e.g. 2° bins for a 16 bit pattern).

6) Uniform patterns containing 2 transitions have pavto be successful in the
literature for texture analysis however, with theesof the histograms reduced
considerably; the feature vector may not be largrigh for retrieval purposes.

There is little information available in the littmge concerning how LBP operators react
to changes in phase and position. We have appledBR; ; operator to a randomly
selected Tex1 texture (T89 selected here) and igtegnams are recorded for (1) the
original texture (2) with its phase randomised g@)l with the intensity values
translated in a circular manner. The results tbbih LBP histograms generated by the
operator LBR; are presented in Figure 5.4.

1.00 -~ W Original
0.90 ® Position
0.80 Phase

0.70 -

0.60
0.50
0.40
0.30
0.20
0.10
0.00

Normalised feature value

e

Bin Number

Figure 5.4 — Variation of histogram values for wiegrerator LBR ; is applied to
texture T89

We notice that this LBP operator is both positindependent and phase sensitive. This

makes LBPs a potential candidate.
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5.3.2 Gabor features (Phase and power spectrum features)

Gabor wavelets have been extensively used in exegmentation due to the fact that
they allow multi resolution (or multi spectral) a@seposition through proper tuning of
their orientations and radial frequencies due & tlocalisation capabilities both in the
spatial and spatial frequency domains. Thus tlaeybe designed to be highly selective
in both position and frequency. However Gaboefgtgained much more importance
with research showing that the Human Visual Systpnocesses images by
decomposing them into a number of subbands. Thayde similar characteristics and
allow them to “mimic” the Human Visual System [C&0]. Multiresolution filtering
techniques have extended the use of Gabor waveleisder to cover areas such as
texture image retrieval and classification [Porag88Bovik90].

Given their joint spatial/spatial-frequency locatisn capabilities, sets of Gabor filters
have been used both in the spatial domain andpthigasfrequency domain. Figure 5.5

shows representations of Gabor filters in bothsibetial and frequential domains.

Figure 5.5 - (top row) spatial representation cdlédr wavelet pair, and
(bottom row), corresponding frequency domain repnéation

Gabor filter outputs have been used in differengssta provide texture features. While
some people have computed the moments of theldison of the responses in the
spatial domain, others extracted features by crgaeometrical (and central) moments
based in the spatial-frequency domain [Bigun94]extiire features have also been
computed from the magnitude response of Gabor quad@r filters [Bovik90], or just

from the real component [Jain91].
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In order to achieve optimal separation of textweatdires and thus provide for robust
texture representation, multichannel texture prsiogs has been proposed in the
literature [Randen99]. Filter banks that allow fregquency spectrum of any textured
image to be decomposed into a given number of sudsbeesulting in different feature

signatures for different textures have been heasxigloited. The most popular filter

banks encountered in literature are the dyadic Galber banks. An example of such a
filter bank is illustrated in Figure 5.6.

Figure 5.6 - Dyadic Gabor filter bank with 4 oriexions
and 3 frequencies

Strengths of Gabor features
1) They appear to share common Human Visual Systemepies and have been
exploited to simulate the way it functions.
2) They are localisable both in space and frequenay lzve been exploited
heavily in detecting approximate basis sets forédpeesentation of textures.
3) They can be oriented and tuned such that they saeidge and line detectors.

Hence their significant use in texture segmentation

Weaknesses of Gabor features

In their basic form they only extract power speetrunformation. Gabor phase
[DuBuf90, DuBuf9l & Oppenheim9l] has been used sssftlly for segmentation
purposes. However, their use for classificationd(aetrieval) purposes suffers from

position sensitivity.
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5.3.3 Simoncelli's features

The model presented by Portilla and Simoncelli {iR@a@0] follows a number of texture
models that are based on the application of onehtear kernels at multiple spatial
scales for representation and synthesis. Howeher,use of orthogonal separable
wavelet decompositions for texture analysis andth@sis exposed a number of
limitations. These were the inability of the waatsl to capture extended contour
information and large scale structures.

To overcome those limitations, Simoncadli al. presented their universal parametric
model for texture representation. The latter madddased on the use of directional
derivative operators of any desired order in thenfof steerable filters [Simoncelli95].
The most important characteristic of the steergiyeamids is that through polar-
separable decomposition in the frequency domairy th#ow for independent
representations of scale and orientation. Figureilfustrates the steerable filters at

different scales and orientations.

Figure 5.7 - Steerable filters at 2 different otiations and scales

Simoncelliet al. compute the features of their parametric modeherresponse images
obtained after applying a pyramid of steerableeffdtto the original image. The
responses can be representedll ggyramids of response images whbreepresents the

number of orientations at which the filters werelggal. Each pyramid, in turn, is

composed oM images at different scales.

The pyramidal representation of the responsesrfenpeed in the spatial domain where
images at each scale and orientation are compligx,real and imaginary parts being
quadrature pairs (due to the application of a Hiltensform while computing the

filtered image in the frequency domain).
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Simoncelliet al’s features are derived from fixed overcompletdthrazale complex
wavelet representations. The features are basetieopairs of wavelet coefficients
computed for adjacent spatial locations, orienteti@nd scales. The features are
computed either on the local magnitude informat@mnon the real and imaginary

coefficients of quadrature pairs in the spatial dom

The features used by Simonce#it al in the analysis and synthesis of textures
[Portilla00] are as follows:

1) Global Marginal Statistics extracted from the isiéninformation of images or
height information of surfaces. Feature vector poses of mean, variance,
skewness, kurtosis and range of distribution.

2) Mean magnitude information of filtered imagedNeatcales ant! orientations.

3) Autocorrelation features based on the subband deesition of each
subsampled image.

4) Cross Correlation of magnitude information at dif& scales.

5) Cross Correlation of phase information at differecdles

Strengths of Simoncelli features

The use of oriented linear filters at multiple spascales allows the encoding of
maximum information within the spatial domain.

Additionally, the model can generate large featse¢s based on the raw wavelet

coefficients computed at varying scales and orterta.

Weaknesses

Simoncelli's features are based on overcompleteeleawepresentations and contain
considerable redundancy. The set is non-adaptspedafic texture categories and they
are not able to explain which feature set is mamidant for which category of texture.

The multi-scale wavelet representation to compiie feature is a complex and
inappropriate when texture retrieval from largeadats is considered. However, the
biggest disadvantage for use here is that manhebhase sensitive features are also

position sensitive.

96



5.3.4 Trace Transform features

The Trace Transform is a procedure through whittipée transformation applied to a
surface, S, within a given coordinate system, Gulte in a scalar value that acts as a
signature for that surface. This transform oritgsarom the fact that a 2D function can
be fully reconstructed if knowledge of its integralong straight lines defined in the
spatial domain representing the signal is availablée Trace Transform is in fact a
generalisation of the Radon Transform that has lseenessfully applied in the field of
computer tomography [Kadyrov01]. Figure %8 and (b) illustrate the geometry for

both the trace and the radon transforms.

(@)

Figure 5.8- (a) Parameters associated with a trgdine, (b)
Converting 2D surface to a 1D function

Tracing linest are drawn at different values sfandp. @ represents the angle that the

normal, joining the tracing line from the originakes with the horizontal axis; whereas
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p is the length of the normal that joins the origimd the tracing line. The functionals
applied along the tracing lines are known adithee functionals

In the case of the Radon Transform, the trace fomals are only integrals over the
parametet, whereas for the Trace Transform, these functgoah take any formp is
sampled in such a way that the tracing lines arallehto each other when a particular
value of g is considered and the result, after applying amitunctional, is a 1D
function as shown in Figure 5.8(b). Applying theade Transform for different values
of g leads to a 2D function of variablesandp. @is sampled in the range [Oz]2andp
lies within the range-pmax Pmad, Wherepmax is limited to half diagonal length of the
surface considered.

Given that we are dealing with discretised valuely,ahe 2D function resulting from
the Trace Transform can be represented as a 20xnveth the change along the
columns representing the changepiand the change along the rows representing the
change ing. Another functional, P, can then be applied altreg columns of the 2D
function which results in a 1D function represegtonly the changes in the valueaf
A third functional® along the resultant 1D function generates a scallre which is
used as a feature for the surface considered.

The whole process is presented as the Triple Featomstruction by Kadyroet al
[KadyrovOl & Kadyrov02]. In addition to the tradenctionals, T, the P functionals
have been referred to as ti@ametric functionalsand thed functionals are referred to
as thecircus functionals Assuming that different functionals can be aggplior T, P

and®, the scalar value generated can be representbd form
= @'(P(TS(C; 2, p. 1)) (5.3)

Figure 5.9 shows the process of computing featliréor texture T76 (Figure 5.9(a))
from the Tex1 dataset. The trace functionals aggie illustrative purpose in this case
corresponds to integrals over the paramgténding the maximum over parameter
and finding the integral ovexr.
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Figure 5.9 - Triple feature construction from origi texture (a), to2D function (b), and
transformed to a 1D function (c). The final ressla scalar obtained from (c)

Strengths of the Trace Transform (TT) features

The main advantage of the TT feature set is thatatvs the generation of thousands of
features by varying the type of functionals used toe T, P and® transforms.
Furthermore, TT has already been utilised in agumt@al context to learn how human
rank different categories of textures [Petrou07].

Moreover, functionals T, P an@l can be selectively chosen so that the resultant TT

features are invariant to rotation, translation scaling transformations [Kadyrov01].
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Weaknesses

The capability, by the TT, to generate thousandsatures comes with the drawback of
large memory utilisation while computing for vergrge feature sets and significant
storage on hard disk for later use.

Kadyrov et al provide functionals that cater for both phasesswtity and position
dependence [Kadyrov01].

100



5.4 Feature Set Selectio

The investigation performed in the previous sectbaborated on the strengths ¢
weaknesses of some commonly used texture featuracan approacheTable 5.1
summarises theharacteristic of each feature setith respect to the selection crite

presented in Sectidnz.

Criteria
Position Phase Power No Inexpensive | Large
independent | sensitive | Spectrum Redundancy | and Simple Pool

Multi-scale

L8P 4 4 4 X v | K

Gabor rower ‘f g J x J x
el XK A % X 4 | R
Simoncelli x J J x x "

Trace

Transform Q’ J J J J Q’

Features

Table 5.1 -Eligibility of selected features with respect tmsén criteria ' 4 means eligible
and X means ineligible.

LBP features are good candidatestexture representation and have been succes
applied for segmentation and classification purposéowever, the use of unifor
patterns reduces the size of the LBP histogramsttaungl results in feature vectors i
small for texture representation. the full LBP code is used as a separate signe
then the size of the histograms becomes too big {ea 16 bit codes) and tt
representation is too sparse. Thus LBP codes hese ot been considered within t
thesis.

Gabor phase and power featt are still very popularhoweverthe phase sensitive
features are position dependent and cannot behese

Simoncelli features have also been rejected becthese do not provideposition
independent feature

Finally, we haveselecte Trace Transfornfieatures to represent the textuiln addition
to being able to generate considerably large featet® she TT featureare easy to
compute and depending on the size of the featw®nehey are relatively inexpensi
Functionals that capture powand phase spectrum information are providecthe
literature [KadyrovOl] and the TT features providesariance to several affir

transformations [Petrou04], of which position indegdence isone. A limited set of
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functionals based on the ones proposed by Kadgtal. [Kadyrov02] is provided in
Appendix E.

