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Abstract

This thesis is concerned with the visual perception of glossy rough surfaces, specifi-

cally those characterised by 1/fβ noise.

Computer graphics were used to model these natural looking surfaces, which were

generated and animated to provide realistic stimuli for observers. Different methods

were employed to investigate the effects of varying surface roughness and reflection

model parameters on perceived gloss.

We first investigated how the perceived gloss of a matte Lambertian surface varies

with RMS roughness. Then we estimated the perceived gloss of moderate RMS

height surfaces rendered using a gloss reflection model. We found that adjusting pa-

rameters of the gloss reflection model on the moderate RMS height surfaces produces

similar levels of gloss to the high RMS height Lambertian surfaces.

More realistic stimuli were modelled using improvements in the reflection model,

rendering technique, illumination and viewing conditions. In contrast with previ-

ous research, a non-monotonic relationship was found between perceived gloss and

mesoscale roughness when microscale parameters were held constant. Finally, the

joint effect of variations in mesoscale roughness (surface geometry) and microscale

roughness (reflection model) on perceived gloss was investigated and tested against

conjoint measurement models. It was concluded that perceived gloss of rough sur-

faces is significantly affected by surface roughness in both mesoscale and microscale

and can be described by a full conjoint measurement model.
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R Unit vector of specular light reflect direction.

ρ Pearson correlation coefficient.

σ Root mean square of surface height.

σg Standard deviation of Gaussian distribution.

Sij Surface with microscale roughness level i and mesoscale roughness level j.

Sσi Surface with RMS height σi.

Θ Random phase.

θi Zenith angle of illumination direction.

θo Zenith angle of viewing direction.

V Unit vector of viewing direction or outgoing light direction ωo.
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Chapter 1

INTRODUCTION

This thesis reports the investigation of the perceptions of observers on glossy, rough,

textured surfaces. The motivation and goals behind the research will be explained in

Section 1.1, the scope of work will be described in Section 1.2, followed by the main

contributions in Section 1.3 and finally the organization of this thesis is described

in Section 1.4.

1.1 Motivation and Goals

Humans see thousands of objects daily, which are comprised of many kinds of sur-

faces and materials. While the perception of objects has been extensively studied in

biological vision in terms of object shape and contour, the perception of material has

been studied much less [Adelson, 2001] [CIE Publication 175, 2006] [Maloney and

Brainard, 2010]. However, the perception of material is very important in people’s

daily life. For example, when people see a spherical object without any context infor-

mation (e.g. environment and reference objects), it can be assumed to be a football

or an orange, or other objects. The ambiguity is resolved by surface properties such

as colour, texture, surface geometry, which help people recognise the material and

judge what the object is (see surface varieties in Figure 1.1).

Surfaces exhibit a wide range of appearance characteristics. Some properties are

related to surface mechanical characteristics, such as roughness, coarseness, direc-

tionality, regularity, randomness, waviness, and granularity; while others are related

to surface optical characteristics, such as colour, texture, glossiness, translucency.

1



Surface properties can be measured both physically and perceptually. The former

involves methods using physical instruments, and it is usually assumed to be equiva-

lent to a perceptual counterpart. However, the association between these two forms

of measurement has not been extensively studied. Therefore, the motivation of this

thesis is to investigate how the human visual system characterises one of the surface

properties.

The goal of the work reported in the thesis was to measure the effect of variations

in surface mesoscale and microscale parameters on perceived gloss. We begin by

explaining why we chose to study perceived gloss, and then describe the models and

the model parameters that comprise the space to be investigated. Then it will be

possible to address the author’s main goal: discovering the effect of these factors on

the chosen characteristic: perceived gloss.

Figure 1.1: Different objects in the scene show surface varieties. Many characteristics

can be interpreted from these surfaces, in terms of e.g. colour, gloss, and texture.

The image is from the Bonn OBJECTS2011 Datasets [Schwartz et al., 2011].

Once a knowledge of the relationship between the surface parameters and perceived

gloss has been developed then it will be possible to exploit this knowledge in many

areas where material characteristics are important [Adelson, 2001], such as those

listed by Padilla [2008] for example:

• “quality control,
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• ‘human like’ sample retrieval,

• perceptual scaling or morphing,

• visualizations,

• product evaluation, and

• and product development.”

In addition, such knowledge can be applied in the computer graphics field, for ex-

ample in perceptual-based material modelling, and computer aided design and man-

ufacturing.

1.2 Scope of Work

It would be impossible to research every single surface characteristic within a single

PhD. Therefore, this thesis will be limited to investigating the visual perception of

surface glossiness; the argument for choosing this surface characteristic is presented

in Chapter 2. Furthermore, we will use computer generated stimuli to provide para-

metric control of the stimuli and only use surfaces that are isotropic, in particular

1/fβ noise surfaces.

It has been found that perceived gloss is affected by a combination of intrinsic

and extrinsic factors. This thesis focuses on the effect of surface geometry and

reflection on perceived gloss, and in particular, the effects of surface roughness in

both the meso- and the microscale. The argument for choosing these properties and

corresponding physical models is provided in Chapter 2 and the models are detailed

in Chapter 3. Other factors (reviewed in Chapter 2) are inevitably involved in the

experimental stimuli modelling, and they will be discussed and examined in order

to develop more realistic stimuli. These will be discussed in each of the chapters as

they appear.

1.3 Original Contributions

The author believes that this thesis describes three main contributions to the field

of surface visual perception. They are:
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1. that the use of multi-bounce rendering and realistic lighting environments have

a significant impact on the perception of gloss of rough surfaces,

2. that perceived gloss is a non-monotonic function of mesoscale roughness, and

3. that the joint effect of mesoscale roughness and microscale roughness on per-

ceived gloss can only be described by a full conjoint model.

1.4 Thesis Organization

This thesis is divided into nine chapters. The next two chapters describe related work

and detail the models used. Chapter 3 also provides a description of the investigation

strategy employed in the rest of the thesis which is divided into two main phases

according to the sophistication of the rendering environment and associated stimuli.

In more detail:

Chapter 2 reviews related literature and describes why we chose glossiness as the

research topic. We discuss how physical gloss is measured and review related work on

perceived gloss which is structured in terms of influencing factors. Since this thesis

focuses on textured surfaces, previous work concerning gloss perception on non-

planar surfaces is discussed in detail and the candidate surface geometry model is

selected. From this review, the factors and corresponding models to be investigated

are specified.

Chapter 3 describes the surface geometry model and reflection model, whose pa-

rameters will be varied and investigated in this study. The investigation strategy is

also presented.

Chapter 4 investigates the apparent gloss of ‘matte’ surfaces reported by Wijntjes

and Pont [2010]. It also describes how the experiments were set up and explains the

tools used to realise them.

Chapter 5 investigates how perceived gloss is affected by variation of gloss reflection

model parameters, and we investigate whether or not such gloss reflection models

can be used with moderate RMS height surfaces to provide similar levels of gloss to

those perceived for the high RMS height, matte surfaces, investigated in Chapter 4.

Chapter 6 is a linking chapter. This chapter discusses the constraints of the sim-
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ple rendering system used in previous chapters. A more sophisticated rendering

system is developed to model more realistic stimuli that are used in the following

experiments.

Chapter 7 describes the gloss measurement of 1/fβ noise surfaces as a function of

mesoscale roughness.

Chapter 8 investigates the joint effect of variations in mesoscale roughness (surface

geometry) and microscale roughness (reflection) on perceived gloss.

Chapter 9 concludes the thesis as a whole.

5



Chapter 2

LITERATURE SURVEY

The goal of the work described in this thesis was to measure the effect of variations

in surface mesoscale and microscale parameters on perceived gloss. The previous

chapter introduced the thesis goal and described the overall approach.

The aim of the work reported in this chapter was to investigate and survey relevant

literature to propose candidate surface and reflection models and highlight useful

methodologies.

We review previous work in four areas. Section 2.1 briefly introduces research on

material perception and explains why we chose to study the gloss characteristic.

We discuss the physical measurement of gloss in Section 2.2 to demonstrate the

importance of studying the perception of gloss. Section 2.3 reviews the factors

that influence gloss perception. Manipulations of surface geometry reported in the

literature concerning gloss perception are discussed in detail in Section 2.4, including

those that report the effects of changing surface roughness, and the criteria for

selecting an appropriate surface geometry model are examined. This chapter is

summarized and concluded in Section 2.5.

2.1 Material Perception and Surface Gloss

The aim of this section is to review research on material perception of object surfaces

and select a perceptual characteristic to investigate.

6



2.1.1 Review of Material Perception

Material perception is a multi-sensory experience. Sight, hearing, touch, smell and

taste can all contribute to learning a new material or recognising familiar materials.

The two main senses involved provide visual and tactile cues. It has been found

that visual cues have cross-validation with tactile cues [Picard, 2006]. This thesis

concentrates on the visual perceptions of textured surfaces.

Humans can easily recognise surface materials from visual information and can infer

surface properties from the complex interactions that occur between light and the

material surface, based on their experience and memory of seeing thousands of

materials daily [Adelson, 2001]. The exact mechanism of material perception in the

vision system is still unknown.

In the field of material perception, Hutchings [1999], Pointer [2003] and CIE Pub-

lication 175 [2006] have proposed four classes of material attributes used by the

vision system to characterise surface optical properties: colour, gloss, translucency

and texture. Gloss is reported to be the second most relevant attribute after colour

[Hanson, 2006] [Obein et al., 2004a]. Colour measurement has been extensively re-

searched and colour appearance models have been proposed [CIE Publication 175,

2006]. Perceived translucency has been primarily studied by Fleming et al. [2004a].

Colour, gloss and translucency are all related with texture, they cause spatial vari-

ation in appearance in terms of non-uniformity of colourant and this category of

texture is named optical texture [Pointer, 2003]. Another category of texture is

induced by surface relief and is named as physical texture [Pointer, 2003], or surface

texture which is more commonly used [Chantler, 1994]. A surface with variation

in height relief is often called a textured surface. This thesis is concerned with the

perception of gloss on textured surfaces under this taxonomy, and thus the following

review is focused on the perception of such surfaces.

There are many features that have been used to describe surfaces, and researchers

have investigated the perceptual dimensions of textured surfaces, e.g. Maloney

and Brainard [2010]. The earliest study of mapping physical features to human

perception was performed by Tamura et al. [1978]. They proposed six features:

coarseness, contrast, directionality, line/blob likeness, regularity and roughness. A

potential problem is that these features may not have the same meaning for the
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subjects of their experiment. This work is the earliest research into perceptual

dimensions of surface texture.

Rao and Lohse [1993] used a free sorting method in their experiment, where the

subjects could choose any properties they wanted in the grouping task. A Multi-

dimensional Scaling (MDS) method was applied to the resulting similarity matrix

to derive a perceptual space. They found three orthogonal dimensions of the visual

properties: (i) repetitive vs. non-repetitive; (ii) high-contrast and non-directional vs.

low-contrast and directional; and (iii) granular, coarse and low complexity vs. non-

granular, fine and high-complexity. Long and Leow [2001] found a four-dimensional

space but did not name the dimensions.

As has been reviewed by Padilla [2008], roughness, directionality and coarseness are

the first three properties in the perception of textured surfaces. Padilla [2008] stud-

ied how people perceive roughness of 1/fβ noise surfaces and proposed a model in

the frequency domain which fits human behaviour well [Padilla et al., 2008]. Shah

[2010] investigated the perceived directionality of 1/fβ noise surfaces in a similar

framework. These studies share a common characteristic which is that the pa-

rameters investigated control the surface mesoscale geometric pattern, whereas the

surface optical microscale property was assumed to be Lambertian. They made this

simplification under the assumption that the surface optical property does not affect

these characteristics significantly. However, the Lambertian reflection model is just

one approximation of one type of the real-world material. Most real-world surfaces

exhibit complex reflecting and scattering characteristics [Adelson, 2001] [CIE Pub-

lication 175, 2006]. This problem also exists in those studies in which photographs

of surfaces have been used to investigate surface and material perception [Tamura

et al., 1978] [Long and Leow, 2001].

2.1.2 Surface Appearance from Reflection

As suggested by Adelson [2001], the image of a surface is determined by three proper-

ties: shape, intrinsic optics and extrinsic optics. The characteristic of shape (surface

geometry) is mainly determined by the mechanical properties of a surface and some

related perceptual characteristics have been studied [Tamura et al., 1978] [Rao and

Lohse, 1993] [Padilla, 2008] [Shah, 2010]. The extrinsic optics are from the illumi-
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nation and scene context. The intrinsic optics characterise how the surface interacts

with incident light. As visual perception is derived from optical information, we

should study surface optical properties when studying perceived surface properties.

In this thesis, only non-luminous materials are considered. The self-luminous and

stimulated emission materials are out of the scope of this thesis. However, given

this restriction, the interaction between surface and light is still complicated. When

light irradiates the surface, the light can do four things: it can be absorbed by the

material; it can pass through the material; it can be reflected off the material; and

it can be scattered. It can also do combinations of these. Absorbtion, reflection

and refraction are the relevant optical properties of the material. Absorbtion and

refraction can bring the properties of translucency. These properties involve very

complex aspects of light propagation and human perception [Fleming et al., 2004a]

[Fulvio et al., 2006], and are not studied in this thesis. This thesis is only concerned

with reflection on opaque surfaces.

Figure 2.1 illustrates three basic reflection types widely used in the computer graph-

ics field. Diffuse reflection is common and most surfaces reflect this category of light.

Specular reflection is observed on mirrors and very smooth surfaces. The perfect

specular reflection is visible only when the surface normal bisects the light vector

and the viewing vector. It is called the half-angle direction because it divides into

halves the angle between the light direction and the viewing direction. Thus, a

perfectly specular reflecting surface would show a specular highlight as a sharply

reflected image of a light source. However, there are no perfect diffuse or perfect

mirror reflectors, but a combination of the two. Glossy reflection implies that some

light is reflected in a mirror-like manner from the light source to the viewing di-

rection. These reflection types are just three types of simulation of real-world light

reflection used in the computer graphics field. In the real world, reflected light is

usually a mixture of reflections, and can include other reflections such as the Fresnel

phenomenon. More discussion concerning reflection modelling will be conducted in

later sections and chapters.

There are several terms used for describing reflection appearance, such as matte,

shininess, glossiness, mirror, lustre, gleam, glow, and metallic [Adelson, 2001]. The

latter four are not commonly used for simulating surfaces and only exist for some

specific materials such as crystal, metals and heated objects [Adelson, 2001]. Some
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(a) diffuse (b) specular/mirror (c) glossy

Figure 2.1: The three basic reflection types used in the computer graphics field.

(a) diffuse reflection, where the incident light is scattered in every direction of the

hemisphere. (b) specular/mirror reflection, where the incident ray is reflected as a

single ray. The angle between the reflected ray and the surface normal is the same

as the angle between incident ray and surface normal. (c) “glossy” reflection, which

preserves the directionality of light rays, but has some scattering or softening.

of these phenomena involve refraction and luminance (lustre and glow). The other

characteristics can be encompassed by the term glossiness. The changing of re-

flectance appearance from matte to mirror can be characterised by glossiness, where

matte relates to low glossiness and mirror to high glossiness [Pellacini et al., 2000].

Other researchers argue that gloss is a mirror-like front surface reflection but that

such reflection is not regarded as being “glossy” [Hanson, 2006].

2.1.3 Summary

From the above review, we will choose surface glossiness as the characteristic to

be investigated concerning human perception of textured surfaces. Many methods

have been developed to model and simulate the complicated interaction between

light and a surface. On the other hand surface appearance has been studied and

measured both physically and psychophysically.

Hunter and Harold [1987] named six types of gloss from natural surface appearance

(see Table 2.1). The last type “surface uniformity gloss” is not a function of re-

flectance, but concerns surface albedo textures. This thesis will not consider this

type of gloss. The other five types of gloss are mainly determined by the surface

reflection properties, while the “Distinctness-of-image” gloss has strong relationship

with the illumination environment. The following sections will discuss literature on

both the physical and perceptual measurement of gloss.

10



Table 2.1: Six gloss types named by Hunter and Harold [1987].

Types of Gloss Visual Evaluation Types of Surfaces

Specular gloss
Shininess, brilliance of

highlights

Medium gloss surfaces of

book paper, paint, plas-

tics, etc.

Sheen
Shininess at grazing an-

gles

Low gloss surfaces of

paint, paper, etc.

Contrast gloss or lustre

Contrast between specu-

larly reflecting areas and

other areas

Low gloss surfaces of

textile fiber, yarn and

cloth, newsprint, bond

paper, diffuse-finish met-

als, hair, fur, etc.

Absence-of-bloom gloss

absence of haze, or milky

appearance, adjacent to

reflected highlights

High and semigloss sur-

faces in which reflected

highlights may be seen

Distinctness of Image

gloss (DOI gloss)

Distinctness and sharp-

ness of mirror images

High gloss surfaces of all

types in which mirror im-

ages may be seen

Surface-uniformity gloss

Surface uniformity, free-

dom from visible nonuni-

formities such as texture

Medium to high gloss

surfaces of all types
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2.2 Physical Measurement of Gloss

Although the perceived gloss is the focus of this thesis, this section will briefly

review the physical measurement of gloss. We do this not only to demonstrate the

difference between physical gloss and perceived gloss but also to show the necessity

of investigating the perceived gloss of textured surfaces.

The physical measurement of gloss originates from measuring and standardising the

reflectance property of products, such as paper, paints, plastics, etc. A complete

evaluation of gloss is dependent on several factors, such as the refractive index of the

material, the angle of incident light and the surface topography (surface texture).

Gloss can also be affected by environmental factors, like weathering and surface

abrasion. Thus gloss can be useful as a criterion to evaluate the quality of a product

in development, process development, and end-use performance testing [Keyf and

Etikan, 2004].

Physical gloss is an optical phenomenon of the surface, which is based on the inter-

action of light with the physical characteristics of a surface. As Leloup et al. [2011]

quoted, “Gloss results from the directionally selective reflectance properties of a sur-

face, with a preference toward the specular reflection direction” [CIE Publication

017.4, 1987].

Since the 1930’s, instruments have been used to measure reflection behaviour [P-

fund, 1930]. Many methods, standards and devices have been developed for mea-

suring characteristics of physical gloss [Smith, 1999] [Kigle-Boeckler, 1995]. The

most commonly used device is the gloss metre, which is an electronic optical device

that measures the ability of the surface to reflect light. It has a built-in illuminator

and receptor to measure the strength of reflected light at particular incident angles.

International standards specify incident angles for different gloss level materials and

different types of gloss. Examples are listed in Table 2.2.

More details about physical gloss measurement can be found in international stan-

dards [ASTM D2457, 2008] [ASTM C346, 2009] [ASTM D3134, 2008] [ASTM D523,

2008] [ASTM D5767, 2004] [ASTM E284, 2009] [ASTM E430, 2011] [ISO 2813:1994,

1994] [DIN 67530, 1982] [TAPPI T 480 om-09, 2009].

The measurement from a gloss metre is the reflectometer value R′, which is a relative
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Table 2.2: Commonly used angles in industry standards for physical measurement

of gloss.

Incident angle Reflected angle Description

20◦ 20◦ High gloss surface [ASTM D523, 2008]

60◦ 60◦ Medium gloss surface [ASTM D523, 2008]

85◦ 85◦ Shininess at grazing angle [ASTM D523, 2008]

45◦ 45◦ Ceramic industry [ASTM C346, 2009]

75◦ 75◦ Paper industry [TAPPI T 480 om-09, 2009]

30◦ 30.3◦ Distinctness of image (DOI) [ASTM E430, 2011]

30◦ 32◦ Bloom [ASTM E430, 2011]

30◦ 35◦ Haze [ASTM E430, 2011]

value. The results are related to a highly polished black glass with a refractive index

of 1.567 for the wavelength 589.26 nanometre (nm) for all angles [ASTM D523, 2008]

[ISO 2813:1994, 1994]. The glass has an assigned specular gloss value of 100 for

each configuration of incident and reflected angle. To achieve highly accurate and

repeatable results, the test specimen should be:

• flat

• free of structure

• similar in colour and lightness

Goniophotometry is the most precise and informative technique for measuring the

gloss of surfaces: it measures the intensity of the reflected light over different viewing

angles [Pointer, 2003]. Surface gloss was evaluated by both specular reflection and

diffuse reflection [Harrison and Poulter, 1951] [Tighe, 1978].

From the above review of the physical measurement of gloss, it can be seen that

physical gloss is based on the ability of surfaces to reflect light under specified con-

ditions. The biggest shortcoming is that the surface should be flat and without

mesoscale structure. Curved or textured surfaces cannot be measured with con-

ventional gloss meters. However, real-world surfaces exhibit many kinds of shapes

and relief. These surfaces cannot be measured by conventional gloss metres, but

humans can easily infer their glossiness. The subject of how perceived gloss is re-
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lated to particular measurements of physical gloss has been primarily studied by

Billmeyer and O’Donnell [1987], Obein et al. [2004a], Ji et al. [2006], and Leloup

et al. [2011]. They have noted that there are potential problems in assuming that

physical measurements correlate directly with perceptual scales.

2.3 Perceived Gloss

In 1987, the International Commission on Illumination (CIE) updated the definition

of gloss: gloss is “the mode of appearance by which reflected highlights of objects are

perceived as superimposed on the surface due to the directionally selective properties

of that surface” [CIE Publication 017.4, 1987]. As argued by Obein et al. [2004a]:

“gloss is no longer considered as a purely physical property of the material and

is clearly defined as a visual percept, a visual quantity associated with surfaces

consequent to their geometrical properties”.

In contrast with the physical measurement of gloss, biological vision researchers

found perceived gloss is affected by many factors [Adelson, 2001] [Hanson, 2006].

This section will review this work and in particular will investigate the influencing

factors. These factors will be summarised in the end of this section, and the ones

to be investigated further in this thesis will be identified.

2.3.1 Early Work and Work Using Real Materials

Early work focused on an important cue for gloss perception – specular highlights

[Beck and Prazdny, 1981] [Blake and Bülthoff, 1990] [Berzhanskaya et al., 2002]

[Berzhanskaya et al., 2005]. They found highlights on a curved surface are essential

for observers to judge surface gloss and curvature. Specular highlights contain very

rich information about light sources, surface shape, and surface material. Beck and

Prazdny [1981] studied how the size, brightness, orientation, placement of highlights

and surface intensity gradient affect the perception of gloss. Blake and Bülthoff

[1990] reported some of the earliest investigations into the human perception of

specular reflection from binocular vision and stated that the vision system employs

a physical model based on ray optics and differential geometry.
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A number of studies have investigated perceived gloss with real materials. Ng et al.

[2003] used printed samples as the stimuli and found that gloss perception follows

Weber’s Law within the gloss range measured with gloss metres. Obein et al. [2004a]

and Ji et al. [2006] found that physical measurement of gloss is not always linearly

related to its perceptual correlate but follows a sigmoidal relationship. Obein et al.

[2004a] found gloss constancy under changing illumination direction, whereas Leloup

et al. [2011] provided a metric for both surface and illumination properties. Ged

et al. [2010] found observers can recognise real surfaces from gloss appearance. These

studies used real material as stimuli together with gloss measurement devices. They

exposed the limitations of such devices. They experimentally verified that physical

gloss measurements do not represent perceived gloss and stated the necessity of

separately measuring perceived gloss. Wills et al. [2009] performed a comprehensive

study by associating real material measurements and psychophysical scales, from

which they extracted nine gloss dimensions.

In the study of human visual perception, using real materials is not convenient

because it is difficult to incrementally vary their properties. The investigation of

gloss perception in this thesis requires a flexible experimental framework in which

selected factors can be easily controlled. Simulations of material appearance make

it easy to control such variables and conditions using parametric models. Therefore,

digital images of synthetic surfaces are a compelling candidate for use as the visual

stimuli, and have been utilized in this thesis.

2.3.2 Work Using Synthetic Stimuli

A major part of studies concerning gloss perception employ computer simulation.

This allows researchers to easily change the surface appearance to study how people

respond to variations in surface parameters. Moreover, the conditions and con-

straints can be manipulated to study how these factors influence gloss perception.

The following literature review is structured by intrinsic and extrinsic factors.

When simulating material appearance in computer graphics, reflectance functions

are used to model surface optical properties. The reflectance function is usually

termed “material” in the computer graphics field. The reflectance function char-

acterises how light is transmitted back into space, which involves as many as 12
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parameters [Müller et al., 2004]. After simplifications of light transport, assumed

wavelength and surface invariance, an eight dimensional Bidirectional Scattering-

Surface Reflectance Distribution Function (BSSRDF) can be derived. This describes

not only reflection but also refraction. As gloss concerns only reflection from the

surface, further simplifications can be made: the surface is assumed to be made of

homogeneous material without subsurface scattering, and reflectance is position in-

variant. This means that a Bidirectional Reflectance Distribution Function (BRDF)

can be employed as the model. Uniformity of reflectance is often assumed in gloss

perception studies, leading to an isotropic BRDF. Because of the parsimoniousness

(few parameters) and computation efficiency, analytical BRDF models are widely

used in simulating materials such as metal, plastic, paint etc [Kurt and Edwards,

2009].

Spheres have been widely used to investigate the effect of variations in reflectance

functions on perceived gloss [Pellacini et al., 2000] [Ferwerda et al., 2001] [Fleming

et al., 2001] [Xiao and Brainard, 2008]. The advantage is that spheres are simple to

render and present all possible surface orientations to the viewer.

Pellacini et al. [2000] and Ferwerda et al. [2001] rewrote the isotropic Ward BRDF

model to provide a psychophysically-based gloss model with two perceptually mean-

ingful dimensions derived from psychophysical experiments using synthetic spheres

as the stimuli.

