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Abstract 
 
 
This thesis presents a methodology for developing perceptually relevant surface texture 

retrieval systems.  Generally such systems have been researched using image texture 

which has been captured under unknown or uncontrolled conditions (e.g. Brodatz).  

However, it is known that changes in illumination affect both the visual appearance of 

surfaces and the computational features extracted from their images.  In contrast this 

thesis either uses surface information directly, or computes features obtained from 

images captured under controlled lighting conditions. 

Psychophysical experiments were conducted in which observers were asked to place 

texture samples into groups.  Multidimensional Scaling was applied to the resulting 

similarity matrices to obtain a more manageable reduced perceptual space.  A four-

dimensional representation was found to capture the majority of the variability.  A 

corresponding feature space was created by linearly combining selected trace transform 

features.  Retrieval was performed simply by determining the n closest neighbours to 

the query’s feature vector.  An average retrieval precision of 60% was obtained in blind 

tests.  
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1 

 

Chapter 1  

Introduction 

 

Efficient and perceptually relevant texture retrieval has been and remains a challenging 

and very important area of research.  Due to the omnipresence of texture information 

within our natural environments, image features relating to different texture properties 

have been extensively exploited by Content Based Image Retrieval (CBIR) systems.  

Additionally, with a number of specialised applications such as medical diagnosis 

dealing with large databases of texture images, retrieval systems that provide robust 

search and retrieval facilities are constantly being sought. 

 

1.1 Motivation and driving issues 

Research in the field of CBIR has focused mostly in finding perceptual features to 

represent textures in order to bridge the semantic gap between low-level image content 

and high-level concepts used by humans in discriminating textures [Smeulders00].  All 

approaches considered so far in building retrieval models have used texture image 

datasets where the conditions under which the images have been captured have been 

completely neglected.  The Brodatz dataset of digitised texture images has been used as 

the de facto source of images to train and test retrieval models for textures.  However, 

the image capture conditions used have not been described in the literature.  Thus it is 

not known that these surfaces were imaged under consistent lighting conditions.  This is 

unfortunate, because changes in illumination can cause significant variations in both 

observers’ perceptions and the values of computed texture features [Chantler94].  Thus 

the current work addresses the texture retrieval problem by considering either surface 

textures or texture images that have been generated under controlled and known 

illumination and viewpoint conditions. 

Another issue of this research is the unavailability of a specific set of features that can 

be universally related to different perceptual traits of textures.  Ever since work 

performed by Tamura et al. [Tamura78] in finding texture features relating to human 

perception, numerous attempts have been made in finding structural information that 

could represent different categories of textures.  Although the texture features described 

in the literature have proved to be successful in some areas of texture processing, 
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namely texture segmentation and synthesis; content-based retrieval on the other hand 

has failed to meet user expectations [Rui99, Smeulders00 & Datta08].  Despite being 

equipped with more powerful feature extraction techniques and indexing mechanisms, 

retrieval systems have constantly been outsmarted by the efficiency and precision with 

which the Human Visual System discriminates between different categories of textures.  

Both frequency domain and spatial domain features have been investigated, however, 

the challenge provided by the semantic gap still remains.  It has recently been argued by 

Petrou et al. [Petrou07] that the failure of having specific features to represent textures 

can be related to the fact that preconceived perceptual attributes are kept in mind while 

designing and extracting the feature sets.  This largely biases and restricts the way the 

textures can be represented, especially in the case of retrieval.  Thus the current research 

does not assume any perceptual attributes of textures within the feature extraction 

phase, and addresses the problem of texture representation by using a large set of 

features. 

In order to develop retrieval systems that are consistent with the way humans perceive 

textures, recent research has investigated how texture features can be mapped to 

perceptual dimensions such that the latter could be exploited for retrieval.  Following 

the excellent work undertaken by Rao et al [Rao93b] in investigating perceptual 

dimensions to create a taxonomy for textures, other researchers such as Long et al. 

[Long01] and Payne et al. [Payne05] have utilised results from psychophysical 

experiments on texture similarity so as to construct perceptually robust retrieval 

systems.  However, all this research has been carried using texture imagery captured 

under unknown or varying conditions. 

As in the case of Rao’s experiments, the current research uses psychophysical data to 

identify perceptual dimensions after which computational features are mapped to those 

dimensions leading to so called perceptual texture spaces.  However, these data are 

obtained using images of textures that have been obtained under controlled conditions.  
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1.2 Goals  

 

The focus of this thesis is to research technologies and methodologies for perceptually 

relevant retrieval of surface textures.  By perceptually relevant we imply retrievals that 

users would perceive as similar to a given query texture.  To achieve this primary 

objective, it is important to investigate how humans perceive different categories of 

textures and use the captured judgments in training a retrieval model that can “mimic” 

human perception.  Thus the main goals of the research are: 

1. To select or create a database of surface height maps so that controlled illumination 

and viewpoint conditions can be applied to generate texture images for 

psychophysical studies.   

2. To capture similarity judgments of different texture pairs taken from a set of texture 

images illuminated under controlled conditions.  

3. To derive methods for developing appropriate retrieval systems. 
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1.3 Scope of this thesis 

The research focuses in developing an automated retrieval model that takes as input an 

“unknown” texture query and uses a selected set of relevant features to retrieve 

perceptually similar textures.  A broad overview of the processes involved in meeting 

the goals set-out in Section 1.2 is given in Figure 1.1. 

 

Figure 1.1 – Processes involved in retrieval of perceptually similar surface textures 
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The current work deals mainly with surface textures captured using a stills camera and 

point light sources.  Lack of sufficiently homogeneous natural textures means that 

synthetic textures have also been generated to provide for a texture dataset with a good 

spread of different categories.  A dataset of specialised texture images captured in a 

controlled environment was also made available and has been used to test the retrieval 

models proposed. 

The way in which humans judge similar textures is explored and the results of the 

different observers are aggregated to form an N dimensional perceptual space, where N 

represents the number of textures.  Human judgments are captured through properly 

designed and implemented psychophysical experiments. 

Within the scope of this thesis we employ dimensionality reduction to reduce the high-

dimensional perceptual space to a more manageable F-D feature space that is exploited 

for automatic retrieval of textures.  

Relevant features used in mapping the perceptual space are chosen from a large pool of 

features.  Retrieval of textures similar to a query texture results from (1) mapping the 

query feature into the F-D feature space and (2) locating the n nearest textures within 

that space. 

 

1.4 Novelties and Contributions 

The main novelty of this thesis lies in the use of surface textures, rather than images, in 

developing a perceptually consistent texture retrieval system.  To the author’s 

knowledge no work has attempted to characterise surface textures both in terms of 

computational features and in terms of human perception.  
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1.5 Thesis organisation  

This thesis is structured in the following way. 

Chapter 2 investigates how the computer vision and vision science community have 

been dealing with the problem of finding perceptually relevant features for texture 

retrieval.  Based on the investigation provided, a list of tools and techniques used in 

perceptual retrieval of texture is identified. 

Chapter 3 covers the steps required in performing a psychophysical experiment for 

texture similarity.  The chapter provides design issues in creating the datasets to be used 

in the experiment and also implementation procedures through which human 

observations are captured.  The outcome of this chapter is high dimensional perceptual 

data representing similarity information between texture pairs. 

Chapter 4 provides an analysis of the high dimensional data obtained from the 

psychophysical experiments.  The first part of the chapter investigates whether 

structural information exists within the texture groups created by observers.  Cluster 

analysis is applied to high dimensional perceptual data to create a random number of 

groups and visual inspection allows us to investigate for consistency within the groups.   

The second part of the chapter demonstrates how dimensionality reduction is applied to 

reduce the full perceptual space to lower dimensional space.  Consequently the reduced 

perceptual space is examined to identify major perceptual texture attributes that could 

be exploited for retrieval purposes. 

Chapter 5 investigates some popular texture description approaches in order to select a 

potential feature set to be used in mapping the reduced perceptual space to a 

corresponding feature space. 

Part I of Chapter 6 describes how the actual mapping of the feature space to the 

Reduced Perceptual Spaces is performed.  Retrievals from the corresponding feature 

space are presented and analysed.  

An alternative approach using the full perceptual space is presented in Part II of this 

chapter.  The objective is to see whether a more direct approach would provide for 

better retrieval performance.  The results from the two approaches are evaluated and 

discussed. 

Chapter 7 summarises the work undertaken within the context of this thesis and relates 

how the objectives set out in Chapter 1 have been met.  The results from the previous 

chapters are discussed and the contributions outlined. 
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Chapter 2  

Texture Retrieval: Challenges, Approaches and 

Techniques 

 

2.1 Introduction 
 
Search, retrieval or navigation of large databases of multimedia information have for 

long been very active areas of research.  However, with major advances in the fields of 

data capture and data storage, the amount of research work undertaken in the field of 

Content Based Image Retrieval (CBIR) has moved leaps and bounds within the last five 

years.  CBIR is a vast and wide area of research and discussing its progress is beyond 

the scope of this thesis.  However it is worth mentioning, at this stage, some excellent 

surveys made by Rui et al. [Rui99], Smeulders et al. [Smeulders00], and others such as 

Dai et al. [Dai04] and Liu et al. [Liu07] who have helped us to be up-to-date with the 

evolution of CBIR research.  

The main objective of this thesis is to come up with a surface texture retrieval system 

that can represent human judgements of textures as closely as possible.  In order to 

achieve this objective, the goals set out for Chapter two are as follows: 

1. To investigate the challenges that researchers have faced and are facing to provide 

texture retrieval systems that generate perceptually consistent results, 

2. To investigate how psychophysics has influenced the field of content-based retrieval 

and determine whether a new psychophysical experiment needs to be performed to 

capture how humans categorise textures, and, 

3. To determine the requirements, in terms of tools and techniques, to build a 

perceptual texture retrieval system. 

Chapter two is organised in the following way: Section 2.2 addresses the challenges of 

developing retrieval systems for texture.  It summarises the challenges from two 

different perspectives: (1) from the computer vision aspect and (2) from the vision 

science community point of view.  Section 2.3 provides a brief summary of the 

computational approaches to texture retrieval, whereas Section 2.4 looks into the 

perceptual approaches.  Tools and techniques used so far by computer vision 

researchers and cognitive scientists in capturing, analysing and integrating human 

judgments within a retrieval framework are presented in Section 2.5.  Section 2.6 
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identifies the requirements in building a surface texture retrieval system using 

psychophysical data.  Finally, Section 2.7 summarises how the goals for this chapter 

were met. 

 

2.2 Challenges in Texture Retrieval 
 

Even if no universally accepted definition exists for texture, it has always been 

considered to be a very important aspect of visual information that humans constantly 

use to analyse different scenes.  Given the abundant presence of textured surfaces in 

natural environments, humans generally use knowledge about those surfaces to 

discriminate between scenes coming from their environments.  As reported by Gurnsey 

et al. [Gurnsey01], studies for texture properties have either been motivated for an 

ecological cause or from a signal processing perspective.  Ecologically because of the 

omnipresence of texture information in the real world and from a signal processing 

perspective in order to examine how the human visual system encodes texture 

information.  

Texture information was initially exploited within a very narrow area of machine vision, 

mainly in the early phases of remote sensing for radar or satellite image interpretation 

[Haralick73].  Since then texture-based research has rapidly and widely spread to areas 

of computer vision, image processing and computer graphics, be it for the analysis of 

texture information for image classification, the extraction of texture features for 

segmentation purposes, or simply for  the use of texture data for visualisation.  Analysis 

of texture information for synthesis purposes has also been used by image compression 

applications.  Within that span of time, different texture models have been proposed to 

suit different applications.  In their survey, Tuceryan and Jain [Tuceryan98] classified 

these models as statistical approaches, geometrical or structural approaches, model-

based approaches and signal processing approaches.  The survey published by 

Smeulders et al. [Smeulders00] provides more insight into how much work has been 

done till the year 2000 within the field of texture information representation and 

processing.  However, the area is growing at such a frightening pace that seven years 

later the amount of work done on texture based research has almost doubled compared 

to research done pre year 2000.  

This increase can be explained by the fact that textures, due to their aesthetical 

properties, are nowadays very much involved in consumer-oriented design, marketing 

and selling of different products.  Moreover extensive application of texture in medical 
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diagnosis and industrial inspection has put a lot of emphasis on content-based retrieval 

of texture images.  With cognitive scientists realising that texture, as a visual cue, plays 

a significant role in a variety of cognitive tasks, coupled with the fact that current 

texture retrieval systems are still perceptually inconsistent, strong interests have arisen 

from the vision science community in the field of texture retrieval.  The vision science 

community is mostly interested in how the human visual system discriminates among 

different texture categories compared to the computer vision community which is 

constantly trying come up with a computational model that allows the representation of 

textures through a relevant feature space.  In the rest of this section are presented the 

challenges faced by both the computer vision community and the vision science 

researchers in developing perceptually consistent texture retrieval systems. 

 

2.2.1 Challenges from the Computer Vision community 

In computational vision, we try to model and implement the vision processes at a 

conscious level rather than a subconscious level as in the case of human vision.  Early 

interests in texture from the computer vision community relate mostly to the derivation 

of computational measures in analysing and synthesizing textures.  Research in the field 

of CBIR imposed more challenges to the texture-oriented researchers.  Those challenges 

are discussed below: 

 

• More features to represent larger categories of texture images  

The failure by CBIR systems to meet users’ expectations has led researchers to believe 

that the main cause of this failure is the insufficiency or incompleteness of the feature 

set available to represent the textures (applicable to image retrieval in general).  

Throughout the years, various representations of texture information have been 

proposed, namely power spectral features, Gabor features, wavelets, moments, fractals, 

higher order statistics and so on.  Even if these representations have performed 

sufficiently well in certain texture processing areas such as segmentation and synthesis, 

their application to retrieval has been largely unsuccessful.  Most of the feature sets 

presented in literature have been generated with regard to specific perceptual attributes 

of textures such as directionality, contrast, regularity and others.  However, no universal 

set of features has been identified so far that are used by humans to distinguish between 

different categories of textures.  In a recent attempt to do so, Petrou et al. [Petrou07] 

have used the Trace Transform to generate very large sets of features to represent 
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textures.  They argue that since the perceptual attributes used by humans to categorise 

textures are still an open problem, extracting features based on specific perceptual 

attributes biases and thus limits the texture representations.  

 

• Dealing with high dimensionality data 

With more and more features used to represent textures, the obstacle that researchers 

undoubtedly had to face is the curse of dimensionality.  Processing thousands of 

features drastically decreases the performance of retrieval systems.  Thus, researchers 

have been working on different ways to reduce a large set of features to a smaller subset 

that can more accurately and efficiently represent the dataset being investigated or 

searched.  Feature selection targets mainly the problem of high dimensionality; 

however, it also allows the identification and removal of irrelevant and redundant 

features that result in more accurate learning models.  A good review of the evolution of 

feature selection is provided by Liu et al. [Liu05]. 

 

• Find ways to compensate for varying data capture conditions 

Existing works on texture retrieval have so far used sets of texture images (mostly the 

Brodatz dataset) where the viewpoint condition under which those images were 

acquired is unknown.  To solve the general viewpoint invariance problem, several 

translation, rotation and scale invariant feature extraction techniques have been 

proposed in literature.  Alignment techniques and structural descriptions have also been 

employed to bypass the viewpoint problem.  Moreover, recent studies by Chantler et al. 

[Chantler94 & Chantler05] have also demonstrated the influence of texture appearance 

under changing illumination.  Thus, illumination invariant texture representation is also 

an active area of research. 

 

• Multidimensional indexing techniques 

Even after applying feature selection/reduction techniques, the dimensions of the feature 

space used to represent a dataset are quite large.  Traditional data structures are proving 

to be inefficient in storing and indexing the current crop of features or feature sets.  

Sophisticated multidimensional indexing techniques are constantly being explored and 

utilised to meet the computational demands of high-dimensional feature sets and also to 

reduce the response time of retrieval systems.  Moreover, due to the interactive nature of 

current retrieval systems, we can no longer assume that features are extracted and stored 

in advance.  A major challenge for researchers in this area is to cater for scalable image 
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and feature sets.  Thus, much work is being done on dynamic indexing strategies.  Rui 

et al. [Rui99], Smeulders et al. [Smeulders00] and Datta et al. [Datta08] provide very 

good resumés on multidimensional indexing techniques as used by CBIR systems. 

 

• Advance query modelling facilities and interactive systems 

A common limitation of the early texture retrieval systems has been the rigid interface 

provided for users to formulate their query.  To remedy the situation, researchers have 

been working on several ways to expose the premise of the retrieval system in a more 

intuitive and natural way.  Recent researches have put a lot of emphasis on ‘interactive 

retrieval systems’ and techniques like relevance feedback have been explored to capture 

users’ needs through an iterative feedback and query refinement process [Rui98, Rui99, 

& Lew06].  

Besides providing more facilities for human interaction with retrieval systems, 

researchers have also considered multimodal queries in order to seek the best 

description of users’ needs.  Thus, novel user interfaces, querying models and result 

visualisation techniques are constantly being explored [Lew06]. 

 

• Semantic information extraction and learning-based approaches 

Learning based approaches are being investigated and implemented within retrieval 

systems in order to dynamically modify feature sets or similarity measures used in the 

retrieval process.  With the assumption that a unique feature set cannot represent diverse 

categories of texture images, learning methods allow the fine-tuning of image signatures 

[Rui99 & Lew06].  
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2.2.2 Challenges from a Vision Science perspective 

Interest from psychophysicists and cognitive scientists to study the visual perception of 

textures is not new, however, as compared to the work done on colour, the state of 

understanding of perceptual texture properties used in texture discrimination and 

categorisation is still very poor.  With the inability of computer scientists to bridge the 

semantic gap and to provide for similarity measurements that are perceptually 

consistent, there has been fast growing interest from the vision science community to 

meet the existing challenges in texture categorisation.   

 

• Understand and model low-level human vision 

The main interest by vision scientists lies in what representations and rules are utilised 

by the human visual system to process textures.  Most the work at this level relates to 

identification of cognitive mechanisms in the process of texture segregation.  Early 

pioneers such as Julesz [Julesz62, Julesz75 & Julesz81] and Beck [Beck87] made use of 

synthetic texture stimuli to explain the discriminability of textures.  Julesz proposed the 

“theory of textons” to explain the preattentive discriminability of texture.  However, 

most, if not to say all, of the earlier texture perception models were based on synthetic 

textures and have proved difficult to formalise for real world textures.  Thus, a large 

chunk of research undertaken by vision scientists is still dedicated in finding models 

that could explain how the human visual system discriminates between different 

categories of textures. 

 

• Support findings from neurophysiology 

Researches performed by neurophysiologists have suggested that the cortical cells of the 

human brain have receptive fields that are sensitive to spatial frequency and orientation.  

Inspired by those findings recent psychophysical studies have proposed different 

processing mechanisms that could relate to the way the brain decomposes an input 

texture image [Kourtzi06].  In order to mimic the operations of the visual cortex 

psychophysicists have applied linear filters that are selective for spatial frequency and 

orientation.  The common framework of the mechanisms employed consists of two 

layers of filtering separated by a non-linearity, with the first stage of filtering more 

sensitive to higher spatial frequencies [Landy04 & Johnson04].  However, those 

mechanisms mostly focus on mapping statistical properties of texture to the processing 

of the visual cortex.  
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• Identify salient features that capture human attention 

Psychophysicists have tried, through different studies, to understand and thus measure 

perceptual similarity of texture.  After initial work allowed the discovery that a limited 

set of visual properties are used for the pre-attentive discrimination of textures, vision 

scientists showed lots of consideration in identifying the salient features used by the 

low-level visual system in analysing textures [Malik90, Heaps99 & Iqbal99].  However, 

it is important to point out that most work on saliency accounts for the speed and ease 

with which the salient features are identified.  The challenge remains of how salient 

features could account for dominant perceptual dimensions. 

 

• Identify perceptual texture dimensions 

The identification of primary colours to represent the whole colour spectrum has led 

vision scientists to think that there might be some basic texture properties or terms that 

can be used to represent all the visual properties of texture.  Few have attempted to 

solve this puzzle.  To date, the work performed by Rao and Lohse [Rao93a & Rao93b] 

remain the most referenced and valued research work in identifying perceptual 

dimensions to represent textures.  

 

• Establish a standardised taxonomy to represent texture categories 

Along with efforts in finding dominant perceptual dimensions for texture representation, 

psychophysical studies have also been performed to understand how humans classify 

textures into meaningful and structured hierarchical categories.  Again, the work done 

by Rao et al. [Rao93b] seems to be the only noticeable research that could be accounted 

for.  
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2.3 Brief overview of Computational Approaches 
 

Computational approaches towards texture characterisation and texture processing relate 

mostly to the application of mathematical models that can identify and explain the 

perceptual qualities of textures in images.  The fact that no precise definition of texture 

has been accepted so far by the research community means that the models used to 

describe texture have targeted different aspects of texture based on its perception and its 

application.  The properties of texture considered by computer vision researchers that 

have aided them to formulate descriptive approaches are: 

1. Texture is an organised area phenomenon and cannot be defined at a single 

point, 

2. Texture is described by the type, the density and also the spatial distribution of 

its primitives, and, 

3. Texture is normally perceived at different scales and resolutions. 

Studies performed by Tamura et al. [Tamura78] and Laws [Laws80] identified a 

number of perceptual properties that humans use to discriminate between different 

categories of textures.  The properties that they investigated into were uniformity, 

density, coarseness, roughness, regularity, linearity, directionality, frequency, and 

phase.  Based on these conceptual properties, different computational approaches to 

texture representation and retrieval have been proposed in literature.  In an early review, 

Haralick [Haralick79] summed up those approaches in two main categories: structural 

and statistical/stochastic.  Later surveys on texture analysis extended these two 

categories with a third one: spectral approaches.  Another similar taxonomy provided by 

Tuceryan and Jain [Tuceryan98] outlined the approaches as statistical, geometrical, 

model-based and signal processing approaches.  

Statistical approaches consist mainly of fitting mathematical functions to the spatial 

distribution of gray level values representing the texture images.  Haralick [Haralick79] 

suggested the use of autocorrelation functions, spatial gray level co-occurrence 

probabilities and autoregressive models to compute statistical texture features.  Variants 

on these models, proposed later in literature, provided either better texture 

representation or used less memory and computational speed to generate the same 

results.  The sum and difference histogram methods proposed by Unser [Unser86] were 

similar to Haralick’s co-occurrence matrices, however, they used memory and 

processing power in a more efficient manner. Davis et al. [Davis79] suggested the use 
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of Generalised Co-Occurrence matrices to describe the spatial distributions of local 

features, such as edges and lines, rather than the spatial distributions of intensity. 

Another statistical method that has been commonly used for texture analysis is the 

Gray-Level Run Length method. Introduced by Galloway [Galloway75], this method 

identifies sets of consecutive, collinear image points that have the same gray level and 

computes the length of each run or set.  Stochastic or probabilistic measures have been 

proposed in order to model the interdependencies of pixels together with their 

neighbourhood.  Haralick [Haralick79] did exploit this property through his 

autoregressive model.  Other random field models have also been given considerable 

attention within the field of texture analysis.  Markov Random Fields (MRFs) for 

instance have been used due to their capability to capture the local contextual 

information in an image [Tuceryan98].  Derin and Elliott [Derin87] used Gibbs Random 

Fields to model and segment textured images.  Fractals, due to their capability to model 

properties such as roughness and self-similarity at different scales, have been used 

mostly in the generation of synthetic surfaces that have very near resemblance to natural 

surfaces such as plaster or rock.  Due to these statistical properties fractals have also 

been used a lot in analysing image textures. 

Structural approaches model and describe textures by assuming that textures are made 

up of primitives or texture elements.  It is imperative, within structural methods, to be 

able to identify the primitives that make up the texture.  The extracted primitives are 

then used in two different approaches for analysis.  The “bottom-up” approach 

computes the statistical properties of the primitives and defines the mutual spatial 

relationship between them.  The “top-down” approach extracts the placement rule that 

describes the texture, mainly using the Fourier transform [Matsuyama83].  Structural 

methods differ by their interpretation, extraction and representation elements.  

Ever since the “theory of textons” was put forward by Julesz [Julesz81], much research 

has been undertaken in describing natural textures by extracting primitives which 

appear in near-regular repetitive spatial arrangements.  Commonly referred to as 

textons, texels, tokens or blobs, these primitives are basically homogeneous regions of 

pixels with some invariant properties that may be defined by their distribution of 

intensity values or shapes.  Voorhees and Poggio [Voorhees87] used a bank of 

Laplacian of Gaussian masks, applied at different scales and orientations, to extract 

blobs for texture discrimination.  Similarly Tuceryan and Jain [Tuceryan90] used 

Difference of Gaussian filters to extract primitives from a texture image.  They then 

used the extracted primitives to generate a Voronoi tessellation for the texture image 
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considered and thereafter extracted features from Voronoi polygons within the 

tessellation.  While these methods are mainly “bottom-up”, some “top-down” have also 

been proposed. Zucker [Zucker76] and Conners [Conners79] used the gray-level co-

occurrence matrices of texture images to determine their periodicity.  Mathematical 

morphology has also been used for structural representation of textures.  Haralick 

[Haralick79] used structural elements of different shapes to erode a texture image and 

extracted textural properties of the image as a result of the erosion process.  Zucker 

[Zucker80] used semi-regular or regular tessellations of ideal textures which are then 

morphed to represent a real world texture. 

In more recent versions of structural approaches, various new types of textons have 

been investigated to represent texture surfaces and images.  With the fact that changes 

in illumination and viewpoint directions influence the appearance of surface textures 

heavily, textons that incorporate this element of visual texture have attracted strong 

interests.  In order to model texture surface in terms of both reflectance and geometric 

information, Wang and Dana [Wang04] have presented a method that defines the local 

geometry of a surface texture in terms of a finite number of geometric textons.  Lately, 

Zhu et al. [Zhu05] provided a study of the geometric, dynamic and photometric 

structures of textons in order to account for motion and illumination variations. 

The use of spectral approaches, or channel-based approaches, was motivated by studies 

of human perception revealing that the human visual system decomposes the retinal 

information into a number of channels with varying frequencies and intensities 

[Beck87].  Several filter based approaches, proposed in literature, have tried to mimic 

the way the visual cortex functions by decomposing an input visual stimuli through the 

use of filter banks.  Filter banks are designed in such a way that they capture localised 

information by targeting specific range of spatial frequencies at different orientations.  

Researchers have exploited both the spatial domain and the frequency domain (Fourier 

domain in particular) for texture analysis via filter banks.  Laws [Laws80] was one of 

the first to apply filtering approaches for texture identification.  Laws proposed a set of 

twenty five separable masks that were derived from three simple one-dimensional non-

recursive filters and used the outputs from these masks as signatures for different 

textures.  

Based on the assumption that the energy distribution in the frequency domain uniquely 

identifies a texture, a number of filtering methods applied to the power spectral domain 

were proposed.  Coggins and Jain [Coggins85] applied a set of seven dyadically spaced 

ring filters and four wedge shaped filters to extract features for texture analysis.  Banks 



17 
 

of Gabor filters have been extensively used in all areas of texture processing.  Jain and 

Farrokhnia [Jain91] presented multi-filtering approach to texture analysis that uses a 

Gaussian shaped band-pass filters dyadically tuned to exploit differences in dominant 

sizes and orientations of different textures.  

FRF (Filter-Rectify-Filter) models were used by a number of researchers to investigate 

the effects of texture element shape, size and spacing on visual perception of textures 

[Bergen88, Landy91, and Graham92].  FRF models consist of three different stages: 

(stage 1) a set of linear spatial filters, (stage 2) a point-wise nonlinearity, and (stage 3) 

further linear spatial filtering. Malik and Perona [Malik90] also used the model for the 

preattentive analysis of textures. 

The wavelet transform [Mallat89] and its variants, such as the discrete wavelet 

transform and the wavelet packet transform, have also received considerable attention 

within the field of texture analysis.  These are critically sampled filter banks that 

allowed the decomposition of a texture image into orientation and scale sensitive 

subbands[Kingsbury99].  

Those models have mostly been utilised in the context of texture segmentation and 

discrimination, however we will only point out the models that have been used within a 

texture retrieval perspective.  In the context of CBIR, texture was initially used as an 

image feature in combination with colour and shape in order to provide for more robust 

retrieval systems.  QBIC, ImageRover, PhotoBook, Virage and MARS are some well-

known CBIR systems that have used texture features in addition to colour and shape 

features, in order to provide for better retrieval performances [Veltkamp02].  However 

with increasing availability of texture data and its growing application in different areas 

such as medical diagnosis or remote sensing, retrieval based on texture features only is 

being actively researched.  This necessity has brought forward advances in textured 

region descriptors such as affine and photometric transformation invariant features. 
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2.4 Perceptual Approaches to Texture Retrieval 
 

Interests in the field of texture perception date back as far as the early 1950s through 

work done by J. J. Gibson [Gibson50], however the real major step that brought the 

scientific research community to draw more attention to it can be attributed to B. Julesz 

more than a decade later.  Most of his work was concentrated basically on finding 

spatial statistics of texture images that would help in preattentively discriminating 

between a pair of texture samples with the same visual properties, mainly brightness, 

contrast and colour [Julesz62 & Julesz75].  To further enhance his findings on texture 

discrimination Julesz proposed the “textons theory” to represent local textural features 

whose first and second order characteristics have perceptual significance for 

preattentive discrimination of textures [Julesz81].  

The early investigations about texture perception focused mainly on the segmentation of 

textures into homogeneous regions that contribute in the discriminability of those 

textures.  Departing from Julesz’s theory of textons, investigators such as Beck et al. 

[Beck87] used synthetic textures constructed by placing micropatterns onto 

predetermined regular or random placement maps to investigate segregation of textures.  

The micropatterns employed consisted of small visual stimuli in the form of dots, line 

segments, Ls, Ts and Xs.  Recent investigations on texture segregation can be 

summarised in the work covered by Landy et al. [Landy04].   

The use of artificial textures proved to be quite useful in the statistical modelling of 

textures, however, given that these textures are not representative of the set of natural 

textures encountered in real world, it did not motivate research about how humans 

perceive, analyse and categorise different texture categories.  The availability of the 

Brodatz dataset [Brodatz66] allowed for more in-depth and realistic analysis of texture 

information and led to a number of investigators being interested in finding perceptual 

cues that humans use to discriminate between textures.  Early psychophysical 

experiments performed by Tamura et al. [Tamura78] enabled the latter to determine 

some textural properties that humans commonly use to discriminate different texture 

categories.  The experiments were performed using Brodatz textures and Tamura et al. 

identified six textural properties to categorise different texture groups, namely: 

coarseness, directionality, regularity, roughness, contrast and line- or blob-like.  In a 

similar experiment to Tamura’s, Amadasun et al. [Amadasun89] asked human subjects 

to rank a set of 10 texture images chosen from the Brodatz album based on five different 

perceptual properties of texture: busyness, contrast, coarseness, complexity and 
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strength.  The findings from their experiment indicated a strong correlation between 

computational features representing coarseness and texture strength, and also between 

those representing contrast and complexity. 

Psychophysical studies undertaken by Rao and Lohse [Rao93a] were a huge boost for 

cognitive scientists in their attempts to provide a taxonomy for different categories of 

texture.  The experiments performed by Rao and Lohse enabled the latter to identify 

high level features used to differentiate texture groups.  They presented 30 texture 

images chosen yet again from the Brodatz album and asked human subjects to group 

similar ones together.  Using a combination of hierarchical cluster analysis and 

multidimensional scaling, they identified that only three high-level perceptual features 

could account for most of the variability in the texture samples they considered in their 

experiment. These features were orientation, complexity and repetition. 

Rao et al. then investigated the taxonomic relationships between texture categories as a 

follow-up to their previous work. In their new experiment they used 56 Brodatz textures 

and asked human subjects to rank the textures in a scale of 1 to 9, based on twelve 

predefined perceptual properties.  The subjects were then asked to perform a sorting 

task to create texture groups [Rao93b].  After analysing the psychophysical data, they 

found out that only three orthogonal perceptual dimensions were sufficient to represent 

the 56 textures.  They named the different perceptual dimensions with the following 

high level terms: non-repetitive vs. repetitive, non-granular vs. granular and non-

directional vs. directional. 

Still as a continuity to Rao and Lohse’s work, Bhushan et al. [Bhushan97] performed 

further studies in order to establish a correspondence between texture words and texture 

images.  To do so, they first performed a grouping experiment on 98 texture words from 

the English Language to determine any underlying common structure.  Using 

hierarchical cluster analysis, they identified eleven major clusters and they termed those 

groups ranging from ‘random’ to ‘repetitive’.  In a second experiment they used the 

categories of texture images obtained from Rao and Lohse’s earlier studies [Rao93a 

&Rao93b] to determine any systematic correspondence between the different categories 

of texture words (verbal space) and texture images (visual space).  They deduced that 

the categories in the visual space and the verbal space were strongly associated. 