5.4.1 Feature Normalisation

Dealing with large a pool of features or sets aitdiees inevitably leads to variation in
the span of the different features considered. iGthat, within the scope of this thesis,
the Similarity between two textures is obtainedapyplying a distance function, it is
important that the distance value computed is rwhidated by features with wide
value ranges. Thus, feature normalisation is peréal on all the extracted features such
that each feature contributes more or less equalthe final distance measure. After
considering several normalisation procedures [AR§pythe one that has been applied
linearly transforms all the features to have zeeamand unit variance. Furthermore,
assuming the features to be normally distributeel perform an additional scaling and
shifting of the features values such that all #etdires are found within the range [0, 1].

The transformation is performed as follows:

Jzz(x—,u)2/30+1 (5.4)

5.5 Conclusion

The objective, in this chapter, was to select alchate set of texture features to be used
to map the MoMA and Tex1 textures from the 4D ppteal spaces derived in Chapter

four to a 4D feature space that could be expldibedexture retrieval.

An investigation into four commonly used texturatige extraction approaches was
performed and we arrived at the conclusion thafTitaee Transform features were the

most appropriate texture features for use in teearch described in this thesis.
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Chapter 6

Surface Texture Retrieval

6.1 Introduction

The goal of this chapter is to use the psychophysiata presented in Chapter four
together with the pool of Trace transform featudestified in Chapter five to develop
retrieval systems for both the Tex1 and MoMA dasaisa

Given the high dimensionality of the original psgphysical data the first task is to
reduce this “Full Perceptual Space” to a more meablg “Reduced Perceptual Space”.
Chapter four described the use of MDS for this pag) however, the resulting stress
graphs showed a gradual degradation, making satecti an optimal dimensionality
difficult. It concluded that the selection of dinstonality is best determined with
reference to the application. The first part abthhapter therefore investigates the

effects of reducing dimensionality on optimal rewal performance.

Having determined the complexity of the space negufor a given retrieval capability
the task is to map these Reduced Perceptual Spates set of texture features that
can be used to perform automated retrieval. Adtalysing the characteristics of the
resulting “MDS derived Feature Spaces” (MFS), aeseof retrieval experiments was

conducted and their performances evaluated.

A simple alternative to this dimensionality redoctiapproach would be to use the Full
Perceptual Space directly.
Thus the objectives of this chapter are:
i) to determine the dimensionality required of peraaptexture spaces for a given
retrieval performance level,
i) to map these Reduced Perceptual Spaces ontolsdgahure spaces,
i) to evaluate the performance of retrieval systerasdkploit these feature spaces,
and,
iv) to compare this approach with a more direct mettiad employs the Full

Perceptual Space.
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PART |I: MFS Based Texture Retrieval
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6.2 Overview of the development and retrieval processes

This section provides an overview of the four staigeolved in the development of the
retrieval systems and their operation as showniguré 6.1. This is provided for

reference throughout the rest of Part I.

Full Perceptual Space (FPS) Reduced Perceptual Space (RPS)

I: Dimensionality
Reduction using
MDS

N-dimensional space

representing N*N Similarity II: Perform
Matrix @Mapping

A

\ 4

Pool of features

11l: Determine Query
Feature Vector

Query texture

IV: Extract the N
nearest textures

MDS derived Feature
Space (MFS)

Figure 6.1-The four main stages of the proposed M&x&d Retrieval Model
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The four stages of are listed below.

(1

(I

(Il1)

(V)

MDS is used to reduce the dimensionality of thell‘Rerceptual Space’
(FPS) obtained from the psychophysical experimenggoduce a ‘Reduced
Perceptual Space’ (RPS).

Feature selection and regression analysis aretaggoduce a feature space
that approximates the RPS. This may be thoughsd ‘prediction model’

l.e. given the height map of a texture, can we tige feature space to
predict the texture’s position in RPS. We terns $pace the ‘MDS derived

Feature Space’ or MFS for short.

In order to process a query, the feature vectothef query surface is

calculated in this new feature space (the MFS).

The query’s feature vector is used to retrieverthearest textures in MFS.
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6.3 Stage | — Determining the number of perceptual dimesions to

be used for retrieval

In chapter four we used MDS to reduce the Full ®&gxeal Spaces (which comprised
high-dimensional sparsely sampled similarity masjcdo Reduced Perceptual Spaces.
As demonstrated by the low stress values in Figut8, the mapping allowed most of
the relevant information to be captured within tigkely low-dimensional spaces.
However, due the smoothness of these stress graples difficult to pick a single
dimensionality that would best represent the dédamed we concluded that this choice
is generally application dependent.

The purpose of producing a low-dimensional RP® iset able to fit a prediction model
(the MES) to that space that would allow us to quenf effective retrieval. If the
number of dimensions is too large, the data sanaliaén that space become too sparse
and it becomes difficult to fit a reliable predari model. On the other hand, if the
number of dimensions is too small then there isdteger that we will discard pertinent
information and reduce the performance of theeeali system to below that deemed to

be acceptable.

Our strategy is therefore to assess the suitalofififferent RPS directly by using them
for retrieval. We make use of ‘precision’ as a mga of their retrieval performance
and choose the RPS dimensionality that providemlgei retrieval rates. Of course as
the ‘prediction model’ represented by MFS is approximationto the RPS, the
automated retrieval system constructed using dcpkat RPS is likely to produce a
lower performance than one that would be providedhe RPS itself. However, the
MFS has the advantage that it may be used withygegtures that were not included in
the original psychophysical experiments whereaffh8 cannot.

Precision [Salton68], within the Information Rewad community, is normally defined
as follows:

No.of Relevant Samples Retrieved

Precision=
! No.of Samples Retrieved

Although we will use precision to evaluate retrieparformance at a later stage in this
chapter, we are presently going to use it to ags@sschange in dimensionality of RPS

can affect retrieval rate.
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The precision for each query object (or textupewithin the Tex1l or MOMA dataset
Q = {04,0,,..,0y } iIs computed separately and the average precisi@omputed for
the RPS dimensionality considered. The processrejgeated for increasing

dimensionality of RPS.

The following procedure was used to derive the ayermrecision of retrieval for RPS

over a range of dimensionality

1. For every object (texturd); from Q, extract all of the remaining textures
in order of their proximity ta; within the FPS to provide the ordered
retrieval setR:. Repeat using all members @fas the queryin turn to
provide the ‘gold stand’ retrievak} for each texture.

2. Initialise d to 1,

3. Use MDS to compute the RPS (i.e. the distance mafrithe objects
{04,0,, ..., 0y }) of dimensionalityd

4. Repeat step 1 for the RPS of dimensionalitio produce the set of
retrievalsR; .

5. Compare alR};, with correspondingk}, to obtain the number of common

textures for specific retrieval numbers and diviigenumber of retrievals

considered,
6. Compute the average precision for the all the abjed).
7. Incrementd and repeat from step 3.

6.3.1 Results of the analysis of Reduced Perceptual SpadePS)

Figure 6.2 (a) and (b) show the retrieval precisifor the Tex1l and MoMA datasets
respectively. Precision rates were determinedgugive RPS for each dataset, with
dimensions of the RPS ranging between one andefiifte Precision values were
computed for retrievals of the first 10, 20 andsa@nples for each dataset.

We can observe, from Figure 6.2, that the precisies converge quickly to 1 for both
the Tex1 and the MOMA datasets. They show thateixfor Tex1 ten sample retrieval
case, we can achieve precision rates above 909 adour-dimensional RPS (i.d.=
4).
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Additionally, the rate of convergence is faster fioe MOMA dataset and this can be
explained by the fact that there are fewer vanetiin the texture samples for that
dataset. Consequently a 3D RPS would be equalgnmeful for the MoOMA dataset
i.e. whend = 3. However for the analysis and evaluation & MoMA and Tex1
datasets, a common dimensionality, de. 4, is used throughout this chapter.
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Figure 6.2- Graph of precision versus dimensionali) precision for Tex1 (b) for
MOMA dataset

109



6.4 Stage Il — Producing an RPS to MFS mapping using
regression analysis

Recent developments in fields of machine learncmnputer vision and cognitive
science have seen the use of thousands of feaaxteacted on relatively few samples,
to build predictors or classifiers that could beedigo predict outcomes of future or
unknown observations. This concept, mostly applhefields such as genomic studies,
is of particular interest within the scope of tiesearch given the similar challenges
presented [Molinaro05]. As in the case of genosticlies [Molinaro05], we have also
considered that a very large pool of features wilable a better mapping of the
perceived similarities represented in the RPS. &l@n, the number of texture samples
used in the psychophysical experiments had to Ip¢ lkev due to the practicality of
experiments with human observers.

Hence the retrieval framework presented in Figulleviews the retrieval process as a
prediction problem where a query texture is regaae an ‘unknown’ observation and
the outcomes of the prediction model are consideyduk the retrieval results in terms
of decreasing similarity. The mapping of the tegtsamples to the feature space
(MFES) is performed using the reduced dimension&iBS. This section thus presents

stage Il from the retrieval framework (see Figurk) 6

6.4.1 The Prediction Model

To model the prediction problem, we assume khdexture samples used in the
psychophysical study are characterised by a sHtfeature vectorX = {x,,x,, ..., Xy} .

Each feature vector contaihgeature measures that have been computed dirfectty

the texture samples and are representeg as(x}, x7, ..., x/).
The prediction problem can thus be modelled infoine of:

y=gX)+ ¢ (6.1)
wheree is the error ang = (y,, v,, ..., yny) provides the axes of the MFS. The problem
therefore is to determine the functigiX) such that the resulting MFS(Y) approximates
its RPS.
The formulation provided in equation (6.1) is anst@ard regression problem.
Regression analysis has been used extensivelyréoligion purposes in the field of

sales forecasting, dendroclimatology and othersthiwthe context of texture retrieval,
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work that has used regression analysis to tragtreeval model and for the prediction of
retrieval results is scarce. Long and Leow [Lorjg@ded a hybrid model based on a
combination of neural networks and Support Vect@cMnes to perform invariant and
perceptual mapping of textures. Long and Leow'slehanvolves a complex setup and
their training algorithm is not clearly defined. h& authors do not provide any
indication of how an unknown texture sample coutdnbapped within their invariant
space first and thereafter to the perceptual spabkoreover, the psychophysical
experiment performed by Long and Leow is similatite one performed by Rao and
Lohse [Ra093a], in that they also make use of Bmotixture images. We have already
discussed in Chapter two that the use of Brodatzites is not likely to produce either
reliable psychophysical results or reliable featueetors. Hence the validity of Long
and Leow’s model must be questioned.
Given that MDS produces linear uncorrelated axes,have decided to model the
relationship betweeg and X one dimension at a time and to do this using glem
linear regression function. Thus we assume thactordinatey; of a given texture T
in a particular axis of the MFS can be modelledhgs linear combination of features
as in equation 6.2:

Vi = Bo+ Buxl + Boxf + -+ Brxf (6.2)
whereg = {,, 81, ..., B} is the vector of regression coefficients.
Using a least squares loss function, the regressmefficients are optimised by

minimising the square error function:

R(B) = >3 (yi — f(xi, B))° (6.3)
Thus:

B= (X"X) 'XTy (6.4)
The regression coefficients, computed using egnaf4), are stored and used to
estimate the location of the dataset textures withe MFS. The same coefficients are
used to estimate the location of a query textuthiwithe MFS, with different values
for the selected features. The retrieval procegsist a matter of finding the nearest
neighbours of the query texture within the MFS.
As we described in Chapter five, we have chosenTitage Transform (TT) as the
source of our features as it provides a pool oés®thousand measures (we use 3136 ).
The reason is that a large set is likely to inceett®e probability of being able to

produce an accurate mapping of the MFS to the RPS.
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However, it will also include many irrelevant feeds and this brings two practical
problems:
1. including irrelevant features in the learning pssécreases the computational
cost, and
2. irrelevant features detract from the accuracy @f pinediction model as they
introduce more noise.