The limitation of using spherical objects is that the influence of surface geometry is

neglected. Vangorp et al. [2007] experimentally examined the perceived appearance

of different 3D objects with stimuli generated using the reflection model proposed

by Pellacini et al. [2000] and Ferwerda et al. [2001]. They found that the associated

perceptual space does not produce constant material and gloss perception for dif-

ferent objects. The difference is due to the variation of surface geometry. Olkkonen

and Brainard [2011] studied the joint effect of illumination and object shape on

perceived gloss and found large interactions.

Surface geometry was found to significantly affect gloss perception [Nishida and

Shinya, 1998] [Ho et al., 2008] [Wendt et al., 2008] [Wijntjes and Pont, 2010]. Nishi-

da and Shinya [1998] found that gloss constancy is not guaranteed when surface

geometry is varied, and contextual information is important for reflection judge-
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ment. The limitations of their work are the unrealistic and unnatural appearance

of the stimuli. Ho et al. [2008] studied how observers judge perceived “bumpiness”

and glossiness of artificial 3D textures rendered using a complex reflection model.

They modelled how these two properties affected the perception of each other. Their

additive conjoint measurement model showed that increasing physical bumpiness in-

creases perceived gloss. However, the shape of the “bumpy” meso-structure limited

the manipulation of surface geometry. Wijntjes and Pont [2010] found that high

RMS height Lambertian surfaces can introduce an appearance of illusory gloss. We

were inspired by the work of Wijntjes and Pont [2010] and initiated experiments on

textured surfaces under the same conditions. Details are provided in Chapter 4. In

these studies, the surfaces either comprised limited frequencies (except [Wijntjes and

Pont, 2010]) or were synthesized by simple structures on a planar surface, which are

not sufficient to cover a wide range of natural and realistic surfaces. Furthermore,

the illumination used in these studies was simplified to area light or collimated light.

The above work focused on surface intrinsic factors, such as surface reflection prop-

erties and surface geometry. In addition to studying the intrinsic factors, researchers

have explored the extrinsic factors that influence gloss perception, such as illumina-

tion, binocular viewing, head motion and surface motion.

Illumination is an important factor for material perception. Early studies found that

the direction of collimated illumination can dramatically change the appearance of

Lambertian surface textures [Chantler, 1994] [Nefs et al., 2005], and observers can

estimate illumination direction from the shading and shadowing information on these

surfaces [Koenderink et al., 2004]. Studies on gloss perception normally use simple

lighting conditions, such as collimated light [Wijntjes and Pont, 2010], point light

[Nishida and Shinya, 1998] [Wendt et al., 2008], and area light [Ho et al., 2008]

[Pellacini et al., 2000] [Ferwerda et al., 2001]. Other researchers have used more

complex illumination, and real-world illumination environments [Dror et al., 2001a]

[Dror et al., 2001b] [Dror et al., 2004]. It was found that the environments that

observers are familiar with affect the accuracy and reliability of the perception of

materials [Fleming et al., 2001] [Fleming et al., 2003].

The state of motion of the object can also affect gloss perception. Hartung and

Kersten [2002] found a glossy 3D object looks shiny in a complex environment when

it is still, but looks like a painted matte object when it is rotating without changing
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its environment reflection on the object surface. They concluded that the relative

motion can help visual system see materials.

Nagata et al. [2007] found that increasing stimulus duration decreases the perception

of image glossiness. But their stimuli were unrealistic (they comprised lateral images

of a cylindrical object).

Viewing conditions also affect gloss perception. Binocular viewing and lateral head

motion can contribute to more sensitive gloss perception [Obein et al., 2004b] [Wendt

et al., 2007] [Wendt et al., 2008] [Sakano and Ando, 2008a] [Sakano and Ando,

2008b] [Sakano and Ando, 2010]. Binocular viewing provides a disparity of specular

highlight in addition to surface geometry disparity. The head motion produces better

perception of surface shape and view-dependent specular reflections. These factors

can provide richer information for gloss perception, analogous to that provided by

object motion.

Further more, Doerschner et al. [2010b] found that the spatial pattern of the ob-

ject, viewing background, and dynamic range of background affect gloss perception.

Ferwerda and Phillips [2010], Phillips and Ferwerda [2009] found the appearance of

a synthetic object was perceived as being glossier on a high dynamic range display

(higher attainable luminance) compared to when viewed on a low dynamic range

display.

All of the above research investigated perceived gloss from the aspect of generating

a glossy appearance. But there are some studies that focused on particular cues in

two-dimensional images.

Since digital images are widely used in studying gloss perception, image intensity

and manipulations of images using digital image processing techniques were investi-

gated by researchers. The early hypothesis formed by Barrow and Tenenbaum [1978]

argues that people employ an inverse optical procedure using shading and highlights

on a curved surface when judging surface gloss and curvature. This is in keeping

with a large body of research [Blake and Bülthoff, 1990] [Beck and Prazdny, 1981]

[Norman et al., 2004] [Todd et al., 2004]. But a hypothesis suggesting that people

can use simple image histogram statistics in gloss perception was proposed recently.

Motoyoshi et al. [2007] suggested that skewness of the luminance histogram and

sub-band filter outputs are correlated with perceived gloss and inversely correlated
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with surface albedo. They showed that under certain circumstances, “skewness” is

highly correlated with judgements of gloss and lightness. They also found an after-

effect of skewness adaption. Sharan et al. [2008] replaced direct rating of lightness or

glossiness with comparison to a physical Munsell scale and tested additional image

statistics. All the stimuli used in their work consisted of photographs of surfaces

with medium-scale structures. Landy [2007] commented on the work of Motoyoshi

et al. [2007] and concluded that “for a surface to appear glossy, not only must it

include a specular reflectance, but the surroundings must result in a pattern of illu-

mination consistent with the statistics of natural scenes”, “for an image to appear

glossy, it has to first look like a surface”. The hypothesis concerning simple im-

age histogram statistics was challenged by Anderson and Kim [2009]. Counterpart

evidence was presented to suggest that image histogram skewness provides no diag-

nostic information about surface reflection. They raised a hypothesis that the visual

system computes the consistency between position and orientation of highlights and

the geometric shape. This hypothesis was tested by Kim et al. [2011] and Marlow

et al. [2011] who examined the congruence of brightness and highlights with surface

curvature.

2.3.3 Summary

As a summary of this section, the perceived gloss is found to be affected by a large

number of factors including:

• surface reflectance properties,

• surface geometry,

• illumination,

• surface motion,

• observation duration,

• monocular/binocular viewing,

• head motion,

• spatial configuration of the object,

• viewing background,
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• dynamic range of background,

• dynamic range of display, and

• image intensity statistics (e.g. skew).

Having investigated the literature concerning the above factors and considering the

fact that very little work has been published on the effect of the surface mesoscale

geometry and the reflection property on the perception of gloss, we have chosen

to investigate the properties of surface reflectance and surface geometry. Factors

such as binocular viewing, observation duration, head motion, dynamic range of

background and display, viewing background and image based information will not

be investigated. Factors such as illumination and surface motion will be examined in

Chapter 6 in order to provide a more realistic environment for accurately measuring

the perception of gloss on rough surfaces.

All of the literature reviewed in this section concerned with synthetic stimuli used

a BRDF model to characterise surface optical properties. Three analytical BRDF

models were utilized in this thesis, the details will be described in the next chapter.

The surface reflection property characterises surfaces at the pixel level and there-

fore we term this a “microscale” parameter. Correspondingly, surface geometry can

be inferred from surface shape/depth and shading, and we consider this to be a

“mesoscale” parameter. However, choosing a model of surface geometry needs fur-

ther discussion as different surfaces have been used in the literature. We will extend

the review concerning surface geometry to select a suitable surface model. This is

described in the next section.

2.4 Manipulations of Surface Geometry

As mesoscale surface geometry is one of the important factors to be investigated

in this study, manipulations of synthetic surface geometry in the literature will be

reviewed in more detail with the aim of selecting a suitable model.

Motivated by Occam’s razor we prefer models with low numbers of parameters as

this simplifies exploration of the parametric space. In addition, this thesis is con-

cerned with rough surfaces, and so the candidate model should be able to generate
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a wide range of perceived roughness. Most importantly, candidate surfaces need to

be natural in appearance, so that observers can interpret them more consistently.

Therefore, the surface geometry model should meet the following criteria, it should

be:

• parsimonious (contain few parameters),

• provide controllable geometry, and

• be of natural appearance.

As reviewed in Section 2.3, investigations into perceived gloss using synthetic stimuli

was initially studied using spheres. Although Nishida and Shinya [1998] found that

surface geometry greatly affects perceived surface appearance, the advantages of

using spheres still make them the first choice when studying gloss related factors

such as illumination [Fleming et al., 2003] [Fleming et al., 2001] [Doerschner et al.,

2010a] and dynamic range [Doerschner et al., 2010b]. Since only the curvature of

the overall surface plane can be manipulated, they are not suited to our study.

Later studies mapped three dimensional textures onto spheres [te Pas and Pont,

2005] [Ramanarayanan et al., 2007]. te Pas and Pont [2005] used real spherical

objects with obvious meso-structures such as golf balls and candles. Ramanarayanan

et al. [2007] used synthetic spherical objects whose surfaces were disturbed by Perlin

noise [Perlin, 2002]. They found that surface geometry affects the perception of

material and illumination. Real surfaces were excluded from consideration because

of the shortcomings described in Section 2.3. The global curvature of a rough surface

may influence gloss perception, so the chosen surface will not be from or applied to

any 3D object.

Surfaces used by Nishida and Shinya [1998] were generated using a random Fourier

phase spectrum and a Gaussian magnitude spectrum H(fx, fy) = a exp[−(f 2
x +

f 2
y )/s2]. Surface geometry was varied by varying the amplitude and variance of

the Gaussian function, which control the surface height amplitude and the spatial

frequency respectively. Their surface model is similar to that used by Padilla et al.

[2008], but the surface appearance is ‘wavy’ and far from realistic.

Wendt et al. [2008] generated smooth and curved surfaces by summing 15 randomly

oriented sine-wave gratings. Therefore, these surfaces have similar general shape.
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Their surface model can be seen as a set of band limited Fourier components, which

cannot model surface roughness except via height variance.

Ho et al. [2008] built three dimensional textured surfaces by randomly adding semi-

ellipsoidal structures to a planar surface and using position jittering. The surface

geometry was changed by manipulating the surface “bumpiness” in terms of stretch-

ing the z radii of the ellipsoidal meso-structures. This surface model is intuitive

parsimonious and specified at the mesoscale.

Wijntjes and Pont [2010] used Brownian surfaces which have a power spectrum

of 1/f 2 and a random phase spectrum. They changed surface geometry by alter-

ing RMS height. Their surface model is more realistic in appearance than those

described in the literature referenced above.

Manipulations of surface geometry fall into two categories related to surface rough-

ness: Root Mean Square (RMS) height and height spatial frequency [Padilla, 2008].

Changing surface RMS height cannot vary the scaling behaviour of surface gradi-

ents. Surfaces with very large RMS height appear more like a three dimensional

object rather than a textured surface, and the high slope areas cannot be modelled

to produce realistic surfaces [Padilla, 2008]. Other manipulations change the rela-

tive surface spatial frequency characteristics [Ramanarayanan et al., 2007] [Nishida

and Shinya, 1998], but these surface models are not parsimonious and the surface

appearance is not natural-looking. Natural surfaces include not only curved, smooth

ones but those of rough textures as well.

The 1/fβ noise surface model is attractive, as it has a low number of parameters

(two) and has been found to provide realistic looking stimuli with a wide range of

easily controlled roughness [Padilla et al., 2008] [Voss, 1988] [Mandelbrot, 1983].

These characteristics make the 1/fβ noise surface a good candidate for our stimuli

and it was selected as the surface geometry model to be used in this study.

2.5 Summary

The goal of this thesis is to investigate the effect of surface mesoscale and microscale

model parameters on perceived gloss. This chapter first desribes why we chose

gloss as the characteristic to investigate by reviewing literature concerning material
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perception. Surface colour has been extensively studied for material perception [CIE

Publication 175, 2006], and glossiness is found to be the second most important

property for material perception after colour [Hanson, 2006] [Obein et al., 2004a].

Hence, glossiness has been chosen as the research topic for this thesis.

We showed that there are many standards for measuring physical gloss. However,

perceived gloss does not always correlate well with its physical counterpart [Obein

et al., 2004a] [Ji et al., 2006] [Leloup et al., 2011], as perceived gloss is a more complex

psychological phenomenon that is a result of many different factors [Adelson, 2001]

[Hanson, 2006].

The literature concerning perceived gloss was reviewed in terms of intrinsic and ex-

trinsic factors. It has received only limited study concerning rough surfaces. Ho

et al. [2008] studied perceived gloss on bumpy surfaces and described the results us-

ing a conjoint measurement model. Wijntjes and Pont [2010] reported that observers

perceived high RMS height Lambertian surfaces as being “glossy”.

Hence, two factors, surface geometry and surface reflection (mesoscale and mi-

croscale parameters respectively) were chosen to be investigated in this work.

The BRDF model was selected to characterise surface reflection properties because

of its flexibility and popularity in the literature.

After a further review of the literature concerning gloss perception with complex

surfaces, the 1/fβ noise surface model was chosen to represent surface geometry in

this thesis [Padilla, 2008] [Voss, 1988].

In the next chapter, the surface geometry (1/fβ noise) and reflection (BRDF) models

will be discussed in detail.
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Chapter 3

SURFACE GEOMETRY AND

REFLECTION MODELS

From the literature survey presented in the last chapter, we concluded that perceived

gloss is affected by several factors, of which surface geometry and reflection were

chosen to be investigated in the research reported here. 1/fβ noise and the BRDF

were chosen as mesoscale and microscale models respectively.

The purpose of the work reported in this chapter therefore was to examine the

advantages and disadvantages of the most popular BRDF models and choose candi-

dates for investigation in later chapters (Section 3.2). This chapter also presents the

1/fβ surface model and the two parameters that affect surface mesoscale roughness

(Section 3.1). The way in which the models will be used to investigate perceived

gloss is addressed in Section 3.3.

3.1 1/fβ Noise Surface and Mesoscale Roughness

1/fβ noise surfaces are generated by producing height maps with magnitude spec-

trum H(f) scaled with spatial frequency as shown in Equation 3.1:

H(f) =
σ

N(β)
f−β (3.1)

where β is the roll-off factor of the surface height magnitude spectrum or the inverse

slope in logH-log f space as shown in Figure 3.1. σ is the RMS height of the

surface. In this thesis we use zero mean height surfaces; the RMS height is always
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therefore equal to the standard deviation and denoted by the symbol σ. N(β) is

the normalising factor. This surface model is commonly termed as 1/fβ, which is a

simplification of Equation 3.1.

Figure 3.1: Graphical plot of magnitude spectrum H(f) against frequency f in log-

log space with roll-off factor β = 2. Note that β = 2 means that for every decade

change in frequency the height variance changes by 2 decades.

The height map has a random phase complex conjugate spectrum. The phase gen-

eration algorithm is based on a pseudo random number generator. It generates a

sequence of numbers that approximates the properties of random numbers. The

sequence is not truly random in that it is completely determined by the random

seed. Pseudo-random numbers are important in practice for their speed in number

generation and their reproducibility. For this study, they make our stimuli repeat-

able.

The symbol Θ will denote the phase of the stimuli. The number next to it will

denote the random seed used to initialise the random number generator. Padilla

[2008] has shown that changing the random phase seed does not change perceived

roughness.
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The height maps are obtained using an inverse discrete Fast Fourier Transform

(FFT). In the implementation, the imaginary part of the inverse FFT of the above

noise model is zero due to the complex conjugate symmetry and is ignored [Padilla,

2008].

1/fβ noise surfaces can be varied using two parameters: surface RMS height (σ)

and roll-off factor (β). The roll-off factor can be varied when the surface magnitude

spectrum is generated; while the RMS height can be varied either before or after

applying the inverse FFT [Shah, 2010]. Before a surface is rendered, its height map

is first standardised to unit RMS height and then scaled to the desired RMS height

(σ). In the rest of this thesis, the term “RMS” is used to refer to surface RMS

height.

Both parameters (β and σ) have been used to study perceived roughness, and it

was found that they compensate for each other perceptually [Padilla et al., 2008].

We name this kind of roughness “mesoscale roughness” in this thesis to differentiate

from roughness at the subpixel (or micro) scale which will be introduced in the next

section. Figure 3.2 shows a graphical illustration of changing mesoscale roughness

using β and σ, and Figure 3.3 shows example surfaces.

The height maps were generated at a maximum frequency of 256 cycles per image

width (cpi), resulting in an image resolution of 512×512 pixels. Note that the 1/fβ

noise surface is band limited and the frequencies are discrete. The height maps were

used to render the surface images. The rendering of surfaces uses a reflectance model

which characterises surface optical microscale properties. These will be introduced

in the next section.

To summarize this section, we have defined the surface geometry model (Equa-

tion 3.1), and will use its two parameters (β and σ) to investigate the effect of

surface mesoscale roughness on perceived gloss.

3.2 BRDF Model and Microscale Roughness

In order to obtain stimuli images, the mesoscale surface geometry generated using

the 1/fβ model must be rendered using a microscale reflectance model and an il-

lumination model. The illumination, which is not a research topic in this thesis,

26



Figure 3.2: Sketch to illustrate the effects of changing mesoscale roughness of a 1/fβ

noise surface in terms of RMS height (σ) and roll-off factor (β). The three graphs are

three line profiles of a surface, and the black dots represent sample surface locations.

The top graph is the reference surface; the bottom left has increased RMS height;

the bottom right has decreased roll-off factor β. Notice the two different ways of

changing surface mesoscale geometry.
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Figure 3.3: Height maps that demonstrate the change of surface geometry due to

varying roll-off factor (β) and RMS height (σ). The first row shows three 1/fβ noise

surface height maps coded by image intensity with different roll-off factors β (β =

1.6, 2.0, 2.4). The second row shows their 3D plots with RMS height σ = 10.7. The

third row shows the same surfaces scaled to provide a larger RMS height σ = 64.5.

The phase spectrum is held constant in these height maps (Θ = 0), giving them a

similar general shape in order to make comparisons easier.
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will be discussed in Chapter 6. This section surveys reflectance models, and selects

three for later use.

3.2.1 BRDF Models

In this thesis, only light reflection on opaque surfaces is considered, while refraction

and subsurface scattering are not. The reflectance model can therefore be restricted

to Bidirectional Reflectance Distribution Functions (BRDF).

The BRDF is a four-dimensional function that defines how light is reflected at an

opaque surface. If the configuration is as shown in Figure 3.4, the mathematical

definition will be Equation 3.2:

fr(ωi,ωo) =
dLr(ωo)

dEi(ωi)
(3.2)

where fr is the BRDF, Lr is the radiance, Ei is the irradiance. ωi is incoming

light direction, ωo is outgoing direction, both defined with respect to the surface

normal N . In the analytical models described later, the directions ωi and ωo are

denoted by unit vectors L and V pointing to lighting and viewing directions respec-

tively. The BRDF returns the ratio of reflected radiance exiting along ωo to the

irradiance incident on the surface from direction ωi. Note that each direction ω is

itself parameterised by azimuth angle φ and zenith angle θ, therefore the BRDF is

four-dimensional.

Figure 3.4: BRDF variables.

The direct way to obtain the BRDF of a real material is to measure fr for every

combination of ωi and ωo, which is impractical. A more practical way is to use dense
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samples and interpolation, which still results in a large data set. Instead, many ana-

lytical BRDF models have been proposed to approximate real material appearance.

These models can be mathematically expressed using a small number of parameters.

Users can tune these parameters to generate different surface appearances.

There are a large number of analytical BRDF models. We will introduce selected

models which meet the following criteria: that they should be

• computationally attractive,

• have a low number of parameters (be parsimonious),

• produce surfaces of realistic appearance, and

• be well cited in the literature.

All the models discussed below are isotropic (they have no directional preference in

optical behaviour) and the incident light is of unit intensity. More details concerning

BRDF models can be found in a survey by Kurt and Edwards [2009].

The Lambertian Model

The Lambertian model [Lambert, 1760] is an empirical model that describes diffuse

reflection using a cosine law. The mathematical formula is shown in Equation 3.3,

where kd is the albedo of the surface, N is the unit vector representing the surface

normal and L is the unit light vector.

fLamb = kd N ·L (3.3)

Lambertian surfaces rarely exist in the real world, and reflections on most real-

world surfaces are complicated mixtures of reflectance as described in Section 2.1.

In computer graphics, the term ‘specular reflection’ is normally used for both glossy

reflection and perfect specular (mirror) reflection as illustrated in Figure 2.1.

The Phong and Blinn-Phong Models

The Phong model and the Blinn-Phong model are two simple, early, empirical models

that describe the specular reflection by considering the viewing direction [Phong,
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1975] [Blinn, 1977]. The specular terms of these two models are formulated in

Equation 3.4 and Equation 3.5 respectively:

fPhong = ks (R · V )α (3.4)

fBlinn = ks (N ·H)α (3.5)

where fPhong and fBlinn denote the specular reflectance intensity for the two models;

ks is the specular reflection component; R is the unit reflection vector of light vector

L (or ωi) about the surface normal N , which can be calculated as R = 2(L ·

N )N − L; V denotes the unit viewing vector (ωo); H is the unit halfway vector

and is pointing to the half-angle between L and V , which can be calculated as

H = (L + V )/|L + V |. The difference between the Phong model and the Blinn-

Phong model lies in the vectors chosen for the dot product.

These two models are mathematically simple and as a result, are very commonly

used and often combined with Lambert’s law.

The Ward Model

Psychophysical studies using more realistic synthetic stimuli used more complicated

BRDF models, such as the Ward model [Ward, 1992] due to its combination of

reasonable complexity and use of physically meaningful parameters. In comparison

with other empirical reflectance models (e.g. Phong and Blinn), this model obeys

the physical laws of Helmholtz reciprocity and energy conservation. The formula of

the Ward model is shown in Equation 3.6.

fWard(θi, φi, θo, φo) =
kd

π
+ ks ·

exp(− tan2 δ
α2 )

4πα2
√

cos θi cos θo

(3.6)

where fWard(θi, φi, θo, φo) is the surface BRDF; θi, φi and θo, φo are zenith and

azimuth angles of illumination and viewing directions respectively; kd is the diffuse

reflection component; ks is the specular reflection component; α is the standard

deviation of the local surface slope; and δ is angle between surface normal N and

halfway vector H .

The Ward model has been used in several studies as it is the native reflectance model

of the rendering software RADIANCE [Ward, 1994].
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The Ashikhmin-Shirley Model

More complicated reflectance models consider the surface microscale geometry and

in particular the microfacet theory proposed by Torrance and Sparrow [1967]. These

models are based on the assumption that surfaces are made up of tiny micro-

facets, which will be discussed in more detail in the next subsection. We used

the Ashikhmin-Shirley model to render more realistic surfaces in this thesis. This

model considers the microfacet assumption and the Fresnel effect. The Fresnel effect

is the phenomenon that surfaces reflect most of the incident light at the grazing an-

gle (θi ≈ 90◦). Analogous to the above models, the Ashikhmin-Shirley model is also

in the classic form of a sum of a diffuse term and a specular term (Equation 3.7):

fA−S(ωi,ωo) = fD
A−S(ωi,ωo) + fS

A−S(ωi,ωo) (3.7)

Differing from the Ward model, the Ashikhmin-Shirley model has an energy-conserving

and view-dependent diffuse term:

fD
A−S(ωi,ωo) =

28kd

23π
(1− ks)(1− (1− N · ωi

2
)5)(1− (1− N · ωo

2
)5) (3.8)

In addition to obeying basic physical laws, the Ashikhmin-Shirley model also con-

siders both the Fresnel effect and microfacets. The specular term is defined in

Equation 3.9:

fS
A−S(ωi,ωo) =

α + 1

8π

(N ·H)α

(ωo ·H) max((N · ωi), (N · ωo))
F (ωo ·H) (3.9)

where F (ωo ·H) is the Fresnel term, which is Schlick’s approximation [Schlick, 1994]

in Equation 3.10:

F (ωo ·H) = ks + (1− ks)(1− (ωo ·H))5 (3.10)

Despite the differences in mathematical formulae, the above gloss models share

common characteristics that the reflected light is assumed to be a sum of two parts

which are parameterised by the component of diffuse reflection (kd), the component

of specular reflection (ks), and the exponent parameter (α). kd and ks control the

strength of diffuse and specular reflections. The exponent parameter α controls
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the spread of specular lobes (Figure 2.1c). From the perspective of appearance, α

characterises the sharpness of reflection. All of the above models can be encompassed

by microfacet models, in which α plays an important role. This is described in the

next subsection.

3.2.2 Microfacet and Microscale Roughness

The fact that the specular reflection on surfaces is not a perfect mirror reflection

but is blurred can be explained by the existence of microfacets [Torrance and S-

parrow, 1967] and the microfacet model proposed by Blinn [1977]. The microfacet

model assumes that the surfaces are not perfectly smooth but are composed of many

very tiny facets (microfacets). A simplification assumes that each microfacet is a

perfect mirror reflector. Microfacets can be occluded by other microfacets, lie in

the shadow of neighboring microfacets, and reflect more light than predicted due

to inter-reflection. These microfacets have normals that are distributed about the

normal of the approximating local surface patch. The degree to which microfacet

normals differ from the surface local normal is determined by the roughness of the

surface in the microscale. An illustration of the microfacet surface and its imaging

process is shown in Figure 3.5.

The blurred specular highlights can then be explained by the microfacets. At surface

points where the surface local normal is close to the half-angle direction, many of the

microfacets point in the half-angle direction and so the specular highlight is bright.