More experiments were conducted by Heaps and Handel [Heaps99] that contributed to 

the attentive analysis of textures.  The authors performed experiments to investigate the 

model that would best conceptualise the attentive similarity of natural textures.  The 

experiments performed by Heaps and Handel used natural textures from two specific 
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datasets: VisTex dataset and the Brodatz dataset.  The VisTex dataset consisted of 24 

textures chosen from the Media Laboratory’s Vision Texture dataset [VisTex95].  The 

textures were chosen so that some of them resembled the Brodatz textures used by Rao 

and Lohse [Rao93a].  The sets of Brodatz textures used by Heaps and Handel were 

exactly the same as the ones used by Rao et al.  Through their experiments, Heaps and 

Handel reached the conclusion that perceived similarity is context dependent and that 

the perceptual dimensions provided by Rao and Lohse in their respective study were 

somewhat meaningless. 

In recent years, psychophysical studies aimed at improving the performance of texture 

retrieval systems have been investigated.  Long and Leow [Long01], for example, 

identified the low performance of retrieval systems as being related to the perceptual 

inconsistency of computational features used for texture similarity measurements.  

Thus, they used psychophysical experiments in order to build a perceptual space to 

represent human judgments and presented a novel model to map computational features 

onto the perceptual space.  

Payne et al. [Payne05] have performed a human study in order to produce a 

perceptually-derived ranking of similar Brodatz images that could be used as a 

benchmark to evaluate retrieval performance.  In addition they proposed a “mental 

map” derived from human judgments to provide a scale for psychophysical distance and 

aid visual comparison of image similarity.  

In a more recent study, Petrou et al. [Petrou07] question the idea of using preconceived 

texture properties, such as coarseness, directionality, regularity and others, in order to 

capture human judgments and then using computational features representing these 

properties to classify textures.  The authors argue that such preconception severely 

biases the way human subjects would judge different textures when requested to do so.  

To avoid such problem, they propose the use of thousands of computational features 

that are not directly related to any high-level texture property.  They then perform 

feature selection in order to identify the features that correlate with the human rankings 

obtained through 11 individuals asked to create similar groups from 56 Brodatz 

textures.   
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2.5 Tools and Techniques for Perceptual Texture Retrieval  
 

In order to reduce the Human Perception Subjectivity, researchers in the field of CBIR 

have considered including the humans in the retrieval process. Cognitive scientists have 

made use of psychophysical experiment to understand how humans categorise textures 

whereas computer vision researchers have included the user in the query formulation 

process and integrated the human judgments as weights in optimised computational 

models. We present the different ways which have been employed to capture human 

judgments of texture. This section also presents a review of how psychophysical data is 

analysed and mapped to computational features. 

2.5.1 Techniques to capture human judgments 

Pairwise comparison  

Pairwise comparison involves the presentation of two images or objects to a user who is 

asked to compare the two images according to some preset ranking criteria. This 

technique has mostly been used to identify perceptual features within images. In most 

cases, human subjects are presented with a user-friendly interface where the images to 

be compared are displayed together with a scale that allows the subjects to judge the 

level of similarity between them. Generally used in face recognition and retrieval 

systems, pairwise comparison has also been applied within the context of CBIR. 

Rogowitz et al. [Rogowitz98] used paired comparison to investigate the perceptual 

similarity between each pair of a set of 97 images.  Since pairwise comparison requires 

��� � 1�/2  comparisons for a set of n images, Rogowitz et al. [Rogowitz98] used a 

modified version in order to reduce the complexity. In fact they compared a chosen 

texture image with eight other texture images presented to human subjects at once. 

Payne et al. [Payne05] performed a similar comparison of Brodatz textures by placing 

the test texture image at the centre of the screen, surrounded by other textures.  

Volunteers were then asked to select four textures in decreasing order of similarity with 

respect to the test texture. 

 

Perceptual grouping  

Perceptual grouping is a term that was initially coined by Gestalt psychologists in order 

to represent the ways in which humans group similar structural elements within an 

image.  The Gestalt theory related grouping to properties such as similarity, proximity, 

continuation, closure and symmetry [Lowe85].  This theory was used by Julesz where 
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he simulated textures made up of a combination of textons in order to investigate how 

humans segregate homogeneous texture regions within an image.  As such perceptual 

grouping was initially used on a preattentive basis and for segregation purposes only. 

Attentive studies of texture perception led to perceptual grouping being applied as a 

method to capture human judgments.  

Perceptual grouping, as explained by psychologists [Lowe85], refers to the human’s 

visual ability to derive relevant groupings or structures from images without any prior 

knowledge of the image content.  Perceptual grouping has been applied by a number of 

computer vision researchers in order to deal with human perception subjectivity.  Even 

if most of them focused on finding regions of interests within images, some researchers 

have also referred to perceptual grouping as a technique to group together texture 

images that are visually similar.  In this context, Rao and Lohse [Rao93a] used 

perceptual grouping to identify the relevant high order features humans use to group 

similar textures.  Rogowitz et al. employed this technique to measure the similarities 

between any pair of images from a set of 97 photographic images representing a range 

of semantic categories, of viewing distances and colours. 

 

Perceptual Ordering  

Perceptual ordering also forms part of the “laws” of perceptual organisation as 

established by Gestalt psychologists. In this case psychologists were mainly concerned 

with how the human mind unifies and orders the perceptual environment when 

presented with a visual stimulus [Lowe85 & Wenger97]. Perceptual ordering in the 

context of CBIR basically refers to a process through which human subjects order a set 

of images when presented with a query image. This aspect of perceptual organisation 

relies heavily on prior knowledge that the subjects would have on the query image. 

They tend to ask questions like: Where did I see something like this before? Some CBIR 

systems have exploited this perceptual capability of humans in order to improve the 

performance of the retrieval engines. These systems are specifically known as ‘Query-

By-Example’ (QBE) CBIRs. QBE systems normally capture the user’s needs by 

presenting them with images that are representative of all the categories within the 

database being searched and allow the user to select one or more images as query 

image. IBM’s QBIC for instance allows the formulation of queries based on objects 

within an image (e.g. find images containing cars), or based on specific image 

characteristics (e.g. retrieve images with a certain percentage of red or blue), or even 

based on specific shots within a video segment (e.g. shots with a high percentage of 
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movement).  Other well-known systems that have employed this strategy are MIT’s 

PhotoBook, the Virage technology which is used by Altavista’s PhotoFinder, CANDID 

developed at the Los Alamos National laboratory and many others. Veltkamp et al. 

present a list of thirty nine CBIRs in [Veltkamp02], however their list is by no means 

exhaustive with more work being done in this area within the past five years. 

  

Using Perceptual/Graphical cues 

Graphical or visual cues have been employed by CBIR systems developers in order to 

give more flexibility to users to formulate their queries. The interfaces are designed in 

such a way that provides users with tools that represent perceptual features that the 

developers want to use in the retrieval process. Examples of tools provided are colour 

palettes, sketch pads, list of natural language keywords, shape representations, 

directional indications for textures mostly, or even a grid image in order to indicate 

position [Sclaroff99]. This type of query formulation demands more attention and 

expertise from the user; however the latter is not required to have any prior knowledge 

about the perceptual features being sought by the developers. Such kind of query 

formulation facilities have been applied in some well-known CBIR systems such as 

QBIC, VisualSEEK, Virage and WISE [Veltkamp02]. 

 

Relevance Feedback  

In order to further reduce the human perception subjectivity and to allow better 

integration of the user within the retrieval process, researchers in the area of CBIR have 

focused on an interactive mechanism that allows a better understanding of the users 

need to be obtained.  Known as Relevance Feedback, this technique can be closely 

related to QBE techniques whereby users are presented examples to formulate their 

queries.  However, the main difference is the interactive part where the interaction of 

the user is not a crisp one-off process, but mainly an iterative one whereby the user is 

allowed to repeat the process of query selection until a satisfactory result is obtained.  

Users thus provide feedback on the results returned by the retrieval system and this 

feedback is used to enhance retrieval performance [Rui98].  Recent advancements on 

the use of relevance feedback show the use of positive and negative query examples 

[Kherfi03 & Franco04].  When query images are selected as positive examples, the 

common features among these images are given stronger weights so that all the target 

images having the same features are ranked highly in the retrieval phase.  Negative 

examples were used in order to resolve the so called page zero problem which is the 
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situation where the initial query images presented to users are all irrelevant.  As a result 

negative or very low weights would be allocated to selected negative examples so that 

they don’t appear in the retrieval results [Sclaroff99]. 

 

2.5.2 Techniques for analysing psychophysical data 

Analysis of psychophysical data is performed either to determine structure information 

within a dataset or otherwise to identify any dominant perceptual dimensions that retain 

the maximum variability within a set of textures and consequently that can be associated 

to some high level attributes used by humans to categorise texture.  The similarity space 

which represents the psychophysical results is generally a sparse, high-dimensional 

space that is very difficult to visualise and assess.  Thus, a reduced and more compact 

perceptual space is required. 

Cluster analysis has been commonly used to identify any structural information whereas 

several dimensionality reduction techniques have been employed to investigate 

perceptual dimensions within low-dimensional spaces.  The two approaches are 

presented in the remaining part of this subsection. 

 

Cluster analysis  

Cluster analysis is a tool that allows the partitioning of data into meaningful subgroups 

despite the lack of information concerning the number of subgroups or the other 

information about their composition [Fraley98].  In the context of psychophysical 

studies, cluster analysis has mostly been used to verify the meaningfulness of acquired 

perceptual judgments.  

The main goal in using the clustering process is to reveal whether “sensible or 

believable” groupings exist within the dataset that can provide insight about any 

structural information in the dataset.  In an extensive survey done by Jain et al. [Jain99], 

the latter identify two main categories of clustering techniques: partitional and 

hierarchical clustering.  Following strong interests from psychophysicists to come up 

with a taxonomy of texture categories, the main form of cluster analysis that has been 

used to analyse psychophysical data is hierarchical cluster analysis. 

Hierarchical approaches proceed by creating different sequences of data partitions, with 

each sequence corresponding to a different number of clusters.  They either proceed by 

merging smaller number of clusters into larger ones, called agglomerative approaches or 

by splitting larger clusters into smaller ones, called divisive approaches [Gordon87].  

Divisive approaches are generally impractical because it is impossible to restrict the 
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number of splittings.  Agglomerative approaches are bounded by the number of groups 

in the first clustering stage.  Additionally, agglomerative approaches are more intuitive 

to the way that humans create groups.  

 
Dimensionality analysis  

Psychometric method  

Early work on finding perceptual features for texture perception has used psychometric 

methods to find the correspondence between human and computational rankings.  

Popular researches undertaken by Tamura et al. [Tamura78] and Amadasun et al. 

[Amadasun89] have mainly considered this method.  The latter mainly consist of the 

computation of a representative ranking for the texture features being analysed by using 

the rankings performed by humans.  The representative rankings are then used to 

determine the correspondence between computational rankings and human rankings.  

Thus an indication of which texture feature corresponds better to human judgment is 

obtained.  This technique has recently been used by Abbadeni et al. [Abbadeni05] to 

test how well their autocovariance-based features perform with respect to human 

perception of texture images. 

 

Principal Component Analysis  

Principal Component Analysis (PCA) is a dimensionality reduction technique that 

extracts the principal components of a feature space by performing a variance 

optimising rotation of that space.  For the purpose of analysing psychophysical data, 

PCA was initially applied by Rao et al. (Rao93b) in order to investigate how much of 

the total variance of the physical texture space did each of the 12 perceptual properties 

considered (coarseness, granularity etc...) account for.  More recently, Payne et al. 

[Payne05] applied PCA to the ranking scales allocated by human subjects to compare 

the similarity of regular textures.  The aim was two-fold, first to extract principal 

components so as to have a view of the overall similarity of textures and second to 

investigate any structure in the similarity of the ranking scales. 

 

Classification and Regression Trees (CART)  

CART is a nonparametric regression technique utilised to select variables, and their 

interactions, from a large set of variables based on how well the variables can explain an 

expected outcome.  This technique has been used in psychophysical based studies in 

which ratings or scales are provided to users to make judgments.  Rao and Lohse 
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[Rao93b] employed CART to determine if the ratings of twelve scales provided to 

human subjects to categorise textures could predict the membership of textures within 

clusters generated using hierarchical clustering. 

 

Multidimensional Scaling 

Multidimensional Scaling (MDS) has been extensively used in literature to identify 

major perceptual dimensions through which the perceived similarity between textures 

can be represented and also as a visualisation tool that allows for visual inspection of 

the perceptual space in order to investigate existence of structural information within the 

dataset.  A major assumption associated with MDS is that the latter can transform the 

original perceived similarity space into some kind of “psychological space” where the 

distances between textures approximate their perceived similarities.  The perceptual 

space resulting from the application of MDS is bounded by orthogonal dimensions that 

can be represented by independent perceptual features.  Identification of these 

perceptual features thus allows the creation of a different spatial domain that has been 

termed as the Perceptual Texture Space (PTS).  Within Perceptual Spaces or Perceptual 

Texture Spaces, smaller distances between texture samples imply larger similarity 

values.  

The use of MDS for texture perception was originally motivated by the fact that it was 

successfully applied for colour perception.  Shephard [Shepard62] demonstrated that 

applying MDS on similarity judgments of colour patches could reveal the internal 

organisation of the colour space within only a 2D perceptual space.  The latter 2D 

representation became commonly known as the Colour Wheel that has been associated 

with colour opponent mechanisms.  In connection with texture perception, most 

research works available in literature relate to MDS as an exploratory technique used to 

characterise the process of mental representations [Gurnsey99].  

In the context of psychophysical studies, the assumption that perceived similarity values 

behave like distances is too restrictive, especially when human judgments are involved. 

As a result a non-metric version of MDS has been used within studies investigating 

perceptual dimensions.  Harvey and Gervais [Harvey81] applied MDS to similarities 

obtained by performing triadic and pairwise comparison of 30 artificial textures to 

investigate the relationship between the appearances of those visual textures and their 

fourier spectra.  Rao and Lohse [Rao93a & Rao93b] used MDS in an effort to obtain a 

taxonomical arrangement of texture categories and also to identify perceptual 

dimensions that would account for most of the variability in 56 of the Brodatz textures. 
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MDS was also used by Gurnsey et al. [Gurnsey99] in an attempt to examine the 

representational system that determines the appearance of isolated patches of visual 

texture.  

 

Direct Magnitude Estimation (DME) 

DME is a standard psychophysical rating procedure that assumes that the human mind 

processes information as magnitudes and that cognitive categorisation is a means of 

delimiting magnitude information [Dewangan05].  In the field of texture perception, 

DME has been used as a standard rating procedure through which human subjects are 

asked to assign a number or value to a texture sample when compared to a reference 

texture based on some texture property such as regularity or coarseness.  A rating value 

is pre-assigned to the reference texture and the human subjects can allocate a value 

greater or smaller in order to quantify the texture property being tested.  

 

2.5.3 Mapping computational features to a perceptual space 

A very important stage in building a perceptual retrieval system is being able to 

integrate human judgments in the retrieval process.  This stage can also be viewed as a 

learning stage where the retrieval system ‘learns’ how capable the computational 

features representing the texture dataset are in predicting a retrieval outcome when 

presented with a query image. 

Staying in the context of a “perceptual space” to represent perceptual similarity of 

texture images, we lay down different approaches employed by researchers to map 

computational features to a perceptual space.  Not much has been done in this aspect 

and the purpose for constructing a perceptual texture space has been split between 

classification and retrieval.  Payne et al. [Payne99], for instance, have used Kendall’s 

tau to correlate human rankings of Brodatz textures performed by 24 subjects with 

retrievals of the same textures via the use of a number of different features.  In this case 

no mapping was done and the psychophysical data was used only for evaluation 

purpose.  

Long and Leow [Long01] used a neural network of “invariant and perceptually 

consistent mapping” to create a perceptual texture space to represent a dataset of target 

texture images for retrieval.  The first layer of the network takes as input the 

computational features which consist of Gabor features extracted at different spatial 

frequencies and orientations.  The features are then passed to a layer consisting of 
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several translation invariant maps in order to detect some patterns in the Gabor inputs. 

The results from those maps are then projected into a scale and orientation invariant (but 

not illumination invariant) feature space.  Long and Leow then used a set of nonlinear 

regressions, implemented using Support Vector Machines, to map the invariant features 

to the perceptual similarities of textures. 

Petrou et al. [Petrou07] used the perceptual groupings performed by the human subjects 

in order to compute a stability measure for the computational features considered.  The 

stability measure accounts for the variability in each class while applying different 

features.  This method allows the authors to assign a set of weights to each feature 

representing how well it can represent each perceptual class.  Petrou et al. then used a 

weighted distance function as a similarity measure. 
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2.6 Assessing requirements to develop a Perceptual Texture 
Retrieval System 

 

The previous sections have helped us to reach a point of understanding of the research 

in the field of Perceptual Texture Retrieval.  The investigation of perceptual approaches 

provided in Section 2.4 shows that even if there is growing interest to develop retrieval 

systems that satisfy the end-users’ needs, the amount of psychophysical studies 

performed to understand and learn human’s perception is still very limited.  Indeed, 

literature shows that the psychophysical studies performed by Rao and Lohse, 

undertaken more than a decade ago, are still being referenced by researchers, for 

example Long and Leow.  Recently Payne et al.[Payne05] and Petrou et al.[Petrou07] 

have also performed human studies of texture perception, however they used the same 

texture samples as Rao et al. and their studies were for comparative purpose with 

respect to Rao’s results. 

2.6.1 Reliability of Rao and Lohse’s psychophysical results 

The fact that very few psychophysical experiments have been performed to investigate 

perceptual dimensions for texture retrieval was in itself a big motivation in undertaking 

this research.  However, an important issue to consider was whether Rao and Lohse 

psychophysical results could be employed within the scope of this thesis. 

The main factor that drove us in questioning the reliability of Rao and Lohse’s results 

was the dataset used by the latter to perform their human studies.  Since its inception in 

1966, the Brodatz album has always been a standard benchmark for texture processing.  

Rao and Lohse used 56 Brodatz texture photographs to perform their psychophysical 

study.  The intensive use of the Brodatz textures cannot hide the fact that the conditions 

under which those photographs were taken are still unknown and the effects of 

illumination variation have largely been ignored. 

However, recent studies in the field of Photometric Stereo performed by Chantler et al. 

[Chantler94 & Chantler05] have clearly demonstrated that changes in illumination 

conditions can drastically change the appearance of texture surfaces and significantly 

affect the output of the majority of texture features.  Figure 2.1 and Figure 2.2 are used 

to illustrate this statement.  

Visual inspection of the two images in Figure 2.1 introduces a bias whereby the image 

to the left appears to contain vertically oriented structures whereas the one the right does 

not appear to contain any apparent primitive that repeats itself, though some global 
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directional information can still be perceived.  This contrasting description of the two 

images would heavily influence the decision of human subjects in putting the two 

images in the separate groups even if they originate from the same surface. 

 

  

Figure 2.1– Effect of changing illumination direction on appearance 
of surface 

It can be argued that the Human Visual System performs complex processing that 

allows humans to reconstruct missing or distorted information resulting from 

illumination variation and thus predict the type of texture that they are viewing.  

However, when computational measures to extract texture features are involved, the 

influence of illumination is very drastic.  This argument is strengthened by the work 

done by Chantler et al. [Chantler05] on how the output of linear texture features behave 

with changing illumination conditions.  

 
Figure 2.2 – Sinusoidal behaviour of texture features when applied to four different surfaces 

that have been illuminated under varying illumination conditions 
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Chantler et al. developed a sinusoidal model that explains the dependency of texture 

features on lighting direction.  The outcome of their experiments is illustrated in Figure 

2.2.  The plots in Figure 2.2 demonstrate how the output of texture features vary when 

they are repeatedly applied to the same physical texture sample but under varying 

illuminant tilt angles.  The curves show the best fit sinusoids to the measured outputs. 

The plots are clearly indicative of the fact that when the illuminant tilt angles change, 

the outputs of the texture features follow a significant change.  Hence, unless the texture 

features are extracted from the surface texture themselves or from texture images 

generated under controlled illumination, any kind of processing done on the textures 

would be heavily biased and are not reliable, especially for retrieval. 

As a matter of fact, Rao and Lohse psychophysical results cannot be considered as a 

reliable source of human judgements to investigate perceptual dimensions for texture 

retrieval.  Hence, this leads to the strong conviction that psychophysical experiment 

performed under controlled conditions is imperative and has, more than ever, 

strengthened our motivation in performing this research.   

Additionally, researchers [Long01, Payne05 & Petrou07] have also used ‘identical’ 

textures from the Brodatz album to test for perceptually consistent retrieval systems.  

While all subimages from a Brodatz original would have been formed under almost 

identical imaging conditions, the same is not true between Brodatz originals.  Thus, the 

retrieval systems that are tested using the ‘identical1’ texture approach can exploit the 

differences in imaging conditions in addition to the difference between textures.  As we 

have seen from Figure 2.1 and Figure 2.2, variation in imaging conditions (particularly 

those concerning changes in illumination tilt angle) can radically affect the power 

spectra and associated features of image texture.  Hence texture features should be 

computed (where possible) from the height information of surface textures, or otherwise 

from texture images that have been under consistent illumination conditions. 

In the remaining subsection, we identify the requirements for a new psychophysical 

study.  We also identify tools required in analysing and applying psychophysical data to 

obtain perceptual dimensions and for texture retrieval. 

 

                                                 
1For the purpose of this thesis we have define an ‘identical’ set of image textures to be those cropped 
from the same parent image of a homogeneous texture. Thus we can produce 9 ‘identical’ textures by 
dividing an image into 9 non-overlapping (or overlapping) subimages. 
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2.6.2 Dataset for a new psychophysical experiment 

Eliminating the use the Brodatz dataset and the associated psychophysical studies brings 

up a major concern: which dataset to use such that illumination and viewpoint 

conditions can be taken into consideration.  Apart from the Brodatz dataset, several 

other texture datasets have been made public and utilised constantly in other areas of 

texture processing.  A very brief review follows so as to determine whether these 

databases could provide texture samples to be used for a new human study. 

 

CuRET (or CuRRET) -Columbia-Utrecht Reflectance and Texture Database 

The CuRET database consists of three specific texture datasets that have been used to 

investigate the appearance of real world textures: (1) BRDF (bidirectional reflectance 

distribution function) dataset, (2) BRDF parameter database and (3) BTF (bidirectional 

texture function) database.  Besides visual appearance, the CuRET textures have also 

been used extensively for texture analysis and synthesis.  However, the texture surfaces 

have been captured with both changing illumination and viewing directions, which is 

not very practical for retrieval (we would like all surfaces to be viewed from the same 

position).  Moreover, the datasets combine both specular and diffuse surfaces which 

imply different reflectance models to generate the images.  In order to avoid any bias in 

human judgements only one reflectance model is preferred.  And most importantly, the 

surface texture height maps are not available to generate texture samples for the human 

study.  However, texture images generated under the same condition can be selected, 

thus making the CuRET dataset a potential candidate for psychophysics. 

 

VisTex – Vision Texture Lab database at MIT 

The VisTex database was conceived with the intention to provide large set of high 

quality textures that would be used for, and by most computer vision algorithms in 

texture processing.  However, this set was captured with varied studio lighting 

conditions including daylight, artificial-fluorescent and artificial-incandescent.  

Additionally, it does not conform to any rigid frontal perspective.  Hence, this makes its 

use for a human study, where controlled illumination and viewpoint are prime concerns, 

quite irrelevant. 
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OuTex - University of Oulu Texture database 

This database was generated to test texture segmentation and classification algorithms.  

The textures captured reflect changes in illumination, surface rotation and resolution. 

Texture images captured at three different illumination positions are available; however 

these three illumination positions are coplanar and cannot be used to recover the surface 

height map through photometric stereo.  However as in the case of the CuRET dataset, 

if texture images are chosen such that they all have the same capture condition, then the 

OuTex dataset is also a potential candidate to be use for human study. 

 

MeasTex  

MeasTex is a texture image database that is accompanied with quantitative 

measurement framework for image texture analysis and synthesis.  MeasTex is solely a 

collection of 2D texture images with the illumination and viewpoint condition being 

unknown. 

 

PhoTex – Photometric Texture database at Texture Lab 

The PhoTex database consists of a set of rough surfaces that have been captured at 

different illumination directions and viewpoints.  This database satisfies our 

requirements of acquiring height maps that can be used to generate controlled texture 

images, however, since it contains only one category of textures (rough surfaces such as 

plaster or rock), it does not contain sufficient variability for our purposes. 

 

The above investigation in the available texture databases shows that very few texture 

surfaces can be ‘borrowed’ to create a dataset for a new human study.  Additionally, this 

small set comes from the PhoTex database.   

The OuTex and the CuRET datasets can provide images generated under the same 

condition, which makes them likely candidates for human study, however additional 

selection criteria need to be investigated to determine whether new samples need to be 

captured.  The other selection criteria are considered in Chapter 3. 
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2.6.3 Selecting tools for the capture and analysis of psychophysical data 

A review of the different techniques to capture human judgements has already been 

presented in section 2.5.1.  Pairwise comparison has been used by several researchers; 

however the fact that ��� � 1�/2 comparisons are required to obtain perceived 

similarity, this method is not very practical when large datasets are considered.  Even if 

the modified versions applied by Payne et al. and Rogowitz et al. do reduce the number 

of comparisons, they, however, only help in increasing the complexity of the 

psychophysical setup.  The modifications imply that (1) a suitable interface needs to be 

designed to accommodate a test texture with several targets, and (2) there is a main 

concern about which target textures should be presented with the test sample. 

Perceptual ordering, relevance feedback and perceptual cues have been thoroughly 

exploited by CBIR developers.  However, they all need to be employed in a 

computational context and cannot be considered for the analysis of psychophysical data.   

Perceptual grouping, on the other hand, has already been used successfully in the field 

of texture perception to determine perceptual dimensions (cf. Rao and Lohse).  It also 

does not require any complex setup and can be applied to match or compare any size of 

texture images.  Additionally, by providing the human subjects with a view of all the 

images in the database, perceptual grouping allows the subjects to relate to the context 

in which the experiment is performed.  This technique also has a couple of limitations. 

Firstly it works well when the number of samples is small.  For large datasets (>300) it 

becomes difficult to present observers with all the samples at once.  Secondly grouping 

large number of samples may also result in boredom and fatigue in observers, hence 

contributing to biased results.  However, the advantages of this technique overshadow 

its limitations thus making it a strong candidate for capturing judgments.  

Further motivation to use this technique comes from the fact that in comparison to other 

popular techniques such as pairwise comparison, a subject does not need to remember 

previous judgments as all the images remain in his/her field of vision, whether grouped 

or ungrouped.  Grouping also eases redundancy reduction.  As mentioned before natural 

textures contain a lot of redundant information.  However, while comparing the texture 

samples, subjects need to ignore the redundant information and identify only common 

features.  This process is more difficult when pairwise comparison is performed, 

whereas with the grouping, task comparison is easier as the subject can use information 

from as many samples as required to perform the task. 
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The main objectives in analysing psychophysical data are mainly: 

1) To identify relevant structure in the comparisons or groupings performed by human 

subjects, 

2) To represent the texture samples (judged by the subjects) in a low-dimensional 

‘psychophysical’ space such that the separation of the textures within that space 

represents as closely as possible the perceived similarity of textures. 

Hierarchical analysis has been used by several researchers to satisfy the first objective, 

mainly because, it provides a simple and inexpensive means to create cluster that could 

be verified “visually” and additionally it allows the investigation of how clusters of 

similar samples are related.  The idea of moving up and down a hierarchical tree causing 

the merging and splitting of texture categories perfectly with the aim of deriving 

homogeneous and sensible enough texture groups which could be part of an 

interpretable taxonomy [Gordon87]. 

In the case of dimensionality analysis, Multidimensional Scaling, especially its 

nonmetric version, has proved to be very successful in transforming high-dimensional 

sparsely sampled spaces to lower dimensional spaces whereby the similarity 

information being assessed, is still preserved [Rao93a & Rao93b].  Moreover, the 

values generated by MDS do not have any specific meaning with only the spatial 

configuration represented by those values being of interest.  Besides, MDS also allows 

the graphical representation of the structure of a complex dataset.  
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2.7 Conclusion 
 
In this chapter, we identified the challenges faced by researchers from various 

communities in developing perceptually consistent retrieval systems.  Based on the 

review of perceptual approaches to texture retrieval, we can conclude that very few 

psychophysical studies have been undertaken to identify perceptual dimensions for 

texture retrieval.  Additionally, the existing studies were all performed using texture 

images obtained under unknown illumination and viewpoint conditions.  

The visual appearance and the numerical values of common texture features can be 

dramatically affected by changes in direction of illumination, hence 

• texture features should be computed (where possible) from height 

information or, if this is not possible, from consistently illuminated samples, 

• observers should be provided with images obtained under consistent 

illumination conditions for psychophysical studies. 

Perceptual grouping is an easy and intuitive way to capture human judgments.  It is also 

a practical approach for deriving similarity data using a reasonable number (circa 100) 

of textures.  

Hierarchical Cluster Analysis is a useful technique for the analysis and visual inspection 

of similarity data whereas Multidimensional Scaling is a commonly used technique for 

dimensionality reduction of large perceptual spaces (i.e. high-dimensional similarity 

data).  
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Chapter 3  

Design and Implement the Psychophysical 

Experiment 

 

3.1 Introduction 

The previous chapter established that the number of psychophysical surface texture 

experiments reported in the literature is low.  Most papers cite Rao’s work [Rao93a] as 

the main source for texture dimensions and many of them use Rao’s data to train their 

retrieval or classification systems.  However, as it has been pointed out in Chapter two, 

all the psychophysical experiments performed so far have presented human subjects 

with texture images whose illumination and viewpoint information are unknown, and 

uncontrolled.  As explained previously, this is likely to have biased the calculation of 

texture features and provided potentially confusing stimuli to the observers.  However, 

these papers have shown that ‘perceptual grouping’ is a useful tool for economically 

producing similarity data.  

 

Thus, the main objectives of this chapter are: 

(a) to develop two databases that are suitable for psychophysical experiments and 

that in particular use images that have been captured under controlled and 

known conditions,  

(b) to design and perform perceptual grouping experiments that will use these data, 

and  

(c) to derive similarity matrices from these experiments. 

 

Figure 3.1 shows a breakdown of the steps considered necessary for performing such 

experiments. 
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Figure 3.1 - Steps required for psychophysical experiment setup 
 

The first step, discussed in Section 3.2, considers the overall approach to the experiment 

from the pragmatic point of view of how to determine similarity data using a reasonable 

sized database of around 100 samples.  Sections 3.3 and 3.4 specify the necessary 

characteristics of the stimuli and determine suitable sources. The next section considers 

the detailed design of the experiments while Section 3.6 covers its implementation and 

Section 3.7 describes the aggregation of the resulting data. 

3.2 Basic Approach 

The objective of this thesis is to develop perceptually relevant texture retrieval systems.  

Ideally this would make use of an exhaustive number of example retrievals performed 

by a reasonable number of observers on a database that was representative of all 

possible surface textures.  Clearly this is not realistic given the resources available to the 

individual researcher.  The collection of suitable samples is surprisingly time-

consuming and so the use of databases containing approximately one hundred textures 

was considered to be an obtainable goal.  Unfortunately even for this number of samples 

it is unrealistic to expect observers to provide error free retrievals of say 30 ordered 

textures using each of the 100 samples as a query within the 30-40 minutes that it was 

thought they could maintain their concentration.  However, a pilot ‘grouping’ 

experiment showed that it was feasible for an observer to sort this number of textures 

into an arbitrary number of perceptually similar groups.  Furthermore, if such a task is 

performed by several observers then a similarity score between any two samples can be 

estimated by counting the number of times that observers have placed the pair within 

Determine basic psychophysical approach (s3.2)

Specify stimuli (s3.3)

Acquire stimuli (s3.4)

Design experiment (s3.5)

Perform experiment & collect data (s3.6)

Aggregate data (s3.7)
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Aggregate data (s3.7)
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the same group.  The ‘ideal’ retrieval for any query may then be estimated by 

identifying the remaining textures in the database in order of their similarity scores.  

Originally it was intended to provide observers with moving imagery of each surface – 

however, it was quickly realised that even the relatively large TFT displays available 

today do not contain sufficient pixels for the display of the number of textures required 

at reasonable screen resolutions.  Thus the overall approach decided upon comprised: 

• capture or obtain images of around 100 sample textures obtained under 

controlled and known illumination conditions; 

• perform experiments in which observers were asked to group photographs of 

the samples into an arbitrary number of groups, the only criterion being that the 

members of a group should be perceptually similar; 

• construct similarity matrices from the observers’ groupings. 