The feature selection process is discussed inl dietidie next section.

6.4.2 Feature Selection

Feature selection is a central problem in mach&@ening and statistics and is being
actively researched mainly due to its importancehie area of data mining. In the
context of regression and specifically within tle®e of this thesis, feature selection
will be applied for the following reasons:
a. to perform retrieval at a lower computational cbgtretaining only ‘relevant’
variables,
b. to enhance predictive accuracy of the retrieval ehdxy eliminating irrelevant
features, and,
c. to eliminate the effects of correlated featureshimitthe regression model by
removing features which are highly correlated vwathre dominant ones.
Literature provides three different categories edtiire selection methods, namely (1)
filter methods, (2) wrapper methods, and (3) embddaiethods [Blum97 & Liu05].
Filter methods basically use some intrinsic propeit the data (textures) in order to
select features and do not require knowledge ofléaming algorithm to be applied.
Wrapper methods, on the other hand, apply the ilegralgorithm to each feature or
feature set and then use the estimated accuradlieofearning algorithm to select
relevant features. Finally, embedded methodshas hame suggests, integrate the
feature selection process inside the learning #hgor where some features are
preferred instead of others and possibly not inolycll the features available in the
learning process [Liu05].
With the high number of features involved a bruiesé selection that exhaustively
evaluates all possible combinations of the inpatuees to find the best subset can be
ruled out straightaway. A wrapper approach is namaropriate for the current research

since we want to select features based on how tejl can approximate perceptual
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similarities. Two selection procedures that amemnly used for feature selection are
(1) the forward selection algorithm and (2) the Kveard elimination algorithm.
Forward selection algorithms proceed by addingeaath stage, a feature to a set of
features selected at previous stages such thatréggction error is minimised. On the
other hand, backward elimination starts with a &dt of features and eliminates one
feature at each successive stage in order to rebdagaediction error.

Given the large number of features involved, fodvselection has been preferred given
that the first stage already provides the most danti feature and fewer iterations
would be required to fit the model. Additionall@ross Validation has been used to

alleviate the problem of overfitting.

6.4.3 Cross-Validation

Overfitting occurs when the learning algorithm fitee dataset too well, resulting in

poor predictions of unknown samples. To avoid bitgrg a hold-out strategy has been

commonly used in literature [Kohavi95]. The holdtstrategy involves setting aside

instances of a dataset that are not shown to thmnitegy algorithm and using the

remaining subset to fit the prediction model. Hubset that is set aside is called the
test or hold-out set and the one used to fit thdehis called the training set.

Cross Validation (CV) is a hold-out approach thas proved reliable in different areas
of classification and regression [Kohavi95] andl\w# considered within the scope of

this thesis. Several CV techniques have beenléetai literature; however, we have

investigated two specific techniquek-fold CV’ and ‘Leave-One-Out CV’.

K-fold Cross Validation

In K-fold CV the dataset is divided intd subsets of roughly the same size. The
training set is then assigned to all bar one of Khpartitions with the omitted one
attributed to the test set. In such a case thdigiten model is tested with data
unknown to the training set, but that follows tlzeng distribution as the training set.
This process is performd€l times with each one of the partitions acting as the test
set. Henc&K models are generated with each model producingfereht prediction
error value. The model with the lowest error isduto represent the dataset.

The prediction error is computed as follows:

K
R(B) = ¢ ;Mik > (- f(xo B)) (6.5)

ieSk
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where: s, represents the test data at Itﬁestep (i.e. when thig" partition is used).

M, is the size of the test set whergisS®) is the set of regression coefficients
estimated using the remaining1 partitions used as training data, i.e. omittthg
samples,,.

The feature that allows the prediction model toegate the smallest error is selected.
Using the forward selection process, #idold CV is used iteratively to determine a
new relevant feature at successive iterations. |@&ing process is aborted when the
addition of new features does not reduce the ptiedierror by a significant amount.
The variant ofK-fold CV that is quite popular in literature is th6-fold CV and is the

one that has been implemented here.

Figure 6.3 shows the way in which the datasetlis &pd also how the training and test
data sets are created. The split is done in aesgigh manner, independent of the
position of the samples in the RPS. Each partit®rnused as the test set and
consequently the remaining partitions are mergegive the training set. In this way,

all the samples are used both for training andnggiurposes, however no sample is

considered for both processes at the same time.

Figure 6.3 — Diagram showing selection of test @sdhcell) and
training data for 10-fold CV

Thus we perform feature selection using 10-fold €&whbined with forward step-wise
feature selection. First we apply 10-fold CV td pbssible (3136) single feature
predictors. For each predictor the average priedictrror is computed over the 10
different test data sets. The feature that geeértéie minimum average prediction error

is removed from the feature pool and retained;ador texture T) .

Each feature of the reduced pool (3165 featuresis tested in combination witk'.

That is the task is to determine the second feaxirérom the pool that produces the

best predictory; = B, + B1x; + B,x? for the dimension considered. The feature
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selection process is repeated £9r x;* etc. until the addition of a new feature does not
cause significant change to the prediction error.
This process is repeated for each dimensiondependently. This is summarised

below:

Algorithm for computing prediction error using K-fold CV
For (=1 ...N) features
For k=1 ...K) partitions
Select partition k as the test partition
Merge the remaining k-1 partitions to create theining set
Apply multiple linear regression to the training $& estimate
regression parameters
Use estimated parameters to estimate coordinatp@ese)
Compute the prediction error from each test set
End
Compute average prediction error for each feature
End
Select the feature with the minimum average error
REPEAT the process for additional ‘meaningful’ teat

REPEAT the whole process for each perceptual dilmens

The way in whichK-fold CV has been used in this chapter makes ftemper option to
estimate the prediction error, given than only Hitipons are considered. Many
researchers have adopted this cheap option byr eiflirgK successive partitions &t
random partitions; however, this option does noargotee that the test partitions
selected would give the best prediction error.fakt, for optimal prediction using-
fold CV, all the different combinations of selegjia test partition should be explored.

If we consider the 10-fold CV case and that theITdataset is being trained, then the

120

number of ways in which a test partition could bkested ig*

, Where 120 is the size
of the Tex1 dataset and 12 is the size of partitibhis amounts to a very large number
of combinations through which the partition cand@sen, thus clearly indicating the
high computational complexity of 10-fold CV.

Increasing the size of the test partition incredeescomputational complexity. Hence,

in order to keep the complexity as a low as possiWithout compromising the
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prediction capability of the regression model ustbe, Leave-One-Out CV has been

utilised to learn the prediction model.
Leave-One-Out Cross Validation (LOOCV)

LOOCYV is an extreme case Kffold CV with the number of partitions being equal
the size of the dataset. This implies that eagtute sample in the dataset acts as the
test data while the rest are used for training.e Pphediction error is now evaluated

using the error function provided in equation (6.6)

M
1 IPRY:
R() =+ Zl (ve - £ (x: BD)) (6.6)
l=
Hence the prediction error is computiedtimes, with each texture acting as test data

and the remaining/-1 as the training datap-? is the set of coefficients estimated

when the™ sample is omitted from the training set.

Using LOOCYV not only helps in preventing overfitiiof the prediction model, it also
helps to detect and eliminate (or ignore) outligmsn the training data. However,
correlated features of those already selectedcaessive stages of the forward selection
process will still remain in the list of features be considered and consequently

increases the processing time for the next staigiesature selection.

To eliminate the influence of highly correlated tteas and to speed up the process,
each time a feature is selected, its correlatidh thie remaining ones is computed. The
features that correlate highly with the selected are removed from the list of features
remaining to be evaluated. The Pearson correlatamfficient is evaluated for each
pair formed using the selected and remaining featur The Pearson correlation

coefficient,p;;, between any featureand another featujes given by

_ E(i,j)— EQE()
Pij = JE@-E2OEGD)-E2() (6.7)
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The algorithm for computing the prediction erroiings LOOCV and including the
correlation test is summarised as follows:

Algorithm for computing prediction error for LOOCV and with removal of highly
correlated features

For (=1 ...N) features
For (=1 ...M) samples
Select sample i as the test sample
Retain the remaining M-1 samples for training

Apply multiple linear regression to the training $& estimate
regression parameters

Use estimated parameters to estimate coordinatp(ese)
Compute prediction error
End

Compute average prediction error for each feature
End

Select the feature with the minimum average error

Remove all the features that have a high corretetiith selected feature {R
0.7)

REPEAT the process for additional ‘meaningful’ teat using modified feature
list

REPEAT the whole process for each perceptual dimens

The correlation constraint has also been appliethéoK-Fold algorithm presented
before.
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6.4.4 Model Selection to estimating MFS for Tex1 and MoMAdata sets

Both CV methods are used to train and validatetwlee datasets considered, i.e. Tex1
and MoMA. Figure 6.4 shows the average error whwn first four perceptual
dimensions are trained using the two CV methods nm#fentioned before, only one
particular setup was used for 10-Fold CV (i.e. ®mugcessive partitions). The learning
process was run to select a maximum of 10 relefeattires. The error for LOOCV is
considerably less than that for 10-Fold, suggesdtag the “best” possible subsets are
not chosen for the 10-Fold test and training sé©OCV was chosen for the learning
process on the basis that it generates lower gredierrors and does not require heavy

computational capabilities.
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Figure 6.4- Average error for LOOCV and 10-Fold @¥thods when training the
Tex1 dataset (top) and MoOMA dataset (bottom).
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Applying the above algorithm to each perceptual efigion results in a model that
estimates the RPS coordinates for each dimenslomnotitputs are:
e alist of relevant features (predictors); and,

e regression coefficients for each model.

Hence, assuming that a texture dataset can besesyieel byd perceptual dimensions,
then ad dimensional MFS can be mapped to the perceivedasities using a set af

regressors (linear equations) in the following way:

vl = B3 +Bixf® + Bixft ok Baft )
yi = B3 +BEx{ + BEx(" + o+ BEx(T
i = B8+ Bixi® + BEx 4 4 B

J

The set of equations (6.8) thus providiegrediction models where each model is used
to estimate the coordinates ... y? of the texturd in the individual dimensionsf, is

the number of features selected to map the MF&d@erceived similarities, whereas
a0,al,...,an are the indices of the selected features chosen the large pool of

features extracted.
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6.4.5 Determine the number of features for MFS mapping

As in the case of the RPS dimensionality, the lengjt the feature vector used to
compute they; values for each MFS dimension is determined usiiregprecision of
retrievals. Figure 6.5 (a) and (b) show how pieaigates vary with the number of
features used to approximate a 4D RPS for the GadIMoOMA sets respectively.
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Figure 6.5- Variation of precision with increasimgmber of features used to approximate a 4D
RPS for (a)the Tex1 dataset and (b)the MoMA dataset
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We notice from the figures that the precision ttilises at a relatively high number
of features for both datasets. This demonstradesdifficult it is to find representative
sets of features for the datasets, even thoughryalaege pool of Trace Transform
features is available.

However, the high prediction rates achieved shat e prediction model presented in
section 6.4 allows a good approximation of the RMScan be observed from Figure
6.5(a) that the precision rate starts to slowlylidecwhen the number of features is
increased beyond seventy-five, as in the case afeftieved samples. Thus feature
vectors containing 75 elements will be used to mm@pTex1 textures from the RPS to
the MFS. Similarly, Figure 6.5(b) indicates thaeature vector of length 65 provides

the best precision rates for the MoOMA textures.