As one moves away from the centre of the highlight, the surface local normal and the

half-angle direction become farther apart; the number of microfacets oriented in the

half-angle direction falls, and so the intensity of the highlight falls off. Thus, a surface

which is smooth at the microscale can reflect more “specular” light, and a surface

which is rough in microscale will lose specular appearance. Both specular reflection

and diffuse reflection can be explained using microfacet theory, and an improved

diffuse model that uses microfacet theory was proposed by Oren and Nayar [1994].

This model provides improved simulation of real-world matte surfaces compared

with Lambert’s law.

The specular terms of the BRDF models discussed in the previous subsection can be

encompassed by the microfacet model using different microfacet distribution func-
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Figure 3.5: Graphical demonstration of microfacet in the imaging process.

tions. The specular terms of Phong and Blinn-Phong models can be generalized to

the distribution of microfacets without integral constant. A slightly better mod-

el results from the use of a Gaussian distribution. The Ashikhmin-Shirley Model

employs the Blinn-Phong distribution. All of these models utilise a parameter “α”

to characterise the distribution of microfacets, in other words, the roughness of the

microscale structure.

Because the imaging and rasterization process are always band limited, this kind of

roughness occurs at the sub-pixel or microscale level. It cannot be directly observed

from the surface shape but only estimated from the optical appearance. We therefore

name it “microscale roughness” in contrast to the mesoscale roughness of the surface

geometry model.

3.2.3 Summary

In this section, we introduced four analytical BRDF models. Table 3.1 shows how

well they meet the criteria described in the beginning of this section:
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The models described in Table 3.1 are all widely used and computationally attrac-

tive. They all have advantages and disadvantages, and thus will be used in different

chapters.

The Lambertian model has often been used in investigations of characteristics such

as roughness and directionality. It was designed to model matte surfaces and yet

Wijntjes and Pont [2010] reported apparent gloss on high RMS height surfaces ren-

dered using Lambert’s law. Hence the Lambertian model was employed in Chapter 4

to investigate the findings of Wijntjes and Pont [2010].

Nishida and Shinya [1998] and Wendt et al. [2008] used the Phong/Blinn-Phong

model to render glossy surfaces but produced implausible and cartoon level stimuli.

Additionally, these two models do not obey the basic physical rules of light reflection.

Therefore, they were not chosen as the reflectance models for use in the research

reported here.

Although the Ward model is capable of describing most significant reflection phe-

nomena and is a good candidate for generating visual stimuli in vision studies, it is

an empirical model and not physically based. It also lacks the capability of describ-

ing other important reflection phenomena, such as illumination-dependent diffuse

reflection and the Fresnel effect. For these reasons, we will only use the Ward

model in Chapter 5 to measure the effect of variations in microscale parameters on

perceived gloss.

More complex models are used in computer graphics, for example, the Torrance-

Sparrow model [Torrance and Sparrow, 1967] and the height correlation model

(HTSG model) [He et al., 1991]. The latter can simulate most physical phenomena

such as wave optics effects. However, these models are too computationally intensive

for use in this study. A relatively complete model which obeys basic physical laws

and is able to render surfaces of realistic and glossy appearance is sufficient for the

study of gloss perception with simulated rough surfaces. The Ward model and the

Ashikhmin-Shirley model are both eligible. The Ashikhmin-Shirley model is cho-

sen as the reflectance model for generating more realistic stimuli in later chapters

because of its balance of complexity and capability. Furthermore, it is the native

reflection model of the rendering software used in this study. Detailed reasons for

why the Ward model has not chosen for rendering more realistic stimuli will be

36



discussed in Chapter 6.

3.3 Investigation Strategy

We have introduced the models and model parameters that will be investigated by

experiments described in later chapters. This section will describe the investigation

strategy to be used.

According to the thesis scope, the experiments will focus on surface geometry and

reflection properties. From the previous sections we know that there are two pa-

rameters in our surface geometry model: surface RMS height (σ) and magnitude

roll-off factor (β); and there are three parameters in the surface reflection models:

the diffuse component coefficient (kd), the specular component coefficient (ks) and

the microscale roughness coefficient (α). Thus there are a total of five parameters

to be investigated. In addition, other factors, although not involved in the prima-

ry focus of this thesis, will inevitably be involved in the experimentation, such as

inter-reflection, illumination and viewing conditions. Therefore, the measurement

of perceived gloss will be conducted incrementally.

Thus the experiments are divided into two stages according to the sophistication of

the rendering system used for generating the stimuli.

3.3.1 Stage 1

In this stage, the rendering technique, reflection model, illumination and viewing

conditions are all constrained to simple cases. This system in some ways simulates

the situation and environment used for measuring physical gloss.

Chapter 4 examines the effect of variations in one surface mesoscale parameter (RMS

height σ) on gloss perception. The reflection model was chosen to be Lambertian.

Perceived gloss of high RMS height but “matte” surfaces was first reported by

Wijntjes and Pont [2010] and we will repeat the experiment using a wider RMS

height range.

Under the same conditions with Chapter 4, the effect of variations in surface mi-

croscale (BRDF) parameters on perceived gloss is first presented in Chapter 5. Then
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we examine whether adjusting the gloss BRDF parameters can produce a similar

gloss level to the apparent gloss of high RMS height Lambertian surfaces.

3.3.2 Stage 2

The simple rendering system used in stage 1 has limitations in terms of accuracy. As

the perception of gloss is affected by multiple factors [Adelson, 2001] [Hanson, 2006],

we will model more realistic stimuli paticularly in terms of rendering technique,

illumination and viewing conditions. The impact of these improvements in rendering

will be examined on removing the apparent gloss of high RMS height Lambertian

surfaces.

The effect of the other mesoscale roughness parameter (β) on gloss perception will

be investigated in Chapter 7, while in Chapter 8, we will describe the effect of

simultaneously varying both mesoscale roughness (β) and microscale roughness (α)

on perceived gloss.

3.4 Summary

In this chapter, the surface geometry model and BRDF reflection models were de-

scribed in detail.

The 1/fβ noise surface model can be controlled in terms of surface RMS height (σ)

and roll-off factor (β). Both affect “surface mesoscale roughness” [Padilla, 2008] and

will be investigated separately.

Four analytical BRDF models were described. The parameters of analytical BRDF

models (kd, ks, α) form the parametric space for sampling microscale characteristics.

These models were discussed with reference to the microfacet model. The exponent

parameter α in the specular term in particular controls the microfacet distribution

and we refer to this as the “microscale roughness” parameter. The Lambertian

model, the Ward model and the Ashikhmin-Shirley model were selected for further

investigation.

The investigation strategy was developed with reference to the parameters of the

mesoscale and microscale models and the rendering methods. We will first mea-
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sure the apparent gloss of high RMS height Lambertian surfaces and then examine

whether using a gloss BRDF model with a low RMS height surface can produce sim-

ilar perceptions. After describing methods for generating more realistic stimuli, we

will incrementally investigate the effect of variations in surface mesoscale roughness

and microscale roughness on perceived gloss.

However, first we will investigate the apparent gloss of Lambertian surfaces as re-

ported by Wijntjes and Pont [2010] in Chapter 4.
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Chapter 4

PERCEIVED GLOSS OF

LAMBERTIAN SURFACES

In Chapters 2 and 3, we discussed models of surface geometry and reflection. In this

chapter we will investigate how people perceive gloss on rough surfaces.

More specifically, the aim of the work reported in this chapter was to investigate the

effect of the mesoscale parameter, RMS height (σ), on perceived gloss of Lambertian

1/fβ noise surfaces.

Sections 4.2 and 4.3 describe the experiment, and the results are reported in Sec-

tion 4.4. The chapter is concluded and discussed in Section 4.5. However, we will

first describe the work of Wijntjes and Pont [2010] whose study of the apparent

gloss of Lambertian (matte) surfaces motivated the investigation presented in this

chapter.

4.1 The Work of Wijntjes and Pont [2010]

Wijntjes and Pont [2010] reported that observers perceived increasing gloss from

high RMS height Lambertian surfaces within the σ range [16, 128]. They simulated

a collimated light source and a viewing direction, both orientated perpendicular

to the surface, and used simple single-bounce rendering with a local Lambertian

reflectance model.

Their goal was to examine the image histogram hypothesis proposed by Motoyoshi
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et al. [2007]. They formally derived a general relationship between surface RM-

S height, illumination direction and image intensity transformation [Wijntjes and

Pont, 2010]. However, their results did not match those of Motoyoshi et al. [2007]

and they reinterpreted them using the bas-relief ambiguity [Belhumeur et al., 1999].

We will repeat their experiment in this chapter with two modifications. The reasons

are as follows: first, Wijntjes and Pont [2010] only used four levels of surface RMS

roughness which were within a narrow range. We will sample a wider range of σ.

Secondly, the surface geometry model used by Wijntjes and Pont [2010] is reported

to be that of a Brownian surface: a 1/fβ noise surface with magnitude roll-off factor

β = 1. We found the rendered images of such surfaces were too noisy to present the

appearance they reported (see Figure 4.1).

Figure 4.1: Left: the height map of a Brownian surface. Right: the rendered image

of the height map with RMS height σ = 32 pixel width. The parameter values of the

surface model and RMS height used are as reported by Wijntjes and Pont [2010].

Based on the above reasons, the surfaces used by Wijntjes and Pont [2010] were not

used here. Instead, we varied surface RMS height over a wider range and used a

magnitude roll-off factor β=2.3.

4.2 Experiment Setup

The experiment setup described below will be used in later chapters; changes will

be noted when relevant.
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4.2.1 Surface and Rendering Algorithms

The stimuli in this experiment were produced using surface height maps and the

Lambertian reflection model as described in Chapter 3. The rendering technique

employed a local model of reflection, i.e. no inter-reflections from either the surface

itself or the environment were taken into account. The albedo kd was set to unity,

and the illumination strength was set to white (one). The local normal vectors (n)

were calculated as follows. Given the surface height map, a [1 -1] differential operator

was applied on both horizontal (x-direction) and vertical (y-direction) dimensions

to generate the gradients p and q respectively. Thus, the local normal vector n was

obtained using Equation 4.1.

n = (
−p√

p2 + q2 + 1
,

−q√
p2 + q2 + 1

,
1√

p2 + q2 + 1
) (4.1)

As shown in Figure 3.4, the illumination vector ωi or L can be represented by its

zenith angle θi and azimuth angle φi (Equation 4.2).

L = (cosφi sin θi, sinφi sin θi, cos θi) (4.2)

According to Lambert’s law (Equation 3.3), the intensity I was calculated using

Equation 4.3.

I =
−p cosφi sin θi − q sinφi sin θi + cos θi√

p2 + q2 + 1
(4.3)

In this experiment, the light source was set to perpendicularly illuminate the surface

plane, i.e. θi = 0. Thus the image intensity is calculated using Equation 4.4:

I =
1√

p2 + q2 + 1
(4.4)

The resulting images are double float two dimensional arrays within the range [0,1],

which will be linearly displayed on a calibrated monitor with the 0 shown as mini-

mum luminance and the 1 shown as maximum luminance.

4.2.2 Tools

This section introduces the tools used to present the stimuli.
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Display

Padilla [2008] discussed display technologies and concluded that high specification

LCD monitors are now superior to CRT monitors in terms of the spatial modulation

transfer function, gamma correction and luminance uniformity.

A 20-inch TFT LCD monitor (NEC MultiSync LCD2090UXi) was chosen for the

experiment. Compared to cheaper LCDs, this monitor has improved viewing angle,

colour reproduction, a 10-bit look up table, more natural whites, increased gamut,

contrast ratio and support for true 8-bit colour without dithering. The monitor has

a pixel pitch of 0.255 millimetre (mm) (100 dots per inch (dpi)) and a resolution

1600× 1200 pixels.

Display Calibration

A spectrophotometer (Gretag Macbeth Eye One Pro) was used to calibrate and

linearise the gamma response (1.0). The colour temperature was set to 6500K.

The maximum and minimum luminance was calibrated to 120 cd/m2 and 0 cd/m2.

Figure 4.2 shows the resulting profile.

Figure 4.2: Monitor calibration profile.
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4.2.3 Environment

The general environment of our visual experiments requires an observer to sit in

front of a monitor display, and make responses to the stimuli on the monitor using

a computer mouse or keyboard.

The stimuli images have a resolution of 512 × 512 pixels, thus are square of side

13.056 centimetre (cm). In this study, the monitor was set at a distance of 50 cm

from the observer to provide an angular resolution of approximately 17 cycles per

degree (cpd). The stimuli subtended an angle of 14.89◦ in the vertical direction.

The eyes of observer were approximately in line with the centre of the screen.

The experiments were all conducted in a dark room with opaque, matte, black

curtains in front of the windows and matte walls without obvious specular reflections.

The monitor was the only source of light.

4.3 Experiment

Having defined the surface model, reflection model and experiment environment, we

will describe the first experiment in this section. The goal of this experiment is to

examine how perceived gloss of Lambertian surface varies with RMS height (σ).

4.3.1 Stimuli

Ten surface RMS height (σ) values (in pixel width) were logarithmically sampled in

the range [64.5, 322.4]. The resulting surfaces were denoted as Sσi , i = 1, 2, · · · , 10.

Note that one unit of height corresponds to one image pixel width. These surfaces

were rendered using the algorithm described in the previous section. The ten stimuli

are shown in Figure 4.3.

4.3.2 Observers

Ten paid observers with normal or corrected to normal vision participated in the

experiment. All were students or University employees working in different fields,

44



(a) Sσ1
(b) Sσ2

(c) Sσ3
(d) Sσ4

(e) Sσ5
(f) Sσ6

(g) Sσ7
(h) Sσ8

(i) Sσ9
(j) Sσ10

Figure 4.3: The ten stimuli images used in the psychophysical experiments.
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were less than 35 years of age, mixed gender and nationalities. All were näıve with

respect to the purpose and design of the experiment.

4.3.3 Procedure

The magnitude estimation method was used as it is relatively simple. The observer

was presented with a series of stimuli in random order. Before the experiment,

observers were shown printed instructions:

You will be shown 10 images of textured surfaces. Your task is to evaluate

glossiness of the surfaces on the scale [0-1]. Please enter your value by

slider and press button “Submit”.

The surface images were shown in the middle of the screen with the background set

to dull green (R=56,G=66,B=64) to avoid distracting contrast. The background

colour chosen here was not further examined, since the concern that how background

affects perceived gloss has only received limited study [Doerschner et al., 2010b]. The

observers’ task was to evaluate the magnitude of the glossiness on a scale [0,1] by

setting the value of a horizontal slider, where 0 corresponds to the extreme matte, on

the left, and 1 extreme gloss, on the right. A number next to the slider bar indicated

the current value. Observers were instructed to do the task quickly to express their

first impressions. Observers clicked a submit button when they were satisfied with

the gloss value set for that trial and then the next trial was shown. There was a

pause of one second between trials to avoid point-wise comparison of two stimuli.

As a verification experiment of that Wijntjes and Pont [2010] conducted, the stimuli

were shown only once without a measure of observer repeatability.

4.4 Results and Analysis

The estimated gloss of the ten stimuli were recorded and averaged across all ob-

servers. Figure 4.4 shows the mean values of estimated gloss for each stimulus with

error bars representing ± the standard errors.

A one-way repeated measurement ANalysis Of VAriance (ANOVA) was conducted.

Mauchly’s test indicated that the assumption of sphericity had been violated for the
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Figure 4.4: Experiment result averaged across all observers for the estimated gloss

of surfaces with different surface RMS height (σ). These are relative glossiness

representing difference scales. The error bars denote ± standard errors.

main effect of σ: χ2(44) = 76.62, p < 0.01. Therefore the degree of freedom was

corrected using Greenhouse-Geisser estimates of sphericity (εg = 0.341 for the main

effect of σ). The test shows that perceived gloss is significantly affected by surface

RMS height (F (3.07, 27.66) = 8.25, p < 0.01). The large standard errors and the

fluctuation from surface Sσ8 are possibly because of the absence of a measure of

observer repeatability.

4.5 Conclusion and Discussion

From the results of the experiment reported in this chapter, we can conclude that

increased gloss was observed on Lambertian surfaces when surface RMS roughness

was increased. The results are consistent with the findings of Wijntjes and Pont

[2010]. However, the surfaces used in our experiment have a value of β = 2.3 and

cover a wider RMS height range. Increases in gloss are not obviously observed for

surfaces with σ > 150.

Surfaces used in this chapter are of very high RMS height (see the cross sections and

absolute slope angles shown in Figure 4.5). The absolute slope angle is the angle
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between surface normals and the z-axis (the surface lies in the x-y plane). The mean

absolute slope angle is above 60◦ for σ > 131.9, indicating high roughness.

(a) (b)

Figure 4.5: (a): Cross sections of three surfaces used in this chapter of differing

RMS height σ (surface Sσ1 , Sσ5 , Sσ9 in Figure 4.3). (b): Box plot of the absolute

slope angles of the surfaces used in the experiment. For each surface, the green circle

indicates the mean, the central red line indicates the median, the edges of the box

are the 25th and 75th percentiles, the whiskers extend to the most extreme data

points (within 1.5 times distance between 25th and 75th percentiles).

Although surfaces are of high RMS height, every surface facet was illuminated by

the perpendicular collimated light and can be viewed by observers due to the or-

thogonal projection used. In addition, the rendering algorithm did not consider

inter-reflections. Thus the gloss perceived by observers may be an artifact of these

particular viewing and rendering conditions. Some of these conditions will be relaxed

in Chapter 6.

However, in the next chapter we will examine the effect of variation in microscale

(gloss BRDF) parameters on perceived gloss, and investigate whether adjusting the

gloss BRDF of a moderate RMS height surface can produce similar gloss levels to

those of the high RMS height Lambertian surfaces used in this chapter.
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Chapter 5

THE EFFECT OF MICROSCALE

BRDF PARAMETERS ON

PERCEIVED GLOSS

In Chapter 4, we investigated the effect of variations in the mesoscale parameter,

surface RMS height (σ), on the perceived gloss of Lambertian surfaces.

The aim of the work reported in this chapter was to investigate the effect of vari-

ations in surface microscale (gloss BRDF) parameters on perceived gloss. We also

investigate whether adjusting BRDF parameters on a moderate RMS height sur-

face can generate similar perceived gloss levels to those of the high RMS height

Lambertian surfaces as reported in Chapter 4.

We will use a constant 1/fβ noise surface and replace the Lambertian model with the

Ward BRDF model. The Ward model parameters will be varied to generate stimuli,

and their influence on perceived gloss will be investigated (Exp 1) in Section 5.2.

In the next section we investigate whether or not the apparent gloss observed in

Chapter 4 can be matched to the perceived gloss of the low RMS height, Ward

surfaces (Exp 2). However, first we will describe the experimental setup which is

common to both of these investigations.
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5.1 Common Experimental Setup

The experiments described in this chapter were conducted under a common envi-

ronment which was the same as that used in Chapter 4 with the same observers

in a different session. However, the surface geometry was held constant and the

Lambertian reflection model was replaced with the Ward model.

The surface has roll-off factor β = 2.3, RMS height σ = 6.4 pixel width, and random

phase Θ = 0.

The surface normals were calculated in the same way as described in Section 4.2. The

collimated illumination and viewing direction were set to be perpendicular to the

surface plane and the illumination strength was set to one to maintain consistency

with Chapter 4.

In contrast with the Lambertian model which has only one parameter kd, there are

three parameters in the Ward model. In this experiment, all three parameters were

varied in order to investigate their influence on perceived gloss. The rendering used

a local model of reflection, i.e. inter-reflections were not considered (as described in

Section 4.2).

5.2 Measuring Perceived Gloss in the Ward Mod-

el Parametric Space (Exp 1)

5.2.1 Stimuli

All three Ward model parameters (kd, ks, α) were uniformly sampled to provide 4×

5×5 (100) stimuli. The values of the parameters were: kd = 0.285, 0.576, 0.867, 1.157;

ks = 0.0186, 0.051, 0.083, 0.116, 0.148; α = 0.0498, 0.0718, 0.0938, 0.116, 0.138. The

ranges of values were obtained from a pilot experiment. All 100 stimuli are shown

rendered in Appendix A.

In the pilot experiment, observers produced results without clear trend using our

stimuli which span a wide gloss range. This may have been due to the task overtaxing

the observers [Ehrenstein and Ehrenstein, 1999]. To avoid this problem, a pair of
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two reference images (modulus) were shown side-by-side with the test stimuli to help

observers make their judgements. The two reference images comprise one extreme

matte surface and one extreme glossy surface placed to the left and right of the

central stimuli respectively (see Figure 5.1). The parameters for these images were

taken from [Pellacini et al., 2000] (kd=0.760, ks=0.033, α=0.100) for matte and

(kd=0.030, ks=0.099, α=0.040) for gloss. While the glossy reference corresponded

to the most extreme gloss obtainable from the model, the parameters of the matte

reference had to be modified to (kd=1.157, ks=0.019, α=0.138) so as to account for

the most matte stimuli obtainable from the model. The 300 × 300 pixels reference

images were obtained by cropping from 512×512 pixels parent images (the position

of the crops being randomised for each stimulus).

Figure 5.1: The experiment application interface: the stimulus image is shown in

the middle, full size. Smaller reference images are shown on either side (extreme

matte and extreme gloss).

5.2.2 Observers

The same ten observers used in the experiment described in Chapter 4 participated

in the experiment.

5.2.3 Procedure

Prior to the experiment, observers were shown printed instructions below and a set

of 15 training stimuli which were randomly chosen from the stimuli pool.
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You will be shown 100 images of textured surfaces. Your task is to

evaluate the glossiness of these surfaces on the scale [0-1]. Please enter

your value by slider and press button “Submit”. As a guidance you

will be shown extreme cases of matte and glossiness for such a surface

side-by-side with the query image.

Observers were then shown the 100 stimuli images in a random order. The same

magnitude estimation method as used in Chapter 4 was used again. The observers’

task was to evaluate the magnitude of glossiness on the scale [0,1] by means of

setting a value on a horizontal slider (see Figure 5.1), where 0 corresponds to the

extreme matte on the left and 1 corresponds to the extreme gloss on the right. A

number next to the slider bar indicated the current value. A submit button was

clicked when the observer was satisfied with the gloss value and then the next trial

was shown. There was a pause of one second between the trials to avoid point-wise

comparison of two stimuli. All subjects finished the experiment in 30 minutes.

5.2.4 Results and Analysis

Experiment Results

The mean values of glossiness across all subjects from the experiment were plotted

against kd, ks, and α (Figure 5.2). From this figure, we can observe that high

glossiness is perceived for high values of ks and low values of kd and α.

We also computed the standard errors and observed a slight tendency to higher

error (i.e., less consistent results across subjects) for combinations of both lower and

higher values of kd and ks.

A three-way repeated-measures ANOVA was conducted on the results. Mauchly’s

test indicated that the assumption of sphericity had been violated for the main effects

of kd (χ2(5) = 17.05, p < 0.01), ks (χ2(9) = 32.18, p < 0.001) and α (χ2(9) = 31.5,

p < 0.001). Therefore the degrees of freedom were corrected using Greenhouse-

Geisser estimates of sphericity (εg = 0.499 for the main effect of kd, 0.343 for the

main effect of ks and 0.394 for the main effect of α).

All effects were reported as significant (p < 0.001). The F -ratios for the three

independent variables are kd: F (1.496, 13.467) = 32.919, ks: F (1.373, 12.357) =
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Figure 5.2: Result of the experiment. Mean values of estimated gloss averaged across

all observers are plotted against the three Ward model parameters (ks, ks and α) by

the colour of the dots. These are relative glossiness representing difference scales.

37.936, and α: F (1.574, 14.166) = 62.427.

There is significant interaction between kd and α (F (12, 108) = 10.106, p < 0.01)

and between ks and α (F (16, 144) = 7.499, p < 0.01). The interaction between kd

and ks was not significant (F (12, 108) = 1.609, p = 0.1). The interaction among kd,

ks and α was significant (F (48, 432) = 1.799, p < 0.01). However, the small F -ratio

values indicate that the interaction effects are low compared with the effects of the

independent variables.

In summary, the statistical test shows that the perceived gloss is significantly affected

by the three parameters kd, ks and α.

Trend analysis was performed by conducting polynomial contrasts to examine whether

or not the group means increase proportionately with the variables. The tests of

within-subjects polynomial contrasts show that kd, ks and α all have significant linear

contrasts at p < 0.001. kd: F (1, 9) = 38.25; ks: F (1, 9) = 45.09; α: F (1, 9) = 91.66.

This suggests that the perceived gloss measured in this experiment has a strong

linear relationship with the Ward model parameters. Hence, it is appropriate to use

multiple linear regression to analyse the results.
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5.2.5 Multiple Linear Regression Model

Before applying multiple linear regression the Pearson correlation analysis was con-

ducted for each variable (kd, ks, α and mean perceived gloss). The correlation

coefficients between perceived gloss and each variable of kd, ks and α are ρ =

−0.398, 0.593,−0.566 respectively. All have one-tailed significance at p < 0.001.

The correlation coefficients between each pair of kd, ks and α are all below 0.001 at

p = 0.5, indicating that there is no multicollinearity.

Multiple linear regression was conducted for the mean values of perceived gloss

averaged across all observers. The prediction model is expressed in Equation 5.1.

G = (b0 + b1kd + b2ks + b3α) + ε (5.1)

where G is the outcome variable (perceived gloss); b0 is the constant term; b1, b2

and b3 are coefficients for the variable kd, ks and α respectively; and ε is the residual

term.

The model coefficients b0, b1, b2 and b3 were obtained by the method of least squares.

The resulting coefficients are: b0 = 0.757, b1 = −0.267, b2 = 2.814, and b3 = −3.961.

Thus the linear model for the perceived gloss as a function of the Ward model

parameters is shown in Equation 5.2.