3.3 Specification of the Stimuli 

Most researchers agree that texture is a highly complex phenomenon.  However, 

Chapter 2 reported that the number of psychophysical studies on the psychophysical 

aspects of surface texture retrieval reported in the literature is surprisingly low.  It was 

therefore decided to keep stimuli as simple as possible, to control environmental 

conditions as far as was practicable, and to focus purely on the core issue: surface 

texture retrieval. With this strategy in mind the following criteria for the stimuli were 

drawn up: 

a) Two databases would be used: a general dataset covering as wide range of 

surface textures as was practicable, and a more specialised set covering a 

particular application domain.  These datasets are referred to as Tex1 and 

MoMA. 

b) The datasets should contain around 100 samples or less – so as to allow 

observers to complete the grouping task within thirty minutes. 

c) The datasets should consist primarily of surface textures and not contain 

confusing surface markings – and so at least Tex1 should contain purely 

monochrome, constant albedo, lambertian surfaces. 

d) Samples should contain a single homogeneous texture, so as to ensure that 

observers were not using different parts of a sample to find a ‘match’ with 

different textures. 
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e) The samples should be of approximately the same granularity (or scale) and 

roughness – as these two texture dimensions have already been investigated in 

depth. 

f) The datasets could be generated synthetically, or be captured from real surfaces, 

but in either case the observers must be able to envisage the imagery as being of 

believably real surfaces.  

g) The imagery must be of sufficient resolution and size for the observers to be able 

to perceive the characteristics of the surface texture, and yet small enough, such 

that they could manipulate and view all of the samples simultaneously on a large 

table. 

h) The imagery presented must be generated under a single set of illumination 

conditions.  

i) Height data should be available for at least Tex1 to allow the generation of 

texture features unbiased by illumination conditions. 

j) The height-data requirement could be relaxed for MoMA providing that uniform 

imagery illumination conditions is used so that biasing of the texture features 

would be consistent across the dataset.  

3.3.1 Dataset consisting mainly of believable surface textures 

In order to get an understanding of how humans categorise texture surfaces, it is 

important to present them with imagery that they can envisage as being of real surfaces. 

A simple definition of “believable textures” would be: textures that originate from our 

environment, or could be thought of as originating from our environment. The main 

reason for this criterion is that the human visual cortex is likely to be highly non-linear, 

and tuned or optimised for such type of visual stimuli.  Interpolation between non-

ecologically valid stimuli is therefore not guaranteed to produce consistent results.  

3.3.2 Granularity and Roughness 

An initial pilot study demonstrated that humans tend to group together all fine-granule 

textures, independent of the structure of the texture elements or even their placement 

within the surface plane.  However, granularity (or scale) has been identified in all of 

the previous studies as a major dimension of texture, and as the datasets were to be 

limited to around 100 samples it was decided to focus on the more challenging 

characteristics of surface texture.  Likewise for roughness.  It was therefore decided to 

try and limit the range of roughness and granularity exhibited by the samples. 
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3.3.3 Controlled Illumination and viewpoint conditions  

This can be considered as the most important design issue in selecting or generating 

samples for perceptual grouping.  Chapter two has shown that all psychophysical 

experiments performed so far for texture surface perception have considered only 

texture images generated under unknown illumination and viewpoint conditions.  

However, Figures 2.1 and 2.2 clearly show that: 

(a) illumination can dramatically bias the outputs of common texture features, and 

(b) the perceived qualities of a surface can change significantly with changes in 

illumination direction. 

3.3.4 Variety of texture samples 

As discussed previously, the failure to generate sufficient samples for the 

psychophysical experiment can seriously bias the results of the experiment.  When 

texture surfaces are considered, the issue is not only about having enough samples to 

perform the experiment, but also about having sufficient categories of textures covered 

by the experiment.  The studies performed by Rao et al. [Rao93a & Rao93b] have been 

of enormous help in achieving this objective.  Even if the dataset used by Rao et al. was 

not generated under controlled conditions, it is nevertheless valuable in the variety of 

textures it presents.   

For Tex1 we have therefore tried to obtain as wide a variety of surfaces as was feasible.  

This requirement was relaxed for the MoMA dataset which is application specific and 

was taken as provided by domain experts. 

3.3.5 Matte surfaces 

Gloss is a specific surface appearance property that is described in terms of the 

reflectance of a material surface.  In the case of specular reflection light is directed at an 

angle opposite to the incident light where as for lambertian reflection, light is diffused 

equally in all directions.  Figure 3.2 illustrates how an incident light is scattered on two 

different surfaces.  

 

 

Figure 3.2– Lambertian reflection (left) and specular reflection (right) on somewhat matte 
and mirror-like surfaces respectively 

 



42 
 

It has been shown that the degree of ‘glossyness’ significantly affects our perception of 

surface characteristics [Ho08] and the presence of gloss can influence our perception of 

the global structure of surfaces by making them appear more curved [Todd97 & 

Ming86].  It is important that the grouping experiment is performed without any bias 

resulting from the surface properties themselves.  Given that in the first instance we are 

primarily interested in how humans perceive and categorise surface textures, the 

surfaces used for Tex1 are rendered using a simple Lambertian reflectance model (i.e. 

considering only matte surfaces). 

3.3.6 Constant albedo surfaces 

Albedo information characterises the reflectance of a given surface and it basically 

represents the amount of light which is scattered from that surface when an array of 

light is incident on it.  Thus, areas of high albedo on a surface would reflect most of the 

incident light and they look brighter than areas where the albedo is low due to 

absorption of light energy by the surface [Lin99].  As in the case of surface reflectance, 

natural surfaces, in practice, are composed of patches that have different light energy 

absorption capabilities.  Thus, the variation in absorption level means varied brightness 

level across the same surface.  This phenomenon can influence the judgments of human 

observers comparing samples.  Therefore for Tex1 we rendered all surfaces as having 

constant albedo. 

3.3.7 Size of the datasets 

In order to obtain a fair and unbiased judgment from the human subject, it is crucial that 

the decision for grouping textures is performed under no influence of fatigue, 

fluctuations in mood or even boredom, therefore, the size of the dataset cannot be too 

large.  We found that datasets of around 100 samples could be grouped by the average 

observer in 20-30 minutes. 

3.3.8 Size and resolution of images  

As mentioned in Chapter two, most psychophysical experiments have used digitised 

versions of the Brodatz album.  The latter normally consisted of photographs occupying 

a picture area of about 19.5 by 24 cm.  The digitised versions used by psychophysical 

studies varied in the number of pixels and range of grey levels used.  Resolutions of 384 

by 384 pixels with 256 grey levels and 256 by 256 pixels with 64 grey levels are most 

common in literature [Tamura78, Amadasun89 & Rao93a].  

Naturally the resolution required is a function of the viewing distance and the size of the 

photographs.  In [Rao93a], Rao et al. used a 4 by 5 inch picture area to represent the 
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Brodatz textures for their psychophysical studies.  We have also found that this kind of 

size of photograph gives a good compromise between providing a large enough sample 

for assessment purposes, but is still small enough that it is practicable to manipulate and 

layout around 100 photographs on a conference table.  We have therefore generated all 

pictures at 4 by 4 inch.  Given this size of photographs it was found that 512x512 eight 

bit images gave sufficient resolution when laid out on a table and viewed from a 

standing position. 

 

3.4 Acquisition of Stimuli 

As previously discussed it was decided to obtain two datasets:  

Tex1: the primary dataset comprising at least one hundred samples drawn from as 

wide a range of surface textures as was practicable together and 

MoMA: an application specific dataset defined by domain experts and focusing on a 

narrow set of texture types.  

 

It was decided that the exacting height-map requirement would only be applied to Tex1 

and that images taken under controlled and consistent conditions would suffice for the 

MoMA set. 

These sets both had to comply with the criterion detailed in the previous section.  These 

are summarised in Table 3.1 for convenience. 

 

C1. Number of samples 50-150 

C2. Surface reflectance characteristics Lambertian, Monochrome, constant albedo 

C3. Homogeneity  Single level homogeneous textures required 

C4. Realism Imagery should believably represent real surfaces  

C5. Resolution and size 4” x 4” at least 512x512x8bit 

C6. Height data Should be available for at least Tex1 

C7. Consistent environmental 

conditions 

Illumination conditions and viewing geometry must 

be consistent throughout each dataset 

C8. Roughness and granularity Approximately constant throughout each data set 

Table 3.1– Summary of criteria for dataset selection 
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3.4.1 Sourcing the Datasets 

Chapter 2 surveyed the publicly available datasets and identified two possibilities: 

CUReT and Outex.  Unfortunately neither of these datasets forms suitable candidates 

for Tex1 as neither contains height data, or suitable image sets for reliably deriving 

height data.  Neither are they suitable as our second application specific dataset as they 

contain a wide range of randomly collected textures.  Furthermore, many of the samples 

in both of these databases violate criteria C2, C3, and C8.  

 

A) The application specific dataset  

A chance contact from the Museum of Modern Art, New York revealed that they had a 

collection of photographic papers that they had collected and imaged using a flatbed 

scanner in order to emphasise their surface texture.  As these textures covered a narrow 

range of texture types and as they were obtained under identical imaging conditions it 

was decided to use this source for the second dataset.  Furthermore, staff and associates 

of MoMA were very keen to participate in the psychophysical experiments.  Images of 

the MoMA dataset are shown in Appendix A (Figure A.4 and Figure A.5). 

 

B) The Tex1 dataset 

Reluctantly it was decided that for Tex1 the data would have to be generated by the 

author. Originally the aim was to obtain height maps of real samples using photometric 

stereo – a cheap and fast method of obtaining texture height data.  However, it was 

found that the number of homogeneous texture samples of the appropriate scale, size 

and roughness that could be brought into the laboratory was surprisingly low.  Texture 

synthesis was therefore used to augment this dataset with the proviso that the resulting 

imagery should be as believable as that obtained from a real surface (i.e. meet criteria 

C4). 

The rest of this section describes the acquisition of height information from real samples 

where this was possible and the generation of synthetic data when capture was not 

feasible.  The complete Tex1 dataset consists of fifty-two natural textures and sixty-

eight synthetic ones, for a total of hundred and twenty surface textures. The Tex1 

dataset is provided in Appendix A (Figure A.1 to Figure A.3). The Tex1 textures are 

denoted in the following way: “T” + index (for example T31). The labels of the Tex1 

textures in Appendix A are subscripted with an “n” or a “t” to distinguish between the 

natural and synthetic textures. 
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3.4.2 Tex1 – Capturing height-maps of real surfaces 

The use of surface height maps instead of images as the primary source provides two 

main advantages: 

(i) texture features calculated directly from height maps are independent of any 

imaging conditions used to view the surfaces (unlike those features shown in 

Figure 2.2); 

(ii)  if height maps of glossy textures with varying albedo have been obtained then 

they may be rendered to meet criterion C2. 

 

The method selected for surface height capture was photometric stereo [Woodham80]. 

It is a cheap, fast method that has been used in the Texture Lab over the last ten years 

[McGunnigle01 & Dong05]. The theory assumes: 

• an orthographic projection system with the camera axis being perpendicular to 

the plane of the surface, 

• the light vector and intensity that is constant over the surface, 

• that shadowing and occlusion are negligible, and the surface is Lambertian. 

 
Figure 3.3 –Capture geometry 

Figure 3.3 illustrates the relevant geometry.  The camera’s optical axis is along the Z 

axis and the texture surface lies in the plane X-Y.  The light source is placed at a 

distance far from the surface relative to its size in order to approximate orthographic 

light projection. τ denotes tilt angle and represents the angle that an illuminant vector 

Z 

Surface 
height map 

Image 

Surface  

X 

Y 

ττττ 

σσσσ 



 

projected onto the surface plane makes with 

represents the angle the 

assumptions the image function 

i�x,y

 

The setup shown in 

topology of a given texture material we 
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equation (3.1) which can be solved to provide an estimate of the per

normals.  These in turn can be used to derive the unit surface no

values.  

 

Hence Photometric stereo has been employed to recover the real world textures to be 

used in the psychophysical 

taken at tilt angles 0

provide enough change in illumination gradient so that the partial derivatives for the 

surface can be estimated. 

 

Figure 3.4 – Photometric images for the anaglypta surface taken at a fixed slant of 45
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the surface plane makes with X axis, whereas the slant angle, 

represents the angle the illuminant vector makes with the Z axis

the image function is defined as follows: 

y�= 
-p�x,y� cos τ sin σ - q�x,y� sin τ cos σ + cos

�p2�x,y�+ q2�x,y�+ 1

The setup shown in Figure 3.3 results in only one image.  To recover the surface 

topology of a given texture material we require at least three image

(non coplanar) angles.  This provides three simultaneous equations of the form of 

which can be solved to provide an estimate of the per

These in turn can be used to derive the unit surface no

Hence Photometric stereo has been employed to recover the real world textures to be 

used in the psychophysical experiment.  Figure 3.4 shows a set of photometric images 
o, 90o and 180o. It is important that the three photometric images 

provide enough change in illumination gradient so that the partial derivatives for the 

surface can be estimated.  

  

Photometric images for the anaglypta surface taken at a fixed slant of 45
tilt angles 0o, 90o and 180o 

A summary of the mathematical derivation follows: the reflectance functions for the 

given, in matrix format, by: 

id�x,y� �  ������         �� � �1 … �� 

e reflectance intensity at point �x,y� for a given illumination vector 

represents the number of photometric images required (3 in our case), 

surface normal unit vector at a given position �x,y� in the surface plane and is defined as 

� and � being the partial surface derivatives. 

axis, whereas the slant angle, σ, 

Z axis.  Based on the above 

cos σ
 (3.1) 

To recover the surface 

images taken at different 

This provides three simultaneous equations of the form of 

which can be solved to provide an estimate of the per-pixel scaled surface 

These in turn can be used to derive the unit surface normals and albedo 

Hence Photometric stereo has been employed to recover the real world textures to be 

of photometric images 

. It is important that the three photometric images 

provide enough change in illumination gradient so that the partial derivatives for the 

 

Photometric images for the anaglypta surface taken at a fixed slant of 45o and 

he reflectance functions for the 

(3.2) 

for a given illumination vector 

represents the number of photometric images required (3 in our case), n(x,y) is the 

in the surface plane and is defined as 
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Assuming (i) the surface albedo, �, to be uniform and (ii) a non-singular illumination 

matrix �  where � � ��, ��, ��� , then the scaled surface normals are estimated by 

taking the inverse of the illumination matrix as follows, m=L-1·I, with I being the 

reflectance matrix derived from the photometric images.  The vector m=����m1,m2,m3����T is 

then used to derive the partial derivatives of the surface being recovered with p=
m1

m3
 and 

q=
m2

m3
.  Further details can be obtained from [Gullón03, Dong03, & Wu03].  

Once the partial derivatives have been estimated the surface is recovered using a non 

iterative version of Frankot and Chellapa’s integration method [Frankot88].  Figure 3.5 

shows height maps of some natural surfaces that have been considered in this thesis.   

 

   

         

Figure 3.5 - Row 1 shows the height maps of some real world surfaces and row 2 shows their 
corresponding images 

3.4.3 Tex1 – Synthetic texture generation 
 
Synthetic textures have been intensively used in understanding the mechanisms of 

texture segregation.  Pioneering research undertaken by Julesz et al. [Julesz81 & 

Caelli78] focused on the use of randomly placed texture elements in order to identify 

which pair of texture elements would segregate easily.  The micropatterns or texture 

elements that were used to generate the synthetic textures consisted mostly of dots, lines 

and stimuli in the form of Ls, Xs, and Ts.  
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Even though the computational theories put forward to examine the discriminability of 

such textures have been seen to work well, synthetic textures constructed on the basis of 

micropatterns are not representative of natural textures that we encounter in day to day 

life and so violate criterion C4 concerning realism.  The challenge, therefore, is to come 

up with synthetic textures that are similar to real examples.  

Texture synthesis has been used extensively to generate realistic texture images or 

surfaces.  2D texture synthesis methods have mostly been categorised as being 

parametric or non-parametric.  Parametric synthesis methods perform synthesis by 

matching global or local statistics between a sample image and result images in a 

feature space.  Some well-known parametric methods have been implemented by 

Gagalowicz and Ma [Gagalowicz85], Heeger and Bergen [Heeger95], De Bonet 

[DeBonet97] and Zhu et al. [Zhu98].  Most parametric methods are based on 

multiresolution approaches that use a bank of filters and sampling strategies for the 

statistical encoding of textures.  A well referenced approach is the one proposed by 

Portilla and Simoncelli [Portilla00].   

Non-parametric methods are sometimes referred to as ‘synthesis by example’.  Paget 

and Longstaff [Paget96 & Paget98] proposed a non-causal synthesis algorithm based on 

Markov Random Field (MRF) to model arbitrary textures.  Others such as Efros et al. 

[Efros99] and Wei et al. [Wei00] used a neighbourhood search strategy to synthesise 

textures.  Efros and Freeman [Efros01] also proposed image quilting which consisted of 

synthesising new textures by stitching together small patches of existing images.  Other 

patch-based approached were proposed by Liang et al. [Liang01] and Kwatra et al. 

[Kwatra03]. 

Even if all the methods available in literature perform well when tested with specific 

texture samples they have not been generalised to work on a large variety of textures.  

Additionally methods such as the one based on MRF, which can be used to synthesise a 

large variety of natural textures, are normally computationally expensive.  Patch-based 

approaches have the disadvantage that patches selected to synthesise a texture contain 

limited amount of information and cannot provide for good statistical description of 

real-world textures that normally contain features at widely varying scales.  Due to 

those issues, we have decided against using the synthesis methods available in literature 

and instead we have used some basic approaches that (1) are inexpensive to implement 

and execute and (2) are more suitable to generate synthetic textures that are closer in 

appearance to the existing natural textures.  The approaches correspond to frequency 

domain synthesis of textures and are presented in the rest of this subsection. 
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A) Frequency domain synthesis – 1/fβ noise 

One-over-fBeta-noise (random phase fractals) have been widely used to model textured 

surfaces given that they can be easily generated and at the same time the surface relief 

produced appears to be that of natural surfaces[Pentland84].  These surfaces are fully 

represented by the power spectrum, and hence are easily generated by synthesising a 

suitable power spectrum function:      

Sf�w,θ�= 
kf

wβ
 (3.3) 

and combing it with random phase. 

Sf�w,θ� represents the power spectrum of the fractal surface, kf is a constant that 

controls the surface variance and ! is the power roll-off factor [Kube88].  Other 

variations of this model have been defined in literature that split the power spectrum 

into two fractal dimensions.  Examples are the Mulvaney and the Ogilvy models.  

Surfaces generated using the Mulvaney model have a flat spectrum at lower frequencies 

and a roll-off value of 3.0 at high frequencies whereas the Ogilvy model allows the 

generation of directional surfaces with different power spectrum characteristics for 

different directions [Gullón03 & McGunnigle01].  Figure 3.6 illustrates two texture 

images obtained after rendering a Mulvaney surface and an Ogilvy surface.  While the 

Ogilvy surface seems to contain some directional information, the surface relief for both 

surfaces are very isotropic.  

 

  

Figure 3.6 – (a) Mulvaney surface (b) Ogilvy surface 

 

 

B) Other frequency domain functions 

Gluckman [Gluckman05] created visual patterns based on a combination of discrete 

frequencies in the power spectral domain in order to examine the ability of using filter 

based statistics to discriminate between an arbitrary set of visual stimuli.   
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Thus the power spectrum, F(w), of a given pattern is a combination of a set of functions 

(f1, …, fn), with each function fi being a set of integer frequency pairs {(u1, v1) … (um, 

vm)}.  Figure 3.7 illustrates this approach; the first row presents different power spectral 

functions generated by combining two functions f1 (blue spots) and f2 (black squares), 

whereas the second row provides the corresponding patterns generated using those 

power spectrums. 

 

   

   

 
Figure 3.7– Row 1 shows different distribution of frequencies and row 2 shows resultant patterns 

 

Such methods can be extended to placing 2D Gaussians in the power spectrum, which, 

when coupled with random phase can produce sandwave type surfaces.  While the 

results generated using these methods do not appear very realistic on there own, they 

can be used for the basis of generating realistic looking surfaces.  

 

C) Generating structural information 

Even if a limited number of “natural looking textures” can be generated using power 

spectrum approaches it is evident that they lack the “structural” characteristics of many 

man-made and biological (as opposed to mineral) surface textures.  Hence we need to 

generate synthetic textures whereby structural information can be clearly perceived. 

Figure 3.8 shows some textures captured using photometric stereo that contain 

significant phase information. 
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Figure 3.8 – Phase rich textures 

 

We now introduce three techniques that can be applied in combination or individually, 

that introduce phase information into textures defined in the power spectrum: folding, 

thresholding and placement.  
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Folding   

The term “folding” is used in this thesis to denote the process that allows a non-linearity 

to be introduced on surfaces that have been generated based on specific Power law 

parameters.  The folding process operates by first drawing a line/plane across the height 

distribution of a given surface (or signal) based on an input threshold value. All the 

values below the folding line are mapped above it (i.e. for all height values lower than 

the threshold). The mapping is basically a reflection about the folding line. Figure 3.9 

illustrates how the folding is performed on 1D and 2D signals.  The amount of folding 

controls the amount of non-linearity introduced in the height map generated.  The 

function used to generate the height maps has been modelled as follows  

 
H�x,y�= H�x,y� " 2*(f

xy
-H�x,y�)    if and only if     H�x,y�< f

xy
 (3.4) 

 
It is easily implemented using mean shift and absolute functions.  After performing 

folding of the height map using equation (3.4), the dynamic range of the surface is 

normalised in the range [0, 1]. 

 

(a) 

 

  (0-Fold) (1-Fold) (2-Fold) (4-Fold) 

(b) 

 
 Figure 3.9– (a) 1D signal folding (b) corresponding folding within a 2-D plane representing 

the same signal 
 

Thresholding  

Folded, or unfolded power spectrum surfaces may be used as a probability map to 

control the placement of simple texture elements.  The simplest approach being to 

threshold such ‘control surfaces’.  Random or semi random placement of texture 

elements then only occurs in areas in which the control surface is greater than the 

threshold. 

Folding line Folding line Folding line
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Figure 3.10 – Dark regions identify the placements on surfaces with varied high frequency 
information 

Figure 3.10 shows example surfaces that have been generated by keeping different 

amounts of high-frequency information (a circular filter is applied to the magnitude 

information to achieve this).  The dark regions on the surfaces represent the placement 

regions for primitive mapping and are given by retaining height values above a certain 

cut-off value.  

 

Texture primitive placement 

Once placement rules have been determined as described above, they may be used for 

placing or generating simple texture elements.  The texture elements used within this 

research are either half hemispherical textons to provide for more general structural 

appearance or otherwise they comprise ellipsoidal textons that provide some 

directionality.  Where primitives overlap we take the maximum of the height of any 

primitive at that x-y position. 

 

 

 

 

 

Figure 3.11 shows some primitives used in generating the synthetic textures.  Different 

sizes of these primitives oriented at different angles are used to provide for diverse 

varieties of texture surfaces.  

D) Summary of structural information generation 

The different stages required to create synthetic textures are summarised in Figure 3.12.  

Figure 3.13 shows height maps of natural textures together with height maps of 

synthetic textures generated to resemble the natural samples.   

Figure 3.14 shows images of the real and synthetic height-maps when illuminated using 

the lambertian model and with uniform albedo. 

  

 
 

 

Figure 3.11 – Texture primitives 
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Stage Height Map Description 

(I) 

 

Original height map is generated 

either for random placements or 

regular placements. 

(II) 

 

This stage shows the resultant surface 

after the folding function in equation 

(3.4) has been applied to the fractal 

surface generated in stage (I). 

(III) 

 

The surface generated after 

thresholding the folded surface in 

stage (II) and mapping primitives.  

(IV) 

         

Texture image generated by 

rendering the resultant surface at a 

slant angle of 45o and a tilt angle of 

135o (from the top left corner) and 

with uniform albedo. 

Figure 3.12 – Stages (I) to (III) illustrate the complete process of applying folding, thresholding 
and primitives mapping to generate a synthetic surface. Stage (IV) represents the illuminated 

surface. 
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Figure 3.13 – (column1) natural surfaces recovered using photometric stereo, (column2) 
visually similar synthetic surfaces. 

 
 



 

 
 
 

Figure 3.14 -(column1) natural texture images and (column2) visually similar 
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(column1) natural texture images and (column2) visually similar 
synthetic texture images 

 

 

 

 

 

 

 

(column1) natural texture images and (column2) visually similar 
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3.4.4 Preparation of samples for experiment 
 

The psychophysical studies, performed within the context of this thesis, employ texture 

samples that are presented to human subjects in the form of photographic prints.  Each 

print occupies an area of 4 by 4 inches and was printed at a resolution of 512 by 512 

pixels using a laserjet printer.  An example is shown Figure 3.15.  

 

 

Figure 3.15 – Tex1 sample  photograph provided to observers for 
psychophysical experiment 

 

The use of photographs facilitates the grouping task as it allows observers to have a 

snapshot of the whole texture dataset thus allowing them to situate themselves within 

the context of the experiment.    
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3.5 Experiment Design 

One of the fundamental tasks in setting up the psychophysical experiment was to 

determine the assessment method to be employed by the human subjects to group the 

textures in both the Tex1 and MoMA datasets.  Chapter two summarised the different 

assessment techniques that have been utilised so far by researchers. 

3.5.1 Grouping task 

 As discussed in Chapter two, perceptual grouping principles have been employed to 

solve a number of practical vision problems, and the advantages that motivated us to 

choose this method are summarised below. 

a. Perceptual Grouping has already been used successfully in the field of 

texture perception to determine perceptual dimensions. 

b. It does not require any complex setup and can be applied to match or 

compare any size of texture images. 

c. By providing the observer with a view of all the images in the database, 

it allows the observer to relate to the context in which the experiment is 

performed. 

d. As compared to other well known techniques such as Pairwise 

comparison, the user does not need to remember previous judgments as 

all the images remain in his/her field of vision, whether grouped or 

ungrouped.  

e. Finally, the technique allows observers to carry out the experiment in 30-

40 minutes: thereby preventing undue fatigue. 

 

3.6 Implementation of experiment  

The grouping experiment was performed using the two different datasets of texture 

surfaces, namely the MoMA dataset and the Tex1 dataset.  Eight observers were asked 

to perform the experiment for the Tex1 dataset.  This group consisted of both naïve and 

expert observers.  For the MoMA dataset, nineteen subjects were used.  In this 

particular case all nineteen subjects were experts given that they all, in some way or 

another, had knowledge about the type of samples that they were going to be exposed 

to. 
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The same procedure was followed by all the observers to perform the grouping task. 

The steps are summarised below. 

a) Observers were presented with samples in the form of photographs.  The 

samples were randomly located on a flat surface so that the subjects were able to 

view all of them at the same time.  All photographs were orientated in the same 

direction, so that the illumination under which they had been captured was 

consistently portrayed and where possible this was aligned with the room 

illumination.  A table was used in the case of the Tex1 samples and, given that 

larger photographs were used for the MoMA dataset, these samples were placed 

on the floor. 

b) The observers were asked not to rotate the photographs but they could pick them 

up and move them around. 

c) Observers were asked to create as many groups as they wanted by physically 

moving the photographs into groups.  

d) No group size constraint was imposed on the observers, i.e., they were free to 

create as many groups as they felt necessary and the groups could be of any size 

including singletons.  They were only requested not to create any “oddball” or 

“left-over” group, rather that such samples should be left as singletons. 

e) Once the grouping was completed, the observations were registered by the 

experimenter. 

No similarity criteria were imposed on the subjects and they were free to take as long as 

they required to perform the grouping task.  Appendix B shows the instruction sheet that 

was provided to subjects. 

3.6.1 Comments collected on the experiment 

After the grouping experiment was performed, observers were asked to provide 

feedback on the criteria they used to group the textures presented to them.  Their 

remarks are summarised below. 

A) Tex1 grouping 

The expert subjects who performed the experiment looked for some perceptual cues 

from the texture samples.  Perceptual attributes such as directionality and regularity of 

texture elements were considered.  Additionally, the subjects identified textures with 

respect to the type of texture primitives. 

Naïve subjects were also influenced by the structural information of the texture samples.  

However, their main criterion of grouping the textures was the type of material that the 
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samples represented, such as fabrics, wood, rock, wallpapers and consequently their 

application like wallpapers for kitchen walls. 

The eight subjects took on average 35 minutes to group the 120 texture photographs 

presented to them.  An average of 22 groups was created by the 11 subjects, with a 

minimum size of 8 and a maximum of 35.   

B) MoMA grouping 

Grouping for the MoMA textures were performed by subjects who have substantial 

knowledge on the textures and the type of material being considered.  The subjects are 

mainly conservators of photographs, with some of them being paper, sculpture and 

painting conservators.  Since the MoMA textures are mainly photographic papers, the 

first criterion used by the subjects was the effect of using the papers for photographs, 

printing or painting purposes.  Another equally important criterion employed by some 

of the subjects was the source of the photographic paper itself.  

Subjects could identify different papers with respect to their knowledge about different 

manufacturers such as Kodak, Agfa, Unicolor and others.  The 19 subjects for the 

MoMA grouping experiment took on average 50 minutes to create texture groups from 

81 samples. The size of the groups created ranged from 10 to 43, with an average of 24 

groups being created by the subjects.  
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3.7 Aggregate Data (generate similarity matrices) 
 

The output of the experiment was a set of groups created by each observer.  These data 

need to be aggregated so that they could be used: 

a) to check the consistency of the experiment, 

b) to discover any structural information in the data to provide insights, or methods 

for the generation of a retrieval system, and 

c) to determine ‘ideal’ retrievals for performance 

analysis.  

The procedure was as follows: 

i) N*N occurrence matrices were created for each 

observer. N is the number of samples in a 

dataset: for MoMA N is 81 where as for the 

Tex1 N dataset is 120.  The occurrence matrix, 

as illustrated in Figure 3.16, is a binary matrix 

whereby a ‘1’ represents whether any texture Ti 

is grouped together with any other texture Tj.  

ii)  Two similarity matrices, S, were created (one for each dataset) by aggregating all 

of the occurrence matrices for each dataset. A cropped representation of the 

similarity matrix for Tex1 textures is presented in Appendix C. 

iii)  The similarity matrices were normalised in the range 0 to 1 so that they are 

independent of the number of subjects.   

 

The values composing S, are referred to as the similarity coefficients with the 

coefficient S(i,j) indicating the similarity of texture samples, Ti and Tj.  The higher the 

value of S(i,j) the more alike the textures Ti and Tj are judged to be.  The values of the 

matrix can be summarised by the following conditions: 

 

 (S1)  0≤ S�i,j� ≤1 

 (S2) S�i,i�  = 1 

 (S3) S�i,j� = S(j,i) 

 

Figure 3.16– Occurrence Matrix 

 Ti T1 

TN 

T1 

TN 

Tj 1 
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3.8 Conclusions 
 

Chapter three has presented the procedure by which similarity matrices have been 

produced for two collections of surface textures:  

Tex1 -  a general dataset containing 120 samples drawn from a wide variety of 

texture types, for which the height maps have been obtained or generated, 

and  

MoMA - a specialised collection of 81 samples of photographic papers collected under 

consistent illumination conditions  

To the author’s knowledge this is the first time that such data have been produced using 

homogeneous textures that were collected under known and consistent conditions. 
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Chapter 4  

Psychophysical Data Analysis 

 

 

4.1 Introduction  

The objective of this thesis is to produce methods for developing perceptually relevant 

surface texture retrieval systems.  The previous chapter used psychophysical 

experiments to derive similarity matrices for two surface texture datasets: Tex1 and 

MoMA.  In their current form these data are represented in high dimensional spaces that 

are unsuited for either visual inspection, or the practicable computation of appropriate 

feature sets.  Indeed, without a method for inspecting these data it is difficult to 

determine whether or not the psychophysics has produced non-random results. 

Thus the objectives of this chapter are: 

i) to inspect the similarity data for evidence of structure that indicates that  

the psychophysical experiments have produced non-random results; 

ii)  to inspect these data for evidence of natural groupings; 

iii)  to investigate the number of dimensions that these data can be 

represented in; and   

iv) to examine the major dimensions of the data for obvious traits that could 

be useful for the design of retrieval systems. 

 

Chapter two identified Hierarchical Cluster Analysis (HCA) and Multidimensional 

Scaling (MDS) as suitable tools to be used for analysis purposes.  Section 4.2 describes 

the format in which the similarity matrices are use by HCA and MDS.  In Section 4.3 

we use HCA to investigate issues (i) and (ii). Section 4.4 uses MDS to investigate the 

dimensionality of the datasets and Section 4.5 uses both techniques to look for obvious 

traits in the main dimensions of the data. 
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4.2 Data representation 

 

HCA requires that the input data be presented in the form of an N by N matrix of 

pairwise dissimilarities, D ≡ (dij), where each element dij represents the dissimilarity 

between the i th and the j th textures and N is the number of textures available in the 

dataset.  Any dissimilarity value dij needs to satisfy certain minimum conditions as 

follows:  dij ≥ 0, dii = 0 and dij = dji.  

 

MDS requires ‘proximity’ data that defines the ‘nearness’ in space of a pair of textures.  

Ideally the proximity measure should be a distance measure with a value close to zero 

representing textures with similar characteristics and vice versa for large values.  Thus, 

since MDS is to be applied to our perceptual data it is again necessary to use 

dissimilarity matrices D derived from psychophysical data.  However for presentation 

purposes (e.g. in dendrograms) we often scale these data by the number of observers 

that have taken part in the experiment for ease of interpretation. 

 

The similarity values are converted to dissimilarities using the transformation dij = 1- 

Sij.  Similarity coefficients from all the psychophysical results presented in this thesis 

are scaled in the range (0, 1) and this range is preserved for dissimilarity coefficients 

when the transformation is applied.  