6.4.6 Mapping results

Figure 6.6 and Figure 6.7 show scatter plots of Rf@8rdinates against MFS
coordinates for dimensions 1 to 4 for the Tex1 BuMA datasets respectively. Each
point within the scatter plots represents a texsammple. A prediction line is provided
to allow the reader to qualitatively assess thereke@f fit between the RPS and the
prediction model for each dimension.

It can be seen that, in the case of the Tex1 datdeeefit for all four RPS dimensions
improves as the number of features used to appairireach dimension is increased
from one, to twenty-five and then to a maximum eventy-five. This shows a high
level of variability within the Tex1 texture samgpléhat cannot be captured with only
two or three main dimensions.

The same cannot be said for the MoMA texturesatt be seen that the fit for the first
RPS dimension, given by row 1 from Figure 6.7, @ases considerably as the number
of features is increased to a maximum of sixty-fit¢owever, the fit for the other three
dimensions is not so clear due to the poor didivbuof samples within the spatial
configuration considered. In contrast to the Teddtaset, increasing the RPS
dimensionality for the MOMA dataset does not captsignificant variation among the
textures. The distributions of the samples appeéetmore compact for dimensionality
two and higher. This can be shown by the lengtthefprediction line which decreases

as the dimensionality of the MOMA RPS increases.
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With considerable variation among the texturesemeat high RPS dimensions for the
Tex1 dataset, it can be deduced that one or twermbions are not enough to map the
perceived similarities for the texture samples.r e MoMA dataset, most of the
variability within the textures is captured by timain dimension indicating a high level
of compactness. This observation was expectedeatextures provided by MoMA are

specialised and similar.
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Figure 6.6 — RPS (vertical axes) vs. MFS (horiabakes) values for Tex1 texture samples (rows
correspond to the first four dimensions, columrgs&3 correspond to increasing number of
features - 1, 25 and 75 respectively.

123



10 - 10 - . 10 - .
.. o i 4
. fo Cd
5 - . 54 | S s A
o . e © Z s ° e . LY /
yl r '..‘ .A : = : 1 f T .G.‘; ry - 1 r e Os L 1
° 1% o ° .. ° ' °
10 £ 0 T 10|10 A 10 [[-10 ¥ 10
o® “- ° ° YA .
et g % 5 - o A6 5 -
. o L &
-10 - -10 - -10 -
10 10 10
5 -
et
0103058
-10 10 (] -10 10 (| -10 10
-5 -
-10 - -10 - -10 -
10 10 10
5 1 5
y3 r - ; - 1 r 1 r Q . 1
-10 . 10 -10 10 -10 10
%5 - -5
-10 - -10 - -10 -
10 10 10
5 5 5
.f
y4 f " 1 f 2 v 1 r 1
-10 . 10 || -10 10 || -10 10
5 - 5 -
-10 - -10 - -10 -
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6.5 Stages Ill & IV — Query Feature Vector Calculation and
Texture Retrieval

The preceding sections have described how we dkfaeture spaces (MFS) for both
the MOMA and Tex1 data sets. Performing retriematesponse to a query now is

straightforward.

1. The required trace transform features are extrafieu the query texture and
normalised using the parameters applied to the evtialaset.
2. They; value of each the axes of the MFS is calculatedgusquation 6.2 to provide
the query feature vectgy,.
3. The n nearest textures tg, in the MFS are identified and returned using their
Euclidean distances.
The retrieval model is evaluated by investigatimgvhwell it responds when presented
with a query texture. No blind testing has beerfgpmed since the textures used for
testing the model have also been used in the tigstage.
To test the efficiency of the retrieval model, tiesults for retrievals from the MFS are
compared with the texture groupings performed bseolers. In section 6.2, precision
Is presented as a measure to determine the dinmatisyoof the RPS. Using the same
measure and the same procedure for its computatdn section 6.2, we investigate
how well the Trace Transform features have beee tbimap the MFS for the purpose
of retrieval. Each texture from the different datts is used as a query and the search is
performed in both the MFS and the FPS. The ralievodes corresponding to 10, 20
and 30 textures being retrieved are outputted dorgarison. Note that the order of the
textures within the retrieved lists has not beemgisignificant importance.
Dealing with a high number of dimensions involvetensive computational processing.
With the considerably large number of features ireguto approximate the FPS of the
two datasets the prediction model becomes extrerhnef§vy computationally. For
practical reasons, the MFS configurations, usecbtopute the average precision rates,
are based on a fixed number of dimensions and ngtyie number of features up to a
maximum of 75 for the Tex1 dataset and 65 for treMW dataset. A 4D MFS is used
for both datasetsFigure 6.8 and Figure 6.9 illustrate the histogranfisaverage
precision values for the Tex1 and MoMA textures whige first 10, 20 and 30 textures
retrieved from both the FPS and the MFS and arepeoed. The average precision

values are binned within a 10-bins precision histog
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When only 10 retrieved Tex1 textures are considdredimajority of the query textures
achieve a precision rate within the range (51-60)a%oindicated by the precision
histogram in Figure 6.8. Increasing the numberreatfieved samples skews the
histograms towards higher precision ratios for nafsthe textures: (81-90) % in the
case of 20 samples and 30 samples are retrievegtisi®n histograms for the MoOMA

dataset, displayed in Figure 6.9, show higher Ew¢lprecisions for the MoMA query

textures. This is an expected observation asdpthvious section it was clearly shown
that the prediction model provides better fit foe MOMA textures.

The histograms give an indication of how well tladagdet on the whole performs within
the retrieval framework presented in this chapt#emalysing the histograms can provide
information of which textures were difficult to nggsent and to whether the information
Is consistent with the way humans have groupedteéktures. The lower quartile,

median and upper quartile values are computed fr@rprecision value distributions

for the different retrieval modes and are presemet@iable 6.1 and Table 6.2 for the

Tex1 and MoMA datasets respectively.

Lower Quartile Median Upper Quartile
No. of samples 10 20 10 20 10 20
Value 0.508 | 0.566 0.587 | 0.763 0.710 0.855
Textures 3,87 | 55,84 13,81 | 34,57 27,64 | 115,116

Table 6.1 — quantitative analysis of the precisiatue distributions for the Tex1 dataset

Lower Quartile Median Upper Quartile
No. of 10 20 10 | 20 10 20
samples
Value 0.586 | 0.713 0.668 | 0.788 0.759 0.849
112, 28, 321, 1954,
Textures 1390 922 193 2394 1419 2607

Table 6.2 — quantitative analysis of the precisratue distributions for the MOMA dataset

The lower quartile mark is a good indication of thetures that the retrieval model was
not able to map properly to the MFS, hence leatbrigw precision values with respect
to corresponding retrievals in the FPS. Similathe upper quartile mark represents
textures whose distances with other textures withénFPS, have been preserved when
mapping the MFS onto the RPS. The median valuthermother hand, represents how
skewed the precision histograms are. Positivelgwskl histograms indicate high

precision rates for the majority of textures querie
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As expected, the precision histograms for the Mol&aset are more highly skewed
than those of the Tex1l dataset. The smaller éiffee of the interquartile range of
precision values for the MoMA texture as comparedhe difference for the Texl
textures also indicate better mapping for the Moklfaset. Even though, the upper
guartile values for both datasets are very closermdarge numbers of retrievals are
considered (30 samples for example). This impies ordering of the similarity (or
dissimilarity) values are better preserved in tlasecof MoOMA textures leading to
higher precision rates at lower number of samples.

An investigation into the average precision valwdsthe different Tex1l groups
presented in Chapter 4 shows that group 3 (patekiurtes) and group 5 (circular
textures) were the most difficult to encode in 42 MFS considered. Table 6.3 shows

the average precision values for the different gsou

Average precision values
Groups 10 20 30
Samples Samples | Samples
Group 1 (regular) 0.717 0.764 0.867
Group 2(irregular) 0.699 0.740 0.863
Group 3(patchy) 0.639 0.709 0.732
Group 4(vertical) 0.772 0.821 0.851
Group 5(circular) 0.646 0.692 0.719
Group 6(horizontal) 0.751 0.790 0.804

Table 6.3 — Average precision for Tex1 groups

Even though observers had no difficulties in grogptihe circular and patchy textures,
the features used to create the 4D MFS were net @bkencode these textures with
much precision, hence resulting in the low precisites when textures from these two

groups are retrieved.

6.5.1 Retrieval results

To illustrate the nature of the retrievals that ghvediction model has performed, 20

texture retrievals representing the lower quartikedian and upper quartile results are
shown in Figure 6.10, Figure 6.11, Figure 6.12 Rigtire 6.13.

The results displayed correspond to the neareghbeurs of the query textures within

a 4D MFS generated using feature vectors contaisexgnty-five elements for the
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Tex1 dataset, and sixty-five features for the Molbtaset. The texture images used as
queries for lower quartile, median and upper gleargsults for Tex1 are textures T55,
T34 and T116 respectively. Table F.1 to Table iR.Appendix F provide the query
results for the first 30 textures for reference.

The retrievals from the MFS are presented togetlittr the “ideal” retrievals from the
FPS for comparison purposes. The textures rettiéroen the MFS that match the ones
retrieved from the FPS are highlighted. Thoseur@d retrieved from the FPS and
missing from the MFS retrievals have italic, boltlainderlined labels. As mentioned
previously, the order in which the textures appsarot considered while determining

the precision of the retrievals. The observatioos each set of results are as follows:

I. Query Texture T55 (lower quatrtile result)

Eleven out of the twenty retrieved textures matae(Figure 6.10). This represents a
precision value of 0.55. The results suggesthbatans grouped the textures similar to
T55 based on some circular structural informatieailable either globally or locally.

The textures retrieved from the FPS were irregafaisotropic in most cases. Texture

T55 also has the appearance of a smooth or “palisb@face, hence explaining the

presence of textures T81, T42, T10 or even T43iwithe observers’ results. However,

despite non-blind testing, it would seem that thkected features cannot detect the

pertinent longer range interactions.

II. Query Texture T34 (median result)
Using texture T34 as a query texture successfeliyaves 14 matching textures. This
indicates a precision value of 0.7. The higher igren is perhaps due to the bi-

directional nature of these textures.

[ll. Query Texture T116 (upper quartile)
T116 has a precision of 0.85 (17 matches). Astilated in Figure 6.12, the retrievals
consist mainly of directional (horizontal) texturésrming one of the dominant groups
that observers were quick to assemble while peifggrthe psychophysical experiment.
The high precision for this texture is likely to dee to the ease with which directional

textures can be detected by texture features.

Table 6.2 shows high average precision rates ferMoMA textures as indicated by

values of the lower quartile, median and upper tijadior 20 textures retrieved (0.71,
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0.79 and 0.85 respectively). Even though the pr@tihistograms are highly skewed,
the upper quartile value for the MoMA textures apmates the upper quartile value
for the Tex1 dataset.

For the MoMA results, the smaller interquartile gansuggests that more relevant
textures are available at lower retrieval modes @0 samples for example). To
illustrate this point the first 20 textures reteehvfrom both the FPS and the MFS, when
MoMA texture M1954 is used a query, is presentedrigure 6.13. Matching the
retrieved textures from both the MFS and FPS ldads precision value of 0.95. In
addition to the high precision rate, the order imali the textures are retrieved is more
consistent than with the Tex1 textures.