G = (0.757− 0.267kd + 2.814ks − 3.961α) + ε (5.2)

This model accounts for 83% of the variance (R2 = 0.83, F (3, 96) = 156.68, p <

0.01). The adjusted R2 = 0.825 shows a small difference for the final model (0.83-

0.825=0.005, about 0.5%), indicating that the prediction model generalizes well. A

value of 1.362 for Durbin-Waston statistic means the assumption of independent

errors is tenable.

Additionally, diagnostics were conducted on the model. The t-statistic for each

coefficient indicates that they are all significantly different from zero:

• kd: t(96) = −9.48, p < 0.01;

• ks: t(96) = 14.11, p < 0.01;

• α: t(96) = −13.46, p < 0.01.
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The standardized model coefficients for kd, ks and α are −0.398, 0.593,−0.566 re-

spectively, which indicate how much standard deviation the dependent variable in-

creases when the independent variable increases one standard deviation.

Finally the behaviour of the residuals was investigated. A scatter plot is shown

in Figure 5.3 for the regression standardized predicted values against regression

standardized residuals. The random and even dispersion of the points indicates

that the assumptions of linearity and homoscedasticity are met.

Figure 5.3: Scatter plot of regression standardized predicted value and residual.

The normality of residuals was also tested. The histogram of the standardized

residuals is shown at the top of Figure 5.4, and the normal probability plot is shown

at the bottom of Figure 5.4. The Kolmogorov-Smirnov test for normality shows a

statistic D(100) = 0.074, p = 0.197, indicating that the normality of standardized

residual is met.

The partial regression plots are shown in Figure 5.5, which are scatter plots of the

residuals of the outcome variable (perceived gloss) against each of the predictors (kd,

ks, α) when both variables are regressed on the remaining predictors. kd and α show

a negative relationship with perceived gloss and ks shows a positive relationship.

In summary, the linear model relating perceived gloss and the Ward parameters

appears to be accurate for the sample and generalizable to the population.
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Figure 5.4: Histogram of regression standardized residual (top) and the normal P-P

plot of normal probability (bottom).
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Figure 5.5: The partial regression plots of perceived gloss G against kd, ks and α

respectively.
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5.2.6 Summary

From this experiment, we found that perceived gloss is significantly affected by

the three Ward model parameters and can be represented using a linear model

(Equation 5.2).

5.3 Equivalence between Apparent Gloss of Lam-

bertian Surfaces and Gloss of Ward Surfaces

(Exp 2)

Having shown that the perceived gloss of a Ward model rendered 1/fβ surface can

be represented as a linear function, we now investigate whether or not a Ward model

used to render a moderate RMS roughness surface can be made to appear as glossy

as the high RMS height Lambertian surfaces investigated in Chapter 4.

This investigation used the same rendering technique as described for the previous

two experiments: collimated illumination and viewing direction were set perpendic-

ular to the surface plane; the rendering algorithm was a local model of reflection

without considering inter-reflections; 1/fβ noise surface with identical roll-off factor

(β = 2.3).

The equivalence of perceived gloss between the two types of surface was investigated

using an adjustment experiment. The observers were allowed to adjust the Ward

parameters in order to adjust the perceived gloss such that it matched that of the

high RMS height Lambertian surfaces. Details of this experiment are described

below.

5.3.1 Stimuli

The ten Lambertian surfaces with different RMS roughness used as stimuli in the

experiment of Chapter 4 were reused here as the reference surfaces (see Figure 4.3).

The adjustable surfaces were rendered using the Ward model as described in Sec-

tion 5.1, except the model parameters were initially randomised.
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5.3.2 Observers

The same ten observers from Exp 1 participated in this experiment.

5.3.3 Procedure

In this experiment, observers adjusted the three Ward model parameters to pro-

duce a similar level of perceived gloss with the Lambertian surfaces (method of

adjustment). Before the experiment, observers were shown printed instructions:

Your task will be to match glossiness of image on left by changing three

parameters modifying image on the right. You can change the param-

eters using three sliders below the image on the right. When you are

satisfied with your settings please press button “Submit”. Note, that

the exact match might not be possible so please concentrate mainly on

good match of glossiness.

Observers were randomly shown the ten surface images rendered by the Lambertian

model with different RMS height (σ). These images were shown on the left side

of the screen and observers were asked to match the glossiness of each of them

by modifying the image on the right. The adjustment image was generated from

the three Ward parameters, as set by observers using three sliders located below

the image. To avoid point-wise comparison, a random rotation of 90◦, 180◦, 270◦

was applied to the right image. An example of an experimental screen is shown in

Figure 5.6.

Observers had opportunity to become accustomed to the impact of the sliders on

the surface appearance during their training session. Observers were instructed to

take their time and try to match the glossiness of the surfaces as much as possible.

All observers finished the experiment in 30 minutes.

5.3.4 Results and Discussion

The adjusted Ward model parameters are plotted for each Lambertian surface in

Figure 5.7.
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Figure 5.6: Example of the screen in the adjustment experiment.

A one-way repeated-measures ANOVA was conducted for each Ward model param-

eter against the Lambertian surfaces under Greenhouse-Geisser corrected degree

of freedom. They showed that all three parameters are significantly varied when

matching the gloss of high RMS height Lambertian surfaces and Ward surfaces.

• kd: F (3.88, 34.91) = 242.71, p < 0.001

• ks: F (2.41, 21.70) = 93.12, p < 0.001

• α: F (2.34, 21.14) = 125.05, p < 0.001

The experiment results were then averaged across all observers. The adjustment

results from this experiment provided each Lambertian surface with a triplet of

Ward model parameters. Figure 5.8 shows the locations of the ten Lambertian

surfaces in the parametric space of the Ward model.

Using the linear model (Equation 5.2) developed in subsection 5.2.4, we estimated

the perceived gloss of the adjustment surfaces from their Ward parameters. The

estimated gloss is indicated by the colour of the dots plotted in the three-dimensional

Ward parametric space (Figure 5.8) and plotted against the RMS height (σ) of the

ten Lambertian surfaces in Figure 5.9. The latter implies that the perceived gloss

of the adjustment surfaces increases monotonically with increasing RMS roughness

of the Lambertian reference. This is consistent with the findings of Chapter 4. The

estimated gloss and the perceived gloss of the high RMS height Lambertian surfaces
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Figure 5.7: Result of the adjustment experiment. The means and ± standard errors

across all observers are plotted for each of the three parameters of the Ward model

against the RMS height (σ) of the Lambertian surfaces.
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Figure 5.8: Scatter plot of adjustment results in the Ward parametric space. The

derived Ward model parameters averaged across all observers are plotted as scattered

dots in the Ward model parametric space. The estimated gloss of the adjustment

surfaces from the linear model (Equation 5.2) are represented by the colour of the

dots.

were plotted in Figure 5.10. Analysis of these data showed significant correlation

with the Pearson coefficient ρ = 0.93, p < 0.01 (1-tailed).

5.4 Summary

In this chapter we measured the effect of variation of microscale (BRDF) parameters

on perceived gloss of rough surfaces. Surface geometry was held constant. A 1/fβ

noise surface with a low RMS roughness, and the same roll-off factor and random

phase as those defined in Chapter 4 was used. The Ward BRDF model was sampled

over a range of its three parameters (kd, ks, α).

The psychophysical experiment revealed that perceived gloss of 1/fβ surfaces is

significantly affected by all three Ward model parameters. A linear model as a

function of the three Ward parameters accounted for 83% of the variance.

The second half of this chapter has shown that moderate RMS roughness Ward

surfaces may be adjusted by observers to have a similar level of perceived gloss
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Figure 5.9: The estimated gloss of adjustment surfaces using the linear model (E-

quation 5.2) are plotted against corresponding RMS height (σ). The error bars

denote the ± standard error across all observers.

Figure 5.10: Perceived gloss of the Lambertian surfaces as investigated in Chapter 4

is plotted against the estimated gloss from the linear model (Equation 5.2). A

regressed line is shown with statistics.
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to high RMS height Lambertian surfaces, and this was confirmed using the linear

model (Equation 5.2).

In the previous chapter we raised the hypothesis that the apparent gloss of the high

RMS height Lambertian surfaces may be due to the rendering environment. In the

next chapter therefore, we will model more realistic stimuli by improving the simple

rendering system used in Chapters 4 and 5.
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Chapter 6

MODELLING MORE

REALISTIC STIMULI

The experiments reported so far have been used to investigate the effect of chang-

ing both mesoscale and microscale surface parameters on perceived gloss and were

carried out under highly constrained conditions using simple rendering techniques.

However, it is known that the perception of gloss is affected by several intrinsic and

extrinsic factors. Previous studies reviewed in Chapter 2 have shown that more

realistic stimuli can be obtained by making improvements in rendering techniques,

reflection models, and illumination and viewing conditions.

The purpose of the work reported in this chapter therefore, was to specify a more

realistic rendering system for later experiments, and to use this to investigate the

apparent gloss of the high RMS height Lambertian 1/fβ surfaces used in Chapter 4.

The constraints imposed on the stimuli described in previous chapters are discussed

in Section 6.1. Each will be discussed and relaxed in the following sections. The im-

proved rendering technique is described in Section 6.2. The illumination is discussed

and tested experimentally in Section 6.3. The animation stimuli are described in

Section 6.4. All of these improvements are aggregated in Section 6.5. Section 6.6

summarizes the chapter as a whole.
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6.1 Constraints in Previous Experiments

The aim of this section is to discuss the constraints in stimuli modelling imposed

in previous chapters. This includes rendering technique, BRDF model, illumination

and viewing conditions.

The rendering algorithm used in previous experiments employed a local model of

reflection. Although the rendering is efficient, the stimuli are not of high fidelity. In

the real world, incident light interacts with surfaces in a more complex manner (e.g.

inter-reflections), resulting in effects such as indirect lighting, self-shadow, and soft-

shadow. None of these effects were considered in previous experiments. In addition,

the reflection models used in previous chapters were not physically based, especially

the Lambertian reflection model which violates basic physical laws.

The white collimated perpendicular lighting used in previous experiments is not

representative of natural lighting conditions. Illumination conditions have been

found to be important when people infer surface properties [Dror et al., 2001a]

[Dror et al., 2001b] [Dror et al., 2004] [Fleming et al., 2001] [Fleming et al., 2003].

People can infer familiar illumination conditions from the reflection on surfaces, and

they can estimate surface properties more accurately under real-world illuminations

than simple artificial illuminations [Fleming et al., 2003].

The use of still images is also a limitation. People cannot accurately or reliably

estimate surface shape (geometry) from a single surface image under certain illu-

mination conditions [Belhumeur et al., 1999] and accuracy of depth perception of

surfaces affects perceived gloss [Kim et al., 2011] [Marlow et al., 2011].

Several approaches have been used by researchers to improve stimuli fidelity, includ-

ing: rendering technique, illumination, object motion, binocular stereo viewing and

head motion. These will be discussed in following sections.

6.2 Physically Based Rendering

As discussed in Chapter 2, the experiment stimuli used in this study are synthetic

images simulated by computer algorithms. The fidelity of synthetic surfaces should

approach the appearance of real-world surfaces. However, the simple rendering sys-
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tem used in previous chapters does not meet this requirement well. To generate

more realistic stimuli, we will describe a more advanced rendering technique: phys-

ically based rendering. The term “physically based” indicates that the rendering

uses physical models and supports physical simulations of light and shading. The

discussion will be split into two parts: path tracing and the BRDF model.

6.2.1 Path Tracing

It is technically impractical to trace every particle of light in a scene. Therefore,

researchers have proposed many efficient rendering algorithms, which are employed

by rendering packages. The techniques that are widely used in computer graphics fall

into four loose categories: rasterization, ray casting, ray/path tracing and radiosity.

The first two techniques are relatively fast but do not model advanced optical effects

such as soft-shadows and inter-reflections, while radiosity is not usually employed

as a rendering technique. Therefore, the path tracing method becomes the most

suitable rendering technique for this study.

Path tracing simulates the physical behaviour of the light rays and provides better

image quality than conventional rendering methods at the cost of expensive compu-

tations. Path tracing naturally simulates many effects that other methods do not,

such as soft shadows and indirect lighting. To obtain high quality images from path

tracing, a large number of rays must be traced to avoid visible artifacts.

In path tracing, rays are traced from the camera through the image plane to the

scene, bounce off or pass through objects until they reach a light source or reach

the preset maximum number of bounces. The resulting ray intensity is then written

to the image. Path tracing technology has been used for rendering stimuli in many

vision studies [Ho et al., 2008] [Pellacini et al., 2000] [Ferwerda et al., 2001] [Fleming

et al., 2003], and it will also be used in this thesis.

The path tracer chosen in this study is LuxRender [LuxRender, 2009], which is a

cross-platform and open source rendering package. It uses scene description files

which can be exported from free, open source modelling software. The other main

renderer, Radiance, was not chosen as it runs on and requires commercial software,

which was unavailable during this study. LuxRender has its root in the Physically

Based Rendering Toolkit (PBRT) [Pharr and Humphreys, 2004] and has advantages
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in rendering efficiency. These two renderers (Radiance and PBRT) have been ex-

amined by David Brainard for simple scenes and found to be in good agreement

[Brainard and Broussar, 2007].

The following will describe how we developed 3D geometry models of the surfaces

and set parameters for the path tracing. More details about the path tracing ren-

dering technique were described by Pharr and Humphreys [2004] and Ward [1994].

Surface Representation

The stimuli rendered by path tracing were created under the scene configuration as

described in previous chapters. The 1/fβ noise surfaces were sampled at 512× 512

pixels to generate height maps using Equation 3.1. Surfaces were represented by

perturbing a mesh grid (512 × 512) with the magnitude determined by the height

maps, a technique called ‘displacement mapping’. This technology builds realistic

surface geometry [Padilla, 2008]. The viewing direction was set perpendicular to the

surface plane. Perspective projection was used instead of the orthogonal projection

used previously. The 3D scene specification is completed by adding a light source

and the path tracer can then render the image.

Tone Mapping

The images rendered by LuxRender are of High Dynamic Range (HDR) [Ward,

1994], which exceeds the dynamic range of the display used in the experiment. A

linear tone mapping method was used to scale the images down to low dynamic

range to suit the display monitor [LuxRender, 2009]. This method utilizes a camera

model with three parameters: sensitivity, exposure and f-stop. HDR images were

linearly translated to low dynamic range by multiplying a factor:

exposure ∗ sensitivity
10 ∗ f -stop2

∗
(

118

255

)gamma
(6.1)

gamma was set to 1.0 to keep linearity. We manually tuned the parameters of

the tone mapping method to keep most pixels (> 95%) in the clamped range by

cutting-off the out-of-range pixels to maximum intensity. The linear tone mapping

parameters were kept constant throughout all succeeding experiments: sensitivity =

50, exposure = 0.01, f -stop = 64. Note that the parameter values chosen here are
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not a normal setting for a real camera in practice, but they are possible in computer

simulations and different combinations of parameter values can lead to an identical

factor.

Number of Bounces

The number of bounces, which is the maximum number of times that a ray can

bounce before it reaches the light source, is an important parameter in a path

tracer. Multiple bounces cause indirect lighting, inter-reflections and soft shadows,

which are important phenomena for a complex 3D scene or object. We tested this

on the high RMS height Lambertian surface investigated in Chapter 4. A distant

area light was used to approximate the collimated light source used previously. The

Lambertian surface with RMS height σ = 157.7 (Sσ6) was rendered by the path

tracer with maxima of one bounce and three bounces. The rendered images are

shown in Figure 6.1.

(a) maximum bounce=1 (b) maximum bounce=3

Figure 6.1: The Lambertian surface used in Chapter 4 (RMS height σ = 157.7) was

rendered by path tracing with maximum bounce set to 1 (a) and 3 (b). A distant

area light was used to simulate the collimated light. The path tracing rendered

surface slope areas brighter in (b) because of inter-reflections. The apparent gloss

was not observed by the author in (b).

Compared with the stimulus image labeled Sσ6 in Figure 4.3, the apparent gloss was

eliminated for maximum bounce=3. More surface areas were illuminated by the

simulated inter-reflections. This observation suggests that path tracing generates
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more realistic stimuli. In all subsequent stimuli, the maximum number of bounces

was set to 10.

6.2.2 BRDF Models

More realistic stimuli can be created by using BRDF models which obey physical

laws, including:

1. positivity: fr(ωi,ωo) > 0,

2. obeying Helmholtz reciprocity: fr(ωi,ωo) = fr(ωo,ωi),

3. conserving energy: ∀ωi,
∫

Ω
fr(ωi,ωo) cos θo dωo 6 1.

However, the BRDF models used in previous chapters have limitations.

The BRDF model used in Chapter 4 is the Lambertian model, which is an em-

pirical model. The Lambertian model does not obey rules of reciprocity or energy

conservation and was only intended to be used as a model of diffuse reflection.

The Ward model used in Chapter 5 is also an empirical model but obeys the three

physical laws identified above [Ward, 1992]. It was chosen in Chapter 5 due of its

popularity in literature. However, we do not use it as the BRDF model for generating

stimuli in subsequent experiments. Instead, we chose the Ashikhmin-Shirley model,

based on the reasons described below:

• The Ward model is an empirical model which is loosely based on microfacet

theory; while the Ashikhmin-Shirley model is physically-based but balances

complexity and efficiency. The Ashikhmin-Shirley model achieves similar qual-

ity to strictly physical models such as the Cook-Torrance model [Cook and

Torrance, 1982] but has simpler parametrization and computation [Kurt and

Edwards, 2009].

• The Ward model has a uniform diffuse term that obeys the energy conservation

law; while the Ashikhmin-Shirley model has a view-dependent diffuse term.

Additionally, the Ashikhmin-Shirley model considers the Fresnel effect while

the Ward model does not. These characteristics allow the Ashikhmin-Shirley

model to produce more realistic rendering results [Ngan et al., 2005] [Kurt and

Edwards, 2009].
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• The Ward model is convenient for researchers using Radiance, as it is the

built-in BRDF model [Ward, 1994]. However, in this study, the ‘physically-

based’ path tracer LuxRender [LuxRender, 2009] was used, which employs the

Ashikhmin-Shirley model. It is therefore easier to use the latter model for this

study.

Based on the above discussion, the Ashikhmin-Shirley model was chosen as the

BRDF model for all succeeding experiments.

6.2.3 Summary

In this section, we relaxed constraints and improved stimuli fidelity in terms of ren-

dering technique and BRDF model. From the comparisons with previous rendering

results, the physically based rendering (path tracing and Ashikhmin-Shirley model)

appears to show considerable improvements over the simpler technique used previ-

ously and will be used in all subsequent experiments. The surface representation

and parameter settings were also described and discussed. These settings were kept

constant throughout the experiments described in the following chapters.

6.3 More Complex Illumination

The literature concerning gloss perception often uses simple lighting conditions [Ho

et al., 2008] [Nishida and Shinya, 1998] [Wendt et al., 2008] [Wijntjes and Pont,

2010] [Pellacini et al., 2000] [Ferwerda et al., 2001]. This simplifies the stimuli mod-

elling and reduces computational complexity. However, real-world illumination is

complicated and its characteristics play an essential role in the perception of mate-

rial properties [Dror et al., 2001a] [Dror et al., 2001b] [Dror et al., 2004]. Observers

often perform more accurately and reliably when stimuli are viewed under real-

world patterns of illumination [Fleming et al., 2001] [Fleming et al., 2003]. Fleming

et al. [2004b] found that mirror reflections of the environment can provide reli-

able and accurate cues (constraints) on 3D shape. Recent research has shown that

gloss perception is not constant under changing environments [Doerschner et al.,

2010a] [Olkkonen and Brainard, 2010] [Olkkonen and Brainard, 2011] or illumina-

tion geometric changes [Ramanarayanan et al., 2007]. However, these studies were

71



performed using spheres or smooth objects, they did not use rough surfaces. Leloup

et al. [2011] found that illumination conditions need to be considered for deriving

perceived gloss metrics using real material samples.

The aim of this section, therefore, is to introduce a more realistic illumination con-

dition into stimuli modelling. The simple collimated light used in Chapters 4 and

5 will be replaced by more complex illumination derived from real scenes. We will

firstly show the advantage of using real-world illumination in producing more realis-

tic stimuli by examining the apparent gloss of high RMS height Lambertian surfaces

as reported in Chapter 4. The influence of variations in the complex illumination on

the perceived gloss of rough surfaces will be discussed. At the end of this section,

an illumination map will be chosen for subsequent experiments.

6.3.1 High Dynamic Range Real-World Environment Maps

Advanced capturing techniques and computer graphics make it possible to record

real-world high dynamic range illumination maps [Debevec and Malik, 1997]. Such

illumination maps can be used for the realistic rendering of synthetic objects and 3D

scenes [Debevec, 1998]. The illumination map is an omnidirectional, high dynamic

range image or spherical function that records the incident light at a particular point

in 3D space.

It has been found that perceived gloss depends on the spatial distribution and

strength of the light sources in the environment [Fleming et al., 2003]. Simple illu-

mination models are inferior not only in the amount and strength of light sources

but also in the familiarity of observers [Fleming et al., 2003]. High dynamic range

environment maps from Debevec’s Light Probe Image Gallery were chosen to pro-

vide the illumination in this study since they are widely used in computer graphics

and vision research fields. Figure 6.2 shows three such environment maps (denoted

as ‘LF1’, ‘LF2’, ‘LF3’). The environment maps are in the format of angular maps,

which cover the full 360× 360 degrees, or 4π steradian range.

Fleming et al. [2001] and Fleming et al. [2003] found that the use of real-world illu-

mination improves stimuli fidelity in gloss perception. We rendered the Lambertian

surface Sσ6 (RMS height σ = 157.7) used in Chapter 4 using the path tracer de-

scribed in the previous section under the illumination map ‘LF3’ (Figure 6.2(c)).
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(a) LF1 ‘galileo’ (b) LF2 ‘rnl’ (c) LF3 ‘stpeters’

Figure 6.2: Angular maps of three real-world illuminations, all of which are from

Debevec’s Light Probe Image Gallery (http://ict.debevec.org/ debevec/Probes/).

They are denoted by LF1, LF2, LF3 respectively. The abbreviation names from

Debevec are also shown. Two of them are indoor environment (a) (c), and the other

one is an outdoor environment (b). They are all tone mapped from high dynamic

range for display.

The resulting image is shown in Figure 6.3. The apparent gloss of Lambertian

surface Sσ6 was not observed by the author under environment map ‘LF3’.

Therefore, the HDR real-world illumination map will be used as an improvement in

modelling more realistic stimuli.

6.3.2 Variations within Environment Maps

Ramanarayanan et al. [2007] found visual equivalences by manipulating the illumi-

nation map, surface geometry and BRDF model. The manipulations of the illumi-

nation map used were blurring and warping.

Dror et al. [2004] used spherical harmonics to characterise real-world illumination

maps. They found that they were well approximated by k/L2+η with η small, where

L is the spherical harmonic order and k is a constant. They reported that spatial

maps of natural illumination show statistical regularities similar to those found in

natural images [Simoncelli and Olshausen, 2001], where natural images have a linear

log-log roll-off power spectra of 1/f 2+η [Mandelbrot, 1983] [Voss, 1988].

As spherical harmonics can be thought of as the equivalence of a Fourier series
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(a) maximum bounce=1 (b) maximum bounce=10

Figure 6.3: The Lambertian surface with σ = 157.7 used in Chapter 4 was illumi-

nated by the environment map shown in Figure 6.2(c). It was rendered using path

tracing with maximum bounce 1 (a) and 10 (b). The surface image with maximum

bounce 10 shows brighter slope areas because of inter-reflections. The apparent gloss

was not observed under the environment map in either images.

decomposition but performed in the spherical domain, we decided to use them as a

tool to manipulate our environment. Figure 6.4 shows the result in applying such

filtering to our environment maps. They were decomposed and then reconstructed

using the first nine spherical harmonics as it has been found that these harmonics

correspond to ambient light and are sufficient for diffuse rendering [Ramamoorthi

and Hanrahan, 2001]. A glossy 1/fβ noise surface was rendered under the original

and filtered environment maps. The results are shown in Figure 6.5. It can be seen

that the surface does not appear glossy when rendered under the filtered environment

maps. Even though the surface in Figure 6.5(d) looks very bright, it does not look

glossy compared with the top row.

Therefore, the illumination environment chosen for generating glossy appearance

should contain concentrated light sources as characterised by higher frequency har-

monics as well as ambient light [Fleming et al., 2003] [Dror et al., 2004].

6.3.3 Changing Environment Maps

Due to resource limitations, we chose to use only one environment map for the subse-

quent experiments. The influence of changing illumination maps on gloss perception
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(a) LF1 ‘galileo’ (b) LF2 ‘rnl’ (c) LF3 ‘stpeters’

Figure 6.4: Reconstructed environment maps of those shown in Figure 6.2. They

were decomposed into spherical harmonics and reconstructed using the first nine

harmonics. The high frequencies which correspond to strong concentrated light

sources have been removed and only the ambient component is left.

is discussed in this subsection using 1/fβ noise surfaces.

This was carried out in a repetition experiment of Doerschner et al. [2010a], who

investigated the effect of illumination variation on gloss transfer functions. They

investigated the perception of gloss on synthetic spheres as a function of three real-

world illumination maps. They found linear gloss transfer functions between any

two illumination maps. These transfer functions also exhibited a linear transitivity

pattern.

We repeated Doerschner et al. [2010a]’s experiment to examine whether the per-

ceived gloss transfer functions across illumination maps are also linear and transi-

tive, however, we replaced the spheres that they had used with 1/fβ rough surfaces.

The experiment is described in Appendix B.