 

When dealing with psychophysical data, the assumption that dissimilarities behave as 

distances is not valid.  For dissimilarities to be considered as metric data, they should 

satisfy the following conditions: (1) dij = 0 if and only if i=j, (2) dij = dji for all 1 ≤ i, j ≤ 

N, and (3) dij ≤ dik + dkj for all 1 ≤ i, j,k ≤ N.  However, the dissimilarities do not satisfy 

condition (3) which is the transitivity condition for metric data.  Thus, the dissimilarity 

matrix used within the context of this thesis is non-metric.   
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4.3 Cluster Analysis 

Results from hierarchical clustering algorithms are generally presented in the form of 

tree diagrams. The dendrogram is the cluster analysis tool that is used to investigate the 

clustering tendency for the Tex1 and MoMA datasets within this thesis and is presented 

in Section 4.3.1.   

To analyse the clustering represented by the dendrograms, we can either partition the 

dendrograms at a given dissimilarity level or otherwise partition them with respect to 

the number of groups required.  Section 4.3.2 and Section 4.3.3 analyse the groups 

formed when the dendrograms for the Tex1 and the MoMA datasets are partitioned into 

six groups.  

 

4.3.1 Dendrograms 

The use of dendrograms allows us to easily partition the dataset into as many clusters as 

we would like and to visualise the relationships (similarities) between these groups.  

This allows us to qualitatively assess the consistency of the results of the 

psychophysical experiments and to check that there is apparent structure within the data.  

The only disadvantage of using dendrograms that should be noted here is that they are 

normally crisp approaches to clustering (i.e. texture can be allocated to only one group 

at a time), however since our objective is purely visual inspection for consistency, rather 

than discrimination between groups, it is not an issue here [Baker75 & Ding02]. 

Together with displaying grouping information, dendrograms have an additional 

property: the height information shows level of similarity or dissimilarity between 

clusters.  

Definition: A dendrogram is an n-tree on a set of objects Ω ≡ {O1, O2… On} and is 

given by a set T of subsets of Ω satisfying the following conditions [Gordon87]:  

I. Ω � T, � � T, �Oi� � T  for all �Oi� � Ω 

II.  A ∩ B � ��, A, B�  for al l A, B � T 

III.  A ∩ B ≠ �,  h�A� ≤ h�B�↔ A	B for all A, B � T 

IV.  hij ≤ max
hik,hjk� for all Oi, Oj, Ok� Ω  

Conditions I and II specify a hierarchically nested set of subsets, with each subset 

representing a class of similar samples.  Condition III provides information for the 

height h associated with each internal node such that for each pair of objects (Oi, Oj), hij 

represents the height of the internal node specifying the smallest class to which objects 

Oi and Oj belong to.  
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The height of the internal node represents how similar the objects within the groups are.  

Thus, the smaller the value of hij, the more similar objects Oi and Oj are.  Condition IV 

is an ‘ultrametric’ condition implying that the height of any class to which two objects 

Oi and Oj belongs to is less than the height of the same objects associated with any other 

object Ok not in the class.  

 

 

Figure 4.1- Ideal dendrogram 
 

If the dissimilarity data represents a number of clearly defined groups then the 

dendrogram should provide clear indication of this as illustrated in Figure 4.1.  Note 

however, that Tex1 samples were chosen in order to maximise the apparent variability 

within this dataset.   

In order to construct the dendrogram from the dissimilarity matrices, agglomerative 

clustering has been applied.  Agglomerative clustering uses a bottom-up approach to 

create clusters.  Starting from N singletons, a recursive procedure is used to merge a pair 

of clusters � and �� based on a pairwise linkage function [Ding02].   

As the data is non-metric, only a selected number of linkage functions can be used to 

create the dendrogram.  The most common of these are the single linkage, the complete 

linkage and the group average linkage functions.  Based on a general definition 

provided in [Gordon87], these three functions can be defined as follows: 

�
� � �� , ��� �  ����, ��� �  ���
�� , ��� �  �����, ��� � �
�� , ���� (4.1) 

where �
� , ��� represents the dissimilarity between any two classes �, ��, � and � are 

parameters whose values identify the clustering strategies.  Table 4.1 shows the 

parameter values for each clustering algorithm.  � represents the number of samples 

that a particular class � contains 
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Linkage function �� � 

Single link 1 2�  � 1 2�  

Complete link 1 2�  1 2�  

Group average link �
� � ��� 0 

Table 4.1- Linkage functions and associated parameter values 
 

The linkage functions differ in the way they characterise the similarity between a pair of 

clusters (or singletons).  For single linkage, the distance between two clusters is given 

by the minimum distance between all pairs of textures drawn from two clusters where as 

for complete linkage it is the maximum.  Group average linkage uses the distance 

between the centroids of a pair of clusters.  The complete linkage function produces 

tightly bound and compact clusters [Jain99] as compared to the single and group 

average linkage and has also been successfully used by Rao et al. [Rao93a] to generate 

dendrograms for psychophysical data.  Thus a complete linkage function is used in this 

thesis. 

 

4.3.2 Analysing the Tex1 Dataset 

The dendrogram illustrated in Figure 4.2 shows how the texture samples from the Tex1 

dataset are clustered into different groups.  The leaves from the dendrogram represent 

the individual textures.  As we move up the dendrogram, groups of textures are formed 

based on the data available from the dissimilarity matrix.  The following observations 

can be made. 

(a) The topology of the dendrogram shows no distinct set of dominant groupings – 

indicating that the samples are reasonably well distributed across the range of 

textures considered. 

(b) The dendrogram ‘breaks’ into a significantly large number of small groups 

below a dissimilarity level of 5 indicating that the number of groups created by 

the average number of subjects is quite large. 

 

For visual inspection purposes, a clustering containing the six main perceptual groups 

has been obtained by placing a cutting line just below dissimilarity level 6 (Figure 4.2). 
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Figure 4.2- Complete dendrogram with leaves being texture samples used in the psychophysical 
experiment. Dissimilarity level units correspond to number of observers. 

The line crosses the subtrees of the dendrogram where a considerable number of 

subjects have agreed on the groups formed (indicated by the significantly larger heights 

as compared to the rest of the dendrogram).  Figure 4.3 illustrates the reduced 

dendrogram.  

 

Figure 4.3-  Dendrogram showing the dissimilarity level when 6 
‘major’ clusters are considered 
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Randomly chosen samples from each cluster are shown in Figure 4.4.  Each column 

represents a different group.  The representative samples shown are chosen randomly 

from the clusters created, with some clusters containing a considerably larger number of 

textures than others.  The complete groups are provided in Appendix D (see Figure D.1 

to Figure D.6).  Moving from left to right in Figure 4.4 leads to the following 

observations. 

(1) The internal members from each group show perceptually similar characteristics, i.e. 

they are visually consistent.  It seems unlikely that these groups could have been 

created at random and therefore it is probable that the psychophysical experiments 

have produced meaningful results.  

(2) The six main groups displayed in Figure 4.4 show that the Tex1 dataset comprises 

mainly of horizontal1 textures (group 6), vertical textures (group 4), regular textures 

(group 2), irregular textures (group 1), patchy textures (group 3) and circular 

textures (group 5).  

(3) Elements from various groups appear to be distinctively different even though some 

overlaps may exist between the groups. For example overlaps exist between the 

regular and irregular groups or between the patchy and circular groups.  

(4) Reducing the six groups to create larger texture sets imply that we would need to 

merge groups 3 and 5 together, then group 6 and 4 and groups 1 and 2.  

The dendrogram in Figure 4.3 is “parsed” to investigate whether there exists any kind of 

visual consistency when the groups from Figure 4.4 are merged together to create the 

whole Tex1 dataset.  To do so several cutting lines are applied to the reduced 

dendrogram at levels where a split occurs.  The cutting lines are referred to as levels L1 

to L5 and would help to visually assess how the six perceptual groups merge to form the 

complete Tex1 dataset. 

 

Level L5 

This level shows the six groups discussed in observation (4).  In addition to height 

which shows the level of observer disagreement, the separation of the groups along the 

cutting lines also indicates how cohesive pairs of groups are and their tendency to 

merge.  Thus the patchy textures (group 3) and circular textures (group 5) are most 

similar to each other and provide the first pair of candidates for merging if required. 

 

                                                 
1 Note that the names of these groups have been chosen by the author purely to facilitate discussion – they 
have not been identified using psychophysical experiments. 
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Level L4 

At this level the patchy and circular textures have merged.  Visual inspection of the 

samples of the two groups indicates the presence of global information such as large and 

randomly placed patches from the samples in the patchy group and large and randomly 

placed circular structures for the textures in the circular group.   

 

Level L3 

Group 6 (horizontal textures) and group 4 (vertical textures) merge at this level to create 

one main group of unidirectional textures. 

 

Level L2   

Line L2 from Figure 4.3 shows that the whole Tex1 dataset can be represented into only 

three groups with groups 1 (regular) and 2 (irregular) merging to form one larger group 

of textures.  Visually inspecting the pairs of groups formed at this level, we can 

summarise the dataset into the following categories: structured (regular and irregular), 

unstructured (patchy and circular) and unidirectional (vertical and horizontal).   

 

Level L1 

The two supergroups created by merging groups 1 and 2 and groups 3 and 5, merge to 

create an even larger group.  The resultant group consists of the structured and 

unstructured textures as presented at Level L2.  We can observe that the merging occur 

at a relatively high level of dissimilarity.  

 

 

 

 

  



71 
 

 

Group 1 
(Regular) 

Group 2 
(Irregular) 

Group 3 
(Patchy) 

Group 4 
(Vertical) 

Group 5 
(Circular) 

Group 6 
(Horizontal) 

      

Figure 4.4 - Groups 1 to 6 from dendrogram represented by columns 1-6 
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4.3.3 Analysing the MoMA Dataset 

 As described in Chapter three, compared with Tex1, the MoMA database is more 

specialised, and moreover the number of subjects who participated in the grouping 

experiment was higher (recall from Chapter 3: 19 subjects).  Figure 4.5 shows the 

dendrogram obtained when a complete linkage clustering is performed on its 

dissimilarity matrix.  

Analysing the dendrogram in Figure 4.5 in a top-down manner (i.e. starting from the 

root) shows that five out of the nineteen observers could not decide how the whole 

MoMA dataset could be split into more than two groups. This is indicated by the level 

of indecision in the dendrogram of Figure 4.5. At level 1 all 19 observers agreed that all 

the MoMA textures could not be placed in only one group whereas level 2 shows that 

approximately 14 agreed that the MoMA textures could be placed into more than two 

groups.  

As compared to the dendrogram for MoMA dataset, the one the Tex1 dataset (shown in 

Figure 4.2) splits very quickly into two or more branches indicating that the observers 

could easily perceive the variability among the textures in the dataset. These 

observations from the two dendrograms (in Figure 4.2 and Figure 4.5) provide further 

indication that the MoMA dataset is more compact than the Tex1 dataset. 

 

 

Figure 4.5 – Dendrogram representing linkage between MoMA textures to form groups 
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A cutting line (denoted as P1 in Figure 4.6) shows the level of dissimilarity at which the 

dendrogram for the MoMA dataset could be split to obtain six main groups. As 

indicated by P1 only eight out of the nineteen subjects agreed that MoMA textures 

could be placed into six groups. The remaining eleven could find enough variability in 

the textures in order to split them into smaller groups.  

Figure 4.6 shows the reduced dendrogram after applying cutting line P1. The six groups 

obtained are again used to investigate the visual consistency of the data.  Randomly 

chosen textures for the six groups are shown in Figure 4.7.  With the MoMA texture 

representing only photographic paper surfaces, any distinction among the six groups is 

more subtle.  From Figure 4.7 only group 1 appears to contain textures with regularly 

arranged elements, whereas the other groups appear to differ based on the roughness of 

the surfaces. 

 

 

Figure 4.6– Reduced dendrogram for MoMA textures to show six main groups 
 

The complete groups for the MoMA dataset are provided in Appendix D (see Figure 

D.7 to Figure D.12) 
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

      
 

Figure 4.7– Groups 1 to 6 for MoMA database 
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4.4 Dimensional Analysis 

The dendrograms presented in the previous section provide an effective way of 

visualising the psychophysical data and show that they do appear to contain meaningful 

(or at least non-random) data.  However, they provide few insights into the number of 

dimensions that these data can or should be represented in.  Such a property facilitates 

practicable computational approaches to coding, classification, segmentation, and the 

subject of this thesis: retrieval.  Hence in this section we apply Multidimensional 

Scaling to the dissimilarity matrices in order: 

(a) to determine whether there is evidence that our perceptions of surface texture 

can be encoded into a particular (and low) number of dimensions; 

(b) to investigate the effect that reducing the number of dimensions has on the 

variability encoded in the data; and  

(c) to investigate whether or not any of the major dimensions derived have an 

obvious  interpretation.    

Recall that the data is purely ordinal and thus non-metric MDS must be used.  This can 

be considered as a two-fold optimisation process that first finds an optimal monotonic 

transformation of the dissimilarity data and secondly derives an optimal configuration to 

represent the data such that the dissimilarities between the points in that configuration 

match as closely as possible the scaled dissimilarity values.  

Two metrics are commonly used to assess how well different configurations produced 

by MDS represent the original data: Alignment Error and Stress.  We use these 

measures to investigate issues (a) and (b) above, while visual inspection is used to 

address (c). 

4.4.1 Alignment error  

The “alignment” of the two matrices is performed using a technique called Procrustes 

analysis.  The latter is normally used to compare MDS results from two different 

configurations.  However, within the context of this thesis it is employed to compare the 

full and reduced representations.  The Procrustes analysis dilates, translates, reflects and 

rotates the distances from the chosen configuration in order to match the dissimilarity 

values [Cox00].  Alignment error is thus the sum of squared errors that result while 

performing those linear transformations and is computed as follows 

Alignment error �  +�,- � .-� /�,- � .-�0
-12

 (4.2) 
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yr and xr in the equation above are the off-diagonal elements from the Procrustes and  

dissimilarity matrices.  We use the term “Procrustes matrix” to represent the distances 

between texture pairs in the reduced dimensional space which is subject to Procrustes 

analysis.  With a set of affine transformations performed on the Procrustes matrix, the 

mapped distances are given by: 

.-3 �  456.- � 7 (4.3) 

where ρ is a scaling coefficient, the matrix A accounts for rotation and b is a rigid 

translation vector.  Taking into account those transformations, the alignment error is 

now given by: 

Alignment error �  +�,- � .-3 � /�,- � .-3 �0
-12

 (4.4) 

Thus the alignment error is the error that remains after the rotation (A) and translation 

(b) transformations have been applied to the Procrustes matrix.  

 

Alignment error – results 

Figure 4.8 shows the alignment error between the full and reduced perceptual spaces as 

a function of the number of dimensions (of the reduced perceptual space) for both the 

Tex1 and MoMA datasets.  

 

 

Figure 4.8– Graph showing how alignment error decreases as dimensionality increases 
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The decline in the alignment error of the two datasets is relatively smooth from four 

dimensions onwards and there are no obvious breakpoints at which to curtail the 

dimensionality for use in practical applications.  It is noticeable that at lower 

dimensionalities the alignment errors of the MoMA spaces are less than those of Tex1, 

indicating that the former can potentially be represented using fewer dimensions.  In 

addition we see that a dimensionality of ten is sufficient to encode most of the original 

information for either dataset.  Ten dimensions however, is still a relatively unwieldy 

number for either visualization or for the automatic development of retrieval systems. 

4.4.2 Stress 

Stress is the term coined by Kruskal [Kruskal64b], to denote the loss function used to 

minimise nonmetric MDS models. Stress, S, is defined as  

Stress= 8S*
T*

 (4.5) 

S* is called the raw stress of the configuration tested and T* is a normalising factor that 

allows the stress value to be dimension free. Both terms are defined as follows 

9: �  +
�-; � �<-;�=
-,;

 (4.6) 

>: � + �-;=
-,;

 (4.7) 

�<-; represents the dissimilarity values defined on an N by N dissimilarity matrix such 

that the mapping is always monotonic where as �-; represents the distances computed 

from points in the spatial configuration being considered.  Since its conception by 

Kruskal, stress has been widely used as a measure for the goodness of fit of a chosen 

configuration.  Guidelines to judge the goodness of fit are summarised in Table 4.2 

[Kruskal64a]. 

Stress value Goodness measure 

Above 0.20 Poor 

0.10 Fair 

0.05 Good 

0.025 Excellent 

0.0 Perfect 

Table 4.2– Stress values with corresponding 
goodness of fit interpretation 
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Stress analysis – results 

Candidates for the number of dimensions, d, suitable for representing a perceptual space 

are most commonly determined by identifying “elbows” in Scree plots (see Figure 4.9).  

A Scree graph is a plot of stress values against dimensions.  

 

 

Figure 4.9 - Scree plot showing “elbow” effect 

 

The ideal “elbow” is a sharp drop in error values followed by relatively small 

decrements.  For instance if the data were derived from colour experiments, we would 

expect a significant ‘elbow’ at d = 3.  The identification of an “elbow” is accomplished 

by visual inspection of the Scree plot. 

To determine the number of dimensions for the MoMA and the Tex1 datasets, only the 

first twenty dimensions are considered.  Figure 4.10 illustrates the Scree plots for both 

datasets.  The behaviours of the stress values, for both datasets, show no significant 

change in the pattern of the goodness of fit measures.  This observation confirms the 

behaviour of the alignment errors as presented in Figure 4.8 and strengthens the case  

that there is no clear cut dimensionality that can be chosen to represent the MoMA and 

the Tex1 datasets. 

However, Figure 4.10 shows that from dimensionality four onwards the stress values are 

less than 0.1 – indicating a “good” fit in the case of Tex1.  For MoMA, the stress values 

indicate a “very good” fit even at lower dimensions and we can observe that the decline 

of the stress for the number of dimensions greater than three is very smooth.  Hence a 

three-dimensional perceptual space may be enough to capture the information within the 

dataset required for this application domain. 
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Figure 4.10- Normalised stress for the first 20 dimensionalities used to represent the MoMA 
and Tex1 datasets 

 

Unfortunately neither plot exhibits a clear-cut elbow and hence it is not possible to rely 

on the stress values for dimensionality selection.  However, it seems likely that a 

perceptual space of between 4 and 10 dimensions would be adequate for the majority of 

texture processing applications.    

 

4.5 Traits in major dimensions  

 

This section uses both the MDS and clustering results to examine if there are any major 

traits within the main dimensions of the data.  Four-dimensional perceptual spaces were 

used for this purpose as they represented a good trade-off between manageability and 

the use of the majority of the variability in the data. 

4.5.1 The Tex1 dataset 

Figure 4.11 shows the arrangement of the Tex1 textures within the first two dimensions 

of a 4D reduced perceptual space.  The colour coding indicates the grouping obtained 

from the dendrogram in Figure 4.3 and shows that these major groups are well 

represented within the first two dimensions (albeit with some overlap).  
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Figure 4.11 – Spatial representation of dataset after 120*120 Similarity Matrix is reduced to a 
2D space using MDS 

 

Figure 4.12 provides more details of these data: moving around the quadrants shows 

that the shift from one texture category to another is fairly consistent.  In the top left 

quadrant we have all unidirectional textures, albeit divided into 2 groups: mainly 

horizontal and vertical textures.  Except some minor overlaps we can observe that even 

the horizontal and vertical textures are quite well separated.  As we move anticlockwise 

from the top left quadrant we notice that the unidirectional textures are followed by 

bidirectional, structured textures in the bottom left quadrant.  

Moving towards the bottom right quadrant the primitives in the textures become less 

apparent.  The quadrant contains some coarse textures with primitives at relatively high 

frequency but still apparent to the naked eye.  The remaining textures are generally fine 

and isotropic.  The last quadrant (top right), contains some irregular textures consisting 

of large patches or circular structures.  In this case the global information (or longer 

range structure) is more apparent.   

While the transitions appear obvious to the eye it is not immediately apparent how they 

might be easily incorporated into the automated design of retrieval systems. 
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Figure 4.12 – Span of different categories of textures when the first two dimensions are considered 
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4.5.2 The MoMA dataset 

Figure 4.13 shows the spatial distribution of the MoMA textures within the first two 

dimensions of a 4D perceptual space.  The six groups presented have been obtained 

after cluster analysis of the psychophysical data and correspond to the groups shown in 

Figure 4.7.  

 

 

Figure 4.13– Spatial arrangement of MoMA textures in a 2D plane 

 

Again we can see that the first two dimensions show the dendrogram groups as distinct 

clusters.  However, unlike Tex1 the MoMA textures form more compact groups and are 

less scattered in the 2D plane.  This is likely to be because the MoMA dataset contains a 

smaller range of more specialised textures. 

Although the groups appear to be less cohesive, indicating that the groups can be easily 

broken into smaller and more compact groups, there are fewer overlaps among the 

groups than in the case of the Tex1 dataset.  Overlaps are present mainly in the case of 

groups 1, 5 and 6.  Increasing the number of dimensions and splitting the datasets into 

more groups contribute in increasing the compactness and separation levels of the 

groups.  

Trend lines TL1 and TL2 have been investigated for any obvious visual traits.  The 

results of moving along the trend lines TL1 and TL2 are displayed in Figure 4.14 and 

Figure 4.15 respectively.  As discussed in Chapter 3, the MoMA dataset does not 
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contain many texture samples that exhibit much structure (non-random phase artefacts).  

It can be noticed, while moving along TL1 in Figure 4.14 that those textures are 

clustered close to rough textures containing some structural information.  As we move 

up TL1, we get smoother textures. 

As the coloured outlines of the thumbnails show, texture samples from different groups 

do overlap, but when inspected visually, we notice that the samples are very consistent 

in appearance. 

 

 

 

Figure 4.14-Variation of different texture categories along trend line TL1 
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The groups of texture samples that occur along trend line TL2 appear to be more 

compact than the ones along TL1.  

 

 

 

Figure 4.15- Variation of different texture categories along trend line TL2 
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design of a retrieval system. 

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8 10 12

D
im

e
n

si
o

n
 2

Dimension 1

Group 2

Group 4

TL2



85 
 

4.6 Conclusions 

 
This chapter has used hierarchical clustering, dendrograms, and Multidimensional 

Scaling to investigate the nature of psychophysical data derived from two different sets 

of surface textures: Tex1 and MoMA.  In summary the results from this analysis are: 

(a) that the dendrograms show that there is obvious structure in the similarity 

matrices and they are certainly non-random; 

(b) that there is a wide spread of texture types in Tex1 and to a lesser extent in 

MoMA but that in both cases there is no obvious number of groups that 

should be extracted; 

(c) that these data can be represented well between four and ten perceptual 

dimensions; but that  

(i) there is no ‘elbow’ in the stress graphs that suggests that any particular 

number of dimensions is the dimensionality that should be used for all 

applications,  

(ii)  these dimensions do not have any simple interpretation that indicates a 

particular feature set will provide the optimum or near optimum retrieval 

performance. 

Thus while the similarity matrices have been shown to encode useful information, and 

MDS has been shown to be a valuable tool for reducing the complexity of the problem 

there is no really concrete evidence that suggests how many dimensions should be used 

or which features should be employed.  This may be a consequence of using a relatively 

low number of texture samples dictated by the psychophysical approach selected to 

probe what may be an exceptionally complex perceptual space.  For application specific 

problem, the number of dimensions can be selected using domain criteria.  Examples 

are provided in chapters six and seven. 
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Chapter 5  

Identifying features for texture retrieval 

 

5.1 Introduction 

 

The previous two chapters described the psychophysical studies performed to capture 

how observers perceive and group together surface texture.  The next step involves 

creating a corresponding feature space for texture retrieval. 

 

The dimensionality analysis performed in Chapter four demonstrated that, although the 

first two dimensions do cover the majority of the variations in the dataset, no obvious 

texture characteristics were apparent that could easily be directly exploited for feature 

selection. 

 

In similar research Petrou et al. [Petrou07] concluded that the best approach was to 

perform automated feature selection on a large (i.e. several thousand) set of features. 

Here we also follow this approach.  Thus our first criterion for feature selection is the 

availability of a large feature set.  

 

In this chapter we examine four feature families in detail and select one for use in the 

texture retrieval experiments.  However, before we discuss these features, we first 

present the major criteria used in this selection. 
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5.2  Feature Selection Criteria  
 

The perceptual dimensions investigated in Chapter four did not lead to any dominant 

texture feature set that can be exploited for texture representation and mainly retrieval.  

In order to avoid any bias in selecting texture descriptors and to allow any retrieval 

model the freedom to select its own relevant features, a large soup of features is more 

appropriate for representing the texture samples being investigated. 

Moreover, the feature set used within the scope of this thesis needs to be one that has 

already been investigated and well described in literature, i.e. no new feature description 

method will be investigated.  In order to come up with some potential feature 

descriptors, a number of feature selection criteria are developed.  These are explained in 

the remainder of this section. 

5.2.1 Phase sensitive features 

It has already been demonstrated that the phase spectrum contains most or all of the 

structural information in an image.  The phase spectrum is very important in 

determining the placement of bright and dark spots in images.  The complex cells in the 

primary visual cortex are very sensitive to this kind of information [Hubel68 & 

Haynes04], thus the phase information contributes immensely in helping people to 

recognise and interpret objects within an image.  This can be illustrated by Figure 5.1, 

which shows a checkerboard image together with its magnitude only and phase only 

reconstructions.  Even if the magnitude only image has the same variance as the original 

image, it appears to be visually different from the original checkerboard image, whereas 

the phase only image can be “visually” classified as in the same category as the original 

one due to the main structural information still being present.  

 

 
(a) (b) (c) 

Figure 5.1 - Magnitude only, (b), and phase only, (c), representations of a 
checkerboard, (a) 
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In order to be able to reliably discriminate between different texture images or surfaces, 

it is important that the features or feature set chosen to represent those textures be able 

to encode not only the magnitude information in the image but also the phase 

information.  

5.2.2 Power Spectrum sensitive features 

The power spectrum has been extensively used to represent textures since different 

textures normally generate different energy distributions in the frequency domain, and 

that variation can be very easily and efficiently captured within the power spectrum, 

which represents the strength of each spatial frequency.  Hence, if the spatial frequency 

domain is sliced appropriately, it is possible to represent different textures using 

different spectral energy signatures.  

5.2.3 Position independent features  

One type of invariance that we require from the features used is position invariance.  

Position or translation invariance has mostly been associated with features for object 

recognition.  The human visual system already possesses a highly developed ability to 

fixate objects of interests and hence influence similarity judgements whenever position 

independence is concerned.  Thus, when human subjects are presented with two 

samples composed of the same texture primitives but displaced by a certain amount, 

they can readily associate the two samples as being similar, as long as the texture 

primitives are not distorted and the placement rules are preserved.  Making such a 

judgment requires no such effort on behalf of a human subject, however finding 

invariant descriptors to mimic human behaviour remains a constant struggle for 

researchers.  

5.2.4 Generating large pool of features 

Using learning models to build retrieval systems is fairly new to the CBIR community 

and has really gained interest within the last five years or so.  However, the use of 

computational features to describe textures can be traced back more than two decades.  

Most of the features applied in the field of texture processing can be related to 

segmentation of either stationary or non-stationary texture images.  Due to the 

subjectivity of human perception, we noticed the association of low-level features with 

high level descriptors such as directionality, coarseness, regularity and so on.  However, 

this has not helped to reduce the semantic gap that exists between how humans perceive 

different categories of textures and the way a computational model emulates the human 

judgment.  One of the main reasons lies in the fact that we are not able to understand the 
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mechanisms that the human brain employs in describing and discriminating textures.  

Likewise, associating high-level features with a certain type of texture helps only in 

limiting the way of “computationally describing” that texture [Petrou07].  Thus, the 

smaller the number of features employed, the greater the prejudice or bias in 

representing the different texture categories.  In order to reduce those prejudices, we 

start from the idea that we don’t know what the high-level descriptions are for the 

available textures. We assume that any low-level features required to represent these 

high-level descriptions would be made available from a very large pool of features 

extracted from the texture samples.  Hence any learning model applied would use this 

huge set of features to train a retrieval system that provides the same decisions as 

humans do.  

5.2.5 Avoiding Redundant Features or Feature Sets  

Approaches that use combinations of feature extraction techniques are common.  

However, this strategy can introduce irrelevance and redundancy within the set of 

features available [Yu03].  Irrelevance as defined in [Yu04] can only be determined 

when learning the retrieval system, and cannot be avoided at the stage of feature 

extraction if a large set of features is required.  Redundancy, on the other hand can 

either be considered as the presence of highly correlated features, or otherwise the 

presence of two or more relevant features that contribute in the same way to describe a 

given texture characteristic.  Redundant features not only increase the computational 

complexity of a retrieval system, but also degrade the performance of the system.  

Ideally we want features that are orthogonal such that changes in any particular feature 

do not trigger a change in any other feature selected to represent the texture samples. 

5.2.6 Features that are inexpensive and simple to compute  

This characteristic is required because of the previous criterion that we require large 

feature sets. 
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5.3 Investigating Feature Extraction Methods  

Using the criteria described in the previous section, we now investigate four feature sets 

in more detail.  These are: 

(1) Local Binary Patterns, 

(2) Gabor wavelets, 

(3) Synthesis features of Simoncelli and Portilla, and, 

(4) Trace Transform features. 

Local Binary Patterns were selected because of their popularity in the literature and 

their non-linear characteristics [Ojala96].  

Gabor wavelets were selected, again because of their extensive use in the literature, and 

for the more limited use of ‘Gabor phase’ [Bovik90 & Oppenheim91]. 

Simoncelli and Portilla’s features were selected because of their excellent performance 

for synthesis of phase rich imagery [Simoncelli95 & Portilla00]. 

Trace transforms were selected because they have been used in similar work reported by 

Petrou et al. [Petrou07]. 

 

5.3.1 Local Binary Patterns 

Local Binary Pattern (LBP) operators generate binary codes that describe how the local 

texture pattern is built and was first introduced as a complementary measure for local 

image contrast [Ojala96].  LBP operators are very popular because they are fast to 

compute and are also invariant to monotonic changes in grey-scale. 

LBP operators label each pixel of an image by using an N by N mask to threshold the 

neighbourhood around each pixel.  The result of this thresholding operation is a local 

binary pattern which is interpreted as a binary number.  Occurrences of different 

patterns are aggregated into a histogram and this forms the texture descriptor. 

 

Figure 5.2 - Original LBP operator with associated weights 
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Figure 5.2 shows how the binary codes are computed when a 3*3 mask is applied.  A 

predetermined mask of weight is applied to the binary code obtained from the 

thresholding process to generate a unique LBP feature.  In order to provide for rotation 

invariant LBP features [Ojala02], circular symmetric neighbourhood sets are used as 

shown in Figure 5.3 .  

 

Figure 5.3 - Circular symmetric neighbour sets used generated at three different scales 
 

In addition to providing rotation invariance, varying the number of samples, P, and the 

radii, R, of the neighbour sets allow the extraction of multiscale LBP codes.  The 

operators used to generate multiscale codes are denoted by LBPP,R.  The use of 

multiscale neighbour sets can result in LBP histograms of containing very large 

numbers of bins. 

To reduce the size of the histograms Ojala et al. [Ojala02] proposed the use of the so-

called “uniform patterns”.  These are based on a measure of uniformity that depends on 

the number of 1/0 or 0/1 transitions in the patterns.  

 

Strengths of LBPs 

LBP operators are simple to design and implement.  The operators can be specifically 

tuned by the use of “uniform patterns” to represent different image primitives such as 

lines, corners, joints etc…More importantly, they are computationally cheap. 

 

Weaknesses of LBPs 

1) If used in its original form, i.e. features extracted on a 3 x 3 neighbourhood, LBP 

operators cannot capture large-scale features within textures.  

2) The operator is also not very robust to local changes in texture, such as those 

originating from variations in illumination directions; however, this limitation 

can be ignored since we deal with a controlled illumination environment. 

P = 8, R=1.0 P = 12, R=2.5 P = 16, R=4.0
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3) The use of multiscale LBP operators may result in sparse sampling of a 2D 

texture plane, which may not result in an adequate representation of the texture. 

4) Moreover, sampling, as exploited by LBP operators may result in aliasing 

effects. 

5) Using the full LBP patterns can result in histograms with a large number of bins 

(e.g. 216 bins for a 16 bit pattern).  

6) Uniform patterns containing 2 transitions have proved to be successful in the 

literature for texture analysis however, with the size of the histograms reduced 

considerably; the feature vector may not be large enough for retrieval purposes.  

There is little information available in the literature concerning how LBP operators react 

to changes in phase and position.  We have applied the LBP8,1 operator to a randomly 

selected Tex1 texture (T89 selected here) and the histograms are recorded for (1) the 

original texture (2) with its phase randomised and (3) with the intensity values 

translated in a circular manner.  The results for 10 bin LBP histograms generated by the 

operator LBP8,1 are presented in Figure 5.4. 

 

 

Figure 5.4 – Variation of histogram values for when operator LBP8,1 is applied to 
texture T89  

 

We notice that this LBP operator is both position independent and phase sensitive. This 

makes LBPs a potential candidate.  
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5.3.2 Gabor features (Phase and power spectrum features) 

Gabor wavelets have been extensively used in texture segmentation due to the fact that 

they allow multi resolution (or multi spectral) decomposition through proper tuning of 

their orientations and radial frequencies due to their localisation capabilities both in the 

spatial and spatial frequency domains.  Thus they can be designed to be highly selective 

in both position and frequency.  However Gabor filters gained much more importance 

with research showing that the Human Visual System processes images by 

decomposing them into a number of subbands.  They provide similar characteristics and 

allow them to “mimic” the Human Visual System [Clausi00].  Multiresolution filtering 

techniques have extended the use of Gabor wavelets in order to cover areas such as 

texture image retrieval and classification [Porat89 & Bovik90].  