The missing textures from the FPS give an indicatibwhich textures were difficult to
encode in the MFS. When Tex1 texture T55 is useduasy, nine textures from the
FPS were missed (underlined-italic-bold labels). vidual investigation of these
textures shows that they all contain global infatiorathat observers were quick to pick
out but difficult to be encoded using computatiofedtures. Using texture T34 as
query resulted in less misses. As compared tonda-regular and coarse nature of
T34, the textures that were missed appear to lee &ind regular. With T116 as query,
only 3 textures were missed. In this case thectigeality of the query texture seems to
be the dominant attribute in encoding the textur&ince T116 is a unidirectional
texture, orientated in a horizontal direction, thesses from this query are basically
those that lack this dominant horizontal directidgpa

For the MOMA dataset, using texture M1954 as quesylts in only 1 miss. With less
variation among the MoMA textures and very few te&t containing structural
information, it is not surprising to see that tlet of trace transform features provided

better encoding of these textures.

131



(a)

(b)

TS5 T37 730 132 T96 179 15 T15 758

41

T53

T63 T11 T29

Figure 6.10- First 20 retrievals from (a) the FP8da(b) the MFS feature space using texture T55¢awartile ) as query
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Figure 6.11-First 20 retrievals from (a) the FPB8da(b) the MFS feature space using texture T34@mydis query
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Figure 6.12- First 20 retrievals from (a) the FPB8da(b) the MFS feature space using texture T11&ugpartile) as query
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Figure 6.13- First 20 retrievals from (a) the FP8da(b) the MFS feature space using texture M1953Kupuartile) as query
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6.6  Blind Testing

We have demonstrated in the previous section thanhwhe prediction model is tested
using samples already used in the training stdggeptecision increases gradually with
increasing number of features (refer to Figure.6.Byecision rates of approximately
90% (in the case of 30 samples) are obtained ftir e Tex1 and the MoMA datasets.
However, the number of features required to fit RS to the MFS in order to obtain
such precision rates is high: 75 features in trse cd the Tex1 textures and 65 for the
MoMA ones. Given that each dimension of the MFSitied independently, this
implies that to fit a 4D MFS, the total number e&fures that would be required, in the
worst case, is 300 for Tex1 and 260 for MoMA.

Since the sizes of the datasets are 120 and 8&atesgly, we are therefore exposed to
the fact that the datasets have been projectedhigher dimensional space and more
than one feature is being used to fit each tex¢araple. This is clearly a situation of
overfitting, hence explaining the excellent premisrates obtained. This section thus
explores how well the retrieval model proposed &ctdn 6.2 fares when tested with
“unknown textures”.

We therefore decided to repeat the previous exgerisnwhile withholding a proportion

of the textures for use as test data.

6.6.1 Test Sample Selection

The dendrograms produced in Chapter four were tesedsure that the “test” textures
were reasonably distributed across the perceppades This was done by using the
dendrograms to createpartitions and then randomly choosing one “teathple from
each partition.

The value fom was chosen approximately to be 10% of the datdetextures for the
Tex1 dataset and 8 for the MOMA one). The seletggtlres for Texl and MoOMA are

shown in Figure 6.14 (a) and (b) respectively.
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' (a) Texltest textures

(b) MoMA test textures

Figure 6.14 — (a) Tex1 and (b) MoMA test texturasdomly selected from 10 and 8groups obtained by
applying the cluster analysis to the two datasets

6.6.2 Effect of varying the number of features (per dimesion)
Figure 6.15 shows how precision varies when retfgeare performed using the test

textures in Figure 6.14 for different number oftteas. The precision rates are

significantly lower than the ones presented in Fegil5.
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Figure 6.15 — Variation of precision with increaginumber of features for (top) Tex1 test textures
and (bottom) MoMA textures (blind test)

The behaviour of precision indicates that the nunabdéeatures to map the datasets for
a 4D RPS is not obvious; however, we can obsemetiie use of more than 10 texture
features for both the Tex1 and MoMA datasets damsimprove performance. The

outlined areas on the two graphs of Figure 6.1t&atd the range of features that can be

used to create effective application.
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6.6.3 Results — further details

Table 6.4 shows how the average precision ratespammn when the 10 Tex1 test
textures are applied for retrieval within the 3feliént perceptual spaces: the FPS, the
MFS(NB) — no blind testing, and the MFS(B) genetagthout using the test images
(blind testing). The precision rates correspontheofirst 20 samples retrieved and they
are averaged for retrieval performed from 4D spaeseerated using 1 to 4 features per
dimension in the case of MFS(NB) and MFS(B).

Texture FPS MFS (NB) MFS(B)
T83 0.850 0.388 0.325
T66 0.900 0.488 0.363
T60 0.950 0.375 0.425
T53 0.900 0.413 0.450
T62 1.000 0.475 0.450
T33 1.000 0.500 0.463
T116 0.800 0.500 0.500
T69 0.950 0.563 0.625
T32 0.950 0.700 0.688
T74 0.950 0.488 0.688

Table 6.4 — Comparative figures for average
precision rates of Tex1 test textures in the 3
different perceptual spaces.

The textures in Table 6.4 are sorted accordingpedotind testing precision — column 3

in table. The values in bold represent the maxinpuetision rates for each space and
the highlighted area denote the median precisiothisMFS(B).

The T62 (see Figure 6.16) twenty texture retrievatsthe idealised FPS case and for

the automated system (the MFS case) are showmurd=6.17 for illustration purposes.

Figure 6.16 — Test texture T62
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(a)

(b)
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Figure 6.17- First 20 retrievals from (a) a 110D SRnd (b) the MFS feature space using texture E&fuary
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6.7 Summary for Part |

The first part of this chapter has investigated hreduced perceptual spaces could be
exploited for retrieval purposes. We have inijialemonstrated that mapping the FPS
to 4D RPS for both datasets could potentially altetvieval systems to achieve higher
than 90% success rates.

Retrievals are performed on lower dimensional feagpaces. So far this chapter has
presented a retrieval model that uses a simpladinegression model to map the 4D
RPS obtained through MDS to feature spaces (the)MF$he same dimensionality.
By using the whole datasets to train the retriemabel, we have shown that even by
using around 75 features for the Tex1 dataset &rfdré@he MoMA one, we are not able
to meet the retrieval rates expected from a 4D B&®rated through MDS. This has
prompted us to deduce the following.

1) Although a set of more than 3000 features was ubkedset is not complete enough
to encode all the pertinent information for the tdatasets. This deduction results
from the variation of the precision rates with mdpto increasing number of
features as shown in Figure 6.5. We observe that ehen the number of features
is increased to 75 per dimension (using 300 feattoethe 4D MFS) the average
precision rate is lower than when retrieval is perfed directly from the RPS as
provided in Figure 6.2. With 300 features usecenoode the feature space, we
would expect at least one feature to representextare sample given that the size
of the dataset is only 120.

2) A statistical analysis of the precision values tfug different Tex1 groups (refer to
Table 6.3) shows that “circular” and patchy “texsit, were more difficult to
encode even though observers grouped these texjuiteseasily. This may well be
because the longer range interactions in thesartsxtwvhich are so obvious to the
human eye, but are difficult to encode using coratarally viable texture features.

To avoid overfitting of the data by the use of taoge feature sets and to test the
robustness of the retrieval model when present#d uviknown textures, precision rates
were computed for 10 Tex1 test textures (8 for MQMiat were removed from the

learning the retrieval model.
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Significantly lower retrieval rates are obtained floe blind testing, however, they still
achieved higher than 70% for precisions based omrreB@eved textures from both
datasets. Additionally, the average precisionsrgi®vided in Figure 6.15 show that a
minimum of 4 and a maximum of 10 features are ecigffit to obtain the best
performance from a 4D MFS for the training textucemsidered. Increasing the

number of features for the mapping does not profadéetter retrieval results.
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PART Il: Full Perceptual Space Based
Texture Retrieval
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6.8 Introduction

In Part | of the chapter we argued that the Fulic®stual Space obtained from the
psychophysical experiments could not be used tectyr produce effective retrieval
systems and that we needed first to reduce thendiimeality of the problem using
MDS. In this part of the chapter we briefly invigate the problems and effectiveness

of pursuing such a direct approach.

6.9 Overview of modified retrieval processes

Figure 6.18 shows the processes involved in peifgna retrieval using the FPS
directly instead of moving to lower dimensional agm The shaded part shows
processes from the MFS based retrieval model the¢ lbeen ignored. The different

stages for the Optimisation model are presentédemest of this chapter.

Full Perceotual Snace Reduced Perceptual Space

i: Dimensionality | ®
Reduction using @ ‘
EV 7
MDS w7 ®

== JBE
B S ! y @

N-dimensional space
representing N*N

Similarity Matrix
—_— I: Apply optimisation
model

Pool of features

/]

111: Determine Que|

£ j—> F v

i eature Vector

Query texture

111: Extract the N
nearest textures

Optimised Feature Space
(OFS)

Figure 6.18 - The three main stages of the prop@gtiimisation model. Shaded part show the
corresponding stages from the model proposed itid8e6.2
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6.10 Optimisation Model

The optimisation model proposed concerns the §toh a feature space to the FPS.
The fitting is viewed as a non-linear least squameblem to finding optimal features
space that optimises the spatial arrangement ofelxé and MoMA textures within the

relevant FPS. The resultant space is referred theaOptimised Feature Space (OFS).

6.10.1 Statement of the problem

As in the case of the prediction model presente8antion 6.4.1, the problem can be
viewed as an optimisation problem that seeks tainbt

Y= f(xy, x2, o, %05 B1, B2y -, BF) (6.9)
where (xy, x,, ..., X)) is a set ofM texture featurds (By,B,...,Br) is a set offF
optimisation parameters angl, is the expected value based on the dependent
dissimilarity valuey;.
As opposed to the prediction model, where the waltee be estimated were the
coordinates of the texture samples within the RR& optimisation model requires an
optimum set of parametefsthat estimate the dissimilarity values of the RS losely
as possible. Using a least squares approach, tanuop set of parameters is obtained

by minimising the following error function:
L

RB) = ) i -9’ (6.10)

i=1
wherelL represents the number of off-diagonal elements filwe dissimilarity matrix.
Assuming that is the dissimilarity value between any two textufeand T, then the
function f() in equation (6.9) computes the weighted distamz the two textures
would make in the OFS. For example, for two textigatures, the weighted distance is

given by

9= Bo (Jﬁl(x{ — k)" + o] - x§)2> (6.11)

B, is a scaling factor for mapping the textures friini® FPS to the OFS where@sand
B, are weights that represent the involvement of efsdiure in estimating the

dissimilarity valuey;.

! Note thatM feature values are required, whéte2 x N andN is the length of the feature vector for a
single texture.
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Generalising equation (6.11) fvt features gives:

M 2
9= o [Z (it — x;;f] (6.12)

To solve the problem posed by the error functiorl@p the Levenberg-Marquardt
algorithm will be employed. The algorithm is pretsal in the following section.

6.10.2 Levenberg-Marquardt (LM) Algorithm

The LM algorithm is a standard technique for navedir least-squares problems and has
been widely exploited in a broad range of applwai It operates in an iterative
fashion to locate the minimum of a multivariate dtion which is expressed in the form
of the sum of squares of non-linear real-valuedtions [Marquardt63].