The experimental results showed that the linear gloss transfer function between

illumination maps does not exist across all observers and the linear transitivity

of the transfer functions was not observed. For rough surfaces, the variation of

perceived gloss between different illumination maps cannot simply be modelled or

predicted using linear functions.
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(a) LF1 original (b) LF2 original (c) LF3 original

(d) LF1 filtered (e) LF2 filtered (f) LF3 filtered

Figure 6.5: A surface with gloss microscale parameters was rendered using the

original (top row) and filtered (bottom row) environment maps (Figure 6.2 and

Figure 6.4 respectively). The surface is a 1/fβ noise surface with roll-off factor

β = 2, the Ashikhmin-Shirley BRDF model parameters are kd = 0.4, ks = 0.6,

α = 0.01. The surface does not look glossy under the filtered environment maps,

although (d) is very bright.
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6.3.4 Summary

Although the effect of illumination on perceived gloss is not part of the primary

focus of this thesis, tests and experiments were conducted using HDR environment

maps. We found that: 1) real-world illumination contributes to more accurate and

reliable gloss perception of rough surfaces than simple illumination; 2) “glossy”

1/fβ surfaces viewed under an illumination environment that only contains the first

nine spherical harmonics do not appear glossy (as predicted by Dror et al. [2004]

and Fleming et al. [2003]); 3) the perceived gloss of rough surfaces is not linearly

predictable under changing illumination maps.

Due to the problem complexity, only one environment map was used to provide

illumination in succeeding experiments. We chose the “St. Peters” environment

map from Debevec’s Light Probe Image Gallery (LF3 in Figure 6.2). This map has

the largest resolution (1500 × 1500) and dynamic range (200, 000 : 1) among those

in the gallery, and is popular in the literature [Doerschner et al., 2010a] [Fleming

et al., 2003] [Dror et al., 2004].

6.4 Animated Stimuli

Viewing surfaces from different directions helps people perceive not only surface 3D

geometry but also surface gloss [Obein et al., 2004b] [Wendt et al., 2007] [Wendt

et al., 2008] [Sakano and Ando, 2008a] [Sakano and Ando, 2010] [Sakano and Ando,

2008b]. Images differing in relative viewpoint may be produced using three methods:

binocular viewing, head motion and surface motion.

In binocular viewing, three-dimensional surface geometry viewed by two eyes in d-

ifferent positions produces two slightly different images. Human vision systems are

good at fusing these two images to provide information on depth and 3D shape. Fur-

thermore, specular reflection is also viewpoint dependent [Wendt et al., 2007] [Wendt

et al., 2008]. The highlight disparity has been found to enhance the authenticity

and strength of perceived gloss [Wendt et al., 2007] [Wendt et al., 2008] [Sakano and

Ando, 2008a] [Sakano and Ando, 2010]. The correct perception of surface geometry

(depth perception) from binocular viewing can help observers perceive other surface

properties, such as removing the illusory gloss of high RMS height Lambertian sur-
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faces. Figure 6.6 shows the binocular cross-view image pair of one of the Lambertian

surfaces used in Chapter 4. The illusory gloss was not observed in binocular viewing

since the abnormal depth of the surface is more clearly interpreted.

(a) Sσ6 , R (b) Sσ6 , L

Figure 6.6: The Lambertian surface with RMS height σ = 157.7 used in Chapter 4 is

rendered with perspective projection and binocularly (cross-viewing). The apparent

gloss was not observed.

Motion parallax [Gibson et al., 1959] or kinetic depth effect [Wallach, 1953] [Koen-

derink, 1986] (the relative change in position between surface and observer) can

improve the perception of surface shape (geometry) and highlight depth. Anderson

and Kim [2009], Kim et al. [2011] and Marlow et al. [2011] have shown that people

can perceive gloss more accurately when the surface shape is correctly interpreted.

Ji et al. [2006] asked observers to hold and freely tilt real samples in their experimen-

t. These researchers believe that surface motion can help observers inspect surface

property and infer surface gloss. Furthermore, the dynamic change of specular re-

flections on moving surfaces provides additional information for surface reflection

property estimation.

After considering the three methods of providing images from different viewpoints

to observers, we decided to use motion of the surfaces with fixed observers viewing

monocular stimuli. Furthermore, we decided to pre-render the stimuli animations

because of computational reasons.

Dijkstra et al. [1995] have shown that it is possible to detect shape from small field
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stimuli (< 8◦) when using object rotation. A range of [−12◦, 12◦] was therefore used.

The surfaces were rotated about their vertical axes 25◦ in 1◦ steps at 24 frames per

second, producing animations of the surfaces rotating backwards and forwards.

The limitations of this simplified animation are:

• the surface rotation is a subset of that used by Padilla [2008];

• the chosen rotation angles were not derived by experiment, as in Padilla [2008],

but preset by the author, since observer preference cannot be easily obtained

under the non real-time rendering used in this research.

Despite the limitations described above, the animation stimuli are far more infor-

mative than the still images used in previous chapters.

6.5 Towards More Realistic Stimuli

A rendering system has been specified for generating more realistic stimuli. It com-

prises of a physically based path tracer (LuxRender), a physical BRDF model (the

Ashikhmin-Shirley model), an HDR real-world environment map (“St. Peters” en-

vironment map from Debevec’s Light Probe Image Gallery), and rotating surface

animations.

This method of modelling more realistic stimuli will be used in subsequent experi-

ments.

6.6 Summary

In this chapter, certain constraints of the simple rendering system described in

Chapters 4 and 5 were cautiously relaxed and tested.

Path tracing was used to replace the simple single-bounce pixel-wise calculations and

we showed that it provides more realistic stimuli that incorporate self-shadows and

inter-reflections. BRDF models were discussed and the Ashikhmin-Shirley model

was chosen for subsequent experiments because of its balance of complexity, effi-

ciency and convenience. The illumination was tested experimentally and an HDR

environment map was chosen to provide more realistic lighting. Finally, to improve
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the perception of observers on surface geometry and specular reflection, animations

of rotating surfaces were used instead of still images.

The gloss of high RMS height Lambertian surfaces reported in Chapter 4 was not

apparent when these rendering improvements were used, suggesting that the gloss

perceived is likely to be an artifact of the simple rendering system employed in

Chapter 4 and by Wijntjes and Pont [2010].

With the more realistic stimuli, the effect of mesoscale and microscale roughness on

perceived gloss will be investigated in the following chapters.
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Chapter 7

THE EFFECT OF MESOSCALE

ROUGHNESS ON PERCEIVED

GLOSS

Chapter 4 showed that under certain conditions, variation of the surface mesoscale

parameter σ can significantly affect gloss perception even when a ‘matte’ microscale

reflection model is employed [Wijntjes and Pont, 2010]. Ho et al. [2008] also found

that increasing mesoscale surface ‘bumpiness’ increases perceived gloss. In Chapter 4

we reported that the increasing trend of perceived gloss is not obvious for surfaces

with σ > 150; Ho et al. [2008] reported “the trend was less clearly monotonic” for

their highest bump level surface. This observation inspired us to further investigate

the perceived gloss of rougher surfaces.

The previous chapter introduced a more sophisticated rendering environment. In

this chapter we use this environment to investigate the effect of changing mesoscale

roughness on gloss while holding the microscale surface parameters constant.

Padilla [2008] showed that varying the mesoscale roughness parameter, RMS height

(σ) has the limitation that surfaces with high σ appear unrealistic, whereas varia-

tion of the roll-off factor β could produce realistic surfaces over a higher perceived

roughness. Hence, we decided to investigate the effect of this mesoscale roughness

parameter (β) on perceived gloss.
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7.1 Experiment

This experiment used the method of magnitude estimation to investigate the rela-

tionship between perceived gloss and the mesoscale roughness parameter (β).

7.1.1 Stimuli

1/fβ noise surfaces were synthesized for 14 levels of roughness with β=1.5 to 2.8

in steps of 0.1. The RMS height was held constant at σ = 17 pixel width. The

surfaces used in previous experiments were generated using a fixed random phase

spectrum with seed Θ = 0. This constraint was removed in this chapter. Surfaces

were generated using varied seeds with Θ sampled from 1 to 14 in steps of 1. It

has been found by Padilla [2008] that variation of random phase does not affect

perceived roughness. We also found that it does not affect perceived gloss (see pilot

experiments described in Appendix C).

The rendering of surfaces used the method described in Chapter 6. The parameters

of the Ashikhmin-Shirley model were set to a medium gloss level (kd = 0.4, ks = 0.6,

α = 0.01). Note that the gloss level (α) used in producing stimuli was chosen to be

lower than that required to exhibit DOI gloss [Pellacini et al., 2000] [Ferwerda et al.,

2001]. Figure 7.1 shows the central frame images (slant = 0◦) of each animation

stimulus, and the last two images show the surface with β = 2.8 under slant angles

12◦ and −12◦ respectively.

7.1.2 Observers

Nine näıve observers with normal or corrected to normal vision were paid to par-

ticipate in the experiment. All were students or University employees working in

different fields, were less than 35 years of age, mixed gender and nationalities.

7.1.3 Procedure

Example images of glossy spheres and surface textures were shown to observers

before the experiment to enable observers to be aware of the property we were
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(a) β = 1.5 (b) β = 1.6 (c) β = 1.7 (d) β = 1.8

(e) β = 1.9 (f) β = 2.0 (g) β = 2.1 (h) β = 2.2

(i) β = 2.3 (j) β = 2.4 (k) β = 2.5 (l) β = 2.6

(m) β = 2.7 (n) β = 2.8 (o) β = 2.8, s = 12◦ (p) β = 2.8, s = −12◦

Figure 7.1: (a)-(n): The central image (slant angle 0◦) of rendered surface textures

with β varying from 1.5 to 2.8. (o)(p): surface β = 2.8 under slant angle 12◦ and

−12◦. These images have been adjusted by a nonlinear gamma for display purpose.

Linear scaling was used for the stimuli shown to observers.
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focusing on. In the experiment, observers were shown thumbnail images (239*239

pixels) of all 14 surfaces which were randomly positioned on the screen in a 4 × 4

matrix (the last 2 are blanks) on a secondary monitor. This monitor is of the same

model as the one described in Chapter 4, and it was calibrated to the same settings

(see Section 4.2). The thumbnail images were not animated having a surface slant

of 0◦. Clicking any thumbnail provided the full resolution animation of the surface

on the main monitor. Observers were able to view the full size animations in any

order and for any duration.

In the pilot experiment, observers reported that stimuli not only exhibit different

levels of glossiness but also seem to be made of different materials. Therefore we

designed two tasks. First, observers were asked to provide a number that represented

the ‘gloss’ strength of each surface (magnitude estimation). Both the range and

precision of the number were unconstrained (‘free modulus method’ [Han et al.,

1999]). Secondly, observers grouped these surfaces by assigning a group number to

each surface according to the materials they thought they were made of. In other

words, surfaces in the same group were thought by observers to be made of the

same material. No time restrictions were imposed. All of the observers finished the

experiment in between 30 and 45 minutes. The following instructions were shown

to observers on a printed paper before the experiment:

You will be presented with several surface thumbnails in a window. Click-

ing any thumbnail will show the full resolution rotating surface animation

in the other window. You will finish two tasks:

1. Tell me how glossy each surface is by assigning a number to its

glossiness. Call the first surface any number that seems appropriate

to you. Then assign numbers to other surfaces in such a way that

they reflect your impression of how glossy they are. You can modify

your decision at will. There is no limit to the range of numbers that

you may use. You may use whole numbers, fractions, or decimals.

But try to make each number match the glossiness that you see.

2. Group these surfaces by assigning a group number to each surface so

that the surfaces in the same group are made of the same materials.
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7.2 Results and Analysis

7.2.1 Gloss Estimation Results

Magnitude estimation results for all 9 observers are shown in Figure 7.2.

Figure 7.2: Gloss estimation and free grouping results of all 9 observers. The x-axis

denotes the roll-off factor β and the y-axis denotes the raw estimated gloss. The free

grouping results are shown by the markers of different shapes and colours. Note that

the numbers of groups are different across observers (between 3 and 6), thus we used

up to 6 markers to denote the grouping results (‘red plus sign’, ‘green circle’, ‘blue

asterisk’, ‘magenta cross’, ‘cyan square’ and ‘black diamond’). The same markers

used in different plots do not indicate any between-subject relationship.

In the gloss magnitude estimation experiment, observers picked their own numbers.

Hence, both the numeric range and precision differed across observers. To analyze

the results, we normalized the raw data of each observer by its minimum and max-
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imum values. The arithmetic means of normalized results averaged across all nine

observers are shown in Figure 7.3. As the geometric means are also useful for show-

ing trends of un-normalised data [Ehrenstein and Ehrenstein, 1999] [Gescheider,

1997] [Stevens et al., 1986], we also plotted these data in Figure 7.3.

Figure 7.3: Arithmetic means of normalized results from nine observers are plotted

with blue dot markers and a blue curve against the left Y-axis. The error bars

show ± standard errors. The geometric means of the raw data are plotted with

green diamond markers and a green curve against the right Y-axis. The boundaries

between the three groups used in the discussion are denoted by dashed lines.

A one-way repeated-measures ANOVA was conducted on the normalized data. The

result revealed that perceived gloss is significantly affected by roll-off factor β with

F (13, 104) = 37.375, p < 0.001.

From Figure 7.3 we can see that the perceived gloss follows an asymmetric bell-type

curve against roll-off factor β. As the surface roughness increases (from β = 2.8 to

β = 2.0) the perceived gloss increases in agreement with the findings of Ho et al.

[2008]. However, increasing the roughness further results in a sharply decreasing

perceived gloss.
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7.2.2 Grouping Results

At the end of each experiment session, observers were asked to perform a free group-

ing task. They grouped the 14 stimuli into between 3 and 6 groups. The grouping

results of each observer are shown in Figure 7.2 in different colours and markers.

As a way of summarising these results, the grouping data were used to generate a

similarity matrix, from which a dendrogram was derived (Figure 7.4). The average

group number (five) was used to determine branches which are shown in different

colours in Figure 7.4.

Figure 7.4: Dendrogram from the grouping experiment. Each leaf represents a sur-

face with specific β denoted on x-axis. The y-axis denotes the distance between the

two objects being connected. Clusters denoted by different colours were generated

by setting a cutoff threshold.

From the dendrogram we can see that 1) surfaces with β = 1.5 and β = 1.6 were

assigned to the same group by all observers, this also happened to surfaces with

β = 2.5, β = 2.6, β = 2.7 and β = 2.8. These two groups lie at the two ends

of the β range we sampled. This means that the surfaces at the two ends have

the least variation in perceived appearance. 2) All the surfaces in the same group

have successive β values. This means that perceived appearance of 1/fβ noise
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surface changes gradually with the variation of sampled β, even though they were

all rendered using identical microscale reflection settings.

The dendrogram was used to identify three clustering groups that can be seen to

correspond to three types of behaviour in Figure 7.3. While the grouping experiment

shows that observers do perceive different groups of stimuli to comprise different

types of material, there does not seem to be a consistent agreement as to what these

groups are. However, we will use these three groups to simplify discussion in the

next section.

7.3 Discussion

The literature has suggested cues people may use to infer surface gloss. Most pre-

vious work concentrated on specular highlights and “Distinctive Of Image gloss”

(DOI gloss) [Beck and Prazdny, 1981] [Blake and Bülthoff, 1990] [Kim et al., 2011]

[Marlow et al., 2011] [Pellacini et al., 2000] [Ferwerda et al., 2001] [Leloup et al.,

2011]. The microscale parameters were chosen so that DOI gloss was not obvious in

our stimuli. Therefore the specular highlights are likely to be the most important

cue. The specular highlights are affected by both surface geometry and reflection

properties [Kim et al., 2011] [Marlow et al., 2011]. We will now examine how surface

geometry affects our stimuli.

7.3.1 Analysis of Surface Geometry Statistics

To illustrate how roll-off factor β changes surface geometry, we plot a cross section

of the height maps of three surfaces with β = 1.6, 1.9, 2.5 (representing the three

groups). Since the surfaces used in the main experiment have different random phase

spectra, changes in the cross section due to β are not easily perceived. Instead, for

illustrative purposes we used three surfaces with an identical random phase spectrum

(Θ=0). Figure 7.5a shows the cross sections, from which we can have a general

impression of the changes of mesoscale roughness induced by changes in roll-off

factor β. The histograms of the height maps and x-direction partial derivatives are

shown in Figure 7.5b and 7.5c (since the surfaces used in this thesis are isotropic, only
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the x-direction partial derivatives are shown). The histograms show that rougher

surfaces (with smaller β) have a wider spread of distributions.

An alternative descriptor of surface geometry is the mean absolute slope angle

[Chantler, 1994]. The absolute slope angle is the angle, ignoring sign, between

local normal at each surface location and the z-axis (when we put the surface in

the x-y plane). The surface normals are obtained from the partial derivatives of the

surface height maps, as n = (−p,−q, 1), where p and q are the partial derivatives of

the surface height maps in x-direction and y-direction (as used in Section 4.2). The

mean absolute slope angles of the stimuli surfaces are shown as box plots against

roll-off factor β in Figure 7.6.

(a)

(b) (c)

Figure 7.5: (a): The cross sections of surfaces with β = 1.6, 1.9, 2.5. The surfaces

were generated using an identical random phase spectrum Θ = 0. (b): The his-

togram of height maps for surfaces in (a). (c): The histogram of partial derivatives

in x-direction for surfaces in (a).
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Figure 7.6: Box plot of the absolute slope angle statistics of the stimuli surfaces used

in the experiment. Each box is from the statistics of the surface with its roll-off factor

β denoted in x-axis. The green circle is the mean absolute slope angle, the central

red line is the median, the edges of the box are the 25th and 75th percentiles, the

whiskers extend to the most extreme data points (within 1.5 times distance between

25th and 75th percentiles).

90



We can see that when roll-off factor β decreases from 2.8 down to 2.5 (group 1),

the mean absolute slope angle is nearly constant. Then it increases slowly within

a small range [10◦, 35◦] (group 2). After β = 1.8 it increases rapidly up to 65◦

(group 3). The dispersion and negative skew of the slope angles also increase with

the decreasing of β. Comparing with the perceived gloss, we find that the mean

absolute slope angle does not correlate well. Group 3 is particularly at odds with

the changing direction of perceived gloss. We therefore decided to investigate the

behaviour of other characteristics of the stimuli.

7.3.2 Analysis of Specular Highlights Statistics

Beck and Prazdny [1981], Berzhanskaya et al. [2002], Berzhanskaya et al. [2005],

Olkkonen and Brainard [2011], Phillips et al. [2010], Anderson and Kim [2009], Kim

et al. [2011], Marlow et al. [2011] have shown that specular highlights are important

cues in gloss perception.

The exact properties of specular highlights that people use to infer surface gloss

have not been fully discovered. Beck and Prazdny [1981], Berzhanskaya et al. [2005]

have provided some heuristics and found that the size, brightness/strength, orien-

tation and placement(spread) of specular highlights affect the rating of people on

surface glossiness. However, there is no agreed algorithm for automatically extract-

ing specular highlights from an arbitrary image and most previous investigations

have manipulated specular highlights manually [Beck and Prazdny, 1981] [Berzhan-

skaya et al., 2002] [Berzhanskaya et al., 2005] [Kim et al., 2011] [Marlow et al., 2011].

Manual manipulation is impractical for our stimuli, instead we utilized simple image

processing techniques.

Since the entire stimuli set was rendered with an identical reflection setting, a simple

global threshold was imposed on the luminance of all stimuli images. Thus we used

a very crude definition of specular highlights, in that all pixels whose luminance

value is above 50% of the global luminance range were assumed to be “specular

highlight pixels”. The mean percentage of these pixels for each surface (denoted

as Php) is plotted against roll-off factor β in Figure 7.7. The correlation coefficient

between perceived gloss and this estimated percentage of highlight pixels is ρ = 0.90,

p < 0.001.
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Figure 7.7: The percentage of highlight pixels (Php) that are estimated using a global

threshold of 50% luminance.

Each connected component in the thresholded binary image was assumed to be a

specular highlight. The following properties were extracted. The mean luminance of

these connected components was used to represent the “strength” of specular high-

lights. The number of pixels contained within each connected component was used

to represent the “size” of specular highlight. The number of connected components

was used as the “number” of specular highlights. The two-dimensional centroid of

the connected component was used to represent the location of a specular highlight.

The average absolute deviation of these centroids (Euclidean distance) within each

image was used as a measure of the “spread” of specular highlights. Therefore, the

properties of specular highlights were quantified by these four image-based measure-

ments: “strength”, “size”, “number” and “spread”. Their mean values (averaged

across the 25 frames of each animation stimulus) are plotted against the roll-off

factor β in Figures 7.8, 7.9, 7.10, and 7.11 respectively.

The correlation coefficients were calculated between the perceived gloss and each of

these measurements and are shown as follows:

• strength: ρ = 0.77, p < 0.01;

• size: ρ = −0.13, p = 0.65;
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Figure 7.8: Estimated strength of specular highlights against the roll-off factor β.

Figure 7.9: Estimated size of specular highlights against the roll-off factor β.
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Figure 7.10: Estimated number of specular highlights against the roll-off factor β.

Figure 7.11: Estimated spread of specular highlights against the roll-off factor β.
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• number: ρ = 0.59, p < 0.05;

• spread: ρ = 0.12, p = 0.68.

It can be seen that the strength and the number of specular highlights both show

significant (p < 0.05) correlations but account for less than 80% of the variance.

This means that none of these properties are as well correlated with perceived gloss

as the estimated percentage of highlight pixels (Php shown in Figure 7.7). We will

further discuss the possible reasons for the behaviour of Php.

7.3.3 Discussion of the Behaviour of Php (Percentage of High-

light Pixels)

In this subsection we investigate possible reasons for the non-monotonic behaviour of

Php. In particular, we investigated the influence of environment and surface absolute

slope angle distributions on this parameter.

The non-monotonic shape of the percentage of highlight pixels (Php) is affected by

surface absolute slope angle distribution and illumination environment map. Fig-

ure 7.12 illustrates relationship between the absolute slope angle of a facet and the

zenith angle at which the environment map is sampled. For the sake of simplicity,

the facet was assumed to be a mirror reflector. The viewing direction is 0◦. Facets

whose absolute slope angle is above 45◦ will have very low probability of direct

reflection of the environment map. From Figure 7.6 we know that β affects the dis-

tribution of absolute slope angles. Therefore to investigate the effect of β and hence

absolute slope angle distribution on Php, we first estimated the number of highlight

pixels in the environment as a function of incident zenith angle and combined this

with the absolute slope angle distribution.

We cropped the sub-area of the illumination map (incident zenith angle θi 6 90◦) and

converted it to binary image Els using a crude global threshold (luminance greater

than 1 in its original high dynamic range) to extract pixels that were assumed to be

strong light sources. The resulting spatial distribution of highlight pixels is shown

in Figure 7.13.

Because the surfaces used in this thesis are isotropic, the effect of incident azimuth

angle (φi) can be removed. We calculated the percentage of highlight pixels in
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Figure 7.12: The schematic illustration of a facet sampling the environment illu-

mination map. Assumed to be a perfect reflector, the facet can only sample the

illumination hemisphere up to 90◦ with 45◦ absolute slope angle.
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Figure 7.13: The binary image (Els) is shown as highlighted yellow pixels which are

assumed to correspond to strong light sources. The luminance of the the environ-

ment map is also shown. The three red circles represent three incident zenith angles

respectively (θi = 0◦, 45◦, 90◦). Only the sub-area that the front-facing surface can

produce direct reflection was considered (θi 6 90◦).
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the environment map for different incident zenith angles θi, and consider it as the

probability of having strong light sources. This is expressed in Equation 7.1, and is

shown as bar chart in Figure 7.14a.

Pe(θi) =
1

N(θi)

∫ 360◦

0◦
Els(θi, φi)dφi (7.1)

Pe(θi) is the estimated percentage of strong light sources in the environment map

with incident zenith angle θi; Els(θi, φi) is the binary environment map after applying

the luminance threshold (Figure 7.13); N(θi) is the normalization factor which is

the total pixel numbers in the environment map with incident zenith angle θi.

The distribution Pe(θi) and the absolute slope angle distribution were used to esti-

mate the percentage of highlight pixels in Equation 7.2.

P ∗hp(β) =

∫ 90◦

0◦
Ps(θi/2; β) · Pe(θi)) dθi (7.2)

where P ∗hp(β) is the predicted percentage of highlight pixels for surface with roll-off

factor β; Ps(θi/2; β) is the distribution of surface absolute slope angle for surface

with roll-off factor β.

The predicted percentage of highlight pixels (P ∗hp) is shown in Figure 7.14b. The

drop-off when β decreases from 1.9 to 1.5 indicates that these surfaces are less likely

to have highlight pixels. The prediction of highlight pixels is not a complete expla-

nation to the number of specular highlights, however, the non-monotonic behaviour

provides insight as to their behaviour.

The correlation coefficient between the predicted (P ∗hp) and the estimated (Php)

percentage of highlight pixels is ρ = 0.64, p < 0.05. The correlation coefficient

between the prediction (P ∗hp) and perceived gloss is ρ = 0.72, p < 0.01. The author

would like to state that this is a simple explanation for the variations in highlight

pixels, under assumption that facet is mirror reflector, without consideration of more

complicated phenomenon such as self-occlusion, self-shadowing and inter-reflection.

These may be the reason of the inconsistency between the predicted and estimated

values, however, the non-monotonic inverted bell function shown in Figure 7.14b

is similar in form to the distribution of “highlights” shown in Figure 7.7 and this

suggests that the rapid fall off in the number of highlight pixels for β < 1.8 is due
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to the fact that fewer facets can “see” the bright light sources in the environment

(eg. see β = 1.6 in Figure 7.14a).