Given their joint spatial/spatial-frequency localisation capabilities, sets of Gabor filters 

have been used both in the spatial domain and the spatial frequency domain.  Figure 5.5 

shows representations of Gabor filters in both the spatial and frequential domains. 

 

 

 

Figure 5.5  - (top row) spatial representation of Gabor wavelet pair, and 
(bottom row), corresponding frequency domain representation 

 

Gabor filter outputs have been used in different ways to provide texture features.  While 

some people have computed the moments of the distribution of the responses in the 

spatial domain, others extracted features by creating geometrical (and central) moments 

based in the spatial-frequency domain [Bigun94].  Texture features have also been 

computed from the magnitude response of Gabor quadrature filters [Bovik90], or just 

from the real component [Jain91].  
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In order to achieve optimal separation of texture features and thus provide for robust 

texture representation, multichannel texture processing has been proposed in the 

literature [Randen99].  Filter banks that allow the frequency spectrum of any textured 

image to be decomposed into a given number of subbands resulting in different feature 

signatures for different textures have been heavily exploited.  The most popular filter 

banks encountered in literature are the dyadic Gabor filter banks.  An example of such a 

filter bank is illustrated in Figure 5.6. 

 

 

 

 

 

 

 

 

Strengths of Gabor features 

1) They appear to share common Human Visual System properties and have been 

exploited to simulate the way it functions. 

2) They are localisable both in space and frequency and have been exploited 

heavily in detecting approximate basis sets for the representation of textures. 

3) They can be oriented and tuned such that they act as edge and line detectors. 

Hence their significant use in texture segmentation. 

 

Weaknesses of Gabor features 

In their basic form they only extract power spectrum information. Gabor phase 

[DuBuf90, DuBuf91 & Oppenheim91] has been used successfully for segmentation 

purposes. However, their use for classification (and retrieval) purposes suffers from 

position sensitivity. 

  

 

Figure 5.6 - Dyadic Gabor filter bank with 4 orientations 
and 3 frequencies 



95 
 

5.3.3 Simoncelli’s features 

The model presented by Portilla and Simoncelli [Portilla00] follows a number of texture 

models that are based on the application of oriented linear kernels at multiple spatial 

scales for representation and synthesis.  However, the use of orthogonal separable 

wavelet decompositions for texture analysis and synthesis exposed a number of 

limitations.  These were the inability of the wavelets to capture extended contour 

information and large scale structures.  

To overcome those limitations, Simoncelli et al. presented their universal parametric 

model for texture representation.  The latter model is based on the use of directional 

derivative operators of any desired order in the form of steerable filters [Simoncelli95].  

The most important characteristic of the steerable pyramids is that through polar-

separable decomposition in the frequency domain they allow for independent 

representations of scale and orientation.  Figure 5.7 illustrates the steerable filters at 

different scales and orientations. 

 

 

Figure 5.7 - Steerable filters at 2 different orientations and scales 
 

Simoncelli et al. compute the features of their parametric model on the response images 

obtained after applying a pyramid of steerable filters to the original image.  The 

responses can be represented as N pyramids of response images where N represents the 

number of orientations at which the filters were applied.  Each pyramid, in turn, is 

composed of M images at different scales.  

The pyramidal representation of the responses is performed in the spatial domain where 

images at each scale and orientation are complex, with real and imaginary parts being 

quadrature pairs (due to the application of a Hilbert transform while computing the 

filtered image in the frequency domain). 
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Simoncelli et al.’s features are derived from fixed overcomplete multi-scale complex 

wavelet representations.  The features are based on the pairs of wavelet coefficients 

computed for adjacent spatial locations, orientations and scales.  The features are 

computed either on the local magnitude information or on the real and imaginary 

coefficients of quadrature pairs in the spatial domain. 

 

The features used by Simoncelli et al. in the analysis and synthesis of textures 

[Portilla00] are as follows: 

1) Global Marginal Statistics extracted from the intensity information of images or 

height information of surfaces.  Feature vector comprises of mean, variance, 

skewness, kurtosis and range of distribution. 

2) Mean magnitude information of filtered images at N scales and M orientations.  

3) Autocorrelation features based on the subband decomposition of each 

subsampled image.  

4) Cross Correlation of magnitude information at different scales. 

5) Cross Correlation of phase information at different scales 

 

Strengths of Simoncelli features 

The use of oriented linear filters at multiple spatial scales allows the encoding of 

maximum information within the spatial domain.  

Additionally, the model can generate large feature sets based on the raw wavelet 

coefficients computed at varying scales and orientations. 

 

Weaknesses 

Simoncelli’s features are based on overcomplete wavelet representations and contain 

considerable redundancy.  The set is non-adapted to specific texture categories and they 

are not able to explain which feature set is more dominant for which category of texture.  

 

The multi-scale wavelet representation to compute the feature is a complex and 

inappropriate when texture retrieval from large datasets is considered. However, the 

biggest disadvantage for use here is that many of the phase sensitive features are also 

position sensitive.  
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5.3.4 Trace Transform features 

The Trace Transform is a procedure through which a triple transformation applied to a 

surface, S, within a given coordinate system, C, results in a scalar value that acts as a 

signature for that surface.  This transform originates from the fact that a 2D function can 

be fully reconstructed if knowledge of its integrals along straight lines defined in the 

spatial domain representing the signal is available.  The Trace Transform is in fact a 

generalisation of the Radon Transform that has been successfully applied in the field of 

computer tomography [Kadyrov01].  Figure 5.8 (a) and (b) illustrate the geometry for 

both the trace and the radon transforms.  

 

(a) 

 

(b) 

 

Figure 5.8- (a) Parameters associated with a tracing line, (b) 
Converting 2D surface to  a 1D function 

 

Tracing lines, t are drawn at different values of ø and p. ø represents the angle that the 

normal, joining the tracing line from the origin, makes with the horizontal axis; whereas 
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p is the length of the normal that joins the origin and the tracing line.  The functionals 

applied along the tracing lines are known as the trace functionals.  

In the case of the Radon Transform, the trace functionals are only integrals over the 

parameter t, whereas for the Trace Transform, these functionals can take any form.  p is 

sampled in such a way that the tracing lines are parallel to each other when a particular 

value of ø is considered and the result, after applying a given functional, is a 1D 

function as shown in Figure 5.8(b).  Applying the Trace Transform for different values 

of ø leads to a 2D function of variables ø and p.  ø is sampled in the range [0, 2π] and p 

lies within the range [-pmax, pmax], where pmax is limited to half diagonal length of the 

surface considered.  

Given that we are dealing with discretised values only, the 2D function resulting from 

the Trace Transform can be represented as a 2D matrix with the change along the 

columns representing the change in p and the change along the rows representing the 

change in ø.  Another functional, P, can then be applied along the columns of the 2D 

function which results in a 1D function representing only the changes in the value of ø. 

A third functional Φ along the resultant 1D function generates a scalar value which is 

used as a feature for the surface considered.  

The whole process is presented as the Triple Feature construction by Kadyrov et al. 

[Kadyrov01 & Kadyrov02].  In addition to the trace functionals, T, the P functionals 

have been referred to as the diametric functionals and the Φ functionals are referred to 

as the circus functionals.  Assuming that different functionals can be applied for T, P 

and Φ, the scalar value generated can be represented in the form 

 

fijk =  Фi(Pj(Tk(S(C; ø, p, t)))) (5.3) 

 

Figure 5.9 shows the process of computing feature fijk for texture T76 (Figure 5.9(a)) 

from the Tex1 dataset. The trace functionals applied for illustrative purpose in this case 

corresponds to integrals over the parameter t, finding the maximum over parameter p, 

and finding the integral over ø. 
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(a) 

 

(b) 

 

(c) 

 

 Figure 5.9 - Triple feature construction from original texture (a), to2D function (b), and 
transformed to a 1D function (c). The final result is a scalar obtained from (c)  

 

 

Strengths of the Trace Transform (TT) features 

The main advantage of the TT feature set is that it allows the generation of thousands of 

features by varying the type of functionals used for the T, P and Φ transforms. 

Furthermore, TT has already been utilised in a perceptual context to learn how human 

rank different categories of textures [Petrou07].  

Moreover, functionals T, P and Φ can be selectively chosen so that the resultant TT 

features are invariant to rotation, translation and scaling transformations [Kadyrov01].  

 

 

T76 
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Weaknesses 

The capability, by the TT, to generate thousands of features comes with the drawback of 

large memory utilisation while computing for very large feature sets and significant 

storage on hard disk for later use. 

 

Kadyrov et al. provide functionals that cater for both phase sensitivity and position 

dependence [Kadyrov01].  

 

 



 

5.4 Feature Set Selection
 

The investigation performed in the previous section elaborated on the strengths and 

weaknesses of some commonly used texture feature extraction approaches. 

summarises the characteristics

presented in Section 5.2

 

LBP features are good candidates for 

applied for segmentation and classification purposes. However, the use of uniform 

patterns reduces the size of the LBP histograms and thus results in feature vectors too 

small for texture representation. If

then the size of the histograms becomes too big (say for 16 bit codes) and the 

representation is too sparse. Thus LBP codes have been not been considered within this 

thesis. 

Gabor phase and power features

features are position dependent and cannot be used here.

Simoncelli features have also been rejected because they do not provide 

independent features. 

Finally, we have selected

to being able to generate considerably large feature sets, the TT features 

compute and depending on the size of the feature vector, they are relatively inexpensive. 

Functionals that capture power 

literature [Kadyrov01] and the TT features provide invariance to several affine 

transformations [Petrou04], of which position independence is 

 

independent

F
e

a
tu

re
s 

Multi-scale 

LBP 

Gabor  

Power 

Phase 

Simoncelli 

Trace 

Transform 

Table 5.1 – Eligibility of selected features with respect to chosen criteria. 
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Feature Set Selection 

The investigation performed in the previous section elaborated on the strengths and 

weaknesses of some commonly used texture feature extraction approaches. 

characteristics of each feature set with respect to the selection criteria 

5.2.  

LBP features are good candidates for texture representation and have been successfully 

applied for segmentation and classification purposes. However, the use of uniform 

patterns reduces the size of the LBP histograms and thus results in feature vectors too 

small for texture representation. If the full LBP code is used as a separate signature, 

then the size of the histograms becomes too big (say for 16 bit codes) and the 

representation is too sparse. Thus LBP codes have been not been considered within this 

Gabor phase and power features are still very popular, however 

features are position dependent and cannot be used here. 

Simoncelli features have also been rejected because they do not provide 

independent features.  

selected Trace Transform features to represent the textures. 

being able to generate considerably large feature sets, the TT features 

compute and depending on the size of the feature vector, they are relatively inexpensive. 

Functionals that capture power and phase spectrum information are provided in 

iterature [Kadyrov01] and the TT features provide invariance to several affine 

transformations [Petrou04], of which position independence is 

Criteria 

Position 

independent 

Phase 

sensitive 

Power 

Spectrum 

No 

Redundancy

    

    

    

    

    

Eligibility of selected features with respect to chosen criteria. 
and  means ineligible. 

The investigation performed in the previous section elaborated on the strengths and 

weaknesses of some commonly used texture feature extraction approaches. Table 5.1 

with respect to the selection criteria 

texture representation and have been successfully 

applied for segmentation and classification purposes. However, the use of uniform 

patterns reduces the size of the LBP histograms and thus results in feature vectors too 

the full LBP code is used as a separate signature, 

then the size of the histograms becomes too big (say for 16 bit codes) and the 

representation is too sparse. Thus LBP codes have been not been considered within this 

, however the phase sensitive 

Simoncelli features have also been rejected because they do not provide position 

features to represent the textures. In addition 

being able to generate considerably large feature sets, the TT features are easy to 

compute and depending on the size of the feature vector, they are relatively inexpensive. 

and phase spectrum information are provided in the 

iterature [Kadyrov01] and the TT features provide invariance to several affine 

transformations [Petrou04], of which position independence is one. A limited set of 

Redundancy 

Inexpensive 

and Simple 

Large 

Pool 

  

  

  

  

  

Eligibility of selected features with respect to chosen criteria.  means eligible 
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functionals based on the ones proposed by Kadyrov et al. [Kadyrov02] is provided in 

Appendix E. 

 

5.4.1 Feature Normalisation 

Dealing with large a pool of features or sets of features inevitably leads to variation in 

the span of the different features considered. Given that, within the scope of this thesis, 

the Similarity between two textures is obtained by applying a distance function, it is 

important that the distance value computed is not dominated by features with wide 

value ranges. Thus, feature normalisation is performed on all the extracted features such 

that each feature contributes more or less equally to the final distance measure. After 

considering several normalisation procedures [Aksoy01], the one that has been applied 

linearly transforms all the features to have zero mean and unit variance. Furthermore, 

assuming the features to be normally distributed, we perform an additional scaling and 

shifting of the features values such that all the features are found within the range [0, 1]. 

The transformation is performed as follows: 

 

�� �
�� � �� 3	 
 1⁄

2
 (5.4) 

 

 

5.5 Conclusion  

 

The objective, in this chapter, was to select a candidate set of texture features to be used 

to map the MoMA and Tex1 textures from the 4D perceptual spaces derived in Chapter 

four to a 4D feature space that could be exploited for texture retrieval. 

An investigation into four commonly used texture feature extraction approaches was 

performed and we arrived at the conclusion that the Trace Transform features were the 

most appropriate texture features for use in the research described in this thesis.  
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Chapter 6  

Surface Texture Retrieval 

 

6.1 Introduction 
 

The goal of this chapter is to use the psychophysical data presented in Chapter four 

together with the pool of Trace transform features identified in Chapter five to develop 

retrieval systems for both the Tex1 and MoMA databases. 

Given the high dimensionality of the original psychophysical data the first task is to 

reduce this “Full Perceptual Space” to a more manageable “Reduced Perceptual Space”.  

Chapter four described the use of MDS for this purpose, however, the resulting stress 

graphs showed a gradual degradation, making selection of an optimal dimensionality 

difficult.  It concluded that the selection of dimensionality is best determined with 

reference to the application.  The first part of this chapter therefore investigates the 

effects of reducing dimensionality on optimal retrieval performance.  

Having determined the complexity of the space required for a given retrieval capability 

the task is to map these Reduced Perceptual Spaces onto a set of texture features that 

can be used to perform automated retrieval.  After analysing the characteristics of the 

resulting “MDS derived Feature Spaces” (MFS), a series of retrieval experiments was 

conducted and their performances evaluated. 

A simple alternative to this dimensionality reduction approach would be to use the Full 

Perceptual Space directly. 

Thus the objectives of this chapter are: 

i) to determine the dimensionality required of perceptual texture spaces for a given 

retrieval performance level, 

ii)   to map these Reduced Perceptual Spaces onto suitable feature spaces,  

iii)  to evaluate the performance of retrieval systems that exploit these feature spaces, 

and, 

iv) to compare this approach with a more direct method that employs the Full 

Perceptual Space. 
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PART I: MFS Based Texture Retrieval 
 



 

 

105 

 

6.2 Overview of the development and retrieval processes 
 

This section provides an overview of the four stages involved in the development of the 

retrieval systems and their operation as shown in Figure 6.1.  This is provided for 

reference throughout the rest of Part I. 

 

 

Figure 6.1–The four main stages of the proposed MDS based Retrieval Model 
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The four stages of are listed below. 

(I) MDS is used to reduce the dimensionality of the ‘Full Perceptual Space’ 

(FPS) obtained from the psychophysical experiments to produce a ‘Reduced 

Perceptual Space’ (RPS). 

(II)  Feature selection and regression analysis are used to produce a feature space 

that approximates the RPS.  This may be thought of as a ‘prediction model’ 

i.e. given the height map of a texture, can we use this feature space to 

predict the texture’s position in RPS.  We term this space the ‘MDS derived 

Feature Space’ or MFS for short. 

(III)  In order to process a query, the feature vector of the query surface is 

calculated in this new feature space (the MFS). 

(IV)  The query’s feature vector is used to retrieve the n nearest textures in MFS. 
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6.3 Stage I – Determining the number of perceptual dimensions to 

be used for retrieval 

 

In chapter four we used MDS to reduce the Full Perceptual Spaces (which comprised 

high-dimensional sparsely sampled similarity matrices) to Reduced Perceptual Spaces.   

As demonstrated by the low stress values in Figure 4.10, the mapping allowed most of 

the relevant information to be captured within relatively low-dimensional spaces.  

However, due the smoothness of these stress graphs it was difficult to pick a single 

dimensionality that would best represent the datasets and we concluded that this choice 

is generally application dependent.  

 

The purpose of producing a low-dimensional RPS is to be able to fit a prediction model 

(the MFS) to that space that would allow us to perform effective retrieval.  If the 

number of dimensions is too large, the data samples within that space become too sparse 

and it becomes difficult to fit a reliable prediction model.  On the other hand, if the 

number of dimensions is too small then there is the danger that we will discard pertinent 

information and reduce the performance of the retrieval system to below that deemed to 

be acceptable.  

Our strategy is therefore to assess the suitability of different RPS directly by using them 

for retrieval.  We make use of ‘precision’ as a measure of their retrieval performance 

and choose the RPS dimensionality that provides suitable retrieval rates.  Of course as 

the ‘prediction model’ represented by MFS is an approximation to the RPS, the 

automated retrieval system constructed using a particular RPS is likely to produce a 

lower performance than one that would be provided by the RPS itself.  However, the 

MFS has the advantage that it may be used with query textures that were not included in 

the original psychophysical experiments whereas the RPS cannot. 

Precision [Salton68], within the Information Retrieval community, is normally defined 

as follows: 

Precision= 
No.of Relevant Samples Retrieved

No.of Samples Retrieved
 

Although we will use precision to evaluate retrieval performance at a later stage in this 

chapter, we are presently going to use it to assess how change in dimensionality of RPS 

can affect retrieval rate.  
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The precision for each query object (or texture) Oi within the Tex1 or MoMA dataset 

Ω �  �O�, O�, … , O
 � is computed separately and the average precision is computed for 

the RPS dimensionality considered.  The process is repeated for increasing 

dimensionality of RPS.  

 

The following procedure was used to derive the average precision of retrieval for RPS 

over a range of dimensionality �. 

1. For every object (texture) � from Ω, extract all of the remaining textures 

in order of their proximity to � within the FPS to provide the ordered 

retrieval set ��� .  Repeat using all members of Ω as the query i in turn to 

provide the ‘gold stand’ retrieval  ���  for each texture. 

2. Initialise � to 1,  

3. Use MDS to compute the RPS (i.e. the distance matrix of the objects 

�O�, O�, … , O
 �) of dimensionality � . 
4. Repeat step 1 for the RPS of dimensionality � to produce the set of 

retrievals ���  . 
5. Compare all ���  with corresponding ���  to obtain the number of common 

textures for specific retrieval numbers and divide by number of retrievals 

considered, 

6. Compute the average precision for the all the objects in Ω. 

7. Increment � and repeat from step 3. 

 
6.3.1 Results of the analysis of Reduced Perceptual Space (RPS)  

 

Figure 6.2 (a) and (b) show the retrieval precisions for the Tex1 and MoMA datasets 

respectively.  Precision rates were determined using the RPS for each dataset, with 

dimensions of the RPS ranging between one and fifteen.  Precision values were 

computed for retrievals of the first 10, 20 and 30 samples for each dataset.  

We can observe, from Figure 6.2, that the precision rates converge quickly to 1 for both 

the Tex1 and the MoMA datasets.  They show that, except for Tex1 ten sample retrieval 

case, we can achieve precision rates above 90% using a four-dimensional RPS (i.e. d = 

4).  
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Additionally, the rate of convergence is faster for the MoMA dataset and this can be 

explained by the fact that there are fewer variations in the texture samples for that 

dataset.  Consequently a 3D RPS would be equally meaningful for the MoMA dataset 

i.e. when d = 3.  However for the analysis and evaluation of the MoMA and Tex1 

datasets, a common dimensionality, i.e. d = 4, is used throughout this chapter. 

 

(a) 

 

(b) 

 

 Figure 6.2- Graph of precision versus dimensionality, (a) precision for Tex1 (b) for 
MOMA dataset 
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6.4 Stage II – Producing an RPS to MFS mapping using 
regression analysis 

 

Recent developments in fields of machine learning, computer vision and cognitive 

science have seen the use of thousands of features, extracted on relatively few samples, 

to build predictors or classifiers that could be used to predict outcomes of future or 

unknown observations.  This concept, mostly applied in fields such as genomic studies, 

is of particular interest within the scope of this research given the similar challenges 

presented [Molinaro05].  As in the case of genomic studies [Molinaro05], we have also 

considered that a very large pool of features will enable a better mapping of the 

perceived similarities represented in the RPS.  However, the number of texture samples 

used in the psychophysical experiments had to be kept low due to the practicality of 

experiments with human observers. 

Hence the retrieval framework presented in Figure 6.1 views the retrieval process as a 

prediction problem where a query texture is regarded as an ‘unknown’ observation and 

the outcomes of the prediction model are considered to be the retrieval results in terms 

of decreasing similarity.  The mapping of the texture samples to the feature space 

(MFS) is performed using the reduced dimensionality RPS.  This section thus presents 

stage II from the retrieval framework (see Figure 6.1). 

 

6.4.1 The Prediction Model 

 

To model the prediction problem, we assume the N texture samples used in the 

psychophysical study are characterised by a set of N feature vectors X = ���, ��, … , ��� .  
Each feature vector contains f feature measures that have been computed directly from 

the texture samples and are represented as �� �  ����, ���, … , ����.  

The prediction problem can thus be modelled in the form of: 

� � g��� �  ε                 (6.1) 

where   is the error and y = �!�, !�, … , !�� provides the axes of the MFS.  The problem 

therefore is to determine the function g��� such that the resulting MFS(Y) approximates 

its RPS.  

The formulation provided in equation (6.1) is a standard regression problem.  

Regression analysis has been used extensively for prediction purposes in the field of 

sales forecasting, dendroclimatology and others.  Within the context of texture retrieval, 
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work that has used regression analysis to train a retrieval model and for the prediction of 

retrieval results is scarce.  Long and Leow [Long01] used a hybrid model based on a 

combination of neural networks and Support Vector Machines to perform invariant and 

perceptual mapping of textures.  Long and Leow’s model involves a complex setup and 

their training algorithm is not clearly defined.  The authors do not provide any 

indication of how an unknown texture sample could be mapped within their invariant 

space first and thereafter to the perceptual space.  Moreover, the psychophysical 

experiment performed by Long and Leow is similar to the one performed by Rao and 

Lohse [Rao93a], in that they also make use of Brodatz texture images.  We have already 

discussed in Chapter two that the use of Brodatz textures is not likely to produce either 

reliable psychophysical results or reliable feature vectors.  Hence the validity of Long 

and Leow’s model must be questioned. 

Given that MDS produces linear uncorrelated axes, we have decided to model the 

relationship between y and X one dimension at a time and to do this using a simple 

linear regression function.  Thus we assume that the coordinate !� of a given texture Ti 

in a particular axis of the MFS can be modelled using a linear combination of features 

as in equation 6.2: 

!� � "# � "���� � "���� � $ � "����          (6.2) 

where % � �"#, "�, … , "�� is the vector of regression coefficients.  

Using a least squares loss function, the regression coefficients are optimised by 

minimising the square error function: 

R�%� �  �
� ∑ �!� ( )��� , %�����*�       (6.3) 

Thus: 

% �  ��+��,��+�               (6.4) 

The regression coefficients, computed using equation (6.4), are stored and used to 

estimate the location of the dataset textures within the MFS.  The same coefficients are 

used to estimate the location of a query texture within the MFS, with different values 

for the selected features.  The retrieval process is just a matter of finding the nearest 

neighbours of the query texture within the MFS.  

As we described in Chapter five, we have chosen the Trace Transform (TT) as the 

source of our features as it provides a pool of several thousand measures (we use 3136 ).  

The reason is that a large set is likely to increase the probability of being able to 

produce an accurate mapping of the MFS to the RPS. 



 

 

112 

 

However, it will also include many irrelevant features and this brings two practical 

problems: 

1. including irrelevant features in the learning process increases the computational 

cost, and 

2. irrelevant features detract from the accuracy of the prediction model as they 

introduce more noise.  

The feature selection process is discussed in detail in the next section. 

 

6.4.2 Feature Selection 

 

Feature selection is a central problem in machine learning and statistics and is being 

actively researched mainly due to its importance in the area of data mining.  In the 

context of regression and specifically within the scope of this thesis, feature selection 

will be applied for the following reasons: 

a. to perform retrieval at a lower computational cost by retaining only ‘relevant’ 

variables, 

b. to enhance predictive accuracy of the retrieval model by eliminating irrelevant 

features, and, 

c. to eliminate the effects of correlated features within the regression model by 

removing features which are highly correlated with more dominant ones. 

Literature provides three different categories of feature selection methods, namely (1) 

filter methods, (2) wrapper methods, and (3) embedded methods [Blum97 & Liu05].  

Filter methods basically use some intrinsic property of the data (textures) in order to 

select features and do not require knowledge of the learning algorithm to be applied. 

Wrapper methods, on the other hand, apply the learning algorithm to each feature or 

feature set and then use the estimated accuracy of the learning algorithm to select 

relevant features.  Finally, embedded methods, as their name suggests, integrate the 

feature selection process inside the learning algorithm where some features are 

preferred instead of others and possibly not including all the features available in the 

learning process [Liu05]. 

With the high number of features involved a brute-force selection that exhaustively 

evaluates all possible combinations of the input features to find the best subset can be 

ruled out straightaway.  A wrapper approach is more appropriate for the current research 

since we want to select features based on how well they can approximate perceptual 
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similarities.  Two selection procedures that are commonly used for feature selection are 

(1) the forward selection algorithm and (2) the backward elimination algorithm.  

Forward selection algorithms proceed by adding, at each stage, a feature to a set of 

features selected at previous stages such that the prediction error is minimised.  On the 

other hand, backward elimination starts with a full set of features and eliminates one 

feature at each successive stage in order to reduce the prediction error. 

Given the large number of features involved, forward selection has been preferred given 

that the first stage already provides the most dominant feature and fewer iterations 

would be required to fit the model.  Additionally, Cross Validation has been used to 

alleviate the problem of overfitting.  

 

6.4.3 Cross-Validation 

Overfitting occurs when the learning algorithm fits the dataset too well, resulting in 

poor predictions of unknown samples.  To avoid overfitting a hold-out strategy has been 

commonly used in literature [Kohavi95].  The hold-out strategy involves setting aside 

instances of a dataset that are not shown to the learning algorithm and using the 

remaining subset to fit the prediction model.  The subset that is set aside is called the 

test or hold-out set and the one used to fit the model is called the training set.  

Cross Validation (CV) is a hold-out approach that has proved reliable in different areas 

of classification and regression [Kohavi95] and will be considered within the scope of 

this thesis.  Several CV techniques have been detailed in literature; however, we have 

investigated two specific techniques: ‘K-fold CV’ and ‘Leave-One-Out CV’.  

 

K-fold Cross Validation  

In K-fold CV the dataset is divided into K subsets of roughly the same size.  The 

training set is then assigned to all bar one of the K partitions with the omitted one 

attributed to the test set.  In such a case the prediction model is tested with data 

unknown to the training set, but that follows the same distribution as the training set.  

This process is performed K times with each one of the K partitions acting as the test 

set.  Hence K models are generated with each model producing a different prediction 

error value.  The model with the lowest error is used to represent the dataset. 

The prediction error is computed as follows: 

R�%� � 1. / 101 / 2!� ( )���, %�,34��5�
�634

7

1*�
 (6.5) 
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where:  81 represents the test data at the kth step (i.e. when the kth partition is used).  

01 is the size of the  test set whereas %�,34� is the set of regression coefficients 

estimated using the remaining K-1 partitions used as training data, i.e. omitting the 

sample 81.   

The feature that allows the prediction model to generate the smallest error is selected.  

Using the forward selection process, the K-fold CV is used iteratively to determine a 

new relevant feature at successive iterations.  The learning process is aborted when the 

addition of new features does not reduce the prediction error by a significant amount.  

The variant of K-fold CV that is quite popular in literature is the 10-fold CV and is the 

one that has been implemented here. 

  

Figure 6.3 shows the way in which the dataset is split and also how the training and test 

data sets are created.  The split is done in a sequential manner, independent of the 

position of the samples in the RPS.  Each partition is used as the test set and 

consequently the remaining partitions are merged to give the training set.  In this way, 

all the samples are used both for training and testing purposes, however no sample is 

considered for both processes at the same time. 

 

 

 

 

 Figure 6.3 – Diagram showing selection of test (shaded cell) and 
training data for 10-fold CV 

 

 

Thus we perform feature selection using 10-fold CV combined with forward step-wise 

feature selection.  First we apply 10-fold CV to all possible (3136) single feature 

predictors.  For each predictor the average prediction error is computed over the 10 

different test data sets.  The feature that generated the minimum average prediction error 

is removed from the feature pool and retained as ��� (for texture Ti) .  

Each feature of the reduced pool (3165 features) is now tested in combination with 1ix .  

That is the task is to determine the second feature 2
ix  from the pool that produces the 

best predictor !� � "# � "���� � "���� for the dimension considered.  The feature 
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selection process is repeated for ��9, ��: etc. until the addition of a new feature does not 

cause significant change to the prediction error.  

This process is repeated for each dimension i independently.  This is summarised 

below: 

 

Algorithm for computing prediction error using K-fold CV 

For (n=1 …N) features 

For (k=1 …K) partitions 

Select partition k as the test partition 

Merge the remaining k-1 partitions to create the training set 

Apply multiple linear regression to the training set to estimate 

regression parameters 

Use estimated parameters to estimate coordinate (response) 

Compute the prediction error from each test set 

End 

Compute average prediction error for each feature 

End 

Select the feature with the minimum average error 

REPEAT the process for additional ‘meaningful’ features 

REPEAT the whole process for each perceptual dimension 

 

The way in which K-fold CV has been used in this chapter makes it a cheaper option to 

estimate the prediction error, given than only 10 partitions are considered.  Many 

researchers have adopted this cheap option by either using K successive partitions or K 

random partitions; however, this option does not guarantee that the test partitions 

selected would give the best prediction error.  In fact, for optimal prediction using K-

fold CV, all the different combinations of selecting a test partition should be explored.  

If we consider the 10-fold CV case and that the Tex1 dataset is being trained, then the 

number of ways in which a test partition could be selected is ���#�� �, where 120 is the size 

of the Tex1 dataset and 12 is the size of partition.  This amounts to a very large number 

of combinations through which the partition can be chosen, thus clearly indicating the 

high computational complexity of 10-fold CV.  

Increasing the size of the test partition increases the computational complexity.  Hence, 

in order to keep the complexity as a low as possible without compromising the 
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prediction capability of the regression model used, the Leave-One-Out CV has been 

utilised to learn the prediction model.     

 

Leave-One-Out Cross Validation (LOOCV) 

 

LOOCV is an extreme case of K-fold CV with the number of partitions being equal to 

the size of the dataset.  This implies that each texture sample in the dataset acts as the 

test data while the rest are used for training.  The prediction error is now evaluated 

using the error function provided in equation (6.6). 

R�%� � 10 / 2!� ( )��� , %�,;��5�<

�*�
 (6.6) 

Hence the prediction error is computed M times, with each texture acting as test data 

and the remaining M-1 as the training data.  %�,�� is the set of coefficients estimated 

when the i th sample is omitted from the training set.   

 

Using LOOCV not only helps in preventing overfitting of the prediction model, it also 

helps to detect and eliminate (or ignore) outliers from the training data.  However, 

correlated features of those already selected at successive stages of the forward selection 

process will still remain in the list of features to be considered and consequently 

increases the processing time for the next stages of feature selection. 

 

To eliminate the influence of highly correlated features and to speed up the process, 

each time a feature is selected, its correlation with the remaining ones is computed.  The 

features that correlate highly with the selected one are removed from the list of features 

remaining to be evaluated.  The Pearson correlation coefficient is evaluated for each 

pair formed using the selected and remaining features.  The Pearson correlation 

coefficient, =�>, between any feature i and another feature j is given by 

 

=�> � ?��,>�, ?���?�>�
@?��A�,?A���@?�>A�,?A�>�         (6.7) 
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The algorithm for computing the prediction error using LOOCV and including the 

correlation test is summarised as follows: 

 

Algorithm for computing prediction error for LOOCV and with removal of highly 

correlated features 

For (n=1 …N) features 

For (i=1 …M) samples 

Select sample i as the test sample 

Retain the remaining M-1 samples for training 

Apply multiple linear regression to the training set to estimate 

regression parameters 

Use estimated parameters to estimate coordinate (response) 

Compute prediction error  

End 

Compute average prediction error for each feature 

End 

Select the feature with the minimum average error 

Remove all the features that have a high correlation with selected feature (R2 > 

0.7) 

REPEAT the process for additional ‘meaningful’ features using modified feature 

list 

REPEAT the whole process for each perceptual dimension 

 

The correlation constraint has also been applied to the K-Fold algorithm presented 

before.  
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6.4.4 Model Selection to estimating MFS for Tex1 and MoMA data sets 

Both CV methods are used to train and validate the two datasets considered, i.e. Tex1 

and MoMA.  Figure 6.4 shows the average error when the first four perceptual 

dimensions are trained using the two CV methods.  As mentioned before, only one 

particular setup was used for 10-Fold CV (i.e. only successive partitions).  The learning 

process was run to select a maximum of 10 relevant features.  The error for LOOCV is 

considerably less than that for 10-Fold, suggesting that the “best” possible subsets are 

not chosen for the 10-Fold test and training sets.  LOOCV was chosen for the learning 

process on the basis that it generates lower prediction errors and does not require heavy 

computational capabilities. 