To minimise the error function, RY, the LM algorithm proceeds by finding a linear
approximation of a function X( p) in the neighbourhood of a parameter fsetf(x, B),

as used in this part of the thesssa function that maps an input dissimilarity \ejii to

an estimated dissimilarity (or distance) valgyeusing equation (6.12). To converge to

an optimum parameter sgt, B is iteratively updated using the LM update rule
B’ =B — (H+ Adiag[H])"1VR(B) (6.13)

In equation (6.13) abovéy represents the Hessian matrix of the function ) at
search direction given bf§, VR(B) is the gradient of the error functi®{() andA is a
dampening factor that is adjusted at each iteratiomake sure a reduction in error

occurs. The updated set of parameters is repessagg’.
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The algorithm initially proposed by Levenberg [Laberg44] and modified by

Marquardt [Marquardt63] works in the following way:

LM algorithm

l. Compute the initial error from equation (6.12) uginitial parameter seg®,
Il. Compute the updated parameter Betising the initial parameter s@®,
[l Determine the error from equation (6.12) using tipelated parameter sgt,
V. If updated error >= previous error Then
Retain the previous set of parameters
IncreaseA by a constant value (10 chosen)
Else
Retain updated set of parameters
Decrease\ by factor 10

End
V. If error < threshold or maximum number of iterat®reached Then
STOP and return parameter set
Else

GOTO step Il and perform update with newalue and retained parameter set

The LM algorithm is first applied to a single fesyproblem, then two, three and more.
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6.11 Texture retrieval using the optimised model

For retrieval from the OFS, the optimum set of pasters derived using the LM

algorithm is applied to equation (6.12) togethethwselected features for the query
texture, Q. Doing so positions the query textuiaivw an M-dimensional space, where
M is the number of features used. A Euclidean distas applied to retrieve the closest

textures to Q within thiM-D space. Results are presented in the sectiohfotttav.

6.11.1 Retrieval rates v/s number of features
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Figure 6.19 — Average precision rates for the Teogdland MoMA(bottom) datasets with
increasing number of features used to map the BRBet OFS
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Figure 6.19 shows the average precision rates whéaiteval is performed using
increasing number of features for the Tex1l and Motdst textures. We can observe
that the precision rates do not vary by large art®tor both datasets, except for the
case of 10 retrievals for the Tex1l dataset wheceeasing the number of features
appear to provide significant change in precision.

6.11.2 Blind test results using the OFS

Table 6.5 shows the average OFS precision forghéllind” test textures from Tex1.

The results are compared with retrieval resultsnfrine MFS blind tests. As the
retrieval results for the MFS were obtained usipegtai four features per dimension, a
maximum of 16 features was used to test for redfievthe OFS.

Texture MFS(B) OFS(B)
T53 0.450 0.1962
T60 0.425 0.2692
T62 0.500 0.3308
T66 0.363 0.3615
T83 0.325 0.3769
T116 0.450 0.4115
T32 0.688 0.4346
T74 0.688 0.5462
T33 0.463 0.5808
T69 0.625 0.5808

Table 6.5 - Comparative results for average pretigiates of Tex1 test textures for retrievals
in MFS(B) and OFS(B)

We observe from the Table 6.5 that the precisitesréor the OFS (with the exception
of T83 and T33) are lower than those of the MFSisBhows that as well as being
sparse, the information in the FPS is also noigyTexl samples. Since the Texl
dataset was created to cover as many texture caegs possible, it is not surprising
that when the samples are projected in a 110D ptrakspace, it is noisy.

Creating the OFS directly from the FPS may allowrenaoise information to be

retained. This contrasts with the creation of MES, whereby using only a low-

dimensional space enables much of the noise inttwm#o be “filtered” out.

Although the order of the test textures, basedetmewval from the MFS, is not retained

compared with the corresponding retrieval perfornredhe OFS, the textures at the
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higher end of the precision spectrum do tend toespond. The median retrieval rate
from the OFS for the 10 Tex1 test textures is 37.¢®responding to texture T83

which is shown in Figure 6.20.

Figure 6.20 - Texture T83

Figure 6.21 shows the first 20 retrievals for TB31 both the FPS and the OFS. As the
results from the FPS show, observers did not fing difficulty in perceiving the
directional information and the textures that tipeyceived to be similar (for the Tex1

dataset) show a strong inclination towards horizloteixtures.
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(a)

(b)

Figure 6.21- first 20 retrievals from (a) a 110D ERnd (b) the OFS feature space using texture $&8fiary
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6.11.3 Computation times

Part of the reason that the investigation of th& RBproach was not pursued further
than the 14 texture features was because of theasingly lengthy computation times

that were required. Figure 6.22 illustrates thpomential nature of these computations
for the Texl dataset. The processing time wasrdecbwhen executing the selection
algorithm on MATLAB, hosted on a 32-bit XP machingh duo core processors (Intel

Core 2 Duo 6600 operating at 2.4 GHz) and with 3d6BAM.
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Figure 6.22- Processing time v/s number of featgedscted to create the OFS

6.12 Summary for Part Il
Results obtained from the FPS approach show that:
(a) it becomes prohibitively expensive to compare faghkbr number of features,
and
(b) that its performance is, on average, well below teéuced dimensionality
approach described in Part | of this chapter.
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6.13 Performance Evaluation and Discussion

Most of the texture retrieval systems encounteredfas in literature have been
evaluated with respect to a previous work. To daesearchers have mainly used a
common dataset (Brodatz) and different featurefeetsomparison such as the Tamura,
Wold and Gabor features. To evaluate invariantufes, researchers have applied
affine transformations to existing textures thatildobe used as test textures. Thus,
using invariant features for retrieval results ighhretrieval performance, however, this
performance is relative to the number of ‘identi¢ektures in the test dataset rather
than perceptually ‘similar’ textures. For examplayneet al. [Payne99] used 9 non-
overlapping variants of the Brodatz textures, givitDO8 samples. They used one
variant as query and based the retrieval performamchow well their system could
retrieve the other 8 variants from the 1008 samplesnget al. [Long00 & Long01]
used cropped subimages of 60 Brodatz texture imggks samples) and using one of
the subimages as the query image, they measuredvietivthe retrieval system would
retrieve the remaining 8 textures. When “identidaktures are not considered the
performance of retrieval systems drops considerably

To improve the retrieval performance researchekrse hgerformed human studies to
investigate, and learn, the way people categoeséutes. Payneet al. [Payne99]
performed retrieval based on 10 different statdtiepresentations of textures and
correlated these results with ranking of the saeméutes by humans. They found that
only 20-25% of the retrievals matched the rankiesuit. Even by combining different
computational methods, they could not achieve aess rate of higher than 50%.
Payneet al. discovered that even if features invariant toeseald orientation were used
for retrieval, the performance was still low, sint®se features are not necessarily
perceptually consistent. This shows that retriesaperceptually ‘similar’ textures
rather than ‘identical’ ones is a much more difficask to perform.

Thus the two datasets considered within this th@®g1 and MoMA, do not contain
any ‘identical’ textures. Moreover, we do not atf# to outperform the performance
results published by Lonet al. or Payneet al. with the performance of our model. In
this thesis we have investigated how well the egaii model proposed in section 6.2
performs with respect to the psychophysical resuli@at is how well it retrieves

perceptually ‘similar’ textures.
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The results provided in Part | of this chapter stigated how well a retrieval model
applied to reduced perceptual spaces could be tasegtrieve textures from the two
datasets. Retrievals were performed from 4D MA& observed from Figure 6.15 that
the average precision rate varies from 40% to @amive 70% when the number of
features per dimension considered is 10 for thelTeéataset and 8 for the MoMA
dataset. If we consider that a retrieval engine remsonably display 20 textures on a
screen, then the model proposed does better tlrexpected maximum of 50% of
perceptually consistent retrieval deduced by Pa&yra. [Payne99].

We also compared our retrievals for both datasgasat random chance. Figure 6.23
shows how precision rates vary with increasing nemsitof features when 10 samples
are retrieved from 4D MFS and the OFS. Considefifgretrievals at a time, the
random chance of retrieving 10 out of 110 sampdesTex1l and 10 out of 73 samples
for MOMA are 9.1% and 13.5% respectively (these ahewn as RCTexl and
RCMoMA on Figure 6.23).
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0.4 -
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g 03 , —a— MoMA-OFs
£ 025 ’ -4 RCTex1
% 0.2 —e— RCMoMA
3 0.15 o| ¢ Tex1-MFs
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Figure 6.23- Effect of increasing texture featuoesretrieval success

The retrieval rates obtained from both the MFS #red OFS are significantly higher
than the random chance values for the Tex1 and MaM#asets. The results show
only MFS results constructed using a maximum oédtdres per dimension and OFS
results created using 16 features.

Figure 6.15 showed that performance was obtainéd MFS created using 10 features
per dimension. This implies a maximum of 40 feasuto create the OFS for a 4D
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space. We did not attempt to test retrievals frofRSQising higher than 16 features
because
1. the results in Figure 6.19 show that the precisates start to decrease when
14 or more features are used, and,
2. the computational cost increased significantly vattger feature numbers.

To have a better insight of how a more “conventibretrieval engine would perform

on the two datasets, we applied an LBP based vatmeethod. The latter has basically
been used both for retrieval and non-parametrgsdiaation of textures. LBP operators
have been heavily utilised in the recent yearsetscdbe textures [Ojala96 & Ojala02]
and a Chi-square based distance function has heeessfully employed in both face
recognition and texture retrieval [Ahonen04]. UsltiP histograms as feature vectors,

the Chi-square distance between a query and & tardare is modelled as follows:
B

QT = D (@~ T)?*/(@ +Ty)] (6.14)

b=1
Q and T in equation (6.14) represent the LBP histmg for the query and target
textures respectivel\B is the total number of bins for the histograms. Fistograms
representing the query and target feature vectoes aeated by concatenating
histograms from the following LBP operators: LBPLBPs, and LBR, 3 (refer to
Chapter 5 for LBP operator notations). Table Gtbw shows the performance of the
LBP based retrieval method as compared to the biR8 and OFS strategies.

10 20 30
Samples | Samples | Samples | Average
@) Random Chance 0.091 0.182 0.273 0.182
LBP-ChiSquare 0.287 0.323 0.415 0.342
MFS(B) 0.502 0.625 0.677 0.601
OFS(B) 0.301 0.421 0.506 0.409
10 20 30
Samples | Samples | Samples | Average
(b) Random Chance 0.135 0.274 0.411 0.274
LBP-ChiSquare 0.342 0.499 0.545 0.462
MFS(B) 0.544 0.668 0.709 0.640
OFS(B) 0.431 0.576 0.662 0.556

Table 6.6 — Precision values for different retrienathods obtained when
applied to (a) the Tex1 dataset and (b) the MoMiasizt
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Precision values were obtained for when retrievats performed using the 10 test
textures for the Tex1 dataset and the 8 MoMA testures. 4 features per dimension
were used for the MFS and a total of 16 featurae®wsed for the OFS. The results in
Table 6.6 show that even if powerful texture feasusuch as the LBP operators were
used for retrieval, the Chi square based retriewathod performed quite poorly
compared to the methods presented in this theBe MFS(B) method with average
retrieval rates of 60.1% and 64.0% for the Tex1 siodMA datasets is thus an efficient

way to retrieve textures that match human perceptio

6.14 Conclusion

In this chapter, we provided an effective retriewabdel within a low-dimension
perceptual space. When tested with textures ajreadd for training, the precision
rates for retrievals within a 4D MFS approximatee ©0% mark for the datasets
considered, however the number of features was mdltating likely overfitting.
Even with a high number of features, precisiongdte retrievals within a 4D MFS are
below those for retrievals from a 4D RPS. Thiswa#d us to conclude that the large
pool of features used does not contain enough aetefeatures to represent the Tex1
and MoMA datasets and that there is likely to beretation between the features
selected for the retrieval systems. When blindrigsvas applied to the retrieval model
proposed in Part I, the precision rates were |dwistill significantly above chance.

To ensure that the results obtained for the fiestigval model could not be obtained
using a conceptually simpler and more direct apgrpanother retrieval model was
proposed in Part Il. The second model uses the &RS maps the perceptual
similarities directly to a feature space using atimisation algorithm. Precision rates
computed at increasing number of features for tieS Gupported the case that a
dimensionality reduction approach using MDS is katreely effective and efficient

approach.
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Chapter 7

Summary, Conclusion and Future Works

7.1 Summary of Research

This thesis has attempted to meet a very speciijective: to develop an automatic
retrieval system for surface textures by takingo imiccount human perception of
different categories of textures.