7.4 Summary

In this chapter, we used the sophisticated rendering system specified in the last

chapter to generate more realistic stimuli. These were used to show that the surface

mesoscale roughness parameter (β) significantly affects gloss perception. Although

all the surfaces were rendered with identical reflection settings, observers reported

that surfaces with different mesoscale roughness (β) have different gloss levels and

are made of different materials. In contrast to Ho et al. [2008], the experimen-

t showed that there is a non-monotonic relationship between perceived gloss and

mesoscale roughness.

As other researchers have suggested that the characteristics of specular highlight-

s are likely to provide important cues for perceiving surface gloss, four properties

of specular highlights and the percentage of highlight pixels (Php) were estimated

quantitatively using simple image processing techniques. We observed that per-

ceived gloss shows weak correlations with the estimated strength and the number

of specular highlights, but a stronger correlation with the estimated percentage of

highlight pixels (Php). We developed a simple model of highlights as a function of

slope angle and environment distributions and used this to explain the form of the

behaviour. Hence we believe that the distribution of intensities in the environment

map, together with the absolute slope angle distribution, significantly affects the

percentage of highlight pixels (Php) and the perceived gloss.

This chapter has shown that mesoscale roughness significantly affects perceived

gloss, however, it is well known that specular highlights are also affected by the

microscale roughness parameter (α). In the next chapter, these two categories of

roughness will be varied simultaneously and their joint effect on perceived gloss will

be investigated.
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(a)

(b) P ∗
hp

Figure 7.14: (a) The distribution of strong light sources in the illumination map is

shown as a bar chart against incident zenith angle θi (bottom X-axis) and left Y-axis.

Distributions of absolute slope angle (top X-axis) for three surfaces (β = 1.6, 1.9, 2.5)

are also plotted in red curves against right Y-axis. (b) The predicted percentage of

highlight pixels (P ∗hp) for each surface, which is calculated using Equation 7.2 and

the distributions of environment and absolute slope angle.
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Chapter 8

THE JOINT EFFECT OF

MESOSCALE ROUGHNESS

AND MICROSCALE

ROUGHNESS ON PERCEIVED

GLOSS

This thesis reports the investigation on how perceived gloss is affected by variations

in surface mesoscale and microscale parameters. The effect of variation in the mi-

croscale roughness parameter (α) on perceived gloss was studied in Chapter 5 using

a simple rendering environment. The results were consistent with those reported

in the literature in that perceived gloss was shown to increase with decreasing α.

In Chapter 7, the experimental results suggested that perceived gloss does not only

vary with variation of surface reflection properties, but is also related to mesoscale

roughness.

The aim of the work reported in this chapter therefore, was to measure the joint effect

of variations in surface mesoscale roughness and microscale roughness on perceived

gloss.

The experiment is described in Section 8.2. Section 8.3 introduces the conjoint

measurement model used to analyse the experiment results in Section 8.4. The
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discussion and conclusion are presented in Section 8.5. However, before describing

the experiment, we will examine the work of Ho et al. [2008] in more detail because

of its relevance.

8.1 The Work of Ho et al. [2008]

The work in this chapter was related to work carried out by Ho et al. [2008]. They

studied how observers judge bumpiness and glossiness of artificial 3D textures and

modelled the perceptual interactions of these two factors. Their experimental results

showed that increasing “bumpiness” increases perceived gloss, and higher glossiness

increases perceived bumpiness.

As discussed in Chapter 2, the surface model used by Ho et al. [2008] is artificial and

comprised of specific meso-structures (half ellipsoid). The manipulation of surface

geometry was performed by scaling surface height (surface RMS height). However, it

has been found that high RMS height surfaces are unrealistic [Padilla, 2008], which

naturally limits the range of roughness that can be investigated.

Ho et al. [2008] varied gloss levels by sampling both surface microscale roughness

and specular component parameters (α and ks). We will measure how perceived

gloss is affected by variations in mesoscale and microscale roughness exclusively,

hence ks will be kept constant.

The illumination condition used by Ho et al. [2008] was an area light positioned

above and to the left of observer. This simple illumination may limit the accuracy

and reliability of the perceptions of observers [Fleming et al., 2001] [Fleming et al.,

2003]. Cues from the specific surface model and lighting were discussed by Ho et al.

[2008]. They explained their findings by stating that “the bumpiness and glossiness

interaction is due to the imperfect cue learning, further visual and haptic training

is needed”.

Nevertheless, the conjoint measurement models used by Ho et al. [2008] are appro-

priate tools to study how perceived gloss is simultaneously affected by two or more

properties. They will be used in this chapter.

The magnitude roll-off factor (β) will be varied to generate surfaces with different
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levels of mesoscale roughness as described in Chapter 7. The microscale roughness

will be varied using the BRDF model parameter α. Using the more realistic methods

for stimuli generation described in Chapter 6, we conducted the experiment to inves-

tigate the joint effect of surface mesoscale roughness (β) and microscale roughness

(α) on gloss perception.

8.2 Experiment

8.2.1 Stimuli

Stimuli were generated for 5 levels of mesoscale roughness (β) and 5 levels of mi-

croscale roughness (α). The β values were selected based on the results of last chap-

ter. Since surfaces with β > 2.5 exhibited nearly constant change in perceived gloss,

the β values chosen were: β = 1.6, 1.8, 2.0, 2.2, 2.4. The microscale roughness α was

varied logarithmically, the values chosen were: α = 0.02, 0.01, 0.005, 0.0025, 0.00125.

The diffuse and specular component parameters of the BRDF model were fixed at

kd = 0.4, ks = 0.6. The five surfaces with α = 0.01 were taken from the stimuli set

of last chapter. Another twenty surfaces were generated using the method described

in Chapter 6 with different random phase seeds (Table 8.1). All surfaces have the

same RMS height (σ = 17 pixel width).

Table 8.1: The seeds used for generating random phase spectra of the stimuli sur-

faces.

α

0.02 0.01 0.005 0.0025 0.00125

β

1.6 16 2 30 44 58

1.8 18 4 32 46 60

2 20 6 34 48 62

2.2 22 8 36 50 64

2.4 24 10 38 52 66

Consistent with previous chapters, the microscale roughness levels used in producing

the stimuli were chosen to be lower than that required to exhibit DOI gloss [Pellacini

et al., 2000] [Ferwerda et al., 2001].
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Since β controls mesoscale roughness and α controls microscale roughness, it will

be convenient to denote the levels of these two kinds of roughness, instead of using

the real parameter values. Thus the surface S11 with parameter values α1 and β1 is

the roughest stimulus, while the surface S55 is the smoothest. Figure 8.1 shows the

central frame images (slant = 0◦) of each stimulus.

Figure 8.1: Sample images of the stimuli. The central image of each animation

stimuli (slant = 0◦) is shown. The x-axis denotes the mesoscale roughness level and

the y-axis denotes the microscale roughness level. These images have been adjusted

by a nonlinear gamma for display purpose.
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8.2.2 Observers

Eight näıve observers with normal or corrected to normal vision were paid to par-

ticipate in the experiment. All were students or University employees working in

different fields, were less than 35 years of age, mixed gender and nationalities.

8.2.3 Procedure

A magnitude estimation method was first used to measure the perceived gloss of

these stimuli in a pilot experiment, but produced noisy results. This may have been

due to the task overtaxing the observers [Ehrenstein and Ehrenstein, 1999].

Instead, a 2AFC (2 Alternatives Forced Choice) method was chosen as used by Ho

et al. [2008]. In each trial, a pair of stimuli was shown to the observer who was

asked to choose the glossier one. This method produces reliable results but is time

consuming. The full combination of the 25 stimuli (300 pairs) was randomly shown

to observers. Before the experiment, observers were shown printed instructions:

You will be presented with 300 pairs of rotating surface animations on

screen. You will finish one task: indicate which one you think is glossier

by pressing the left (the first one) or right (the second one) arrow key

on keyboard.

To control the experiment time, the duration of each animation stimulus was fixed.

In each trial, we randomly picked one stimulus from the pair and showed the anima-

tion once (rotating from 0◦ to −12◦, then to 12◦, and finally back to 0◦). Following

a 0.2 second blank, the other partner in that pair was shown in the same way.

The screen was then blanked until the observer made their decision on which one

was glossier by pressing the corresponding key. Then the next pair was shown im-

mediately. Each pair was repeated three times. All of the observers finished the

experiment in between 60-75 minutes.
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8.3 Conjoint Measurement Models

The results were tested against conjoint measurement models as described by Ho

et al. [2008]. They found that the additive model was sufficient for explaining their

results when compared to the independent model and the full model. In this chapter,

we also tested our results against these three models. The independent model was

used to examine whether both roughness parameters significantly affect perceived

gloss, and the full model was used to test whether the joint effect of these two kinds

of roughness is significant.

We will introduce these three models briefly as they are described in [Ho et al., 2008].

Since these models are nested, the independent model which has simplest form will

be introduced first, followed by the additive model and finally the full model. Symbol

G is used to denote the gloss estimated by these models; superscripts ‘I’, ‘A’, ‘F’ were

used to denote the independent model GI, additive model GA and full model GF

respectively; subscript ‘ij’ was used to denote the surface with microscale roughness

level ‘i’ and mesoscale roughness level ‘j’.

Independent model: The independent model assumes that the measured property

is dependent on only one factor while the contribution from the other factor is

assumed to be zero. In the work of Ho et al. [2008], the independent model was

only tested against gloss levels, since the ‘bumpiness’ was assumed not to affect

perceived gloss. However, we tested both ‘microscale roughness’ and ‘mesoscale

roughness’ using the independent model. Thus the two independent models for

perceived gloss GI
ij of surface Sij are as follows:

concerning α only: GIα
ij = GIα(αi) = GIα

i (8.1)

concerning β only: G
Iβ
ij = GIβ(βj) = G

Iβ
j (8.2)

We used similar notions as those used by Ho et al. [2008]. GIα
i and G

Iβ
j are the only

parameters of the two models respectively. For example, the model GIα has a total

of five parameters for the stimuli at five α levels: {GIα
1 , G

Iα
2 , G

Iα
3 , G

Iα
4 , G

Iα
5 }.

Additive model: The additive model assumes that microscale roughness α and

mesoscale roughness β affect perceived gloss separately and additively. The per-

ceived gloss in the additive model GA
ij is the sum of contributions from microscale
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roughness GAα(αi) and mesoscale roughness GAβ(βj) for surface Sij:

GA
ij = GAα(αi) +GAβ(βj) = GAα

i +G
Aβ
j (8.3)

Full model: The full model uses a parameter for every surface stimulus so that it

fits data exactly. In the full model, the perceived gloss GF
ij is not constrained to be

additive and is instead described as a function of mixed contributions from α and

β:

GF
ij = GF(αi, βj) (8.4)

We used the same decision model as Ho et al. [2008] to compare the results. The

paired comparison results of observers on perceived gloss of surface Sij and Skl were

assumed to be a noise-contaminated decision:

∆ = G∗kl −G∗ij + ε, ε ∼ Gaussian(0, σ2
g) (8.5)

where the * represents the model, which can be “I”, “A”, or “F”. ∆ > 0 if surface

Skl is judged glossier than surface Sij. ε represents the precision of observers in

judgement, which we modelled as a Gaussian distribution with 0 mean and variance

σ2
g.

We used the same method as Ho et al. [2008] to preprocess the model by setting

GIα
1 = G

Iβ
1 = GAα

1 = G
Aβ
1 = GF

11 = 0 as the anchors and scaling model parameters

for σg = 1. The left parameters need to be estimated. There are 4 free parameters

in each independent model (GIα
2 , . . . , G

Iα
5 ; G

Iβ
2 , . . . , G

Aβ
5 ), 8 free parameters in the

additive model (GAα
2 , . . . , GAα

5 , G
Aβ
2 , . . . , G

Aβ
5 ), and 24 free parameters in the full

model (GF
ij; i = 1...5, j = 1...5 and ij 6= 1). We estimated the remaining free

parameters using maximum likelihood estimation with the package from Knoblauch

and Maloney [2009].

8.4 Results and Analysis

8.4.1 Raw Results

The results from all observers showed a similar trend and the averaged results across

all eight observers are shown in Figure 8.2. This comparison matrix shows the raw
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experimental results and is not easy to observe patterns in. We will therefore fit

conjoint measurement models using these data.

Figure 8.2: Glossiness judgement results averaged across all 8 observers (the right

matrix). The grey levels of the squares in the matrix represent the proportion of time

that a surface Skl was perceived to be glossier than another surface Sij, for each pair-

wise comparison. Microscale roughness (α) level i (or k) is indicated by the large

numerical labels (1,2,...,5), and mesoscale roughness (β) level j (or l) is indicated by

the small numerical labels (1,2,...5). The blocks in the solid grid represent different

α levels, and the bolded block is magnified and shown for example (the left matrix).

The grey level of the bolded square in the left matrix represents the proportion of

time that surface S34 was perceived to be glossier than surface S12.

8.4.2 Fitting Conjoint Measurement Models

The pair-wise comparison results from the experiment were used to fit the conjoint

measurement models for each observer. The resulting model parameters were nor-

malized before averaging across observers. Appendix D shows the fitting results of

each observer.

The two independent models were estimated first, and the mean values of the esti-

mated parameters are shown in Figure 8.3. As the independent model defines itself,

the perceived gloss is assumed to be accounted for by only one property. Using the

estimated independent model parameters, we can obtain the predicted perceived

gloss from the two independent models for every stimulus. These are shown in
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Figure 8.4.

(a) GIα (b) GIβ

Figure 8.3: Fitted independent model parameters (the mean values averaged across

all observers). (a): independent model concerning α only. (b): independent model

concerning β only. The error bars denote ± standard errors.

(a) Prediction of GIα
ij (b) Prediction of G

Iβ
ij

Figure 8.4: Perceived gloss predicted by the two independent models. (a) is from

the independent model that concerns α only. (b) is from the independent model

that concerns β only.

We then fitted the additive model. All eight observers showed very similar respons-

es, and we plotted the means of the model parameters in Figure 8.5 with error bars

showing the ± standard error. This model suggests that observers judged glossi-

ness using additive cues affected by mesoscale roughness and microscale roughness.

Since the contribution from α shows a linear shape, we ran a linear regression on

GAα
i against α level, obtained coefficients: slope = 0.165, intercept = −0.107 with

statistics: R2 = 0.966, F (1, 3) = 85.97, p < 0.01.

109



Figure 8.5: Fitted parameters of the additive model. These are mean values av-

eraged across the eight observers with the error bars denoting ± standard errors.

The two curves correspond to the parameters GAα
i (i = 1...5) and G

Aβ
j (j = 1...5)

respectively. The estimated gloss of a particular surface is the sum of the values

from corresponding parameters.

Figure 8.6 shows the predictions of perceived gloss using the additive model, which

were scaled using the method suggested by Ho et al. [2008].

The full model parameters were estimated last. The mean results across all ob-

servers are shown in Figure 8.7 against β levels and α levels separately with error

bars denoting the ± standard errors. These parameters were directly used as the

predicted perceived gloss from the full model, shown in Figure 8.8.

8.4.3 Comparing Conjoint Measurement Models

The log likelihood values for fitting the two independent models, the additive mod-

el, and the full model are shown in Table 8.2. To statistically test whether both

mesoscale roughness (β) and microscale roughness (α) have significant influence on

perceived gloss, we compared the additive model with the two independent models

using a nested hypothesis test as suggested by Ho et al. [2008]. The likelihood-ratio

was calculated and the results of all eight observers revealed that the independent

model was rejected at Bonferroni-corrected level with significance p < 0.001. The
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Figure 8.6: Perceived gloss predicted by the additive model.

(a) (b)

Figure 8.7: Fitted parameters of the full model. These are mean values averaged

across the eight observers with the error bars denoting ± standard errors. The left

one is the plot against β levels, where separate lines denote different α levels. The

right one is the plot against α levels, where separate lines denote different β levels.
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Figure 8.8: Perceived gloss predicted by the full model.

χ2 values can be found in Table 8.2. This suggests that both kinds of roughness

significantly affect perceived gloss. This finding is consistent with that reported by

Ho et al. [2008].

When comparing the additive model with the full model, Ho et al. [2008] found that

the additive model can adequately account for the interaction between bumpiness

and glossiness, based on the results that 3 out of 6 observers showed significant

results in a nested hypothesis test. However, this means that half of their results

cannot be accounted for by the additive model. They conducted linear regression on

the predictions of the additive model against those of the full model, and obtained

high R2 values for all observers. However, there is no dependence between the full

model and the additive model, or one-way causal effect from one to the other.

To test whether the additive model accounts for our results, we compared the addi-

tive model with the full model in a nested hypothesis test. Table 8.2 shows the χ2

values for the test. In contrast to Ho et al. [2008], we found that the results of all

eight observers were significant at Bonferroni-corrected level (p < 0.01). This sug-

gests that the full model is significantly better than the additive model at describing

the joint effect of mesoscale and microscale roughness on perceived gloss.

From the models, we can see that perceived gloss shows a monotonic relationship

with α. This finding is consistent with literature [Pellacini et al., 2000] [Fleming

et al., 2004b] [Ho et al., 2008] and Chapter 5. However, at each α level, the effect
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of mesoscale roughness, shows a non-monotonic (asymmetric bell-type curve) rela-

tionship with perceived gloss, which is consistent with the finding in Chapter 7, but

differs from the findings of Ho et al. [2008] with regard to “bumpiness”.
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8.4.4 Difference between the Additive and Full Models

In our experiment, the full model was found to be better than the additive model at

describing the results. We compared the predictions of these two models for further

analysis.

We calculated the differences between the full and additive model predictions, and

show these in Figure 8.9.

Figure 8.9: 3D scatter plot of the residual differences between the full model and the

additive model predictions. The dots are mean values averaged across all observers.

The error bars show the ± standard errors.

Figure 8.9 is not informative for inspecting the pattern of differences between the

models, we therefore used separate plots. Figure 8.10 shows the predictions of

additive model as dashed lines, and shows the full model as solid lines. Note that

the full model parameters are the same as those shown in Figure 8.7 but the error

bars were removed for clarity.

From Figure 8.10, we can see that the general difference between the full model and

the additive model is that the additive model curves are parallel, whereas the full

model curves show a clear changing pattern. We will further analyse this in more

detail.
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(a)

(b)

Figure 8.10: Predictions of the additive model and the full model are shown together

for comparison. The full model predictions are plotted in solid lines while the

additive model predictions are plotted in dashed lines. (a): gloss is plotted as a

function of β level with separate curves denoting different α levels. (b): gloss is

plotted as a function of α level with separate lines denoting different β levels. The

legend in the plot denotes each curve, where the number next to α and β denotes the

level and the letter “F” and “A” denote the full model or additive model respectively.
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In Figure 8.10a, the changing pattern of full model curves is that the asymmetry of

these curves varies with α. As α level increases, the full model predictions of surfaces

with β1 and β2 fall below the corresponding additive model predictions; and the full

model predictions of surfaces with β3 and β4 rise and climb over the corresponding

additive model predictions.

To numerically show this asymmetry, we calculated the difference di between the

full model predictions on the two sides of the peak surface Si3 for each α level i in

Figure 8.10a as:

di = [GF(αi, β4) +GF(αi, β5)]− [GF(αi, β1) +GF(αi, β2)] (8.6)

di is plotted in Figure 8.11. The increasing of di with α level indicates the increasing

asymmetry of full model curves.

Figure 8.11: The difference between full model parameters on the two sides of the

peak (Si3) in Figure 8.10a for each α level.

We also ran t-tests on surface pairs with β level β2 and β4 for each α level. The

test revealed that for the first two α levels there is no significant difference between

surfaces:

• S12 and S14: t(7) = −0.078, p = 0.94

• S22 and S24: t(7) = −0.384, p = 0.712

But from α level 3, the difference becomes significant:
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• S32 and S34: t(7) = −2.828, p < 0.05

• S42 and S44: t(7) = −5.829, p < 0.01

• S52 and S54: t(7) = −3.842, p < 0.01.

In Figure 8.10b, the difference between the full model and the additive model is pre-

sented by the variations in the slopes of regressed lines against α levels. The linear

regression of additive model predictions (the dashed parallel lines in Figure 8.10b)

has identical slope coefficient 0.0871. Linear regressions of the full model predic-

tions against α levels were conducted for each β level, the resulting coefficients and

statistics are shown in Table 8.3. We can see that as β level increases, the slope of

the full model increases until β reaches level 4, and slightly decreases for β level 5.

Slopes with β level 1 and 2 are lower than that of additive model; slopes with β

level 3, 4 and 5 are greater than that of additive model.

Table 8.3: Linear regressions of the full model parameters against α level for each

β level. The R2, F , and p-value of linear regression are also shown.

β level
Coefficients Linear Regression Stats.

slope intercept R2 F p

1 0.0611 -0.0505 0.96 69.94 < 0.01

2 0.0778 0.2921 0.88 22.99 < 0.05

3 0.1334 0.3562 0.93 42.95 < 0.01

4 0.1464 0.2125 0.97 106.98 < 0.01

5 0.1040 0.1030 0.96 81.90 < 0.01

8.5 Conclusion and Discussion

In this chapter, we investigated how perceived gloss is jointly affected by mesoscale

roughness (β) and microscale roughness (α). Our work is related with Ho et al.

[2008], who studied ‘bumpiness’ and glossiness.

The findings are consistent with Ho et al. [2008] in that the microscale roughness

exhibits a monotonic relationship with perceived gloss and the mesoscale roughness

significantly affects perceived gloss. However, we have two novel findings that are

at variance with Ho et al. [2008].
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The relationship between perceived gloss and mesoscale roughness is obviously non-

monotonic for all microscale roughness levels used in the experiment (consistent with

Chapter 7). Ho et al. [2008] also noticed a slight decrease of gloss for their highest

bump level surfaces and described it as “the trend was less clearly monotonic”. They

did not proceed to investigate ‘bumpier’ surfaces. We examined rougher surfaces

and found that perceived gloss decreases for all α levels.

We tested our experimental results against the conjoint measurement models as used

by Ho et al. [2008]. They found that the additive model is sufficient to describe

the interaction between bumpiness and glossiness, whereas we found the additive

model is rejected when compared with the full model for all eight observers in our

experiment.

The difference between the full model and the additive model is the nonlinear com-

ponent. We described this joint effect with a full conjoint measurement model.
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Chapter 9

SUMMARY AND

CONCLUSIONS

This thesis reports research that has investigated the effects of mesoscale and mi-

croscale surface parameters on perceptions of gloss. In this chapter we summarise

the thesis argument, present the contribution of the research, and discuss the impact

and future work.

9.1 Summary

9.1.1 Thesis Goal, Scope and Strategy

After presenting a survey into perceived and physical gloss it was concluded that lit-

tle work has been carried out on gloss perception of “rough” surfaces. We therefore

chose to investigate both surface geometry and reflection (mesoscale and microscale)

factors. The reflection (microscale) factors were modelled using BRDF because of

the popularity in literature. After an extended review of previous work concern-

ing surface geometry, 1/fβ noise was chosen as surface mesoscale model because

it is parsimonious (having only two parameters) and produces surfaces of natural

appearance.

These surface geometry and reflection models were described further in Chapter 3.

The RMS height (σ) and magnitude roll-off factor (β) of 1/fβ noise surfaces were
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identified as ‘mesoscale’ roughness parameters [Padilla, 2008]. Four analytical BRD-

F models were described and three models were chosen to be used in this thesis.

The BRDF parameter α was identified as the parameter which corresponds to ‘mi-

croscale’ roughness as it controls the microfacet distribution.

The investigation strategy was then discussed and the experiments were divided into

two main stages according to the sophistication of the rendering system.

9.1.2 Experiments

Stage 1

Chapter 4 investigated the apparent gloss of high RMS height Lambertian surfaces

reported by Wijntjes and Pont [2010]. Using the simple rendering system (described

in Section 4.2), observers reported that gloss increased as surface RMS height was

increased, leveling off after RMS height σ > 150.

Using the same conditions as those described in Chapter 4, Chapter 5 investigated

the effect of variations in parameters of the Ward BRDF model on perceived gloss

using a moderate RMS height 1/fβ noise surface. We found a monotonic relationship

between perceived gloss and the three Ward parameters, which was modelled by

a linear function accounting for 83% of the variance. Moreover, we found that

moderate RMS height Ward surfaces can produce similar levels of gloss to those

produced by the high RMS height Lambertian surfaces described in Chapter 4.

Stage 2

In this stage we modified the rendering system to allow more realistic stimuli to be

produced. The improvements included the use of: physically based path tracing, a

microfacet BRDF model, an HDR real-world illumination map and rotating surface

animations. These improvements were found to remove the apparent gloss observed

previously on high RMS height Lambertian surfaces. This illusory gloss is likely to

be an artifact of the simple rendering system used in Chapter 4.

To overcome the limitations of manipulating surface RMS roughness [Padilla, 2008],

the magnitude roll-off factor β of 1/fβ noise surfaces was varied. The stimuli were
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rendered with a constant BRDF model. A subsequent experiment showed that per-

ceived gloss has a non-monotonic relationship with mesoscale roughness (β). Further

analysis suggested that perceived gloss is related to the percentage of highlight pix-

els. A model of highlight pixel behaviour as a function of the distributions of surface

absolute slope angle and illumination intensity was proposed.

In Chapter 8, we investigated the joint effect of mesoscale roughness and microscale

roughness on perceived gloss by simultaneously varying the roll-off factor (β) and the

roughness parameter (α) of the BRDF model. Analysis using conjoint measurement

models showed that the additive model was insufficient to describe the response

of observers when compared with the full model, which is at variance with the

literature. The difference between additive and full models is the nonlinear influence

of mesoscale roughness and microscale roughness on perceived gloss.

9.2 Contributions

We believe that the main contributions of this thesis are that it has been shown:

1. that realistic rendering environments are important to the perception of gloss

of rough surfaces,

2. that perceived gloss is a non-monotonic function of mesoscale roughness (β)

and

3. that the joint effect of mesoscale roughness and microscale roughness on per-

ceived gloss can only be described by a full conjoint model.