 

 

 

Figure 6.4- Average error for LOOCV and 10-Fold CV methods when training the 
Tex1 dataset (top) and MoMA dataset (bottom). 
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Applying the above algorithm to each perceptual dimension results in a model that 

estimates the RPS coordinates for each dimension. The outputs are: 

• a list of relevant features (predictors); and,  

• regression coefficients for each model. 

 

Hence, assuming that a texture dataset can be represented by d perceptual dimensions, 

then a d dimensional MFS can be mapped to the perceived similarities using a set of d 

regressors (linear equations) in the following way: 

 

 !�� � "#�  � "����B# � "����B� � $ � "�C� ��BD  

!�� � "#�  � "����B# � "����B� � $ � "�C� ��BD 

M 

!�� � "#�  � "����B# � "����B� � $ � "�C���BD 

 

(6.8) 

 

 

The set of equations (6.8) thus provides d prediction models where each model is used 

to estimate the coordinates !�� … !�� of the texture i in the individual dimensions.  )E is 

the number of features selected to map the MFS to the perceived similarities, whereas 

F0, F1, … , FH are the indices of the selected features chosen from the large pool of ) 

features extracted. 
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6.4.5 Determine the number of features for MFS mapping 

As in the case of the RPS dimensionality, the length of the feature vector used to 

compute the !� values for each MFS dimension is determined using the precision of 

retrievals.  Figure 6.5 (a) and (b) show how precision rates vary with the number of 

features used to approximate a 4D RPS for the Tex1 and MoMA sets respectively.  

 

(a) 

 

(b) 

 

 Figure 6.5- Variation of precision with increasing number of features used to approximate a 4D 
RPS for (a)the Tex1 dataset and (b)the MoMA dataset 
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We notice from the figures that the precision rate stabilises at a relatively high number 

of features for both datasets.  This demonstrates how difficult it is to find representative 

sets of features for the datasets, even though a very large pool of Trace Transform 

features is available.  

However, the high prediction rates achieved show that the prediction model presented in 

section 6.4 allows a good approximation of the RPS.  It can be observed from Figure 

6.5(a) that the precision rate starts to slowly decline when the number of features is 

increased beyond seventy-five, as in the case of 10 retrieved samples.  Thus feature 

vectors containing 75 elements will be used to map the Tex1 textures from the RPS to 

the MFS.  Similarly, Figure 6.5(b) indicates that a feature vector of length 65 provides 

the best precision rates for the MoMA textures. 

 

6.4.6 Mapping results  

 

Figure 6.6 and Figure 6.7 show scatter plots of RPS coordinates against MFS 

coordinates for dimensions 1 to 4 for the Tex1 and MoMA datasets respectively.  Each 

point within the scatter plots represents a texture sample.  A prediction line is provided 

to allow the reader to qualitatively assess the degree of fit between the RPS and the 

prediction model for each dimension.   

It can be seen that, in the case of the Tex1 dataset, the fit for all four RPS dimensions 

improves as the number of features used to approximate each dimension is increased 

from one, to twenty-five and then to a maximum of seventy-five.  This shows a high 

level of variability within the Tex1 texture samples that cannot be captured with only 

two or three main dimensions.  

The same cannot be said for the MoMA textures.  It can be seen that the fit for the first 

RPS dimension, given by row 1 from Figure 6.7, increases considerably as the number 

of features is increased to a maximum of sixty-five.  However, the fit for the other three 

dimensions is not so clear due to the poor distribution of samples within the spatial 

configuration considered.  In contrast to the Tex1 dataset, increasing the RPS 

dimensionality for the MoMA dataset does not capture significant variation among the 

textures. The distributions of the samples appear to be more compact for dimensionality 

two and higher. This can be shown by the length of the prediction line which decreases 

as the dimensionality of the MoMA RPS increases.  
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With considerable variation among the textures present at high RPS dimensions for the 

Tex1 dataset, it can be deduced that one or two dimensions are not enough to map the 

perceived similarities for the texture samples.  For the MoMA dataset, most of the 

variability within the textures is captured by the main dimension indicating a high level 

of compactness.  This observation was expected as the textures provided by MoMA are 

specialised and similar. 
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 Figure 6.6 – RPS (vertical axes) vs. MFS (horizontal axes) values for Tex1 texture samples (rows 
correspond to the first four dimensions, columns 1,2,&3 correspond to increasing number of 

features - 1, 25 and 75 respectively. 
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Figure 6.7 – RPS (vertical axes) vs. MFS (horizontal axes) values for MoMA texture samples 
(rows correspond to the first four dimensions, columns 1,2,&3 correspond to increasing number 

of features - 1, 25 and 65 respectively. 
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6.5 Stages III & IV – Query Feature Vector Calculation and 
Texture Retrieval 

 

The preceding sections have described how we derived feature spaces (MFS) for both 

the MoMA and Tex1 data sets.  Performing retrieval in response to a query now is 

straightforward.  

1. The required trace transform features are extracted from the query texture and 

normalised using the parameters applied to the whole dataset. 

2. The !� value of each the axes of the MFS is calculated using equation 6.2 to provide 

the query feature vector �I. 

3. The n nearest textures to �I in the MFS are identified and returned using their 

Euclidean distances. 

The retrieval model is evaluated by investigating how well it responds when presented 

with a query texture.  No blind testing has been performed since the textures used for 

testing the model have also been used in the training stage.  

To test the efficiency of the retrieval model, the results for retrievals from the MFS are 

compared with the texture groupings performed by observers.  In section 6.2, precision 

is presented as a measure to determine the dimensionality of the RPS.  Using the same 

measure and the same procedure for its computation as in section 6.2, we investigate 

how well the Trace Transform features have been able to map the MFS for the purpose 

of retrieval.  Each texture from the different datasets is used as a query and the search is 

performed in both the MFS and the FPS.  The retrieval modes corresponding to 10, 20 

and 30 textures being retrieved are outputted for comparison.  Note that the order of the 

textures within the retrieved lists has not been given significant importance.  

Dealing with a high number of dimensions involves intensive computational processing.  

With the considerably large number of features required to approximate the FPS of the 

two datasets the prediction model becomes extremely heavy computationally.  For 

practical reasons, the MFS configurations, used to compute the average precision rates, 

are based on a fixed number of dimensions and varying the number of features up to a 

maximum of 75 for the Tex1 dataset and 65 for the MoMA dataset.  A 4D MFS is used 

for both datasets. Figure 6.8 and Figure 6.9 illustrate the histograms of average 

precision values for the Tex1 and MoMA textures when the first 10, 20 and 30 textures 

retrieved from both the FPS and the MFS and are compared.  The average precision 

values are binned within a 10-bins precision histogram.  
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Figure 6.8 – 10-bins precision histograms for 10, 20 and 30 retrieved samples 

for Tex1 textures. 
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Figure 6.9 – 10-bins precision histograms for 10, 20 and 30 retrieved samples 

for MoMA textures. 
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When only 10 retrieved Tex1 textures are considered, the majority of the query textures 

achieve a precision rate within the range (51-60) % as indicated by the precision 

histogram in Figure 6.8.  Increasing the number of retrieved samples skews the 

histograms towards higher precision ratios for most of the textures: (81-90) % in the 

case of 20 samples and 30 samples are retrieved.  Precision histograms for the MoMA 

dataset, displayed in Figure 6.9, show higher levels of precisions for the MoMA query 

textures.  This is an expected observation as in the previous section it was clearly shown 

that the prediction model provides better fit for the MoMA textures.  

The histograms give an indication of how well the dataset on the whole performs within 

the retrieval framework presented in this chapter.  Analysing the histograms can provide 

information of which textures were difficult to represent and to whether the information 

is consistent with the way humans have grouped the textures.  The lower quartile, 

median and upper quartile values are computed from the precision value distributions 

for the different retrieval modes and are presented in Table 6.1 and Table 6.2 for the 

Tex1 and MoMA datasets respectively.  

 

 Lower Quartile Median Upper Quartile 

No. of samples 10 20 30 10 20 30 10 20 30 

Value 0.508 0.566 0.726 0.587 0.763 0.829 0.710 0.855 0.874 

Textures 3, 87 55, 84 26,61 13, 81 34, 57 21, 37 27, 64 115, 116 96, 105 

 
Table 6.1 – quantitative analysis of the precision value distributions for the Tex1 dataset 

 

 Lower Quartile Median Upper Quartile 

No. of 

samples 
10 20 30 10 20 30 10 20 30 

Value 0.586 0.713 0.800 0.668 0.788 0.861 0.759 0.849 0.900 

Textures 
112, 

1390 

28, 

922 

250, 

2233 
193 2394 1439 

321, 

1419 

1954, 

2607 

1413, 

1765 

 
Table 6.2 – quantitative analysis of the precision value distributions for the MoMA dataset 

 

The lower quartile mark is a good indication of the textures that the retrieval model was 

not able to map properly to the MFS, hence leading to low precision values with respect 

to corresponding retrievals in the FPS.  Similarly, the upper quartile mark represents 

textures whose distances with other textures within the FPS, have been preserved when 

mapping the MFS onto the RPS.  The median value on the other hand, represents how 

skewed the precision histograms are.  Positively skewed histograms indicate high 

precision rates for the majority of textures queried.  
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As expected, the precision histograms for the MoMA dataset are more highly skewed 

than those of the Tex1 dataset.  The smaller difference of the interquartile range of 

precision values for the MoMA texture as compared to the difference for the Tex1 

textures also indicate better mapping for the MoMA dataset.  Even though, the upper 

quartile values for both datasets are very close when large numbers of retrievals are 

considered (30 samples for example).  This implies the ordering of the similarity (or 

dissimilarity) values are better preserved in the case of MoMA textures leading to 

higher precision rates at lower number of samples. 

An investigation into the average precision values of the different Tex1 groups 

presented in Chapter 4 shows that group 3 (patchy textures) and group 5 (circular 

textures) were the most difficult to encode in the 4D MFS considered. Table 6.3 shows 

the average precision values for the different groups. 

 

 Average precision values 

Groups 
10 

Samples 

20 

Samples 

30 

Samples 

Group 1 (regular) 0.717 0.764 0.867 

Group 2(irregular) 0.699 0.740 0.863 

Group 3(patchy) 0.639 0.709 0.732 

Group 4(vertical) 0.772 0.821 0.851 

Group 5(circular) 0.646 0.692 0.719 

Group 6(horizontal) 0.751 0.790 0.804 

Table 6.3 – Average precision for Tex1 groups 
 

Even though observers had no difficulties in grouping the circular and patchy textures, 

the features used to create the 4D MFS were not able to encode these textures with 

much precision, hence resulting in the low precision rates when textures from these two 

groups are retrieved.  

 

6.5.1 Retrieval results 

 

To illustrate the nature of the retrievals that the prediction model has performed, 20 

texture retrievals representing the lower quartile, median and upper quartile results are 

shown in Figure 6.10, Figure 6.11, Figure 6.12 and Figure 6.13. 

The results displayed correspond to the nearest neighbours of the query textures within 

a 4D MFS generated using feature vectors containing seventy-five elements for the 
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Tex1 dataset, and sixty-five features for the MoMA dataset.  The texture images used as 

queries for lower quartile, median and upper quartile results for Tex1 are textures T55, 

T34 and T116 respectively.  Table F.1 to Table F.4 in Appendix F provide the query 

results for the first 30 textures for reference. 

The retrievals from the MFS are presented together with the “ideal” retrievals from the 

FPS for comparison purposes.  The textures retrieved from the MFS that match the ones 

retrieved from the FPS are highlighted.  Those textures retrieved from the FPS and 

missing from the MFS retrievals have italic, bold and underlined labels.  As mentioned 

previously, the order in which the textures appear is not considered while determining 

the precision of the retrievals.  The observations from each set of results are as follows: 

 

I. Query Texture T55 (lower quartile result) 

Eleven out of the twenty retrieved textures match (see Figure 6.10). This represents a 

precision value of 0.55.  The results suggest that humans grouped the textures similar to 

T55 based on some circular structural information available either globally or locally. 

The textures retrieved from the FPS were irregular or isotropic in most cases.  Texture 

T55 also has the appearance of a smooth or “polished” surface, hence explaining the 

presence of textures T81, T42, T10 or even T43 within the observers’ results.  However, 

despite non-blind testing, it would seem that the selected features cannot detect the 

pertinent longer range interactions.   

 

II.  Query Texture T34 (median result) 

Using texture T34 as a query texture successfully retrieves 14 matching textures.  This 

indicates a precision value of 0.7. The higher precision is perhaps due to the bi-

directional nature of these textures. 

 

III.  Query Texture T116 (upper quartile) 

T116 has a precision of 0.85 (17 matches).  As illustrated in Figure 6.12, the retrievals 

consist mainly of directional (horizontal) textures, forming one of the dominant groups 

that observers were quick to assemble while performing the psychophysical experiment.  

The high precision for this texture is likely to be due to the ease with which directional 

textures can be detected by texture features. 

 

Table 6.2 shows high average precision rates for the MoMA textures as indicated by 

values of the lower quartile, median and upper quartile for 20 textures retrieved (0.71, 
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0.79 and 0.85 respectively).  Even though the precision histograms are highly skewed, 

the upper quartile value for the MoMA textures approximates the upper quartile value 

for the Tex1 dataset.  

For the MoMA results, the smaller interquartile range suggests that more relevant 

textures are available at lower retrieval modes (10 or 20 samples for example).  To 

illustrate this point the first 20 textures retrieved from both the FPS and the MFS, when 

MoMA texture M1954 is used a query, is presented in Figure 6.13.  Matching the 

retrieved textures from both the MFS and FPS leads to a precision value of 0.95. In 

addition to the high precision rate, the order in which the textures are retrieved is more 

consistent than with the Tex1 textures.  

The missing textures from the FPS give an indication of which textures were difficult to 

encode in the MFS. When Tex1 texture T55 is used as query, nine textures from the 

FPS were missed (underlined-italic-bold labels).  A visual investigation of these 

textures shows that they all contain global information that observers were quick to pick 

out but difficult to be encoded using computational features.  Using texture T34 as 

query resulted in less misses.  As compared to the near-regular and coarse nature of 

T34, the textures that were missed appear to be finer and regular.  With T116 as query, 

only 3 textures were missed.  In this case the directionality of the query texture seems to 

be the dominant attribute in encoding the textures.  Since T116 is a unidirectional 

texture, orientated in a horizontal direction, the misses from this query are basically 

those that lack this dominant horizontal directionality.   

For the MoMA dataset, using texture M1954 as query results in only 1 miss. With less 

variation among the MoMA textures and very few textures containing structural 

information, it is not surprising to see that the set of trace transform features provided 

better encoding of these textures.  
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(a) 

 

T55 T37 T30 T32 T96 T79 T5 T15 T19 T58 

 

T78 T113 T97 T24 T85 T81 T42 T10 T41 T43 

  

(b) 

 

T55 T10 T37 T81 T79 T42 T101 T65 T53 T15 

 

T63 T50 T43 T24 T109 T113 T96 T91 T11 T29 

  

Figure 6.10- First 20 retrievals from (a) the FPS and (b) the MFS feature space using texture T55(lower quartile ) as query 
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(a) 

 

T34  T90  T59  T76  T17  T27  T74  T6  T100  T23  

 

T89  T95  T45  T73  T20  T77  T38  T115  T86  T108  
 

(b) 

 

T34  T59  T90  T6  T54  T45  T115  T100  T95  T89  

 

T86  T3  T17  T68  T18  T29  T38  T28  T108  T76  
  

Figure 6.11-First 20 retrievals  from (a) the FPS and (b) the MFS feature space using texture T34(median) as query 
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(a) 

 

T116 T71 T22 T75 T44 T49 T82 T98 T103 T107 

 

T105 T64 T112 T41 T91 T80 T56 T28 T35 T99 

 

(b) 

 

T116  T22  T75  T82  T103  T112  T71  T49  T64  T44  

 

T98  T105  T56  T99  T107  T80  T1  T35  T83  T68  

  

Figure 6.12- First 20 retrievals from (a) the FPS and (b) the MFS feature space using texture T116(upper quartile) as query 
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(a) 

 

M1954 M330 M2314 M915 M12 M2444 M321 M1753 M1481 M923 

 

M939 M1507 M2535 M1521 M1834 M2356 M924 M193 M213 M1456 

  

(b) 

 

M1954 M330 M2314 M915 M12 M2444 M1753 M321 M923 M1507 

 

M1481 M924 M2356 M2535 M2323 M1521 M213 M939 M1456 M193 

  
Figure 6.13- First 20 retrievals from (a) the FPS and (b) the MFS feature space using texture M1954(upper quartile) as query 
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6.6 Blind Testing  
 

We have demonstrated in the previous section that when the prediction model is tested 

using samples already used in the training stage, the precision increases gradually with 

increasing number of features (refer to Figure 6.5).  Precision rates of approximately 

90% (in the case of 30 samples) are obtained for both the Tex1 and the MoMA datasets.  

However, the number of features required to fit the RPS to the MFS in order to obtain 

such precision rates is high: 75 features in the case of the Tex1 textures and 65 for the 

MoMA ones.  Given that each dimension of the MFS is fitted independently, this 

implies that to fit a 4D MFS, the total number of features that would be required, in the 

worst case, is 300 for Tex1 and 260 for MoMA. 

Since the sizes of the datasets are 120 and 81 respectively, we are therefore exposed to 

the fact that the datasets have been projected to a higher dimensional space and more 

than one feature is being used to fit each texture sample.  This is clearly a situation of 

overfitting, hence explaining the excellent precision rates obtained.  This section thus 

explores how well the retrieval model proposed in Section 6.2 fares when tested with 

“unknown textures”. 

We therefore decided to repeat the previous experiments while withholding a proportion 

of the textures for use as test data. 

 

 

6.6.1 Test Sample Selection 

 

The dendrograms produced in Chapter four were used to ensure that the “test” textures 

were reasonably distributed across the perceptual space.  This was done by using the 

dendrograms to create n partitions and then randomly choosing one “test” sample from 

each partition.  

The value for n was chosen approximately to be 10% of the dataset (10 textures for the 

Tex1 dataset and 8 for the MoMA one).  The selected textures for Tex1 and MoMA are 

shown in Figure 6.14 (a) and (b) respectively. 
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(a)  Tex1 test textures 

 
(b)  MoMA test textures 

Figure 6.14 – (a) Tex1 and (b) MoMA test textures randomly selected from 10 and 8groups obtained by 
applying the cluster analysis to the two datasets   

 

 

6.6.2 Effect of varying the number of features (per dimension) 

 

Figure 6.15 shows how precision varies when retrievals are performed using the test 

textures in Figure 6.14 for different number of features.  The precision rates are 

significantly lower than the ones presented in Figure 6.5. 
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Figure 6.15 – Variation of precision with increasing number of features for (top) Tex1 test textures 
and (bottom) MoMA textures (blind test) 

 

The behaviour of precision indicates that the number of features to map the datasets for 

a 4D RPS is not obvious; however, we can observe that the use of more than 10 texture 

features for both the Tex1 and MoMA datasets does not improve performance.  The 

outlined areas on the two graphs of Figure 6.15 indicate the range of features that can be 

used to create effective application. 
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6.6.3 Results – further details 
 

Table 6.4 shows how the average precision rates compare, when the 10 Tex1 test 

textures are applied for retrieval within the 3 different perceptual spaces: the FPS, the 

MFS(NB) – no blind testing, and the MFS(B) generated without using the test images 

(blind testing).  The precision rates correspond to the first 20 samples retrieved and they 

are averaged for retrieval performed from 4D spaces generated using 1 to 4 features per 

dimension in the case of MFS(NB) and MFS(B). 

 

 

 

 

 

 

 

 

 

 

 

 

The textures in Table 6.4 are sorted according to the blind testing precision – column 3 

in table.  The values in bold represent the maximum precision rates for each space and 

the highlighted area denote the median precision for the MFS(B). 

The T62 (see Figure 6.16) twenty texture retrievals for the idealised FPS case and for 

the automated system (the MFS case) are shown in Figure 6.17 for illustration purposes. 

 

 

Figure 6.16 – Test texture T62 

Texture  FPS MFS (NB) MFS(B) 

T83 0.850 0.388 0.325 

T66 0.900 0.488 0.363 

T60 0.950 0.375 0.425 

T53 0.900 0.413 0.450 

T62 1.000 0.475 0.450 

T33 1.000 0.500 0.463 

T116 0.800 0.500 0.500 

T69 0.950 0.563 0.625 

T32 0.950 0.700 0.688 

T74 0.950 0.488 0.688 

Table 6.4 – Comparative figures for average 
precision rates of Tex1 test textures in the 3 

different perceptual spaces. 
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(a) 

 

T84 T86 T25 T1 T16 T95 T68 T4 T100 T3 

 

T9 T17 T119 T67 T108 T28 T35 T54 T18 T38 

  

(b) 

 

T95 T104 T45 T50 T38 T34 T84 T100 T87 T109 

 

T47 T68 T1 T76 T25 T4 T108 T110 T118 T119 

  

Figure 6.17- First 20 retrievals from (a) a 110D FPS and (b) the MFS feature space using texture T62 as query 
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6.7 Summary for Part I 
 

The first part of this chapter has investigated how reduced perceptual spaces could be 

exploited for retrieval purposes.  We have initially demonstrated that mapping the FPS 

to 4D RPS for both datasets could potentially allow retrieval systems to achieve higher 

than 90% success rates. 

 

Retrievals are performed on lower dimensional feature spaces.  So far this chapter has 

presented a retrieval model that uses a simple linear regression model to map the 4D 

RPS obtained through MDS to feature spaces (the MFS) of the same dimensionality.  

By using the whole datasets to train the retrieval model, we have shown that even by 

using around 75 features for the Tex1 dataset and 65 for the MoMA one, we are not able 

to meet the retrieval rates expected from a 4D RPS generated through MDS.  This has 

prompted us to deduce the following.  

1) Although a set of more than 3000 features was used, the set is not complete enough 

to encode all the pertinent information for the two datasets.  This deduction results 

from the variation of the precision rates with respect to increasing number of 

features as shown in Figure 6.5.  We observe that even when the number of features 

is increased to 75 per dimension (using 300 features for the 4D MFS) the average 

precision rate is lower than when retrieval is performed directly from the RPS as 

provided in Figure 6.2.  With 300 features used to encode the feature space, we 

would expect at least one feature to represent one texture sample given that the size 

of the dataset is only 120. 

2) A statistical analysis of the precision values for the different Tex1 groups (refer to 

Table 6.3) shows that “circular” and patchy “textures”, were more difficult to 

encode even though observers grouped these textures quite easily.  This may well be 

because the longer range interactions in these textures which are so obvious to the 

human eye, but are difficult to encode using computationally viable texture features. 

 

To avoid overfitting of the data by the use of too large feature sets and to test the 

robustness of the retrieval model when presented with unknown textures, precision rates 

were computed for 10 Tex1 test textures (8 for MoMA) that were removed from the 

learning the retrieval model.   
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Significantly lower retrieval rates are obtained for the blind testing, however, they still 

achieved higher than 70% for precisions based on 30 retrieved textures from both 

datasets.  Additionally, the average precision rates provided in Figure 6.15 show that a 

minimum of 4 and a maximum of 10 features are sufficient to obtain the best 

performance from a 4D MFS for the training textures considered.  Increasing the 

number of features for the mapping does not provide for better retrieval results. 
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PART II: Full Perceptual Space Based 
Texture Retrieval 
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6.8 Introduction 

In Part I of the chapter we argued that the Full Perceptual Space obtained from the 

psychophysical experiments could not be used to directly produce effective retrieval 

systems and that we needed first to reduce the dimensionality of the problem using 

MDS.  In this part of the chapter we briefly investigate the problems and effectiveness 

of pursuing such a direct approach. 

 

6.9 Overview of modified retrieval processes 

Figure 6.18 shows the processes involved in performing a retrieval using the FPS 

directly instead of moving to lower dimensional spaces.  The shaded part shows 

processes from the MFS based retrieval model that have been ignored.  The different 

stages for the Optimisation model are presented in the rest of this chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18 - The three main stages of the proposed Optimisation model. Shaded part show the 
corresponding stages from the model proposed in Section 6.2 
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6.10 Optimisation Model 

 

The optimisation model proposed concerns the fitting of a feature space to the FPS.  

The fitting is viewed as a non-linear least squares problem to finding optimal features 

space that optimises the spatial arrangement of the Tex1 and MoMA textures within the 

relevant FPS.  The resultant space is referred to as the Optimised Feature Space (OFS). 

6.10.1 Statement of the problem  

 

As in the case of the prediction model presented in Section 6.4.1, the problem can be 

viewed as an optimisation problem that seeks to obtain:  

!JK �  )���,  ��, … , �<; "�, "�, . . , "N� (6.9) 

where ���,  ��, … , �<� is a set of M texture features1, �"�, "�, . . , "N� is a set of F 

optimisation parameters and !JK  is the expected value based on the dependent 

dissimilarity value !�. 
As opposed to the prediction model, where the values to be estimated were the 

coordinates of the texture samples within the RPS, the optimisation model requires an 

optimum set of parameters % that estimate the dissimilarity values of the FPS as closely 

as possible.  Using a least squares approach, an optimum set of parameters is obtained 

by minimising the following error function: 

��%� �  /O!� ( !P�Q�
R

�*�
 (6.10) 

where L represents the number of off-diagonal elements from the dissimilarity matrix. 

Assuming that yi is the dissimilarity value between any two textures Tj and Tk, then the 

function f() in equation (6.9) computes the weighted distance that the two textures 

would make in the OFS.  For example, for two texture features, the weighted distance is 

given by  

!P� �  "# ST"����> ( ��1�� � "����> ( ��1��U (6.11) 

"# is a scaling factor for mapping the textures from the FPS to the OFS whereas "�and 

"� are weights that represent the involvement of each feature in estimating the 

dissimilarity value !P�.  

                                                           
1 Note that M feature values are required, where M=2 x N and N is the length of the feature vector for a 
single texture. 
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Generalising equation (6.11) for M features gives: 

!P� �  "# V / "W��W> ( �W1 ��<

W*�
X

�
 (6.12) 

To solve the problem posed by the error function (6.10) the Levenberg-Marquardt 

algorithm will be employed.  The algorithm is presented in the following section. 

 

6.10.2 Levenberg-Marquardt (LM) Algorithm 

 

The LM algorithm is a standard technique for non-linear least-squares problems and has 

been widely exploited in a broad range of applications.  It operates in an iterative 

fashion to locate the minimum of a multivariate function which is expressed in the form 

of the sum of squares of non-linear real-valued functions [Marquardt63].  

To minimise the error function, R(β), the LM algorithm proceeds by finding a linear 

approximation of a function f(x, β) in the neighbourhood of a parameter set β.  f(x, β), 

as used in this part of the thesis, is a function that maps an input dissimilarity value !� to 

an estimated dissimilarity (or distance) value !P� using equation (6.12). To converge to 

an optimum parameter set %Y, % is iteratively updated using the LM update rule  

%Z � % ( �[ � λ�]F^O[Q�,�_R�%� (6.13) 

In equation (6.13) above, H represents the Hessian matrix of the function f(x, β) at 

search direction given by %, _R�%� is the gradient of the error function R�%� and λ is a 

dampening factor that is adjusted at each iteration to make sure a reduction in error 

occurs.  The updated set of parameters is represented as ̀ Z. 
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The algorithm initially proposed by Levenberg [Levenberg44] and modified by 

Marquardt [Marquardt63] works in the following way: 

 

LM algorithm 

 

I. Compute the initial error from equation (6.12) using initial parameter set %a, 

II.  Compute the updated parameter set %Z using the initial parameter set %a,  

III.  Determine the error from equation (6.12) using the updated parameter set %Z, 
IV. If updated error >= previous error Then 

 Retain the previous set of parameters 

 Increase λ by a constant value (10 chosen)  

Else 

 Retain updated set of parameters  

 Decrease λ by factor 10  

End  

V. If error < threshold or maximum number of iterations reached Then 

STOP and return parameter set 

Else 

GOTO step II and perform update with new λ value and retained parameter set 

 

The LM algorithm is first applied to a single feature problem, then two, three and more.  
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6.11 Texture retrieval using the optimised model 

For retrieval from the OFS, the optimum set of parameters derived using the LM 

algorithm is applied to equation (6.12) together with selected features for the query 

texture, Q.  Doing so positions the query texture within an M-dimensional space, where 

M is the number of features used. A Euclidean distance is applied to retrieve the closest 

textures to Q within the M-D space. Results are presented in the sections that follow. 

6.11.1 Retrieval rates v/s number of features 
 

 

 

Figure 6.19 – Average precision rates for the Tex1(top) and MoMA(bottom) datasets with 
increasing number of features used to map the FPS to the OFS 
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Figure 6.19 shows the average precision rates when retrieval is performed using 

increasing number of features for the Tex1 and MoMA test textures.  We can observe 

that the precision rates do not vary by large amounts for both datasets, except for the 

case of 10 retrievals for the Tex1 dataset where increasing the number of features 

appear to provide significant change in precision. 

  

6.11.2 Blind test results using the OFS 

 

Table 6.5 shows the average OFS precision for the ten “blind” test textures from Tex1.  

The results are compared with retrieval results from the MFS blind tests.  As the 

retrieval results for the MFS were obtained using up-to four features per dimension, a 

maximum of 16 features was used to test for retrieval in the OFS.   

 

 

 

 

 

 

 

 

Table 6.5 - Comparative results for average precision rates of Tex1 test textures for retrievals 
in MFS(B) and OFS(B) 

 

We observe from the Table 6.5 that the precision rates for the OFS (with the exception 

of T83 and T33) are lower than those of the MFS.  This shows that as well as being 

sparse, the information in the FPS is also noisy for Tex1 samples.  Since the Tex1 

dataset was created to cover as many texture categories as possible, it is not surprising 

that when the samples are projected in a 110D perceptual space, it is noisy. 

Creating the OFS directly from the FPS may allow more noise information to be 

retained.  This contrasts with the creation of the MFS, whereby using only a low-

dimensional space enables much of the noise information to be “filtered” out.  

Although the order of the test textures, based on retrieval from the MFS, is not retained 

compared with the corresponding retrieval performed in the OFS, the textures at the 

Texture MFS(B) OFS(B) 

T53 0.450 0.1962 

T60 0.425 0.2692 

T62 0.500 0.3308 

T66 0.363 0.3615 

T83 0.325 0.3769 

T116 0.450 0.4115 

T32 0.688 0.4346 

T74 0.688 0.5462 

T33 0.463 0.5808 

T69 0.625 0.5808 
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higher end of the precision spectrum do tend to correspond.  The median retrieval rate 

from the OFS for the 10 Tex1 test textures is 37.7%, corresponding to texture T83 

which is shown in Figure 6.20. 

 

 

Figure 6.20 - Texture T83 
 

 

Figure 6.21 shows the first 20 retrievals for T83 from both the FPS and the OFS.  As the 

results from the FPS show, observers did not find any difficulty in perceiving the 

directional information and the textures that they perceived to be similar (for the Tex1 

dataset) show a strong inclination towards horizontal textures.  
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(a) 

 

T80 T99 T91 T56 T41 T105  T117 T64  T112  T82  

 

T71  T75  T48 T51 T87 T93 T4 T61  T57  T60  

  

(b) 

 

T71 T43 T10 T80  T51 T115 T80 T34  T46 T28 

 

T117 T56 T48 T17 T49 T61 T110 T59 T37 T30 

  

Figure 6.21- first 20 retrievals from (a) a 110D FPS and (b) the OFS feature space using texture T83 as query 
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6.11.3 Computation times 

Part of the reason that the investigation of the FPS approach was not pursued further 

than the 14 texture features was because of the increasingly lengthy computation times 

that were required.  Figure 6.22 illustrates the exponential nature of these computations 

for the Tex1 dataset.  The processing time was recorded when executing the selection 

algorithm on MATLAB, hosted on a 32-bit XP machine with duo core processors (Intel 

Core 2 Duo 6600 operating at 2.4 GHz) and with 3 GB of RAM.  

 

6.12 Summary for Part II 

Results obtained from the FPS approach show that: 

(a) it becomes prohibitively expensive to compare for higher number of features, 

and 

(b) that its performance is, on average, well below the reduced dimensionality 

approach described in Part I of this chapter. 