We started by presenting a survey of research waodertaken in the field of texture
retrieval in Chapter 2, through which we identifi¢dat illumination conditions
significantly affect the appearance of surfaceusxtand that no work pertaining to the
automatic retrieval of ‘surface’ textures has beedertaken. Additionally, the survey
has allowed us to identify tools and techniquesugh which a perceptually relevant
texture retrieval system could be built. Furthereat was noted that many of the
retrieval systems described in the literature wested using “identical” textures (in
which multiple subimages had been obtained fromgles original).

The focus of this thesis was also placed on howamsperceive different categories of
surface textures. In Chapter 3 we presented tregmeand implementation of
psychophysical experiments through which we reabrdew humans group surface
textures or texture images captured under the sdomination conditions. Two
texture datasets were created and presented tovelsdor comparison: Texl and
MoMA. The judgments from the users were aggregatethe form of similarity
matrices for the Tex1 and MoMA datasets.

Chapter 4 analysed the similarity matrices and shigated the visual consistency of
texture groups created from the psychophysical ttataugh the use of dendrograms.
The latter showed that the similarity matrices eoreéd apparent structural information
even if no obvious number of groups could be ideati

Using MDS as a dimensionality reduction techniq@apter 4 also investigated
whether the structural information contained in Engl Perceptual Space is preserved
when the FPS is mapped to Reduced Perceptual Spates$ound out that the textures
from the Tex1l and the MoMA datasets could be wepresented in any Reduced

Perceptual Space with dimensionalities four to w@thout significant loss in the
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structural information. However, no obvious numbé&dimensions could be deduced
when fitting the RPS to the FPS.

Chapter 5 investigated four popular texture featets to select one feature set that
could be used to map a feature space to the pesateggace for automatic retrieval. A
set of selection criteria was presented and comsglyuused to select the most suitable
feature set for the mapping process. The Tracesioam features were found to satisfy
all the criteria presented.

The different methodologies for automatic retrieglsurface textures were presented
in Chapter 6. The first part described a simplpraach that used linear regression to
map the RPS to a corresponding feature space.e 8iecdimensionality of the RPS is
application oriented, precision was used to deteenthe number of dimensions to be
used for the RPS for retrieval purposes. The piativalues for different retrieval
modes (10, 20, 30 retrievals) showed that sigmifi¢i& of the FPS is obtained when 4D
or higher dimensionality RPS are considered. Thus, TT transform features were
used to map the 4D RPS for both datasets. Retneréormances from the resulting
feature space (the MFS) were below the expecteibrpesince of retrievals from the
RPS. This prompted us to deduce that the TT featat was not complete enough to
encode all the textures available (mainly for tlexT dataset). However, with precision
rates of higher than 70% for 30 samples retrietteel retrieval model proposed proved
to be effective one.

A more direct approach that uses the full percépmpace was proposed in Part Il of
Chapter 6. It was found that average precisiontlice approach was lower than the
dimensionality reduction approach. Additionallyethlirect approach required high
computation times with increasing number of feafureaking it impractical and

unattractive.

7.2 Conclusion

In this thesis we have developed retrieval modeds integrate perceptual data from
psychophysics to provide for perceptually releviaattievals of textures. The texture
images used in the psychophysical experiments wbtained by rendering surface
textures using known illumination parameters (sland tilt). In addition a set of
texture images, captured under uniform illuminatioanditions have also been
employed (MoMA dataset). This is the first timattsurface textures have been used to

capture human perception of texture and to develdgpmatic retrieval models where
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the features used to ‘statistically’ describe #dures are not influenced by any change
in illumination directions.

Two retrieval models were presented. In the finstlel, the Full Perceptual Space was
reduced to a more manageable Reduced Perceptus 8piag MDS. A large pool of
features was used to create a corresponding fegppae (the MFS). The performance
achieved was better than that which could be obtaly pure chance when precision
rates were computed for 10, 20 and 30 retrievals.

The second retrieval model was used to investigdtether a more direct approach
could provide for better retrieval results. Thums @ptimised Feature Space, derived
directly from the Full Perceptual Space, was exptbfor retrieval. The performance of
the second model was no better than that obtamwed the MDS based Feature Space.
Furthermore the high computational time requiredsétect texture features for the

optimised space makes it an impractical option.

Random

MFS OFS Chance
Tex1 60.1% 40.9% 18.2%
MoMA 64.0% 55.6% 27.4%

Table 7.1- Average performance (blind testing)Tfexl and MoMA datasets for retrievals in
the MFS and OFS. The performance by chance fomh#i(073 target textures from Tex1 and
MoMA is provided for comparison.

Table 7.1 above shows the average performance Wbeand 8 test textures (blind

testing) were searched from the remaining Tex1 }Ab@d MoMA (73) target textures

respectively. The performance values represenavbkeage precision for 10, 20 and 30
samples with retrievals performed in both the MR8 @FS. Comparative performance
for pure chance retrieval is also provided.

The performance values for retrievals in the MFS lagtter than those obtained from
the OFS for the Tex1 and MoMA datasets. This shthas the MFS based retrieval

model proved to be a relatively effective and édiit retrieval methodology.

Moreover, considering the datasets contained nentidal” textures, a performance of

above 60% for the MFS based model is very promising

! ‘identical’ used in the same context as define@lmpter 2
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Analysing the results from the MFS based modelpbserved that a number of textures
that were easily grouped by observers, did notyredhe same expected results when
used as query textures. Even with the availabditya large feature set, few relevant
features were able to encode the longer rangetstaliinformation within the textures.
However, this type of information is difficult t@pture using computational features.
Overall, the MFS based model is a simple, inexpensnethodology that develops
efficient and effective retrieval models.

7.3 Futureworks

The results for perceptual texture retrieval predidh this thesis were satisfactory given
(1) the small number of textures used to traingreposed retrieval model and (2) the
simple mapping technique (linear regression) usednap the feature space to the
perceptual space. Some obvious and immediate iraprents, deduced from the
conclusions provided, to obtain better performdiocehe perceptual retrieval are listed

below:

1) Generate a large dataset (> 300) of homogeneoumseitextures

120 surface textures (Texl dataset) was used timreapuman perception of textures
and to investigate perceptual dimension, howeveey tprovide relatively sparse
sampling of what is at least a four-dimensionakspa

An immediate follow-up of this research would beapply the retrieval framework
proposed to a larger set of homogeneous texturbs. Tex1 consisted of varied texture
categories. The same categories could be usedbasia to generate an expanded

surface texture dataset.

2) More detailed investigation of grouping results

This thesis focused on the use of similarity masito develop perceptually relevant
retrieval systems. The matrices represented #guéncy of occurrence of different
texture pairs. Although this information was stiffnt to represent the textures within a
perceptual space, other information derived from dlhouping results could have been

used to identify perceptually relevant texture tiees.
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Firstly, dominant groups may be identified by reting the order in which the groups
are created by observers and selecting those grbwpsall or most observers have
found very easy to create. This can lead to tlemtification of perceptual texture
attributes that humans can distinguish more eagign comparing textures. Feedback
on what criteria have been employed by observegsdoping textures can also help in

understanding human perception of texture.

3) Investigate other human judgment capturing methods

In this thesis, perceptual grouping has been efiity utilised to derive similarity
matrices for the purpose of developing perceptualgvant texture retrieval systems.
However the datasets used (Tex1 and MoMA) werelatively small sizes. For larger
datasets (>300) perceptual grouping may not berg peactical option and other
methods would need to be investigated. For examplenvise comparison may be
useful if proper false negatives rejection mechasisre used or if reaction times are
controlled.

One limitation of perceptual grouping that we enteved during the course of the
thesis was that ordering information was ignorednduthe comparison (of retrievals
from the MFS and the FPS) stage. Perceptual oglenay be considered in this case,
provided it is efficiently implementation so as reduce the comparison times from

observers.

4) Investigate larger sets of independent, phase semseatures

The performance of a texture retrieval system sdtieavily on the feature sets used to
encode the textures being searched. It has aldeeely demonstrated in the literature
that the phase information contains most of thectiral information within an image
[Oppenheim9l1]. However, obtaining feature sets i@ sensitive to phase and
insensitive to position is a difficult task. THhisesis has investigated several popular
feature description approaches that encode ph&senation and the Trace Transform
(TT) features were selected to create a featureesfma texture retrieval. Although a
subset of the TT features was sensitive to phdssy tould not encode all the
variability in textures available (Texl and MoOMAA feature set containing a large
proportion of phase sensitive features is morelfike provide for better texture

representation and should be investigated.
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Moreover when very large feature sets are congidetiee number of correlated
elements is quite high, as was the case with thdeRiures used in this thesis. A
feature set with a large number of independent esnwould contribute in having

more relevant features to represent the textures.

5) More robust mapping of the feature space to theuBed Perceptual Space

This thesis presented a retrieval model that usédear regression model to map a
feature space to a reduced perceptual space othtdireeigh Multidimensional Scaling.
The model did perform efficiently in encoding mast the textures and provided
satisfactory retrieval results. We assumed thaféhature data were linearly distributed
across the samples; however when large featureasetsnvolved, this condition is
difficult to achieve. Non-linear fitting models wd be tested to investigate for better
and more robust mapping and feature selection. eSmmmmon techniques that have
been heavily utilised in the recent years are myaimé Support Vector Machines and
multilayer neural networks [Long01] and could beplexed to derive more robust

retrieval models.

162



Appendix A: Texture Datasets — Tex1 and MoMA
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Figure A.1- Texture images for Tex1 dataset, P&l to T48)
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Texture images for Tex1 dataset, PafT49 to T96)

Figure A.2-
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T97  T98  T99

T105 " T106

T2 T113  Til4
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Figure A.3- Texture images for Tex1 dataset, P&KTO7 to T120)
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M928 M939  M1385  M1390 M1397 M1401
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© M1551 M1555 748 M1753 M1765

Figure A.4- Texture images for MOMA dataset, Pdit1L2 to M1765)
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Figure A.5- Texture images for MOMA dataset, Pa(M1792 to M2607)
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Appendix B: Grouping Experiment Instructions
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Title: Perceptual Grouping of Textures
0] Aim:

The aim of this experiment is to come up with ailsinty matrix that would represent the ways

in which human subjects would group together sped¢dxtures from an unknown set

textures. The similarity matrix would thus reprasie frequency at which a particular texture

is coupled with another texture.

(I Experiment Setup:

Hundred and twenty surface textures were choserthisr experiment. The set of surface

textures is made up of both natural and synthefitutes. Lambertian illumination is used

render the surfaces. A slant of 70 degrees andftils degrees have been used for

to
the

rendering (Top left corner). The texture image# & presented to the human subjects in

form of photographs.

(Il Instructions for observers:
Precursor

Orientation — pleaseDO NOT rotate individual photos, it's important that yeew
them with thePRINTED NUMBER AT THE BOTTOM .

Similarity — when sorting the textures try not to think too admssly about the

individual characteristics of the textures — ratheragine them as real surfaces and

group them according to simple gut instinct.

Procedure

0] Photographs would be randomly placed on a tablexipgrimenter so that
you can see all of them (remember to keep therorahtated the same
way).

(i) Now create as many groups of textures as you fieeldy moving the
photographs around on the table as much as you-like only criterion
being that each group should contain “similar” tegs.