Concerning point 1, the use of an HDR environment illumination and physically

based rendering described in Chapter 6 shows that realistic rendering is important.

In particular, the apparent gloss of high RMS height Lambertian surfaces reported

in Chapter 4 was not observed and is likely to be an artifact of the simple rendering

system used by Wijntjes and Pont [2010].

Concerning point 2, the use of more realistic stimuli and constant gloss level (BRDF

model) showed that there is a non-monotonic relationship between perceived gloss

and mesoscale roughness. The literature reported part of this phenomenon (the

monotonic increasing phase) but the research reported here shows that this is fol-
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lowed by an inverse relationship (perceived gloss falls off rapidly when surface is

very rough).

Finally we showed that when surface roughness varies in two categories: mesoscale

and microscale, the joint effect is more complicated than that reported previously,

and that a full conjoint measurement model is required.

9.3 Discussion and Future Work

Perceptions of textured surfaces have been investigated in terms of separate char-

acteristics which are closely related to surface geometry, such as roughness [Padilla,

2008], directionality [Shah, 2010] and randomness [Emrith et al., 2010], whereas

we investigated a perceptual characteristic affected by both surface geometry and

reflectance properties. The work reported in this thesis will serve as a progress to

discover more systematically how rough, textured surfaces are perceived by human-

s. The conclusions from this work will provide basis support to investigate more

general perceptions of surface textures, such as perceptual texture similarity. For a

wider community, the work reported in this thesis would benefit industry fields such

as virtual design, manufacturing, cosmetics and cosmetology.

We also would like to address a few open questions about the perceived gloss of

rough surfaces and potential investigation in future work.

Metrics for Perceived Gloss

As discussed in the literature survey, measurement of gloss using a gloss meter is

a relative value referring to a specific material, which minimises the interference of

other factors. In contrast, “perceived gloss” is affected by many factors and Ged

et al. [2010] conjectured that the reasoning mechanism that the vision system em-

ploys requires rich cues from surface appearance. Perceived gloss as investigated

in this thesis is characterised by a relative difference scale obtained under specific

conditions. Therefore, deriving a general metric for perceived gloss requires consid-

erable extra work especially concerning the affects of environmental conditions and

is outside the scope of this thesis but should be considered for future work.

Illumination Environment
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Two illumination conditions (collimated white light and an HDR real-world environ-

ment map) were used to render experimental stimuli, but the relationship between

the perceived gloss of rough surfaces and the characteristics of illumination was

not studied. In future work, this can be investigated using the method of stimuli

modelling developed in this study.

DOI Gloss

The DOI cue was deliberately made not obvious in our stimuli. Relatively smooth

surfaces at the mesoscale (such as group 1 surfaces in Chapter 7) were rated less

glossy than medium rough ones (group 2) by observers. We conjectured that this is

caused by the cue of specular highlights. However, these relatively smooth surfaces

can exhibit DOI reflection with particular settings of microscale roughness parameter

(α). Whether the DOI cue compensates the specular highlight cue would be an

interesting question to address.

Predicting Perceived Gloss from Image Features

The investigation of specular highlights conducted in the discussions of Chapter 7

was not experimentally tested in this thesis. Previous work reported in the litera-

ture only examined the effect of highlight properties on perceived gloss [Beck and

Prazdny, 1981] [Berzhanskaya et al., 2005]. We estimated five properties and found

that none of them can satisfactorily explain the behaviour of perceived gloss in our

experiments. The perceived gloss seems to be related to hybrid properties of spec-

ular highlights. Thus a reliable model based on image features is likely to require

several dimensions and the various trends of the properties we observed suggest that

a simple linear model may not suffice. Thus a more complicated model of perceived

gloss as a function of surface appearance is worth future work. This requires defin-

ing computational features of specular highlights and developing novel techniques

to precisely extract these features.
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Appendix A

STIMULI IMAGES USED IN

CHAPTER 5

This appendix shows the stimuli images used in the gloss estimation experiment

(Exp 1) in Chapter 5. They are listed in five figures (Figures A.1, A.2, A.3, A.4 and

A.5), corresponding to the five sampled values of the Ward model parameter α. In

each figure, the four columns of images correspond to the four sampled values of kd

and the five rows of images correspond to the five sampled values of ks.
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Figure A.1: Stimuli images with α=0.0498. kd=0.285, 0.576, 0.867, 1.157 from left

to right; ks=0.0186, 0.051, 0.083, 0.116, 0.148 from top to bottom.
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Figure A.2: Stimuli images with α = 0.0718. kd=0.285, 0.576, 0.867, 1.157 from left

to right; ks=0.0186, 0.051, 0.083, 0.116, 0.148 from top to bottom.
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Figure A.3: Stimuli images with α = 0.0938. kd=0.285, 0.576, 0.867, 1.157 from left

to right; ks=0.0186, 0.051, 0.083, 0.116, 0.148 from top to bottom.
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Figure A.4: Stimuli images with α = 0.116. kd=0.285, 0.576, 0.867, 1.157 from left

to right; ks=0.0186, 0.051, 0.083, 0.116, 0.148 from top to bottom.
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Figure A.5: Stimuli images with α = 0.138. kd=0.285, 0.576, 0.867, 1.157 from left

to right; ks=0.0186, 0.051, 0.083, 0.116, 0.148 from top to bottom.
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Appendix B

EXPERIMENT ON GLOSS

TRANSFER FUNCTION

BETWEEN ILLUMINATION

MAPS

We repeated the experiment conducted by Doerschner et al. [2010a] using 1/fβ noise

surfaces. The aim is to investigate whether the perceived gloss transfer function-

s across illumination maps are also linear and linearly transitive by using rough

surfaces as they found by using spheres.

We employed the same experiment and analysis methods as those used by Doer-

schner et al. [2010b]. The following describes the experiment.

B.1 Stimuli

The surface model was held constant, which was a 1/fβ noise surface with magnitude

roll-off factor β = 2.3, RMS height σ = 22, random phase seed Θ = 0. The surface

was rendered using the method described in Chapter 6 (the Ashikhmin-Shirley model

and path tracing). The illumination were varied among three environment maps as

those used by Doerschner et al. [2010a] (shown in Figure 6.2). These were two indoor

scenes (LF1 and LF3) and one outdoor scene (LF2).
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The specular component parameter ks of the Ashikhmin-Shirley model was equally

sampled into 10 levels of gloss (from 0.25 to 0.7 in steps of 0.05). The diffuse

component parameter kd and exponent parameter α were held constant (0.3 and

0.01 respectively). There are totally 30 stimuli images (3 illumination maps × 10

gloss levels). Example images are shown in Figure B.1.

B.2 Procedure

The staircases comparison method was used to find the equal gloss points [Doer-

schner et al., 2010a]. Thirty interleaved one-up, one-down staircases were run and

each of them was run for 50 trials.

In each staircase, one stimulus of a gloss level under one environment map was

shown aside with the test stimulus of gloss level Gn under another environment

map. Observers took a Two-Alternative Forced Choice (2AFC) task by indicating

which one is glossier. The response decided the next gloss level Gn+1 shown for the

test image. Details about the method was described by Doerschner et al. [2010a].

Four observers participated in the experiment, all of which have normal or corrected

to normal vision. Each observer made 1500 comparisons totally, all of them finished

in one hour.

B.3 Results

Model-free psychometric functions were fitted and the equal gloss level points were

derived by inferencing 50% threshold [Zchaluk and Foster, 2009]. The gloss transfer

functions between each pair of environment maps (Γ1→2(G), Γ2→3(G), Γ1→3(G))

were expressed by fitting the equal gloss points to linear functions. To examine

the transitivity of the transfer functions, we substituted Γ2→3(G) to Γ1→2(G) and

obtained the predicted transfer function from LF1 to LF3: Γ̂1→3(G).

Figure B.2 shows the results of two observers (S1 and S2). The equal gloss points are

shown as circles, whilst the error bars represent the ± standard deviation. The fitted

linear functions are shown as the solid lines whilst the predicted transfer functions

are shown as the dashed line in the bottom plots.
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Figure B.1: Five images of surfaces with different gloss level under three environment

maps are shown. These images have been adjusted by a nonlinear gamma for display

purpose.
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S1 S2

Γ1→2(G) Γ1→2(G)

Γ2→3(G) Γ2→3(G)

Γ1→3(G) and Γ̂1→3(G) Γ1→3(G) and Γ̂1→3(G)

Figure B.2: Gloss transfer functions for observer S1 and S2. Equal gloss levels are

represented by circles and the fitted linear functions are plotted in solid lines. The

bottom plots show the predicted transfer function of Γ1→2(Γ2→3(G)) in dotted line,

which is not well consistent with the measured transfer function Γ1→3(G) (solid line).

146



The results from these two observers show that:

• the transfer functions between any two environment maps can be fitted by a

linear function. This agrees with the findings of Doerschner et al. [2010a].

• the predicted transfer function (Γ̂1→3(G)) between LF1 and LF3 is obviously

not consistent with the measured one (Γ1→3(G)). This indicates that the linear

transitivity of the transfer functions was not observed.

Inconsistently, the other two observers did not perform as expected and the results

did not showed clear trend. No equal gloss level points or transfer functions were

obtained.

B.4 Summary

From this repetition experiment we found that: for the rough surfaces as we used

here, the linear transfer functions of perceived gloss between illumination maps were

not obtained from all observers we used; the linear transitivity of transfer functions

was not observed. Perceived gloss of rough surfaces is affected when changing envi-

ronment maps, but this cannot be modelled or predicted using linear functions as

the literature reported.
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Appendix C

THE EFFECT OF VARIATION

IN RANDOM PHASE

SPECTRUM ON PERCEIVED

GLOSS

This appendix describes the pilot experiment conducted prior to the main exper-

iment of Chapter 7. The purpose is to examine whether the variation of seed for

generating random phase spectrum (Θ) affects the perceived gloss of 1/fβ noise

surfaces.

C.1 Experiment

We measured the perceived gloss of 1/fβ noise surfaces generated using a single

random phase spectrum and varied random phase spectra. As a pilot experiment,

the task and procedure were the same as the main experiment of Chapter 7.

Two groups of stimuli (14 β levels × 2 conditions of Θ) were produced using the

method and parameters as those described in Section 7.1 with modifications in

random phase spectra generation. One group used a single seed (Θ = 0), the other

group used varied seeds.

Seven observers took part in the pilot experiment. Four observers were shown single
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seed stimuli and three observers were shown varied seed stimuli. The raw results

were presented in Figure C.1 and Figure C.2 respectively. Figure C.3 shows the

arithmetic means of normalized data and geometric means of raw data for the two

groups.

Figure C.1: Experiment results for the four observers who were shown stimuli that

were generated using a single random phase spectrum.

Figure C.2: Experiment results for the three observers who were shown stimuli that

were generated using varied seeds for random phase spectra.

A mixed design ANOVA was conducted on the results of these two groups. The

statistical test shows that there is no significant effect of the seed for random phase

spectrum (Θ) on perceived gloss (F (1, 5) = 0.173 < 1, p = 0.694). This indicates

that the perceived gloss of surfaces generated using fixed and varied seeds for random

phase spectra was in general the same. The estimated marginal means of perceived
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Figure C.3: Mean results of the pilot experiment. The top graph shows the means

across the four observers who were shown stimuli generated using fixed seed random

phase. The bottom graphs shows the means across the three observers who were

shown stimuli generated using varied seed random phase. The arithmetic means of

normalised data and geometric means of raw data are plotted against the left and

right y-axis respectively.
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gloss for random phase spectrum (Θ) are shown in Table C.1 and plotted in a bar

chart with 95% confidence intervals in Figure C.4.

Table C.1: Estimated marginal means of perceived gloss of the two groups (fixed

seed and varied seed).

Seed for random phase Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound

Single 0.563 0.031 0.482 0.643

Varied 0.543 0.036 0.450 0.635

Figure C.4: Estimated marginal means of perceived gloss for random phase spec-

trum. The error bars denote 95% confidence interval.

C.2 Conclusion

This pilot experiment indicates that the seed for generating random phase spectrum

does not significantly affect perceived gloss of 1/fβ noise surface. Therefore, the

constraint of using a fixed seed for generating random phase spectrum imposed in

the experiments of Chapters 4, 5 and 6 was relaxed to using varied seeds in later

experiments.
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Appendix D

FITTED PARAMETERS OF

CONJOINT MEASUREMENT

MODELS

This appendix shows the fitted parameters of conjoint measurement models for

the eight observers in the experiment of Chapter 8. These are listed in five figures.

Figure D.1 and Figure D.2 show the fitted parameters of the two independent models

(GIα and GIβ) respectively. Figure D.3 shows the fitted parameters of the additive

model (GA). Figure D.4 and Figure D.5 show the fitted parameters of the full model

(GF), which are separately plotted against levels of β and α.

These results were used to calculate the means and standard errors across all eight

observers, resulting the plots in Figure 8.3, Figure 8.5 and Figure 8.7.
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Figure D.1: Fitted parameters for the independent model GIα .
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Figure D.2: Fitted parameters for the independent model GIβ .
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Figure D.3: Fitted parameters for the additive model GA.
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Figure D.4: Fitted parameters for the full model GF. These are plotted against β

levels. Different curves denote α levels.
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Figure D.5: Fitted parameters for the full model GF. These are plotted against α

levels. Different curves denote β levels.
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Appendix E

EXPERIMENT RESULTS

Table E.1: The gloss estimation experiment results of Chapter 4. The left column

denotes the ten Lambertian surfaces with different RMS height (σ) used in the

experiment of Chapter 4. The numbers are the index i of surface Sσi . The other

columns show the results from the ten observers.

Sσi s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

1 0.30 0.19 0.53 0.36 0.39 0.56 0.50 0.41 0.40 0.26

2 0.25 0.25 0.44 0.35 0.44 0.55 0.52 0.32 0.47 0.35

3 0.33 0.20 0.46 0.43 0.59 0.60 0.50 0.36 0.48 0.21

4 0.38 0.30 0.47 0.49 0.59 0.60 0.55 0.45 0.43 0.34

5 0.40 0.32 0.64 0.75 0.51 0.80 0.57 0.44 0.47 0.48

6 0.35 0.35 0.64 0.80 0.68 0.62 0.54 0.43 0.50 0.65

7 0.29 0.50 0.70 0.80 0.55 0.76 0.59 0.44 0.53 0.57

8 0.35 0.53 0.60 0.58 0.58 0.78 0.59 0.55 0.66 0.21

9 0.38 0.71 0.73 0.58 0.67 0.81 0.58 0.61 0.66 0.35

10 0.32 0.60 0.59 0.77 0.71 0.88 0.62 0.56 0.53 0.24
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Table E.2: The gloss estimation experiment results of Chapter 5 (Exp 1). The left

three columns denote the 100 stimuli which are represented by the combinations of

the three Ward model parameters (kd, ks and α) used in the experiment. The other

columns show the results from the ten observers.

kd ks α s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0.29 0.02 0.05 0.14 0.94 0.72 0.48 0.30 0.92 0.60 0.36 0.72 0.33

0.29 0.02 0.07 0.04 0.39 0.34 0.10 0.09 0.90 0.59 0.19 0.59 0.41

0.29 0.02 0.09 0.03 0.40 0.16 0.00 0.16 0.48 0.24 0.10 0.16 0.59

0.29 0.02 0.12 0.00 0.40 0.19 0.00 0.04 0.43 0.15 0.07 0.56 0.65

0.29 0.02 0.14 0.00 0.05 0.05 0.00 0.04 0.04 0.27 0.07 0.46 0.39

0.29 0.05 0.05 0.76 0.75 0.88 0.93 0.84 1.00 0.96 0.88 0.98 0.73

0.29 0.05 0.07 0.42 0.76 0.65 0.75 0.61 0.72 0.62 0.40 0.80 0.52

0.29 0.05 0.09 0.20 0.58 0.23 0.20 0.20 0.90 0.39 0.32 0.55 0.29

0.29 0.05 0.12 0.15 0.34 0.43 0.35 0.10 0.62 0.29 0.14 0.65 0.37

0.29 0.05 0.14 0.11 0.15 0.22 0.07 0.28 0.22 0.55 0.16 0.56 0.36

0.29 0.08 0.05 0.61 0.76 0.91 1.00 0.96 0.99 0.99 0.96 0.92 0.63

0.29 0.08 0.07 0.76 0.69 0.88 0.93 0.96 0.93 0.84 0.61 0.96 0.51

0.29 0.08 0.09 0.34 0.62 0.48 0.33 0.54 0.82 0.48 0.39 0.71 0.35

0.29 0.08 0.12 0.21 0.59 0.32 0.27 0.34 0.60 0.54 0.16 0.51 0.66

0.29 0.08 0.14 0.13 0.61 0.39 0.00 0.30 0.50 0.34 0.12 0.27 0.58

0.29 0.12 0.05 0.91 0.91 0.96 1.00 1.00 1.00 0.92 0.95 0.96 0.90

0.29 0.12 0.07 0.95 0.66 0.85 0.99 1.00 0.99 0.90 0.93 0.85 0.59

0.29 0.12 0.09 0.75 0.55 0.82 0.84 0.85 0.99 0.82 0.58 0.70 0.74

0.29 0.12 0.12 0.21 0.51 0.51 0.53 0.25 0.97 0.56 0.22 0.77 0.47

0.29 0.12 0.14 0.11 0.50 0.41 0.33 0.53 0.50 0.54 0.31 0.41 0.36

0.29 0.15 0.05 0.96 0.91 0.96 1.00 1.00 1.00 1.00 0.98 0.98 0.38

0.29 0.15 0.07 0.94 0.59 0.88 0.96 0.99 0.97 0.86 0.93 0.90 0.79

0.29 0.15 0.09 0.93 0.62 0.70 0.91 1.00 0.84 0.88 0.77 0.89 0.56

0.29 0.15 0.12 0.76 0.68 0.67 0.71 0.83 0.78 0.61 0.65 0.76 0.84

0.29 0.15 0.14 0.10 0.34 0.44 0.44 0.32 0.47 0.53 0.43 0.69 0.13

0.58 0.02 0.05 0.02 0.36 0.46 0.39 0.39 0.69 0.60 0.16 0.59 0.36

Continued on Next Page. . .
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Table E.2 – continued from previous page

kd ks α s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0.58 0.02 0.07 0.10 0.11 0.15 0.04 0.20 0.60 0.17 0.30 0.57 0.17

0.58 0.02 0.09 0.00 0.27 0.09 0.01 0.11 0.18 0.08 0.07 0.37 0.78

0.58 0.02 0.12 0.01 0.10 0.14 0.00 0.14 0.08 0.12 0.07 0.32 0.59

0.58 0.02 0.14 0.00 0.02 0.12 0.00 0.09 0.20 0.08 0.03 0.31 0.26

0.58 0.05 0.05 0.54 0.60 0.61 0.92 0.68 0.96 0.64 0.41 0.86 0.36

0.58 0.05 0.07 0.30 0.32 0.45 0.82 0.62 0.82 0.70 0.33 0.71 0.37

0.58 0.05 0.09 0.15 0.31 0.33 0.10 0.32 0.53 0.25 0.09 0.71 0.23

0.58 0.05 0.12 0.06 0.27 0.32 0.35 0.12 0.44 0.24 0.27 0.37 0.17

0.58 0.05 0.14 0.09 0.08 0.15 0.38 0.06 0.22 0.11 0.12 0.47 0.35

0.58 0.08 0.05 0.85 0.75 0.54 0.89 0.53 0.94 0.72 0.42 0.78 0.64

0.58 0.08 0.07 0.81 0.47 0.65 0.70 0.67 0.95 0.59 0.57 0.95 0.44

0.58 0.08 0.09 0.52 0.38 0.65 0.41 0.51 0.65 0.71 0.50 0.57 0.36

0.58 0.08 0.12 0.16 0.08 0.39 0.26 0.19 0.53 0.40 0.30 0.51 0.30

0.58 0.08 0.14 0.08 0.30 0.27 0.05 0.08 0.45 0.43 0.07 0.61 0.05

0.58 0.12 0.05 0.73 0.47 0.68 0.68 0.75 0.91 0.53 0.53 0.90 0.40

0.58 0.12 0.07 0.81 0.47 0.59 0.81 0.68 0.96 0.70 0.56 0.75 0.17

0.58 0.12 0.09 0.64 0.38 0.44 0.77 0.76 0.76 0.58 0.26 0.62 0.66

0.58 0.12 0.12 0.33 0.34 0.52 0.67 0.82 0.34 0.33 0.24 0.51 0.38

0.58 0.12 0.14 0.12 0.33 0.53 0.41 0.21 0.50 0.34 0.13 0.42 0.22

0.58 0.15 0.05 0.70 0.65 0.61 0.82 0.73 0.96 0.75 0.73 0.80 0.27

0.58 0.15 0.07 0.91 0.68 0.50 0.94 0.79 0.82 0.61 0.61 0.95 0.17

0.58 0.15 0.09 0.89 0.36 0.65 0.65 0.59 0.81 0.76 0.43 0.82 0.67

0.58 0.15 0.12 0.56 0.36 0.49 0.79 0.70 0.88 0.45 0.38 0.52 0.67

0.58 0.15 0.14 0.36 0.26 0.40 0.47 0.21 0.54 0.37 0.19 0.35 0.50

0.87 0.02 0.05 0.08 0.37 0.21 0.40 0.24 0.59 0.38 0.09 0.51 0.33

0.87 0.02 0.07 0.09 0.03 0.09 0.03 0.26 0.16 0.19 0.04 0.29 0.49

0.87 0.02 0.09 0.05 0.30 0.19 0.01 0.04 0.22 0.09 0.18 0.40 0.41

0.87 0.02 0.12 0.00 0.07 0.08 0.06 0.07 0.01 0.03 0.02 0.30 0.19

0.87 0.02 0.14 0.00 0.00 0.05 0.00 0.00 0.01 0.00 0.02 0.19 0.20

0.87 0.05 0.05 0.62 0.40 0.47 0.76 0.30 0.69 0.62 0.10 0.57 0.37

Continued on Next Page. . .
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Table E.2 – continued from previous page

kd ks α s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0.87 0.05 0.07 0.37 0.27 0.49 0.74 0.76 0.47 0.41 0.36 0.73 0.31

0.87 0.05 0.09 0.04 0.28 0.16 0.18 0.13 0.16 0.22 0.10 0.29 0.46

0.87 0.05 0.12 0.10 0.30 0.18 0.20 0.07 0.01 0.21 0.25 0.10 0.38

0.87 0.05 0.14 0.01 0.11 0.10 0.00 0.00 0.11 0.00 0.01 0.24 0.11

0.87 0.08 0.05 0.59 0.23 0.39 0.76 0.65 0.92 0.42 0.41 0.63 0.33

0.87 0.08 0.07 0.72 0.26 0.39 0.58 0.66 0.59 0.41 0.50 0.64 0.67

0.87 0.08 0.09 0.46 0.30 0.46 0.74 0.33 0.78 0.57 0.16 0.57 0.47

0.87 0.08 0.12 0.11 0.28 0.28 0.21 0.29 0.44 0.31 0.20 0.16 0.11

0.87 0.08 0.14 0.17 0.04 0.21 0.01 0.13 0.44 0.08 0.04 0.34 0.11

0.87 0.12 0.05 0.52 0.47 0.44 0.45 0.81 0.71 0.41 0.41 0.77 0.29

0.87 0.12 0.07 0.76 0.44 0.52 0.54 0.31 0.71 0.41 0.32 0.82 0.43

0.87 0.12 0.09 0.50 0.39 0.42 0.76 0.72 0.85 0.42 0.28 0.54 0.49

0.87 0.12 0.12 0.34 0.07 0.65 0.41 0.62 0.72 0.40 0.16 0.42 0.61

0.87 0.12 0.14 0.16 0.01 0.23 0.31 0.61 0.47 0.27 0.14 0.17 0.49

0.87 0.15 0.05 0.59 0.30 0.45 0.65 0.48 0.84 0.45 0.46 0.47 0.06

0.87 0.15 0.07 0.67 0.08 0.47 0.83 0.67 0.88 0.45 0.38 0.79 0.13

0.87 0.15 0.09 0.76 0.33 0.29 0.59 0.67 0.88 0.39 0.41 0.51 0.96

0.87 0.15 0.12 0.57 0.38 0.47 0.51 0.67 0.78 0.44 0.20 0.51 0.10

0.87 0.15 0.14 0.41 0.05 0.38 0.59 0.37 0.48 0.56 0.34 0.36 0.21

1.16 0.02 0.05 0.13 0.10 0.14 0.13 0.29 0.49 0.18 0.17 0.56 0.58

1.16 0.02 0.07 0.04 0.25 0.22 0.07 0.09 0.22 0.07 0.03 0.49 0.65

1.16 0.02 0.09 0.07 0.00 0.10 0.00 0.03 0.09 0.02 0.03 0.23 0.03

1.16 0.02 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.53

1.16 0.02 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.17 0.06

1.16 0.05 0.05 0.46 0.15 0.24 0.70 0.69 0.68 0.36 0.34 0.46 0.03

1.16 0.05 0.07 0.33 0.29 0.18 0.51 0.37 0.47 0.54 0.31 0.28 0.42

1.16 0.05 0.09 0.09 0.19 0.30 0.43 0.20 0.21 0.32 0.05 0.71 0.43

1.16 0.05 0.12 0.09 0.01 0.15 0.03 0.12 0.07 0.24 0.03 0.21 0.14

1.16 0.05 0.14 0.11 0.06 0.16 0.21 0.09 0.16 0.12 0.01 0.31 0.21

1.16 0.08 0.05 0.41 0.08 0.23 0.54 0.39 0.61 0.47 0.30 0.14 0.56

Continued on Next Page. . .
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Table E.2 – continued from previous page

kd ks α s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

1.16 0.08 0.07 0.52 0.15 0.47 0.64 0.54 0.79 0.60 0.34 0.51 0.88

1.16 0.08 0.09 0.40 0.08 0.39 0.61 0.60 0.52 0.36 0.44 0.54 0.68

1.16 0.08 0.12 0.21 0.33 0.17 0.27 0.77 0.32 0.17 0.13 0.50 0.51

1.16 0.08 0.14 0.16 0.19 0.23 0.34 0.51 0.16 0.19 0.08 0.21 0.21

1.16 0.12 0.05 0.41 0.07 0.36 0.59 0.88 0.51 0.43 0.54 0.50 0.01

1.16 0.12 0.07 0.33 0.15 0.41 0.68 0.76 0.63 0.41 0.35 0.51 0.62

1.16 0.12 0.09 0.42 0.01 0.34 0.79 0.77 0.85 0.33 0.36 0.41 0.65

1.16 0.12 0.12 0.43 0.11 0.40 0.41 0.67 0.76 0.50 0.27 0.44 0.43

1.16 0.12 0.14 0.23 0.08 0.31 0.34 0.57 0.38 0.48 0.06 0.45 0.49

1.16 0.15 0.05 0.35 0.35 0.32 0.72 0.75 0.72 0.41 0.40 0.49 0.61

1.16 0.15 0.07 0.55 0.11 0.31 0.84 0.66 0.55 0.49 0.50 0.33 0.14

1.16 0.15 0.09 0.45 0.09 0.31 0.65 0.79 0.48 0.41 0.42 0.56 0.64

1.16 0.15 0.12 0.41 0.19 0.45 0.52 0.53 0.75 0.44 0.48 0.52 0.89

1.16 0.15 0.14 0.34 0.21 0.36 0.74 0.47 0.22 0.35 0.40 0.59 0.33

Table E.3: Results of the adjustment experiment in Chapter 5 for kd. The first

column denotes the ten reference Lambertian surfaces with different RMS height

(σ). The other columns are the adjusted kd from the ten observers.