 

 

 

Figure 6.22- Processing time v/s number of features selected to create  the OFS 
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6.13 Performance Evaluation and Discussion 

 

Most of the texture retrieval systems encountered so far in literature have been 

evaluated with respect to a previous work.  To do so researchers have mainly used a 

common dataset (Brodatz) and different feature sets for comparison such as the Tamura, 

Wold and Gabor features.  To evaluate invariant features, researchers have applied 

affine transformations to existing textures that could be used as test textures.  Thus, 

using invariant features for retrieval results in high retrieval performance, however, this 

performance is relative to the number of ‘identical’ textures in the test dataset rather 

than perceptually ‘similar’ textures.  For example Payne et al. [Payne99] used 9 non-

overlapping variants of the Brodatz textures, giving 1008 samples.  They used one 

variant as query and based the retrieval performance on how well their system could 

retrieve the other 8 variants from the 1008 samples.  Long et al. [Long00 & Long01] 

used cropped subimages of 60 Brodatz texture images (540 samples) and using one of 

the subimages as the query image, they measured how well the retrieval system would 

retrieve the remaining 8 textures.  When “identical” textures are not considered the 

performance of retrieval systems drops considerably. 

To improve the retrieval performance researchers have performed human studies to 

investigate, and learn, the way people categorise textures. Payne et al. [Payne99] 

performed retrieval based on 10 different statistical representations of textures and 

correlated these results with ranking of the same textures by humans.  They found that 

only 20-25% of the retrievals matched the ranking result.  Even by combining different 

computational methods, they could not achieve a success rate of higher than 50%. 

Payne et al. discovered that even if features invariant to scale and orientation were used 

for retrieval, the performance was still low, since those features are not necessarily 

perceptually consistent.  This shows that retrieval of perceptually ‘similar’ textures 

rather than ‘identical’ ones is a much more difficult task to perform. 

Thus the two datasets considered within this thesis, Tex1 and MoMA, do not contain 

any ‘identical’ textures.  Moreover, we do not attempt to outperform the performance 

results published by Long et al. or Payne et al. with the performance of our model.  In 

this thesis we have investigated how well the retrieval model proposed in section 6.2 

performs with respect to the psychophysical results.  That is how well it retrieves 

perceptually ‘similar’ textures.  



 

 

154 

 

The results provided in Part I of this chapter investigated how well a retrieval model 

applied to reduced perceptual spaces could be used to retrieve textures from the two 

datasets.  Retrievals were performed from 4D MFS.  We observed from Figure 6.15 that 

the average precision rate varies from 40% to just above 70% when the number of 

features per dimension considered is 10 for the Tex1 dataset and 8 for the MoMA 

dataset.  If we consider that a retrieval engine can reasonably display 20 textures on a 

screen, then the model proposed does better than the expected maximum of 50% of 

perceptually consistent retrieval deduced by Payne et al. [Payne99]. 

We also compared our retrievals for both datasets against random chance.  Figure 6.23 

shows how precision rates vary with increasing numbers of features when 10 samples 

are retrieved from 4D MFS and the OFS.  Considering 10 retrievals at a time, the 

random chance of retrieving 10 out of 110 samples for Tex1 and 10 out of 73 samples 

for MOMA are 9.1% and 13.5% respectively (these are shown as RCTex1 and 

RCMoMA on Figure 6.23).  

 

 
 

Figure 6.23- Effect of increasing texture features on retrieval success 
 

The retrieval rates obtained from both the MFS and the OFS are significantly higher 

than the random chance values for the Tex1 and MoMA datasets.  The results show 

only MFS results constructed using a maximum of 4 features per dimension and OFS 

results created using 16 features.  

Figure 6.15 showed that performance was obtained with MFS created using 10 features 

per dimension.  This implies a maximum of 40 features to create the OFS for a 4D 
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space. We did not attempt to test retrievals from OFS using higher than 16 features 

because 

1. the results in Figure 6.19 show that the precision rates start to decrease when 

14 or more features are used, and,  

2. the computational cost increased significantly with larger feature numbers. 

 

To have a better insight of how a more “conventional” retrieval engine would perform 

on the two datasets, we applied an LBP based retrieval method. The latter has basically 

been used both for retrieval and non-parametric classification of textures. LBP operators 

have been heavily utilised in the recent years to describe textures [Ojala96 & Ojala02] 

and a Chi-square based distance function has been successfully employed in both face 

recognition and texture retrieval [Ahonen04]. Using LBP histograms as feature vectors, 

the Chi-square distance between a query and a target texture is modelled as follows: 

b��c, d� � /O�ce ( de�� �ce � de�⁄ Qg

e*�
 (6.14) 

Q and T in equation (6.14) represent the LBP histograms for the query and target 

textures respectively. B is the total number of bins for the histograms. The histograms 

representing the query and target feature vectors are created by concatenating 

histograms from the following LBP operators: LBP8,1, LBP16,2, and LBP24,3 (refer to 

Chapter 5 for LBP operator notations).  Table 6.6 below shows the performance of the 

LBP based retrieval method as compared to the blind MFS and OFS strategies. 

 

(a) 
 

10 

Samples 

20 

Samples 

30 

Samples Average 

Random Chance 0.091 0.182 0.273 0.182 

LBP-ChiSquare 0.287 0.323 0.415 0.342 

MFS(B) 0.502 0.625 0.677 0.601 

OFS(B) 0.301 0.421 0.506 0.409 
 

  

(b) 
 

10 

Samples 

20 

Samples 

30 

Samples Average 

Random Chance 0.135 0.274 0.411 0.274 

LBP-ChiSquare 0.342 0.499 0.545 0.462 

MFS(B) 0.544 0.668 0.709 0.640 

OFS(B) 0.431 0.576 0.662 0.556 
 

 Table 6.6 – Precision values for different retrieval methods obtained when 
applied to (a) the Tex1 dataset and (b) the MoMA dataset 
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Precision values were obtained for when retrievals are performed using the 10 test 

textures for the Tex1 dataset and the 8 MoMA test textures. 4 features per dimension 

were used for the MFS and a total of 16 features were used for the OFS. The results in 

Table 6.6 show that even if powerful texture features such as the LBP operators were 

used for retrieval, the Chi square based retrieval method performed quite poorly 

compared to the methods presented in this thesis.  The MFS(B) method with average 

retrieval rates of 60.1% and 64.0% for the Tex1 and MoMA datasets is thus an efficient 

way to retrieve textures that match human perception. 

 

6.14 Conclusion 
 

In this chapter, we provided an effective retrieval model within a low-dimension 

perceptual space.  When tested with textures already used for training, the precision 

rates for retrievals within a 4D MFS approximates the 90% mark for the datasets 

considered, however the number of features was high indicating likely overfitting.  

Even with a high number of features, precision rates for retrievals within a 4D MFS are 

below those for retrievals from a 4D RPS.  This allowed us to conclude that the large 

pool of features used does not contain enough relevant features to represent the Tex1 

and MoMA datasets and that there is likely to be correlation between the features 

selected for the retrieval systems.  When blind testing was applied to the retrieval model 

proposed in Part I, the precision rates were lower but still significantly above chance.  

To ensure that the results obtained for the first retrieval model could not be obtained 

using a conceptually simpler and more direct approach, another retrieval model was 

proposed in Part II.  The second model uses the FPS and maps the perceptual 

similarities directly to a feature space using an optimisation algorithm.  Precision rates 

computed at increasing number of features for the OFS supported the case that a 

dimensionality reduction approach using MDS is a relatively effective and efficient 

approach.  
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Chapter 7  

Summary, Conclusion and Future Works 

 

7.1 Summary of Research 

This thesis has attempted to meet a very specific objective: to develop an automatic 

retrieval system for surface textures by taking into account human perception of 

different categories of textures. 

We started by presenting a survey of research work undertaken in the field of texture 

retrieval in Chapter 2, through which we identified that illumination conditions 

significantly affect the appearance of surface texture and that no work pertaining to the 

automatic retrieval of ‘surface’ textures has been undertaken.  Additionally, the survey 

has allowed us to identify tools and techniques through which a perceptually relevant 

texture retrieval system could be built.  Furthermore, it was noted that many of the 

retrieval systems described in the literature were tested using “identical” textures (in 

which multiple subimages had been obtained from a single original). 

The focus of this thesis was also placed on how humans perceive different categories of 

surface textures.  In Chapter 3 we presented the design and implementation of 

psychophysical experiments through which we recorded how humans group surface 

textures or texture images captured under the same illumination conditions.  Two 

texture datasets were created and presented to observers for comparison: Tex1 and 

MoMA.  The judgments from the users were aggregated in the form of similarity 

matrices for the Tex1 and MoMA datasets.  

Chapter 4 analysed the similarity matrices and investigated the visual consistency of 

texture groups created from the psychophysical data through the use of dendrograms.  

The latter showed that the similarity matrices contained apparent structural information 

even if no obvious number of groups could be identified.  

Using MDS as a dimensionality reduction technique, Chapter 4 also investigated 

whether the structural information contained in the Full Perceptual Space is preserved 

when the FPS is mapped to Reduced Perceptual Spaces.  We found out that the textures 

from the Tex1 and the MoMA datasets could be well represented in any Reduced 

Perceptual Space with dimensionalities four to ten without significant loss in the 
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structural information.  However, no obvious number of dimensions could be deduced 

when fitting the RPS to the FPS. 

Chapter 5 investigated four popular texture feature sets to select one feature set that 

could be used to map a feature space to the perceptual space for automatic retrieval.  A 

set of selection criteria was presented and consequently used to select the most suitable 

feature set for the mapping process.  The Trace Transform features were found to satisfy 

all the criteria presented. 

The different methodologies for automatic retrieval of surface textures were presented 

in Chapter 6.  The first part described a simple approach that used linear regression to 

map the RPS to a corresponding feature space.  Since the dimensionality of the RPS is 

application oriented, precision was used to determine the number of dimensions to be 

used for the RPS for retrieval purposes.  The precision values for different retrieval 

modes (10, 20, 30 retrievals) showed that significant fit of the FPS is obtained when 4D 

or higher dimensionality RPS are considered.  Thus, the TT transform features were 

used to map the 4D RPS for both datasets.  Retrieval performances from the resulting 

feature space (the MFS) were below the expected performance of retrievals from the 

RPS.  This prompted us to deduce that the TT feature set was not complete enough to 

encode all the textures available (mainly for the Tex1 dataset).  However, with precision 

rates of higher than 70% for 30 samples retrieved, the retrieval model proposed proved 

to be effective one.  

A more direct approach that uses the full perceptual space was proposed in Part II of 

Chapter 6.  It was found that average precision for this approach was lower than the 

dimensionality reduction approach.  Additionally the direct approach required high 

computation times with increasing number of features making it impractical and 

unattractive.  

7.2 Conclusion 

In this thesis we have developed retrieval models that integrate perceptual data from 

psychophysics to provide for perceptually relevant retrievals of textures.  The texture 

images used in the psychophysical experiments were obtained by rendering surface 

textures using known illumination parameters (slant and tilt).  In addition a set of 

texture images, captured under uniform illumination conditions have also been 

employed (MoMA dataset).  This is the first time that surface textures have been used to 

capture human perception of texture and to develop automatic retrieval models where 
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the features used to ‘statistically’ describe the textures are not influenced by any change 

in illumination directions. 

Two retrieval models were presented.  In the first model, the Full Perceptual Space was 

reduced to a more manageable Reduced Perceptual Space using MDS.  A large pool of 

features was used to create a corresponding feature space (the MFS).  The performance 

achieved was better than that which could be obtained by pure chance when precision 

rates were computed for 10, 20 and 30 retrievals. 

The second retrieval model was used to investigate whether a more direct approach 

could provide for better retrieval results.  Thus an Optimised Feature Space, derived 

directly from the Full Perceptual Space, was exploited for retrieval.  The performance of 

the second model was no better than that obtained from the MDS based Feature Space.  

Furthermore the high computational time required to select texture features for the 

optimised space makes it an impractical option. 

 

 MFS OFS 
Random 

Chance 

Tex1 60.1% 40.9% 18.2% 

MoMA 64.0% 55.6% 27.4% 

Table 7.1– Average performance (blind testing) for Tex1 and MoMA datasets for retrievals in 
the MFS and OFS. The performance by chance for 110 and 73 target textures from Tex1 and 

MoMA is provided for comparison. 

 

Table 7.1 above shows the average performance when 10 and 8 test textures (blind 

testing) were searched from the remaining Tex1 (110) and MoMA (73) target textures 

respectively.  The performance values represent the average precision for 10, 20 and 30 

samples with retrievals performed in both the MFS and OFS.  Comparative performance 

for pure chance retrieval is also provided. 

The performance values for retrievals in the MFS are better than those obtained from 

the OFS for the Tex1 and MoMA datasets.  This shows that the MFS based retrieval 

model proved to be a relatively effective and efficient retrieval methodology. 

Moreover, considering the datasets contained no “identical1” textures, a performance of 

above 60% for the MFS based model is very promising. 

                                                           
1 ‘identical’ used in the same context as defined in Chapter 2 
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Analysing the results from the MFS based model, we observed that a number of textures 

that were easily grouped by observers, did not produce the same expected results when 

used as query textures.  Even with the availability of a large feature set, few relevant 

features were able to encode the longer range structural information within the textures.  

However, this type of information is difficult to capture using computational features.  

Overall, the MFS based model is a simple, inexpensive methodology that develops 

efficient and effective retrieval models.  

 

 

7.3 Future works 

The results for perceptual texture retrieval provided in this thesis were satisfactory given 

(1) the small number of textures used to train the proposed retrieval model and (2) the 

simple mapping technique (linear regression) used to map the feature space to the 

perceptual space.  Some obvious and immediate improvements, deduced from the 

conclusions provided, to obtain better performance for the perceptual retrieval are listed 

below: 

 

1) Generate a large dataset (> 300) of homogeneous surface textures 

120 surface textures (Tex1 dataset) was used to capture human perception of textures 

and to investigate perceptual dimension, however, they provide relatively sparse 

sampling of what is at least a four-dimensional space. 

An immediate follow-up of this research would be to apply the retrieval framework 

proposed to a larger set of homogeneous textures.  The Tex1 consisted of varied texture 

categories.  The same categories could be used as a basis to generate an expanded 

surface texture dataset.  

 

2) More detailed investigation of grouping results  

This thesis focused on the use of similarity matrices to develop perceptually relevant 

retrieval systems.  The matrices represented the frequency of occurrence of different 

texture pairs.  Although this information was sufficient to represent the textures within a 

perceptual space, other information derived from the grouping results could have been 

used to identify perceptually relevant texture features. 
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Firstly, dominant groups may be identified by recording the order in which the groups 

are created by observers and selecting those groups that all or most observers have 

found very easy to create.  This can lead to the identification of perceptual texture 

attributes that humans can distinguish more easily when comparing textures.  Feedback 

on what criteria have been employed by observers in grouping textures can also help in 

understanding human perception of texture. 

 

3) Investigate other human judgment capturing methods 

In this thesis, perceptual grouping has been efficiently utilised to derive similarity 

matrices for the purpose of developing perceptually relevant texture retrieval systems.  

However the datasets used (Tex1 and MoMA) were of relatively small sizes. For larger 

datasets (>300) perceptual grouping may not be a very practical option and other 

methods would need to be investigated.  For example pairwise comparison may be 

useful if proper false negatives rejection mechanisms are used or if reaction times are 

controlled.  

One limitation of perceptual grouping that we encountered during the course of the 

thesis was that ordering information was ignored during the comparison (of retrievals 

from the MFS and the FPS) stage.  Perceptual ordering may be considered in this case, 

provided it is efficiently implementation so as to reduce the comparison times from 

observers. 

 

4) Investigate larger sets of independent, phase sensitive features 

The performance of a texture retrieval system relies heavily on the feature sets used to 

encode the textures being searched.  It has already been demonstrated in the literature 

that the phase information contains most of the structural information within an image 

[Oppenheim91].  However, obtaining feature sets that are sensitive to phase and 

insensitive to position is a difficult task.  This thesis has investigated several popular 

feature description approaches that encode phase information and the Trace Transform 

(TT) features were selected to create a feature space for texture retrieval.  Although a 

subset of the TT features was sensitive to phase, they could not encode all the 

variability in textures available (Tex1 and MoMA).  A feature set containing a large 

proportion of phase sensitive features is more likely to provide for better texture 

representation and should be investigated. 
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Moreover when very large feature sets are considered, the number of correlated 

elements is quite high, as was the case with the TT features used in this thesis.  A 

feature set with a large number of independent elements would contribute in having 

more relevant features to represent the textures. 

 

5) More robust mapping of the feature space to the Reduced Perceptual Space 

This thesis presented a retrieval model that used a linear regression model to map a 

feature space to a reduced perceptual space obtained through Multidimensional Scaling.  

The model did perform efficiently in encoding most of the textures and provided 

satisfactory retrieval results.  We assumed that the feature data were linearly distributed 

across the samples; however when large feature sets are involved, this condition is 

difficult to achieve.  Non-linear fitting models could be tested to investigate for better 

and more robust mapping and feature selection.  Some common techniques that have 

been heavily utilised in the recent years are mainly the Support Vector Machines and 

multilayer neural networks [Long01] and could be exploited to derive more robust 

retrieval models. 
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Appendix A: Texture Datasets – Tex1 and MoMA 
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T1 T2 T3 T4 T5 T6 

 
T7 T8 T9 T10 T11 T12 

 
T13 T14 T15 T16 T17 T18 

 
T19 T20 T21 T22 T23 T24 

 
T25 T26 T27 T28 T29 T30 

 
T31 T32 T33 T34 T35 T36 

 
T37 T38 T39 T40 T41 T42 

 
T43 T44 T45 T46 T47 T48 

 
Figure A.1- Texture images for Tex1 dataset, Part I (T1 to T48) 
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T49 T50 T51 T52 T53 T54 

 
T55 T56 T57 T58 T59 T60 

 
T61 T62 T63 T64 T65 T66 

 
T67 T68 T69 T70 T71 T72 

 
T73 T74 T75 T76 T77 T78 

 
T79 T80 T81 T82 T83 T84 

 
T85 T86 T87 T88 T89 T90 

 
T91 T92 T93 T94 T95 T96 

 
Figure A.2- Texture images for Tex1 dataset, Part II (T49 to T96) 
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T97 T98 T99 T100 T101 T102 

 
T103 T104 T105 T106 T107 T108 

 
T109 T110 T111 T112 T113 T114 

 
T115 T116 T117 T118 T119 T120 

 
Figure A.3- Texture images for Tex1 dataset, Part III (T97 to T120) 
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M12 M28 M69 M85 M112 M133 

 
M161 M182 M193 M204 M213 M227 

 
M250 M321 M330 M353 M355 M361 

 
M391 M914 M915 M922 M923 M924 

 
M928 M939 M1385 M1390 M1397 M1401 

 
M1410 M1413 M1416 M1419 M1439 M1440 

 
M1442 M1456 M1481 M1495 M1502 M1507 

 
M1521 M1551 M1555 M1748 M1753 M1765 

 
Figure A.4- Texture images for MoMA dataset, Part I (M12 to M1765) 
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M1792 M1821 M1834 M1952 M1954 M1966 

 
M1970 M2018 M2040 M2219 M2228 M2233 

 
M2234 M2282 M2303 M2314 M2323 M2356 

 
M2357 M2365 M2382 M2394 M2430 M2444 

 
M2535 M2541 M2542 M2547 M2552 M2554 

 
M2587 M2605 M2607    

 
Figure A.5- Texture images for MoMA dataset, Part II (M1792 to M2607) 
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Appendix B: Grouping Experiment Instructions 
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Title: Perceptual Grouping of Textures  
(I)  Aim: 
The aim of this experiment is to come up with a similarity matrix that would represent the ways 

in which human subjects would group together specific textures from an unknown set of 

textures. The similarity matrix would thus represent the frequency at which a particular texture 

is coupled with another texture. 

(II) Experiment Setup: 
Hundred and twenty surface textures were chosen for this experiment. The set of surface 

textures is made up of both natural and synthetic textures. Lambertian illumination is used to 

render the surfaces. A slant of 70 degrees and tilt of 45 degrees have been used for the 

rendering (Top left corner).  The texture images will be presented to the human subjects in 

form of photographs.  

(III) Instructions for observers: 
Precursor 

Orientation – please DO NOT rotate individual photos, it’s important that you view 

them with the PRINTED NUMBER AT THE BOTTOM .  

Similarity – when sorting the textures try not to think too consciously about the 

individual characteristics of the textures – rather, imagine them as real surfaces and 

group them according to simple gut instinct.  

Procedure 
(i) Photographs would be randomly placed on a table by experimenter so that 

you can see all of them (remember to keep them all orientated the same 

way). 

(ii)  Now create as many groups of textures as you feel like by moving the 

photographs around on the table as much as you like – the only criterion 

being that each group should contain “similar” textures. 

(iii)  Do not feel afraid to create groups containing single textures if you feel 

that the texture is not sufficiently “similar” to any of the others. Above all 

– do not create an “oddball” group which contains textures that simply do 

not fit into any of the other groups.  

(iv) Once grouping completed, leave your observations on the table so that 

they could be registered by experimenter. 

 
Thank you for your participation 
 

 
Figure B.1– Instruction sheet presented to subjects participating in the psychophysical 

experiment 
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Appendix C: Similarity Matrix 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure C.1   Partial Similarity matrix showing pairwise

172 

 
Partial Similarity matrix showing pairwise occurrence of Tex1 images R1 to R40 (generated from surfaces T1 to T40). Matrix constructed from 

data coming from 8 subjects 
occurrence of Tex1 images R1 to R40 (generated from surfaces T1 to T40). Matrix constructed from 
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Appendix D: Grouping Results 
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Appendix D.1:    Tex1 Groups  
 
 

 
T1 T3  T6  T12  T17  T18  

 
T20  T23  T25  T27  T28  T34  

 
T35  T38  T45  T47  T54  T59  

 
T62  T68  T73  T74  T76  T77  

 
T84  T86  T89  T90  T95  T100  

 
T108  T115  T119     

Figure D.1- Tex1: Group1 (regular textures), group size =33 
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T2  T7  T11  T16  T26  T29  

 
T36  T40  T46  T66  T69  T72  

 
T88  T94  T102  T106  T109  T120  

Figure D.2- Tex1: Group2 (irregular textures), group size=18 
 
 
 
 
 

 
T10  T42  T43  T50  T53  T63  

 
T65  T81  T101  T111    

Figure D.3- Tex1: Group3 (patchy textures), group size=10 
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T4  T8  T9  T13  T14  T21  

 
T31  T33  T39  T48  T51  T52  

 
T57  T60  T61  T67  T70  T87  

 
T92  T93  T104  T110  T114  T117  

 
T118      

Figure D.4- Tex1: Group4 (vertical textures), group size=25 
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T5  T15  T19  T24  T30  T32  

 
T37  T55  T58  T78  T79  T85  

 
T96  T97  T113     

Figure D.5- Tex1: Group5 (Circular textures), group size =15 
 
 
 

 
T22  T41  T44  T49  T56  T64  

 
T71  T75  T80  T82  T83  T91  

 
T98  T99  T103  T105  T107  T112  

 
T116      

Figure D.6- Tex1: Group6 (Horizontal textures), group size= 19 
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Appendix D.2:    MoMA Groups  
 
 

 
M12  M321  M330  M915  M923  M924  

 
M1481  M1507  M1753  M1954  M2314  M2444  

 
M2535      

Figure D.7- MoMA: Group1, group size =13 
 
 
 
 

 
M28  M69  M227  M914  M1390  M1397  

 
M1401  M1410  M1440  M1495  M1502  M1555  

 
M2219  M2233  M2282  M2323  M2587   

Figure D.8- MoMA: Group2, group size =17 
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M161  M213  M391  M922  M928  M939  

 
M1439  M1442  M1456  M2356  M2357  M2394  

 
M2605      

Figure D.9- MoMA: Group3, group size =13 
 
 

 
M85  M361  M1385  M1413  M1551  M1765  

 
M1966  M1970  M2040  M2234  M2303  M2542  

Figure D.10- MoMA: Group4, group size =12 
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M112  M133  M182  M204  M250  M355  

 
M1416  M1521  M1792  M1834  M1952  M2228  

 
M2430 M2554     

Figure D.11- MoMA: Group5, group size =14 

 

 
M193  M353  M1419  M1748  M1821  M2018  

 
M2365  M2382  M2541  M2547  M2552  M2607  

Figure D.12- MoMA: Group6, group size =12 
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Appendix E: Trace Transform Functionals 
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Index Functionals 

T1 � ���
���  

T2 � ����
���  

T3 �� ��	�
���  

T4 
������ �� 
T5 � |��� � ��|���

���  

T6 � |��� � ��|	���
���  

T7 � |���	 � ���� � ��� � ��	|��	
���  

T8 � |���� � ���	 � ���� � ��� � ��	 � ���|���
���  

T9 � |���� � ���� ��� ���� � ��� ��� ��� � ���|���
���  

T10 � |���� � ���� ��� ���� � ��� ��� ��� � ���|���
���  

T11 � � |���� � ���|�
���

���
���  

T12 � � |���� � ���|�
���

���
���  

T13 � � |���� � ���|�
���

���
���  

T14 � � |���� � ���|�
���

���
���  

T15 � � |���� � ���|��
���

����
����  

T16 � � |���� � ���|��
���

����
����  

T17 � � |���� � ���|	�
���

��	�
��	�  

T18 � � |���� � ���|	�
���

��	�
��	�  

T19 � ��1 �� |���� � ���|��
��� � / �1 �� |���� � ���|�

����� � ����
����  

T20 � ��� |���� � ���|��
��� �	 / �1 �� |���� � ���|�

����� �����
����  

T21 � |�� � 2��� � ��	|��	
���  
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T22 � |�� � 3��� � 3��	 � ���|���
���  

T23 � |�� � 4��� � 6��	 � 4��� � ���|���
���  

T24 � |�� � 5��� � 10��	 � 10��� � 5��� � ���|���
���  

T25 � |�� � 2��� � ��	|��	
��� ��� 

T26 � |�� � 3��� � 3��	 � ���|���
��� ��� 

T27 � |�� � 4��� � 6��	 � 4��� � ���|��	���
���  

T28 � |�� � 5��� � 10��	 � 10��� � 5��� � ���|��	���
���  

 
Table E.1 – Trace functionals, T. N represents the number of points along trace and '( is the ith 

sample. 
 
 

P1 
������ �� 
P2 
�)���� �� 
P3 �� ��	�

���  

P4 �� ���*
�+1 � �� ��*

�+1 �,  

P5 � ����
���  

P6 1*� -�� � ./	�
���  

P7 � |��� � ��|���
���  

P8 � |�� � 4��� � 6��	 � 4��� � ���|���
���  

Table E.2 – Diametric  functionals, P. 
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Φ1 � |��� � ��|	���
���  

Φ2 � |��� � ��|���
���  

Φ3 �� ��	�
���  

Φ4 � ���
���  

Φ5 
������ �� 
Φ6 
������ �� �
�)���� �� 
Φ7 Amplitude of the first harmonic 

Φ8 Phase of the first harmonic 

Φ9 Amplitude of the second harmonic 

Φ10 Phase of the second harmonic 

Φ11 Amplitude of the third harmonic 

Φ12 Phase of the third harmonic 

Φ13 Amplitude of the fourth harmonic 

Φ14 Phase of the fourth harmonic 

Table E.3 – Circus functionals, Φ. 
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Appendix F: Retrieval Results
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

 
Lower Quartile 

3 3 18 119 54 12 28 95 1 68 47 34 90 86 35 59 115 6 100 29 66 16 25 108 76 2 45 23 88 43 17 

87 87 51 117 110 104 14 48 60 35 31 39 93 4 62 28 83 67 57 13 8 9 41 99 91 119 52 80 33 56 1 

55 55 10 37 81 79 42 101 65 53 15 63 50 43 24 109 113 96 91 11 29 41 19 30 111 32 78 83 26 88 97 

84 84 62 108 17 100 95 38 45 23 25 47 115 90 18 119 54 86 34 3 74 89 6 77 59 20 76 27 9 73 28 

26 26 7 102 109 11 65 50 40 24 94 111 69 36 120 88 2 72 10 101 43 53 55 46 63 79 91 83 81 85 29 

61 61 118 4 114 67 60 117 8 13 93 39 48 31 14 110 33 70 9 21 104 52 57 87 111 63 41 50 83 101 91 

 
Median 

13 13 93 39 31 8 33 70 14 60 21 52 57 4 67 110 9 117 92 104 61 118 114 87 48 51 62 80 56 41 83 

81 81 43 91 10 41 55 65 83 37 29 101 63 80 53 42 109 50 111 59 35 6 34 88 68 28 2 90 3 79 1 

34 34 59 90 6 54 45 115 100 95 89 86 3 17 68 18 29 38 28 108 76 119 1 47 74 20 77 12 73 25 23 

57 57 9 93 39 33 13 70 31 110 8 52 104 21 14 60 92 67 117 4 62 87 51 61 80 118 56 35 48 114 84 

21 21 52 31 13 92 70 14 33 8 39 93 57 60 4 9 110 67 117 118 114 61 104 87 51 48 62 56 80 83 41 

37 37 55 10 42 32 81 53 79 30 78 96 101 63 113 15 19 58 5 24 65 43 29 50 91 11 41 109 111 6 59 

 
Upper Quartile 

27 27 74 73 76 77 23 38 20 86 25 115 89 45 100 17 54 90 108 34 47 59 18 6 3 95 119 12 84 68 66 

64 64 112 105 116 49 82 22 71 75 103 98 44 56 99 80 107 83 35 1 41 68 91 104 51 28 87 95 43 39 81 

115 115 86 100 45 76 74 89 38 54 23 25 90 73 77 20 27 17 34 108 59 47 6 95 18 3 119 68 12 1 28 

116 116 22 75 82 103 112 71 49 64 44 98 105 56 99 107 80 1 35 83 68 51 41 104 91 28 95 87 39 57 33 

96 96 113 19 79 15 30 42 32 78 58 37 97 5 55 10 53 101 63 24 85 50 81 65 111 11 109 26 43 91 29 

105 105 64 112 49 116 71 82 98 75 103 22 56 44 99 80 107 83 35 41 1 104 91 68 51 28 87 39 33 93 57 

 
 

Table F.1- Retrieval results for query textures within a 4-d MFS(75 features)for the Tex1 dataset 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

 
Lower Quartile 

3 3 18 12 119 23 108 28 35 38 25 115 47 76 17 45 54 95 66 16 27 34 43 2 73 86 100 68 81 74 90 

87 87 51 110 41 91 28 35 117 14 52 48 4 12 31 60 67 99 61 80 83 8 3 13 93 119 18 21 107 118 56 

55 55 37 30 32 96 79 5 15 19 58 78 113 97 24 85 81 42 10 41 43 65 91 53 88 101 109 63 111 50 83 

84 84 62 86 25 1 66 16 95 38 3 68 17 18 119 100 108 115 12 28 35 54 74 76 4 9 81 34 110 60 67 

26 26 69 72 11 7 102 36 94 120 40 46 2 88 109 29 106 24 81 16 85 66 91 43 55 41 83 10 97 48 28 

61 61 52 31 13 14 93 114 39 4 8 21 60 67 92 117 48 110 9 118 33 70 104 87 57 51 41 91 80 28 35 

 
Median 

13 13 93 39 31 8 61 110 57 9 21 33 70 104 92 4 52 117 60 67 48 114 118 14 87 83 80 51 41 56 81 

81 81 65 43 41 53 101 63 111 50 42 109 10 91 55 83 88 54 2 24 28 29 35 59 6 34 80 37 96 106 12 

34 34 90 59 76 17 27 74 6 100 23 89 95 45 73 20 77 38 115 86 108 25 54 3 81 18 43 47 68 41 1 

57 57 104 33 70 92 8 9 21 39 13 31 93 110 52 61 4 60 67 87 117 84 62 14 118 48 114 12 81 80 1 

21 21 92 8 104 57 33 70 52 9 31 39 60 67 4 61 13 14 93 110 118 114 117 48 87 51 41 80 91 81 56 

37 37 55 30 32 79 5 15 19 58 78 113 96 97 24 85 81 42 10 41 65 59 91 6 43 34 90 53 83 101 63 

 
Upper Quartile 

27 27 45 38 73 115 34 100 74 17 76 20 77 23 89 54 90 95 86 59 6 108 3 25 47 18 68 43 12 81 66 

64 64 112 105 56 80 99 71 82 98 103 49 83 44 75 116 22 107 41 91 81 1 68 28 35 117 51 43 93 87 39 

115 115 45 27 38 73 54 20 77 108 100 47 17 34 76 89 3 86 23 59 74 95 90 6 25 18 12 43 68 119 66 

116 116 71 22 75 44 49 82 98 103 107 105 64 112 41 91 80 56 28 35 99 1 68 51 83 81 87 47 117 43 14 

96 96 55 42 10 37 24 85 79 30 32 53 101 5 15 19 50 58 78 113 63 111 65 97 81 109 43 41 91 83 7 

105 105 64 112 56 80 82 98 103 71 49 44 75 99 116 22 83 107 41 91 81 1 68 28 35 117 93 39 51 33 43 

 
 

Table F.2 - Retrieval of the 30 most similar textures to query textures ( 1st cell-bold) from the FPS of the Tex1 Dataset 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

 
Lower Quartile 

112 112 2228 2430 1456 1834 1416 182 939 391 922 2605 1439 2323 928 133 161 2554 1390 204 1442 213 1952 1440 2394 1502 2535 2356 2357 2444 2587 

1390 1390 928 1440 1502 391 2282 2357 28 1416 1397 2605 2587 2323 939 1456 2219 112 2394 2430 161 1439 1401 2233 1495 2228 227 1442 1555 69 922 