(i) Do not feel afraid to create groups containing lgirtgxtures if you feel
that the texture is not sufficiently “similar” tona of the others. Above all
— do not create an “oddball” group which contamsures that simply do
not fit into any of the other groups.

(iv) Once grouping completed, leave your observationghentable so that

they could be registered by experimenter.

Thank you for your participation

Figure B.1- Instruction sheet presented to subjpatsicipating in the psychophysical
experiment
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Appendix C: Similarity Matrix
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Figure C.1 Partial Similarity matrix showing pairwic occurrence of Tex1 images R1 to R40 (generateddtofaces T1 to T40). Matrix constructed fr

data coming from 8 subjects
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Appendix D: Grouping Results
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Figure D.1- Tex1: Groupl (regular textures),



T2 17 T;1 Ti6 T26 T29

T36  T40  T46  T66  T69 T72

" T88 " Tea  T02  T106  T100  T120

Figure D.2- Tex1: Group2 (irregular textures), gpaize=18

T10 CT4a2 T43 TS0  T53 T63

Te5 T8l T101 T111

Figure D.3- Tex1: Group3 (patchy textures), groiges10
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T4 T8 T9 T13 T4 T2l
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57 T60 T61 T67 | T7 T87
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Figure D.4- Tex1: Group4 (vertical textures), grosipe=25
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T96  T97 T3

Figure D.5- Tex1: Group5 (Circular textures), grosize =15
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Figure D.6- Tex1: Group6 (Horizontal textures), gposize= 19
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Appendix D.2:  MoMA Groups

M12 M321  M330  M915 M923 M924
-~
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 M1481 | M57J' © M1753 M1954 M2314 M2444

Figure D.7- MoMA: Groupl, group size =13

M28  M227 Mo9l4 M1390 M1397

M1401 M1410 M1440 M1495 M1502 M1555

M2219 M§233 M2282 M2323 M2587

Figure D.8- MoMA: Group2, group size =17
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Figure D.9- MOMA: Group3, group size =13
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Figure D.10- MoMA: Group4, group size =12
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Figure D.11- MoMA: Group5, group size =14
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Figure D.12- MoMA: Group6, group size =12
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Appendix E: Trace Transform Functionals
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Index

Functionals

T1 N
T2 N
Zizllxl
T3 N
2.
i=1
T4 max., x;
T5 W1
Z- |41 — x4
=1
T6 W1
z. i1 — xi|?
=1
T7 N2
z, 5 iz + X1 — Xip1 — Xt
i=
T8 O
Z. \ ;-3 + X2 + X1 — Xiy41 — Xir2 — Xipsl
L=
T WS
Z. . |Xi—5 + Xi—g + o F Xiog = Xipg = = Xiwa = Xiys|
L=
T10 N=7
Z. . |Xi—7 + Xi—e + o+ Ximg = Xiy1 = = Xive = Xiu7l
L=
T11 Wi
Z_ Z |2 = Xiel
i=5 k=0
T12 V=55
Z_ Z |2 = Xiel
i=6 k=0
T13 =6x6
Z_ Z - = Xi4k
i=7 k=0
T14 S
Z_ Z 2t = Xl
i=8 k=0
T15 -10 10
Z, Z |2k — Xi4k]
i=11 £=k=0
T16 N-15 15
Z_ Z |21 = Xl
=16 k=0
T17 N=20 <20
Z_ Z |2t = Xl
1=21 k=0
T18 N—=25 <25
Z, Z |2k — Xi4k]
i=26 £=k=0
T19 N-10 10 9
Z (1 + Z |21 — xi+k|)/(1 + z | — xi+k|>
i=11 k=0 k=-10
T20 N-10 10 2 9
Z. (Z lox;—x — xi+k|> /(1 + Z lox;—x — xi+k|>
=11 k=0 k=-10
T21

N—2
Z [x; = 2x;41 + Xi42]

i=1
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T22 N-3
Z. ) lox; = 3xi41 + 3%i12 — Xigsl
=
T23 N=4
Z- . |oc; — 4241 + 6X342 — 4%i43 + Xi44l
i=
T24 NS
z. ) loc; = 5x;41 + 10x;42 — 10243 + 5x314 — Xi45]
i=
T25 N=2
Z- ) i = 2%341 + Xig2| Xita
i=
T26 N=3
z. ) lo¢; = 3%41 + 3%i42 — Xipzl Xita
i=
T27 N—-4
Z ) i — 4X;11 + 6Xi42 — 443 + XigalXisr
=
T28 N=5

Table E.1 — Trace functionals, T. N representsiilmaber of points along trace anglis the 1"

sample.
P1 maxiL, x;
P2 minl, x;
P3 N
¥
i=1
P4 N N
3 /)
i=1 i=1
P5 N
lellxl
P6 iy
N lzl(xl )
pP7 N=1
Z- |41 — X
i=1
P8

=
Z- |oc; — 4241 + 6X342 — 4%i43 + Xiyal

Table E.2— Diametric functionals, P.
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D1 N-1
Z. %41 — x|
i=1
2 N-1
Z- |41 — %
i=1
@3 N
¥
i=1
4 N
®5 maxjL, x;
®6 max/ x; — minlL x;
o7 Amplitude of the first harmonic
8 Phase of the first harmonic
D9 Amplitude of the second harmonic
®10 Phase of the second harmonic
11 Amplitude of the third harmonic
®12 Phase of the third harmonic
®13 Amplitude of the fourth harmonic
®14 Phase of the fourth harmonic

Table E.3- Circus functionalsd.
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Appendix F: Retrieval Results
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123|456 | 78] 9 10|nu|2|13)14]15)16]17]18|19[20|2n]22]23|2u]2]2]|2]2]22] s
Lower Quartile
3| 3 |18]110]54] 12] 28| 95| 1 [ 68| 47]34] 90 |86]35] 50115 6 |100] 20 [ 66| 16| 25[108] 76 | 2 [ 45| 23 [ 88| 43|17
87 | 87 | 51 | 117]110|104] 14 | 48 | 60 [ 35|31 [ 30| 03| 4|62 | 28] 83|67 |57 13| 8 | 9 | 41| 09| o1 |119]52] 80|33 56]1
55 | 55| 10 | 37 | 81| 79| 42 | 101 65 | 53 | 15 | 63 | 50 [ 43| 24 | 100| 113] 96 | 91 | 11 | 20 | 41| 19| 30 [112| 32 | 78 | 83 | 26 | 88 | 97
84 | 84| 62 |108] 17 |100] 95| 38 | 45 | 23 | 25 | 47 [ 115|900 18 [119] 54 | 86 | 34| 3 | 74| 89| 6 | 77| 59| 20| 76 [ 27| o | 73| 28
2%
61
Median
13]13] 0903|3031 8 [33]70|14]60]21]52]57]a]67]110] 9 [117] 92104 61 [118]114] 87 ] 48|51 ] 62] 80 56] 41]83
81| 81| 43| 91| 10|41 55]65|83]37]20101]63|80| 53] 42][100] 50 111]50|35] 6 |3a]88][68|28] 2] 3]|79]1
34 34| 50] 90| 6 | 54| 45]115/100| 95 | 89 | 86 | 3 [ 17| 68 | 18 | 20 | 38 | 28 | 108] 76 |129] 1 [ 47|74 | 20| 77 | 12| 73| 25 | 23
57| 57| o0 93] 39 |33] 13 70|31 [110| 8 [ 52|104|21| 14| 60| 02|67 [117] 4 | 62| 87|51 61] 80 118] 56 35| 48]114|84
21
37
Upper Quartile
27|27 7a] 73] 76| 77] 23] 38| 20 | 86 | 25 [ 115] 89 [ 45| 100] 17 | 54 | 90 [108] 34 [ 47 [ 50| 18] 6 | 3 | o5 [ 110] 12| 84 | 68 | 66
64 | 64 |112| 105] 116| 49 [ 82 | 22 | 71 | 75 | 103| 98 | 44 | 56| 99 | 80 [107| 83 [ 35| 1 | 41| 68| 01 [104] 51| 28 | 87 | 95 | 43 | 30 |81

Table F.1- Retrieval results for query textureshimita 4-d MFS(75 features)for the Tex1 dataset
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123456789 |w|nu|2|13]14]15) 1617|1810 2020|2282 252 |27]28]2]2
Lower Quartile
3| 3] 18] 12|119] 23]108] 28| 35| 38| 25115 47 [ 76 | 17 [ 45| 54 | 95 [ 66| 16 | 27| 34| 43| 2| 73] 86 | 100] 68] 81 | 74 | 90
87 | 87 | 51 |110] 41| 91| 28| 35 [117] 14| 52| 48| 4 | 12| 31| 60| 67| 00| 61| 80| 83| 8 | 3 [13] 03| 119] 18] 21]107]118]56
55 | 55| 37| 30| 32| 96]| 79| 5 | 15| 10| 58| 78 |113] 97 | 24 | 85 | 81| 42| 10| 41| 43| 65 | 91 | 53| 88 | 101 100 63[ 111] 50 | 83
84 | 84|62 86| 25| 1 |66]16|95| 38| 3 |68 17| 18]119]100|108]115] 12| 28| 35|54 | 74 (76| 4 | o | 81| 34]110] 60 | 67
2%
61
Median
13]13]93)30]31] 8 [61]110]57] 9 [ 21]33]70]104] 92] 4 [ 52]117] 60| 67 [ 48| 114]118]14] 87 | 83| 80 [ 51] 41 | 56 | 81
81| 81| 65| 43| 41| 53]101] 63 |111] 50| 42 [109] 10| 01 | 55] 83| 88| 54| 2 [ 24| 28| 20| 35(50] 6 | 34| 80|37] 96 | 106] 12
34 | 34| 90| 50| 76]17]27] 74| 6 |100| 23| 89 | 95 | 45 | 73 | 20 | 77| 38 [ 115] 86 [108| 25 | 54 | 3 | 81 | 18 | 43 |47 68 | 41 | 1
57 | 57 |104] 33| 70 | 92| 8 | o [ 21|30 13| 31| 903|110/ 52| 61| 4 | 60| 67| 87 [ 127 84 | 62 | 14| 118] 48 | 124] 12] 81 | 80 | 1
21
37
Upper Quartile
27| 27| a5 | 38| 73 | 115] 34 [100] 74 [ 17| 76 | 20| 77 | 23 [ 89| 54 [ 90 | 95| 86 [ 50 | 6 |108] 3 [25] 47 | 18 | 68 ] 43] 12 | 81 | 66
64 | 64 |112]105] 56 | 80 | 99 | 71 | 82 | 98 | 103| 49 | 83 | 44 | 75 [ 116| 22 [107] 41 | 91 [ 81 | 1 | 68 | 28] 35 | 117] 51 | 43] 93 | 87 | 30

Table F.2 - Retrieval of the 30 most similar tegtuto query textures {'tell-bold) from the FPS of the Tex1 Dataset
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Table F.3 - Retrieval results for query texturethii a 4-d MFS(65 features)
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2323

2444
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1481

1502
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2282
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1390

321
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1834
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1792

1456

213

204

182

922

2323

1419

2394

2382

1952

1419

1419

193

1821|2382 | 1748|2535 | 2547|2552 | 2541|2607 | 2365

353

1416

2018 | 355(2444| 321

1753

1792

1481

133

250

1952

1521

182

330
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1456
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2314 | 915| 12 |2444| 321|1753)|1481| 923| 939

1507

2535
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193

213

1456
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2323

182

250
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1442

2228
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1413
1765
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2541
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250
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1834

321

204

1753

2430

Table F.4 - Retrieval of the 30 most similar tegtuto query textures {'tell-bold) from the FPS of the MOMA Dataset
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