Sσi s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

1 1.26 1.30 1.19 1.10 1.29 1.17 1.22 1.22 1.38 1.21

2 1.14 1.06 1.01 1.07 1.10 1.09 1.01 1.08 1.16 1.06

3 0.97 0.97 0.89 1.02 1.00 0.95 0.78 0.95 1.08 1.02

4 0.81 0.77 0.81 0.85 0.89 0.88 0.70 0.87 0.96 0.85

5 0.73 0.87 0.74 0.76 0.70 0.79 0.68 0.76 0.85 0.63

6 0.71 0.65 0.70 0.60 0.70 0.68 0.66 0.71 0.67 0.74

7 0.57 0.46 0.60 0.51 0.61 0.60 0.58 0.58 0.76 0.54

8 0.48 0.39 0.54 0.45 0.53 0.56 0.44 0.50 0.63 0.42

9 0.46 0.48 0.39 0.41 0.43 0.47 0.42 0.51 0.55 0.20

10 0.34 0.36 0.35 0.36 0.34 0.46 0.40 0.48 0.50 0.27
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Table E.4: Results of the adjustment experiment in Chapter 5 for ks. The first

column denotes the ten reference Lambertian surfaces with different RMS height

(σ). The other columns are the adjusted ks from the ten observers.

Sσi s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

1 0.13 0.12 0.13 0.14 0.11 0.12 0.12 0.12 0.13 0.10

2 0.12 0.12 0.12 0.13 0.11 0.12 0.12 0.11 0.12 0.13

3 0.10 0.09 0.14 0.11 0.11 0.11 0.12 0.10 0.11 0.10

4 0.09 0.08 0.10 0.09 0.10 0.10 0.11 0.09 0.10 0.13

5 0.08 0.07 0.10 0.09 0.09 0.08 0.09 0.08 0.09 0.11

6 0.07 0.07 0.06 0.07 0.08 0.06 0.08 0.07 0.07 0.09

7 0.05 0.07 0.07 0.06 0.08 0.06 0.07 0.06 0.08 0.07

8 0.04 0.05 0.06 0.04 0.08 0.05 0.05 0.05 0.06 0.08

9 0.04 0.04 0.05 0.03 0.06 0.03 0.05 0.05 0.06 0.08

10 0.03 0.03 0.04 0.02 0.06 0.03 0.04 0.04 0.04 0.06

Table E.5: Results of the adjustment experiment in Chapter 5 for α. The first

column denotes the ten reference Lambertian surfaces with different RMS height

(σ). The other columns are the adjusted α from the ten observers.

Sσi s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

1 0.14 0.13 0.12 0.13 0.12 0.13 0.13 0.13 0.13 0.12

2 0.13 0.12 0.12 0.13 0.12 0.12 0.13 0.12 0.12 0.12

3 0.11 0.11 0.13 0.11 0.11 0.11 0.12 0.11 0.11 0.11

4 0.10 0.10 0.11 0.10 0.10 0.11 0.12 0.10 0.11 0.11

5 0.09 0.09 0.11 0.10 0.09 0.09 0.11 0.09 0.10 0.12

6 0.08 0.09 0.08 0.08 0.09 0.09 0.10 0.08 0.08 0.10

7 0.07 0.09 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.10

8 0.07 0.07 0.07 0.06 0.08 0.07 0.08 0.07 0.07 0.09

9 0.07 0.06 0.07 0.06 0.08 0.06 0.07 0.06 0.06 0.09

10 0.06 0.06 0.07 0.05 0.08 0.06 0.07 0.06 0.06 0.08
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Table E.6: Perceived gloss from the experiment in Chapter 7. The first column

denotes the 14 stimuli with different β. The other columns are the perceived gloss

(raw data from magnitude estimation) from the nine observers.

β s1 s2 s3 s4 s5 s6 s7 s8 s9

1.5 10 0.5 26 40 0.1 2 1 1 1

1.6 20 1 28 60 1 2 1 20 1

1.7 40 1 30 70 5.5 3 3 40 4

1.8 80 2 50 85 9.8 5 8 60 8

1.9 85 1.5 52 90 9.8 5 10 100 8

2.0 100 2 80 90 9.8 5.5 10 95 7.5

2.1 96 4 85 80 10 5 9 90 6.5

2.2 95 4 90 80 10 5 8 80 7

2.3 75 3.5 70 75 7.5 4 6 70 7

2.4 70 3 65 70 9.5 4 6 60 7

2.5 60 2.5 55 60 5 3.5 5 25 7

2.6 60 2.5 54 60 6 3.5 5 30 6.5

2.7 65 2.5 55 65 5 3.5 5 35 6.5

2.8 50 2 54 60 4.5 3.5 5 30 6.5
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Table E.7: The pair comparison experiment results of Chapter 8. The left four

columns are the full 300 pair combinations of the 25 stimuli denoted using the

roughness levels (subscripts) of surface Sij and surface Skl, where i and k denote

α levels and j and l denote β levels. The other columns show the results from the

eight observers, which are the times that surface Skl was judged to be glossier than

surface Sij. Note that each pair was shown three times, thus the maximum number

is three.

αi βj αk βl s1 s2 s3 s4 s5 s6 s7 s8

1 1 1 2 3 3 3 3 3 3 3 3

1 1 1 3 3 3 3 2 3 3 2 3

1 1 1 4 3 3 3 3 3 3 3 3

1 1 1 5 3 3 3 3 2 3 3 3

1 1 2 1 1 3 1 2 1 3 0 2

1 1 2 2 3 3 3 3 3 3 3 3

1 1 2 3 3 3 3 3 2 3 3 3

1 1 2 4 3 3 3 2 3 3 3 2

1 1 2 5 3 3 3 3 3 3 1 3

1 1 3 1 2 3 3 2 3 2 2 3

1 1 3 2 3 2 3 3 3 3 3 3

1 1 3 3 3 3 3 3 3 3 3 3

1 1 3 4 2 3 3 2 3 3 3 2

1 1 3 5 3 3 3 3 3 3 3 3

1 1 4 1 3 3 3 3 3 3 3 3

1 1 4 2 3 3 3 3 3 3 3 3

1 1 4 3 2 3 3 3 3 3 3 3

1 1 4 4 3 3 3 2 2 3 3 2

1 1 4 5 3 3 3 3 3 3 3 3

1 1 5 1 3 2 3 1 3 3 3 3

1 1 5 2 3 3 3 3 3 3 3 1

1 1 5 3 3 3 3 3 3 3 3 3

1 1 5 4 3 3 3 3 3 3 3 3

Continued on Next Page. . .
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Table E.7 – continued from previous page

αi βj αk βl s1 s2 s3 s4 s5 s6 s7 s8

1 1 5 5 3 3 3 2 3 3 3 3

1 2 1 3 2 3 3 3 2 3 2 3

1 2 1 4 1 2 2 2 0 2 2 0

1 2 1 5 1 2 3 0 2 0 2 1

1 2 2 1 0 0 0 0 0 1 1 0

1 2 2 2 2 3 2 3 3 2 3 2

1 2 2 3 2 3 3 3 3 3 3 3

1 2 2 4 2 3 3 3 3 1 3 2

1 2 2 5 1 3 3 0 1 0 1 0

1 2 3 1 1 0 0 1 0 0 0 0

1 2 3 2 2 2 3 3 3 3 3 2

1 2 3 3 3 3 3 3 3 3 2 3

1 2 3 4 3 3 3 2 3 2 3 3

1 2 3 5 2 3 2 2 1 0 3 1

1 2 4 1 1 0 0 0 1 0 1 0

1 2 4 2 3 3 3 3 3 3 3 3

1 2 4 3 3 3 3 3 2 3 3 3

1 2 4 4 2 3 3 3 3 3 3 3

1 2 4 5 2 3 2 1 2 0 2 1

1 2 5 1 3 0 0 1 0 0 3 1

1 2 5 2 3 2 3 3 3 3 3 3

1 2 5 3 3 3 3 3 3 3 3 3

1 2 5 4 3 3 3 2 3 3 3 3

1 2 5 5 3 3 3 3 3 3 3 3

1 3 1 4 3 1 0 0 1 1 1 0

1 3 1 5 1 0 0 0 0 0 0 0

1 3 2 1 0 0 0 1 1 0 0 0

1 3 2 2 2 0 3 2 2 2 2 3

1 3 2 3 3 3 3 3 3 2 3 3

1 3 2 4 2 3 3 3 3 2 3 3
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Table E.7 – continued from previous page

αi βj αk βl s1 s2 s3 s4 s5 s6 s7 s8

1 3 2 5 1 2 2 0 1 0 2 3

1 3 3 1 1 0 0 0 0 0 0 0

1 3 3 2 3 0 0 2 3 3 3 2

1 3 3 3 3 2 3 3 3 2 3 3

1 3 3 4 3 3 2 3 3 0 3 2

1 3 3 5 0 1 2 0 0 0 2 0

1 3 4 1 2 0 0 1 0 0 1 0

1 3 4 2 3 2 3 3 3 2 3 3

1 3 4 3 3 3 3 3 3 2 3 3

1 3 4 4 3 3 3 3 3 3 3 3

1 3 4 5 2 2 3 0 0 0 3 0

1 3 5 1 2 0 0 0 3 0 0 1

1 3 5 2 3 2 3 1 3 3 3 3

1 3 5 3 3 3 3 3 3 3 3 3

1 3 5 4 3 3 3 2 3 3 3 3

1 3 5 5 3 3 2 1 3 3 3 2

1 4 1 5 1 0 0 0 1 0 1 0

1 4 2 1 3 0 0 0 0 0 1 0

1 4 2 2 3 2 2 3 1 3 2 3

1 4 2 3 3 3 3 3 3 3 3 3

1 4 2 4 3 3 3 2 3 2 3 3

1 4 2 5 0 1 2 1 1 2 3 1

1 4 3 1 1 0 0 1 1 0 0 1

1 4 3 2 1 2 1 3 3 3 3 3

1 4 3 3 3 3 3 2 2 3 2 3

1 4 3 4 3 3 3 3 3 3 3 3

1 4 3 5 2 2 3 2 1 0 3 2

1 4 4 1 2 0 0 1 1 0 2 0

1 4 4 2 2 2 3 3 3 3 3 3

1 4 4 3 3 3 3 3 3 3 3 3
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Table E.7 – continued from previous page

αi βj αk βl s1 s2 s3 s4 s5 s6 s7 s8

1 4 4 4 2 3 3 2 3 3 3 3

1 4 4 5 3 3 1 2 2 2 3 1

1 4 5 1 1 0 0 0 1 1 1 2

1 4 5 2 3 2 3 3 3 3 3 3

1 4 5 3 3 3 3 3 3 3 3 3

1 4 5 4 3 3 3 3 3 3 3 3

1 4 5 5 3 3 3 2 3 3 3 2

1 5 2 1 2 0 0 0 2 0 0 1

1 5 2 2 3 3 3 3 2 3 2 3

1 5 2 3 3 3 3 2 3 3 3 3

1 5 2 4 3 3 3 3 3 3 3 3

1 5 2 5 3 3 3 3 3 3 3 2

1 5 3 1 2 0 1 0 1 0 0 1

1 5 3 2 3 3 2 3 2 3 3 3

1 5 3 3 3 3 3 3 3 3 3 3

1 5 3 4 2 3 3 3 2 3 3 3

1 5 3 5 3 3 3 3 3 3 3 2

1 5 4 1 3 0 0 0 2 0 1 2

1 5 4 2 3 3 2 3 3 3 3 3

1 5 4 3 3 3 3 3 3 3 3 3

1 5 4 4 3 3 3 3 3 3 3 3

1 5 4 5 3 3 3 3 3 3 3 3

1 5 5 1 3 0 0 0 1 1 1 2

1 5 5 2 3 3 3 3 3 3 3 3

1 5 5 3 3 3 3 3 3 3 3 3

1 5 5 4 3 3 3 3 3 3 3 3

1 5 5 5 3 3 3 3 3 3 2 3

2 1 2 2 3 3 3 2 3 3 3 3

2 1 2 3 3 3 3 3 3 3 3 3

2 1 2 4 3 3 3 2 3 3 3 3
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Table E.7 – continued from previous page

αi βj αk βl s1 s2 s3 s4 s5 s6 s7 s8

2 1 2 5 2 3 3 3 3 3 3 3

2 1 3 1 3 2 2 2 1 2 3 3

2 1 3 2 3 3 3 2 3 3 3 3

2 1 3 3 3 3 3 3 3 3 3 2

2 1 3 4 3 3 3 2 2 3 3 3

2 1 3 5 3 3 3 2 3 3 2 3

2 1 4 1 3 2 3 2 3 1 2 3

2 1 4 2 3 3 3 3 3 3 3 3

2 1 4 3 3 3 3 1 3 3 3 3

2 1 4 4 3 3 3 1 3 3 3 2

2 1 4 5 2 3 3 3 3 3 3 2

2 1 5 1 2 3 3 3 3 3 3 1

2 1 5 2 2 3 3 3 2 3 3 3

2 1 5 3 3 3 3 3 3 3 3 3

2 1 5 4 3 3 3 3 3 3 3 3

2 1 5 5 3 3 3 3 3 3 3 3

2 2 2 3 1 3 3 2 3 2 3 1

2 2 2 4 0 3 3 2 2 1 2 0

2 2 2 5 1 3 2 0 0 0 1 0

2 2 3 1 0 1 0 0 0 0 0 0

2 2 3 2 1 0 0 2 2 1 2 2

2 2 3 3 2 3 3 3 3 2 2 3

2 2 3 4 2 2 2 3 2 1 3 3

2 2 3 5 1 1 2 1 1 0 1 0

2 2 4 1 1 0 0 0 0 0 1 0

2 2 4 2 3 3 3 2 3 2 3 2

2 2 4 3 2 3 3 3 3 2 3 3

2 2 4 4 3 3 3 3 3 3 2 3

2 2 4 5 2 2 3 0 1 0 3 0

2 2 5 1 1 0 0 0 0 0 0 1
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Table E.7 – continued from previous page

αi βj αk βl s1 s2 s3 s4 s5 s6 s7 s8

2 2 5 2 3 3 3 2 3 2 1 1

2 2 5 3 3 3 3 3 3 3 3 3

2 2 5 4 3 3 3 1 3 3 3 3

2 2 5 5 2 3 2 2 3 0 3 1

2 3 2 4 1 1 0 0 0 1 1 0

2 3 2 5 0 0 0 0 0 0 0 0

2 3 3 1 0 0 0 0 0 0 0 0

2 3 3 2 1 0 0 0 0 0 1 0

2 3 3 3 3 2 3 2 3 2 3 3

2 3 3 4 1 2 2 1 0 1 2 1

2 3 3 5 0 1 0 1 0 1 1 0

2 3 4 1 0 0 0 0 0 0 0 0

2 3 4 2 1 0 1 1 0 2 1 1

2 3 4 3 3 3 3 2 3 3 3 3

2 3 4 4 3 3 3 3 3 3 3 3

2 3 4 5 0 2 0 1 0 0 2 0

2 3 5 1 2 0 0 0 0 0 0 0

2 3 5 2 1 1 0 1 3 1 2 1

2 3 5 3 3 3 3 3 3 3 3 3

2 3 5 4 3 3 3 2 3 3 3 3

2 3 5 5 3 3 1 1 3 0 2 1

2 4 2 5 1 0 0 1 0 1 0 0

2 4 3 1 0 0 0 0 0 0 1 0

2 4 3 2 1 1 0 1 2 2 0 2

2 4 3 3 2 2 2 3 3 3 3 3

2 4 3 4 3 1 2 3 3 1 3 3

2 4 3 5 1 0 0 1 1 0 3 1

2 4 4 1 1 0 0 0 0 0 0 1

2 4 4 2 2 1 2 2 2 2 1 3

2 4 4 3 3 3 3 2 3 3 3 3
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Table E.7 – continued from previous page

αi βj αk βl s1 s2 s3 s4 s5 s6 s7 s8

2 4 4 4 3 3 3 3 3 3 3 3

2 4 4 5 2 0 0 1 1 0 2 1

2 4 5 1 0 0 0 0 0 0 0 0

2 4 5 2 3 3 1 3 3 3 3 3

2 4 5 3 3 3 3 3 3 3 3 3

2 4 5 4 3 3 3 3 3 3 3 3

2 4 5 5 2 3 2 1 3 0 2 2

2 5 3 1 2 0 1 1 1 1 1 1

2 5 3 2 2 0 1 3 3 3 2 3

2 5 3 3 3 3 3 3 3 3 3 3

2 5 3 4 3 3 3 3 3 3 3 3

2 5 3 5 2 1 2 3 1 1 2 1

2 5 4 1 2 0 0 0 1 0 1 2

2 5 4 2 2 2 2 3 3 3 2 3

2 5 4 3 3 3 3 3 2 3 3 3

2 5 4 4 3 3 3 3 3 3 3 3

2 5 4 5 3 3 1 1 2 1 2 1

2 5 5 1 3 0 1 2 0 1 2 1

2 5 5 2 3 3 3 3 3 3 3 3

2 5 5 3 3 3 3 3 3 3 3 3

2 5 5 4 3 3 2 2 3 3 3 3

2 5 5 5 3 3 3 3 3 2 3 3

3 1 3 2 3 3 3 3 3 3 2 3

3 1 3 3 3 3 3 3 2 3 2 3

3 1 3 4 3 3 3 3 3 3 3 2

3 1 3 5 3 3 3 3 3 3 3 2

3 1 4 1 2 2 3 3 3 1 1 2

3 1 4 2 3 3 3 2 2 3 3 3

3 1 4 3 3 2 3 3 3 3 3 2

3 1 4 4 3 3 3 2 3 3 3 3
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Table E.7 – continued from previous page

αi βj αk βl s1 s2 s3 s4 s5 s6 s7 s8

3 1 4 5 3 3 3 3 3 3 3 2

3 1 5 1 3 1 3 3 3 2 2 1

3 1 5 2 2 3 3 3 3 3 3 3

3 1 5 3 3 3 3 1 3 3 3 3

3 1 5 4 2 3 3 2 3 3 3 3

3 1 5 5 2 3 3 3 3 2 3 3

3 2 3 3 3 3 3 3 3 3 3 3

3 2 3 4 2 2 3 2 1 0 3 1

3 2 3 5 3 3 3 0 0 0 2 0

3 2 4 1 1 0 0 0 0 1 1 0

3 2 4 2 1 1 3 2 3 2 3 3

3 2 4 3 3 3 3 3 3 3 3 3

3 2 4 4 3 3 3 3 2 3 3 3

3 2 4 5 1 3 3 1 0 0 2 0

3 2 5 1 1 0 0 1 0 0 1 0

3 2 5 2 2 2 3 3 3 2 2 2

3 2 5 3 2 3 3 3 3 3 3 3

3 2 5 4 3 2 3 3 3 3 3 3

3 2 5 5 3 3 3 3 2 3 3 1

3 3 3 4 0 1 0 0 0 0 0 2

3 3 3 5 1 0 0 0 0 0 1 0

3 3 4 1 0 0 0 0 0 0 0 0

3 3 4 2 1 0 0 0 0 0 0 0

3 3 4 3 1 3 3 2 3 1 2 3

3 3 4 4 1 2 3 3 2 2 3 2

3 3 4 5 1 1 0 0 0 0 1 0

3 3 5 1 2 0 1 0 0 0 0 0

3 3 5 2 1 0 0 1 2 2 0 1

3 3 5 3 3 3 3 0 3 3 3 1

3 3 5 4 3 2 3 2 2 3 2 3
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Table E.7 – continued from previous page

αi βj αk βl s1 s2 s3 s4 s5 s6 s7 s8

3 3 5 5 2 2 1 1 1 0 0 0

3 4 3 5 1 1 0 1 0 0 0 0

3 4 4 1 1 0 0 0 1 0 0 0

3 4 4 2 3 1 2 1 1 3 1 1

3 4 4 3 3 3 3 3 3 3 3 3

3 4 4 4 3 3 2 3 3 3 3 3

3 4 4 5 0 0 0 2 0 0 0 1

3 4 5 1 2 0 0 0 0 0 0 0

3 4 5 2 0 2 1 2 3 1 2 2

3 4 5 3 2 2 3 2 3 3 3 3

3 4 5 4 3 3 2 2 3 3 3 3

3 4 5 5 0 2 0 2 3 1 0 1

3 5 4 1 2 0 0 0 2 0 0 2

3 5 4 2 0 0 3 2 3 3 0 3

3 5 4 3 3 3 2 3 3 3 3 3

3 5 4 4 3 3 3 2 3 3 2 3

3 5 4 5 2 3 2 0 2 0 3 0

3 5 5 1 0 0 0 2 0 1 0 2

3 5 5 2 1 1 3 3 3 3 3 3

3 5 5 3 2 2 3 3 3 3 3 3

3 5 5 4 3 3 3 3 3 3 2 3

3 5 5 5 3 2 2 2 3 3 3 2

4 1 4 2 2 3 3 3 3 3 3 3

4 1 4 3 3 3 3 3 3 3 3 3

4 1 4 4 1 3 3 3 3 3 3 3

4 1 4 5 1 3 3 3 3 3 3 2

4 1 5 1 2 1 0 0 2 1 2 3

4 1 5 2 2 3 3 3 3 3 3 3

4 1 5 3 1 3 3 3 3 3 3 3

4 1 5 4 3 3 3 3 3 3 3 3
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Table E.7 – continued from previous page

αi βj αk βl s1 s2 s3 s4 s5 s6 s7 s8

4 1 5 5 2 3 3 3 3 3 3 2

4 2 4 3 3 2 3 3 3 3 3 3

4 2 4 4 3 3 3 3 3 1 3 1

4 2 4 5 1 3 2 1 0 1 2 0

4 2 5 1 0 0 0 1 0 0 0 0

4 2 5 2 1 0 2 3 2 2 2 0

4 2 5 3 3 3 3 3 2 3 3 3

4 2 5 4 3 3 3 3 2 3 3 3

4 2 5 5 3 3 2 2 1 0 2 0

4 3 4 4 2 3 0 1 0 1 1 0

4 3 4 5 0 0 0 0 0 0 0 0

4 3 5 1 0 1 0 0 0 0 0 0

4 3 5 2 0 0 0 0 0 0 0 0

4 3 5 3 2 1 3 3 2 2 1 0

4 3 5 4 1 2 1 0 0 0 2 2

4 3 5 5 1 0 0 1 0 0 1 0

4 4 4 5 0 0 0 1 0 0 1 0

4 4 5 1 0 0 0 0 0 0 2 0

4 4 5 2 0 1 1 0 2 0 1 1

4 4 5 3 0 0 1 1 3 3 2 1

4 4 5 4 2 2 2 2 1 2 3 3

4 4 5 5 2 0 0 0 0 0 0 0

4 5 5 1 1 0 0 1 0 0 0 0

4 5 5 2 1 0 1 2 3 3 1 3

4 5 5 3 3 3 3 3 3 3 3 3

4 5 5 4 2 3 3 3 3 3 3 2

4 5 5 5 2 3 1 2 3 2 2 3

5 1 5 2 3 3 3 3 3 3 3 3

5 1 5 3 3 3 3 3 3 3 3 3

5 1 5 4 3 3 3 3 3 3 3 3
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Table E.7 – continued from previous page

αi βj αk βl s1 s2 s3 s4 s5 s6 s7 s8

5 1 5 5 2 3 3 3 3 3 3 3

5 2 5 3 3 3 3 3 1 3 3 2

5 2 5 4 3 3 2 1 0 3 3 3

5 2 5 5 2 3 2 1 1 0 2 0

5 3 5 4 1 1 2 1 0 0 1 2

5 3 5 5 0 0 0 1 0 0 0 0

5 4 5 5 1 1 0 0 0 0 0 0
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