28 28 1397 2282 1502 1440 1390 2219 928 2587 1401 391 1495 227 914 2357 2233 69 1555 1416 2430 939 2323 2605 112 1456 161 1385 2542 2228 2394 

922 922 213 1439 1442 2228 2356 161 2605 1456 2394 939 112 1834 182 1952 204 2323 133 391 2444 1481 928 1753 12 2554 2357 321 2535 923 1954 

250 250 204 1792 355 1952 133 1521 182 1834 2541 2535 193 2554 321 1481 2607 2444 1753 1419 12 2228 1456 213 2356 924 923 922 112 1507 1954 

2233 2233 227 2219 1555 69 1495 1401 2282 1397 914 1502 1440 2587 1413 2542 28 1970 1551 1765 1385 1390 391 2040 928 2303 2323 1416 2357 939 1966 

 
Median 

193 193 1419 2541 1748 2535 2382 1821 1792 321 133 2444 12 1753 2547 1481 353 250 204 2018 2607 355 330 1834 1954 1952 2314 1521 2365 1456 2552 

2394 2394 2605 1442 1439 161 922 2357 2323 939 213 2356 1456 391 928 2228 1390 2444 2314 1954 12 1753 112 1440 330 1834 1481 321 1416 923 2535 

1439 1439 1442 161 2605 922 2394 213 1456 2228 2356 939 2323 112 391 928 2357 1834 133 182 2444 1390 12 1952 1416 1753 204 1481 2535 321 1954 

 
Upper Quartile 

321 321 12 1753 2444 1481 2535 330 1954 2314 193 1792 1834 923 2323 1507 204 1456 1521 939 182 133 2356 915 924 1419 250 213 922 1952 1748 

1419 1419 193 2541 2382 1748 1821 2547 1792 133 353 2535 2365 321 2018 2607 2552 355 2444 12 1753 204 250 1952 1481 330 2554 1834 1954 1521 1456 

1954 1954 330 2314 915 12 2444 1753 321 923 1507 1481 924 2356 2535 2323 1521 213 939 1456 193 1792 2394 1834 204 1442 922 2605 1439 182 1419 

2607 2607 2541 2365 353 2547 355 2552 2018 1419 1821 193 250 133 1792 2554 2382 1952 1748 204 2535 1521 1834 321 182 2444 1753 12 1481 1456 2228 

1413 1413 1765 1970 2303 2542 1551 1385 2040 1966 227 361 69 85 1555 2233 1495 2234 914 2219 1401 1397 2282 1410 2587 1502 28 1440 391 1390 2323 

1765 1765 1970 2542 1551 1385 1413 2040 361 2303 69 1555 1966 914 227 1495 2234 2233 85 2219 1401 1397 2282 2587 1502 28 1440 1410 391 1416 2323 

 
 

Table F.3 - Retrieval results for query textures within a 4-d MFS(65 features) 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

 
Lower Quartile 

112 112 2554 2430 1416 2357 1456 133 2228 1952 391 1834 928 182 922 939 204 1439 213 2394 2535 1442 2356 2607 250 1792 161 2444 321 1753 12 

1390 1390 1502 1401 2219 1410 1440 2282 2323 1397 2357 227 928 2605 28 1555 1495 1456 2587 2394 2233 391 1439 914 69 939 1413 161 1442 2430 1834 

28 28 1397 391 928 1456 1502 2282 1401 1440 2587 1390 1495 2323 1410 2357 2219 2430 939 1555 2605 2394 227 2228 112 69 1439 1834 914 922 161 

922 922 213 2356 2394 1442 1439 161 1952 1456 939 391 2357 928 1481 2535 112 2228 182 204 1834 12 2444 321 1753 2605 923 1416 1954 915 924 

250 250 1792 1521 182 355 204 1952 2535 133 321 2444 1753 12 193 1481 1834 2356 2554 112 1416 213 923 924 330 1954 1419 939 1507 2541 922 

2233 2233 227 1413 1765 69 85 1555 2234 2219 1966 2542 914 1551 1970 1385 1495 2040 2303 1401 361 1410 2587 1502 1440 1397 2282 2323 1390 28 2605 

 
Median 

193 193 1419 2382 1821 1748 2535 1753 2547 12 2444 321 2552 1416 2541 2365 1792 1481 2607 355 250 353 1952 2018 1521 330 1954 133 182 204 1834 

2394 2394 161 1439 1442 2605 922 2357 213 928 391 1456 2356 939 2228 1834 2535 1753 2323 12 2444 321 112 1481 1502 1952 2282 1954 2314 28 1390 

1439 1439 161 2394 1442 2357 2605 213 922 928 1456 391 2356 1834 2228 112 939 2535 1952 1753 2554 2323 12 2444 321 2430 1481 1390 2282 28 182 

 
Upper Quartile 

321 321 2444 2535 12 1753 1481 330 1954 2314 923 1521 1507 939 915 924 193 2356 1834 250 1792 1456 213 204 182 922 2323 1419 2394 2382 1952 

1419 1419 193 1821 2382 1748 2535 2547 2552 2541 2607 2365 353 1416 2018 355 2444 321 12 1753 1792 1481 133 250 1952 1521 182 330 1954 204 1456 

1954 1954 330 2314 915 12 2444 321 1753 1481 923 939 1507 2535 1521 1834 2356 924 193 213 1456 922 2323 182 250 1792 204 2394 1442 2228 2357 

2607 2607 2541 2365 2547 353 2552 2018 1416 1419 1821 355 193 2382 2535 133 2554 112 1748 1952 1792 250 2444 182 1834 321 12 204 1753 2430 1481 

1413 1413 1765 2234 2233 85 227 1966 1970 2542 1555 69 1385 1551 361 2040 2303 2219 914 2587 1495 2282 1502 2323 1397 1401 1410 1390 1440 28 2535 

1765 1765 2234 1413 1970 1966 85 2233 69 2542 1385 1551 361 2040 2303 914 227 1555 2587 1495 1397 1401 2219 2282 2323 1502 1410 28 1440 1390 12 

 
 

Table F.4 - Retrieval of the 30 most similar textures to query textures ( 1st cell-bold) from the FPS of the MoMA Dataset  
 
 



190 

 

References 
 

[Abbadeni05] N. Abbadeni, “Perceptual Image Retrieval”, in 8th International 
Conference, VISUAL 2005, pp. 259-268, 2005. 
 

[Ahonen04] T. Ahonen, A. Hadid, and M. Pietikainen, “Face Recognition with 
Local Binary Patterns”, Lecture Notes in Computer Science: 
Computer Vision - ECCV 2004, pp. 469-481, 2004. 
 

[Amadasun89] M. Amadasun and R. King, “Textural features corresponding to 
textural properties”, IEEE Transactions on Systems, Man and 
Cybernetics, Vol. 19(5), pp. 1264-1274, 1989.  
 

[Aksoy01] S. Aksoy and R. M. Haralick, “Feature Normalization and 
Likelihood-based Similarity Measures for Image Retrieval”, 
Pattern Recognition Letters, Vol. 22(5), pp. 563-582, 2001. 
 

[Baker75] F. B. Baker and L. J. Hubert, “Measuring the Power of 
Hierarchical Cluster Analysis”, Journal of the American Statistical 
Association, Vol. 70(349), pp. 31-38, 1975. 
 

[Beck87] J. Beck, A. Sutter, and R. Ivry, “Spatial Frequency Channels and 
Perceptual Grouping in Texture Segregation”, Computer Vision, 
Graphics, and Image Processing, Vol. 37, pp. 299-325, 1987. 
 

[Bergen88] J. R. Bergen and E. H. Adelson, “Early vision and texture 
perception”, Nature, Vol. 333(6171), pp. 363-364, 1988. 
 

[Bhushan97] N. Bhushan, A. R. Rao, and G. L. Lohse, “The Texture Lexicon: 
Understanding the Categorization of Visual Texture Terms and 
Their Relationship to Texture Images”, Cognitive Science, Vol. 
21(2), pp. 219-246, 1997. 
 

[Bigun94] J. Bigun and J. M. Du Buf, “N- folded symmetries by complex 
moments in the Gabor space and their application to unsupervised 
texture segmentation”, IEEE Trans. on Pattern Analysis and 
Machine Intelligence, Vol. 16(1), 1994. 
 

[Blum97] A. L. Blum and P. Langley, “Selection of relevant features and 
examples in machine learning”, Artificial Intelligence, Vol. 97, 
Issue 1-2,  pp. 245-271, 1997. 
 



191 

 

[Bovik90] A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannel Filtering 
Analysis Using Localized Spatial Filters”, IEEE Trans. Pattern 
and Machine Intelligence, Vol. 12(1), pp. 55-73, January 1990. 
 

[Brodatz66] P. Brodatz, “Textures - a photographic album for artists and 
designers”, Dover, New York, 1966. 
 

[Caelli78] T. Caelli and B. Julesz, “On perceptual analyzers underlying visual 
texture discrimination”, Biological Cybernetics, Vol. 28, pp. 167-
175, 1978. 
 

[Chantler94] M. J. Chantler, “Why illuminant direction is fundamental to texture 
analysis”, IEE Proc. on Visual Image and Signal Processing, Vol. 
142(4), pp. 199-206, 1994. 
 

[Chantler05] M. J. Chantler, M. Petrou, A. Penirschke, M. Schmidt, and G. 
McGunnigle, “Classifying Surface Texture While Simultaneously 
Estimating Illumination”, Int’l Journal of Computer Vision (VISI), 
Vol. 62(1-2), pp. 83-96, 2005. 
 

[Clausi00] A. Clausi, and M. E. Jernigan, “Designing Gabor filters for optimal 
texture separability” Pattern Recognition, Vol. 33(11), pp. 1771-
1933,  November 2000. 
 

[Coggins85] J. M. Coggins and A. K. Jain, “A spatial filtering approach to 
texture analysis”, Pattern Recognition Letters, Vol. 3(3), pp. 195-
203, 1985. 
 

[Conners79] R. W. Conners, “Towards a Set of Statistical Features which 
Measure Visually Perceivable Qualities of Textures”, in 
Proceedings, IEEE Conference on Pattern Recognition and Image 
Processing, pp. 382-390, 1979. 
 

[Cox00] T. F. Cox and M. A.A. Cox, “Multidimensional Scaling”. 
Chapman & Hall/CRC, 2000. 
  

[Dai04] Y. Dai and D. Cai,  “Visual perception-based structure analysis of 
images for digital collection retrieval, in IEEE Int. Conf. on 
Systems, Man and Cybernetics,  Vol. 1, pp. 1104- 1111, 2004. 
 

[Davis79] L. S. Davis, S. Johns and J. K. Aggarwal, “Texture Analysis Using 
Generalized Co-Occurrence Matrices”, IEEE Trans. Pattern 
Analysis and Machine Intelligence, Vol. 1(3), pp.251-259, 1979. 
 

[Datta08] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image Retrieval: Ideas, 



192 

 

Influences, and Trends of the New Age”, ACM Computing 
Surveys, 2008. (to appear) 
 

[DeBonet97] J. S. De Bonet, “Multiresolution sampling procedure for analysis 
and synthesis of texture images”, In SIGGRAPH 97, pp. 361-368, 
1997. 
 

[Derin87] H. Derin and H. Elliott, “Modelling and segmentation of noisy and 
textured images using Gibbs random fields”, IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol. 9(1), pp. 39-55, 
1987. 
 

[Dewangan05] D. Dewangan, V. J. Samar, R. Rao, and P. Paul, “Factors 
influencing psycophysically valid taxonomies of image texture”, in  
IEEE International Conference on Image Processing, ICIP 2005, 
Vol. 3,  pp. 1196-1199, 2005. 
 

[Ding02] C. Ding and X. He, “Cluster merging and splitting in hierarchical 
clustering algorithms”, in Proceedings IEEE Int. Conf. on Data 
Mining, pp. 139-146, 2002.  
 

[Dong03] J. Dong, “Three-dimensional Surface Texture Synthesis”, Ph.D. 
Thesis, Heriot-Watt University, 2003. 
 

[Dong05] J. Dong and M. J. Chantler, “Capture and Synthesis of 3D Surface 
Texture”, International Journal of Computer Vision (VISI), 62(1-
2), pp. 177-194, 2005. 
 

[DuBuf90] J. M. H. Du Buf, “Gabor phase in texture discrimination”, Signal 
Processing, Vol. 21(3), pp. 221-240, November 1990. 
 

[DuBuf91] J. M. H. Du Buf and P. Heitkamper, “Texture feature based on 
Gabor phase”, Signal Processing, Vol. 23, pp. 227-244, 1991. 
 

[Efros99] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric 
sampling”, in Proc. 7th IEEE International Conference on 
Computer Vision (ICCV), Vol. 2, pp.1033-1038, 1999. 
 

[Efros01] A. A. Efros and W T. Freeman, “Image Quilting for Texture 
Synthesis and Transfer'', in Proc. of SIGGRAPH '01, Los Angeles, 
California, pp. 341-346, August 2001. 
 

[Fraley98] C. Fraley and A. E. Raferty, “How many clusters? Which 
Clustering Method? Answers Via Model-Based Cluster Analysis? 
”, The Computer Journal, Vol. 41 (8), pp. 578-588, 1998. 



193 

 

[Franco04] A. Franco, A. Lumini, D. Maio, “A new approach for relevance 
feedback through positive and negative samples”, in  
Proceedings, Int’l Conf. on Pattern  Recognition, Vol. 4, pp. 905 – 
908, 2004. 
 

[Frankot88] R. T. Frankot and R. Chellappa, “A Method for Enforcing 
Integrability in Shape from Shading Algorithms”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 
10(4), pp. 439-451, 1988. 
 

[Gagalowicz85] A. Gagalowicz and S.D. Ma, “Sequential synthesis of natural 
textures”, Computer Vision, Graphics and Image Processing, Vol. 
30(3), 1985. 
 

[Galloway75] M. M. Galloway, “Texture analysis using gray level run lengths”, 
Computer vision, graphics, and image processing, Vol. 4, pp. 172-
179, 1975. 
 

[Gibson50] J. J. Gibson, “The Perception of Visual Surfaces”, The American 
Journal of Psychology, Vol. 63(3), pp. 367-384, 1950. 
 

[Gluckman05] J. Gluckman, “Visually distinct patterns with matching subband 
statistics”, IEEE Trans. on Pattern Analysis and Machine 
Intelligence, Vol. 27(2), pp. 252-264, Feb. 2005. 
 

[Gordon87] A. D. Gordon, “A Review of Hierarchical Classification”, Journal 
of Royal Statistical Society, Part 2, pp. 119-137, 1987. 
 

[Graham92] N. Graham, J. Beck, and A. Sutter, “Nonlinear processes in spatial-
frequency channel models of perceived texture segregation: effects 
of sign and amount of contrast”, Vision Research, Vol. 32(4), pp. 
719-743, 1992. 
 

[Gullón03] C. Gullón, “Height Recovery of Rough Surfaces from Intensity 
Images”, Ph.D. Thesis, Heriot-Watt University, 2003. 
 

[Gurnsey01] R. Gurnsey and D. J. Fleet, “Texture space”, Vision Research, Vol. 
41, pp. 745–757, 2001. 
 

[Haralick73] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features 
for image classification”, IEEE Trans. Systems, Man and 
Cybernetics, Vol. SMC-3, pp. 610-662. Nov. 1973. 
 

[Haralick79] R. M. Haralick, “Statistical and Structural Approaches to Texture”, 
in Proceedings of the IEEE, Vol. 67(5), May 1979. 



194 

 

[Harvey81] L. O. Harvey, Jr., and M. J. Gervais, “Internal Representation of 
Visual Texture as the Basis for the Judgment of Similarity”, 
Journal of Experimental Psychology: Human Perception and 
Performance, Vol. 7(4), 741-753, 1981. 
 

[Haynes04] J. D. Haynes, R. B. Lotto, and G. Rees, “Responses of human 
visual cortex to uniform surfaces”, in Proceedings of the National 
Academy of Sciences of the United States of America, Vol.101(12),  
pp.4286 – 4291, 2004. 
 

[Heaps99] C. Heaps and S. Handel, “Similarity and features of natural 
textures”. Journal of Experimental Psychology: Human Perception 
and Performance, Vol. 25, pp. 299–320, 1999. 
 

[Heeger95] D. J. Heeger and J. R. Bergen, “Pyramid-Based texture 
analysis/synthesis”, In  SIGGRAPH 95 Conference Proceedings,  
pp. 229–238, 1995 
 

[Ho08] Y. Ho, M. S. Landy, and L. T. Maloney, “Conjoint Measurement 
of Gloss and Surface Texture”, Psychological Science, Vol. 19(2), 
pp. 196–204, 2008. 
 

[Hubel68] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional 
architecture of monkey striate cortex”, Journal of Physiology, 
Vol.195, pp. 215-243, 1968. 
 

[Iqbal99] Q. Iqbal and J. K. Aggarwal, “Applying perceptual grouping to 
content-based image retrieval: Building images”, in Proc. of the 
IEEE Int’l Conf. on Computer Vision and Pattern Recognition, pp. 
42-48, 1999. 
 

[Jain91] A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation 
using Gabor filters”, Pattern Recognition, Vol. 24(12), pp. 1167-
1186, 1991. 
 

[Jain99] A.K Jain, M. N. Murty, and P. J. Flyn, “Data Clustering: A 
Review”, ACM Computing Surveys, Vol. 31(3), pp.264–323, 1999. 
 

[Johnson04] A. P. Johnson and C. L. Baker, Jr., “First- and second-order 
information in natural images: a filter-based approach to image 
statistics”, Journal of the Optical Society of America A, Vol. 21(6), 
2004. 
 

[Julesz62] B. Julesz, “ Visual Pattern Discrimination,” IRE Transaction on 
Information Theory, IT-8, pp. 84-92, 1962. 



195 

 

[Julesz75] B. Julesz, “Experiments in the visual perception of texture,” 
Scientific American, 232, pp. 34-43, 1975. 
 

[Julesz81] B. Julesz, “Textons, the Elements of Texture Perception, and Their 
Interactions,” Nature, 290, pp. 91-97, 1981. 
 

[Kadyrov01] A. Kadyrov and M. Petrou, “The Trace Transform and Its 
Applications”, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 23(8), pp. 811-828, 2001. 
 

[Kadyrov02] A. Kadyrov, A. Talebpour and M. Petrou, “Texture classification 
with thousands of features”, in Proceedings of the British Machine 
Vision Conference, 2002. 
 

[Kherfi03] M. L. Kherfi, D. Ziou and A. Bernardi, “Combining positive and 
negative examples in relevance feedback for content-based image 
retrieval”, Journal of Visual Communication and Image 
Representation, Vol. 14(4), pp. 428-457, 2003. 
 

[Kingsbury99] N.G. Kingsbury, “Image Processing with Complex Wavelets”, 
Philosophical Transactions of the Royal Society London, pp. 210–
223, 1999. 
 

[Kohavi95] R. Kohavi, “A Study of Cross-Validation and Bootstrap for 
Accuracy Estimation and Model Selection”, in Proc. of the 
Fourteenth Int’l Joint Conference on Artificial Intelligence, IJCAI 
95, pp. 1137-1145, 1995. 
 

[Kourtzi06] Z. Kourtzi, “Textures of Natural Images in the Human Brain. 
Focus on ‘Orientation-Selective Adaptation to First- and Second-
Order Patterns in Human Visual Cortex’”, Journal of 
Neurophysiology, Vol. 95, pp. 591-592, 2006. 
 

[Kruskal64a] J. B. Kruskal, “Multidimensional scaling by optimizing goodness 
of fit to a nonmetric hypothesis”, Psychometrika (29), pp. 1-27, 
1964. 
 

[Kruskal64b] J. B. Kruskal, “Nonmetric Multidimensional scaling: A numerical 
method”, Psychometrika (29), pp. 115-129, 1964. 
 

[Kube88] P. Kube and A.P Pentland, “On the Imaging of Fractal Surfaces” 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 
Vol. 10(5), pp. 704-707, 1988. 
 

[Kwatra03] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick, “Graphcut 



196 

 

textures: Image and video synthesis using graph cuts”, In ACM 
SIGGRAPH, pp. 277-286, 2003. 

 
[Landy91] M. S. Landy and J. R. Bergen, “Texture segregation and 

orientation gradient”, Vision Research, Vol. 31(4), pp.679-691, 
1991. 
 

[Landy04] M. S. Landy and N. Graham, “Visual perception of texture”, The 
Visual Neurosciences, pp. 1106-1118, Cambridge, MA: MIT Press, 
2004. 
 

[Laws80] K. I. Laws, “Rapid texture identification”, In Proc. of the SPIE 
Conference on Image Processing for Missile Guidance, pp. 376-
380, 1980. 
 

[Levenberg44] K. Levenberg, “A method for the solution of certain non-linear 
problems in least squares”, The Quarterly of Applied Mathematics, 
Vol. 2, pp. 164-168, 1944. 
 

[Lew06] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain, “Content-based 
multimedia information retrieval: State of the art and challenges”, 
ACM Transactions on Multimedia Computing, Communications, 
and Applications, Vol. 2(1), pp. 1 – 19, 2006. 
 

[Liang01] L. Liang, C Liu, Y. Xu, B. Guo, and H.Y. Shum, “Real-time 
texture synthesis by patch-based sampling”, ACM Transactions on 
Graphics, Vol. 20(3), pp. 127–150, 2001. 
 

[Liu05] H. Liu, E. R. Dougherty, J. G. Dy, K. Torkkola, E. Tuv, H. Peng, 
C. Ding, F. Long, M. Berens, L. Parsons, Z. Zhao, L. Yu, and G. 
Forman, "Evolving Feature Selection," IEEE Intelligent Systems, 
Vol. 20(6),  pp. 64-76,  2005. 
 

[Liu07] Y. Liu, D. Zhang, G. Lu, and W. Y. Ma, “A survey of content-
based image retrieval with high-level semantics” Pattern 
Recognition, Vol. 40, pp. 262 – 282, 2007. 
 

[Long00] H. Long, W. K. Leow, and F. K. Chua, “Perceptual texture space 
for content-based image retrieval”, in Proc. Int. Conf. on 
Multimedia Modelling, pp. 167-180, 2000. 
 

[Long01] H. Long, C. W. Tan, and W. K. Leow, “Invariant and perceptually 
consistent texture mapping for content-based image retrieval”, in 
Proceedings, Int’l Conf. on Image Processing, Vol. 2, pp. 117-120, 
2001. 



197 

 

[Lowe85] D. G. Lowe, “Perceptual organization and visual recognition”, 
Kluwer Academic publishers, 1985. 
 

[Mallat89] S. G. Mallat, “A theory for multiresolution signal decomposition: 
The wavelet representation”, IEEE Trans. Pattern Analysis and 
Machine Intelligence, Vol. 11(7), pp. 674-693, 1989. 
 

[Malik90] J. Malik and P. Perona, “Preattentive texture discrimination with 
early vision mechanisms” Journal of the Optical Society of 
America A, Vol. 7(5), pp. 923-932, 1990. 
 

[Marquardt63] D.W. Marquardt, “An Algorithm for the Least-Squares Estimation 
of Nonlinear Parameters”, SIAM Journal of Applied Mathematics, 
Vol. 11(2), pp.431-441, 1963. 
 

[Matsuyama83] T. Matsuyama, S. I. Miura, and M. Nagao. “Structural analysis of 
natural textures by Fourier transformation”, Computer Vision, 
Graphics and Image Processing, Vol. 24(3), pp. 347–362, 1983. 
 

[McGunnigle01] G. McGunnigle and M. J. Chantler, “Evaluating Kube and 
Pentland's fractal imaging model”, IEEE Trans. on Image 
Processing, Vol. 10(4), pp. 534-542, 2001. 
 

[Mingolla86] E. Mingolla and J. T. Todd, “Perception of solid shape from 
shading” Biological Cybernetics, Vol. 53, pp. 137-151, 1986. 
 

[Molinaro05] A. M. Molinaro, R. Simon and R. M. Pfeiffer, “Prediction error 
estimation: a comparison of resampling methods”, Bioinformatics, 
Vol. 21(15), pp. 3301-3307, 2005. 
 

[Ojala96] T. Ojala, M. Pietikainen, and D. Harwood, “A comparative study 
of texture measures with classification based on feature 
distributions”. Pattern Recognition, Vol. 29(1), pp. 51-59, January 
1996. 
 

[Ojala02] T. Ojala, M. Pietikainen, and M. Maenpaa, “Multiresolution gray-
scale and rotation invariant texture classification width local binary 
patterns”. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 24, pp. 971-987, 2002. 
 

[Oppenheim91] A. V. Oppenheim and J. S. Lim, “The Importance of Phase in 
Signals”, in Proceedings of the IEEE, Vol. 69 (5), May 1991. 
 

[Paget96] R. Paget and I. D. Longstaff, “A nonparametric multiscale Markov 
random field model for synthesising natural textures”, in Fourth 



198 

 

International Symposium on Signal Processing and its 
Applications (ISSPA), Vol. 2, pp. 744-747, 1996. 
 

[Paget98] R. Paget and I. D. Longstaff, “Texture synthesis via a noncausal 
nonparametric multiscale Markov random field”, IEEE 
Transactions on Image Processing, Vol. 7(6), pp. 925-931, 1998. 
 

[Payne99] J. S. Payne, L. Hepplewhite, and T. J. Stonham, “Perceptually 
Based Metrics for the Evaluation of Textural Image Retrieval 
Methods”, in IEEE Int’l Conf. on Multimedia Computing and 
Systems, ICMCS99, Vol. 2, pp. 793-797, 1999. 
 

[Payne05] J. S. Payne and T. J. Stonham, “Mapping Perceptual Texture 
Similarity for Image Retrieval”, in Scandanavian Conf. in Image 
Analysis, SCIA2005, pp. 960-969, 2005. 
 

[Pentland84] A. P. Pentland, “Fractal-based description of natural scenes”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 
6, pp. 661-674, 1984   
 

[Petrou04] M. Petrou and A. Kadyrov, “Affine Invariant Features from the 
Trace Transform”, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 26(1), pp. 30-44, 2004.   
 

[Petrou07] M. Petrou, A. Talebpour, and A. Kadyrov, “Reverse engineering 
the way humans rank textures”, Pattern Analysis and Applications, 
Vol. 10(2), pp. 101-114, 2007. 
 

[Porat89] M. Porat, and Y. Zeevi, “Localized Texture Processing in Vision: 
Analysis and Synthesis in the Gaborian Space”, IEEE Trans. On 
Biomedical Engineering. Vol. 36(1), January1989. 
 

[Portilla00] J. Portilla and E. P. Simoncelli, “A Parametric Texture Model 
Based on Joint Statistics of Complex Wavelet Coefficients”, IJCV, 
40(1), pp. 49-71, 2000. 
 

[Rao93a] A. R. Rao and G. L. Lohse, “Identifying high level features for 
Texture Perception”, CVGIP: Graphical Models and Image 
Processing, Vol. 55(3), pp. 218-233, 1993. 
 

[Rao93b] A. R. Rao and G. L. Lohse, “Towards a Texture Naming System: 
Identifying Relevant Dimensions of Texture”, in IEEE Conference 
on Visualization, pp. 220-227, October 1993. 
 

[Randen99] T. Randen and H. J. Husoy, “Filtering for Texture Classification: A 



199 

 

Comparative Study”, IEEE Trans. Pattern and Machine 
Intelligence, vol. 21(4), pp. 291-310, April 1999. 
 

[Rogowitz98] B. E. Rogowitz, T. Frese, J. Smith, C. A. Bouman, and E. Kalin, 
“Perceptual Image Similarity Experiments” in Proc. of the SPIE, 
3299, Conference on Human Vision and Electronic Imaging III, 
San Jose, California, pp.576-590, January 1998. 
 

[Rui98] Yong Rui, T. S. Huang, and S. Mehrotra, “Relevance Feedback 
Techniques in Interactive Content-Based Image Retrieval” Storage 
and Retrieval for Image and Video Databases (SPIE), pp. 25-36, 
1998. 
 

[Rui99] Y. Rui, T. S. Huang and S. F. Chang, “Image Retrieval: Current 
Techniques, Promising Directions and Open Issues”, Journal of 
Visual Communication and Image Representation, Vol. 40(4), pp. 
39-62, 1999. 
 

[Salton68] G. Salton and M. E. Lesk, “Relevance Assessments and Retrieval 
System Evaluation”, Information Storage Retrieval, Vol. 4(4), 
pp.343--359, 1968. 
 

[Sclaroff99] S. Sclaroff, M.  La Cascia, and S. Sethi, “Unifying Textual and 
Visual Cues for Content-Based Image Retrieval on the World 
Wide Web”, Computer Vision and Image Understanding, Vol. 75, 
Nos. 1/2, pp. 86-98, 1999. 
 

[Shepard62] R. N. Shepard, “The analysis of proximities: Multidimensional 
scaling with an unknown distance function”, Psychometrika (27), 
pp. 219-246, 1962. 
 

[Simoncelli95] E. P. Simoncelli and W. T.  Freeman, “The steerable pyramid: A 
flexible architecture for multi-scale derivative computation”, in 
2nd IEEE Int’l Conf. on Image Processing, Washington DC, Vol. 
III, pp. 444-447, Oct.1995. 
 

[Smeulders00] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. 
Jain, “Content-Based Image Retrieval at the End of the Early 
Years”, IEEE Trans. on PAMI, Vol. 22(12), pp. 1349-1380, 2000. 
 

[Tamura78] H. Tamura, S. Mori, and T. Yamawaki, “Textural features 
corresponding to visual perception,” IEEE Transactions Systems, 
Man and Cybernetics, Vol. 8(6), pp. 460-473, 1978. 
 

[Todd97] J. T Todd, J. F.  Norman, J. J. Koenderink, and A. M. Kappers, 



200 

 

“Effects of texture, illumination, and surface reflectance on 
stereoscopic shape perception”, Perception, Vol. 26, pp. 807-822, 
1997. 
 

[Tuceryan90] M. Tuceryan and A. K. Jain, “Texture Segmentation Using 
Voronoi Polygons,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 12(2), pp. 211-216, 1990. 
 

[Tuceryan98] M. Tuceryan and A. K. Jain, “Texture Analysis”, The Handbook of 
Pattern Recognition and Computer Vision (2nd Edition), pp. 207-
248, 1998. 
 

[Unser86] M. Unser, “Sum and difference histograms for texture 
classification”, IEEE Trans. Pattern Analysis and Machine 
Intelligence, Vol. 8, pp.336-357, 1986. 
 

[Veltkamp02] R.C. Veltkamp and M. Tanase,”Content-Based Image Retrieval 
Systems: A Survey”, Technical Report UU-CS, 2002. 
 

[VisTex95] “Vision Texture dataset”, Media Laboratory, MIT, 
http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.
html.  
 

[Voorhees87] Voorhees, H. and T. Poggio, “Detecting textons and texture 
boundaries in natural images,” In Proc. of the First Int’l 
Conference on Computer Vision, pp. 250-258, 1987. 
 

[Wang04] J. Wang and K. J. Dana, “Hybrid Textons: Modeling Surfaces with 
Reflectance and Geometry”, in IEEE Conf. on Computer Vision 
and Pattern Recognition (CVPR'04), Vol. 1, pp. 372-378, 2004. 
 

[Wei00] L. Wei and M. Levoy, “Fast Texture Synthesis using Tree-
structured Vector Quantization”, in Proc. of SIGGRAPH 2000, pp. 
479-488, 2000. 
 

[Wenger97] R. Wenger, “Visual Art, Archaeology and Gestalt”, Leonardo, Vol. 
30(1), pp. 35-46, 1997. 
 

[Woodham80] R. J. Woodham, “Photometric Method for Determining Surface 
Orientation from Multiple Images”, Optical Engineering, Vol. 
19(1), pp.139-144, 1980. 
 

[Wu03] J. Wu, “Rotation Invariant Classification of 3D Surface Texture 
Using Photometric Stereo”, Ph.D. Thesis, Heriot-Watt University, 
2003. 



201 

 

[Yu03] L. Yu and H. Liu, “Efficiently Handling Feature Redundancy in 
High Dimensional Data”, In Proceedings of the Ninth ACM 
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 
685-690, 2003. 
 

[Yu04] L. Yu and H. Liu, “Efficient Feature Selection via Analysis of 
Relevance and Redundancy”, Journal of Machine Learning 
Research, Vol.  5, pp.  1205-1224, 2004. 
 

[Zhu98] S.C. Zhu, Y.N. Wu, and D. B. Mumford, "FRAME: Filters, 
Random fields And Maximum Entropy-towards a unified theory 
for texture modeling", Int'l Journal of Computer Vision, Vol. 
27(2), pp. 1-20, 1998. 
 

[Zhu05] S. Zhu, C. Guo, Y. Wang and Z. Xu, “What are Textons?”, Int,l 
Journal of Computer Vision, Vol. 62(1/2), pp. 121-143, 2005. 
 

[Zucker76] S. W. Zucker, “Toward a model of Texture”, Computer Graphics 
and Image Processing, Vol. 5(2), pp. 190-202, 1976. 
 

[Zucker80] S. W. Zucker and D. S. Terzopoulos, “Finding Structure in Co-
Occurrence Matrices for Texture Analysis” Computer Graphics 
and Image Processing, Vol. 12(3), pp. 286-308, 1980. 

 


