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Abstract

Texture analysis has been an extremely active and fruitful area of research over the
past twenty years. Many advances have been made, but the effect of variation in lighting
conditions on automated texture classification and segmentation has received little
attention. This thesis shows that the direction of the illuminant is an important factor that
should be taken into account when analysing images of three-dimensional texture.

A frequency domain model is presented which predicts that both the directional
characteristics and the variance of images of three-dimensional texture can be affected by
changes in illuminant vector. Results of simulations and laboratory experiments support
these predictions.

The responses of three sets of texture measures are analysed using a test set of
isotropic and directional textures. The results show that the feature measures’ outputs are
affected by changesin illuminant direction. These changes are also shown to significantly
increase the error rates of statistical classifiers implemented using the three feature sets.
Normalisation of images is shown to reduce the error rates in some cases.

The frequency domain model of image texture is further developed using empirical
data and the resulting model used to design a set of tilt-compensation filters. These filters
are used to pre-process images to reduce the effects of changes in the angle of tilt of the
illuminant. Application of the filters to the test image set reduced the classification errors

associ ated with directional textures.
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Chapter 1

| ntroduction

1.1. Motivation

The original motivation for the work described in this thesis stemmed from a desire to
segment underwater video images taken by remotely operated vehicles (ROVS). It was
thought that the ability to interpret these images would, in conjunction with the
processing of data from range sensors, enable simple vision tasks to be undertaken; such
as pose determination of the cylindrical components of underwater structures.
Unfortunately the sub-sea environment is an extremely hostile one in which to attempt
such tasks. Back scatter from plankton and other suspended matter, marine growth,
corrosion, and the fact that the majority of underwater structures are painted dark grey,
mean that images are often noisy and of poor contrast. However, the different texturesin
the image, caused by back scatter and marine growth etc. may be exploited. Application
of a texture segmentation and classification scheme [Linnett91a] to images of an
underwater installation produced good results [Chantler91]. This raised the question of
what would happen to the appearance of the textures when an ROV moved around a
structure [0 as the position and orientation, of both the viewer and the vehicle mounted
ilflumination, would change relative to the physical texture.

As the research proceeded the scope of the work was reduced to that of
investigating the effects of changes in illuminant direction. Such variations may be
encountered in a variety of situations. Close proximity point lighting, often used for
inspection purposes, provides illumination a varying angles over the scene. Remote
sensing devices sensitive to the visible spectrum experience variations in illuminant
vector according to the time of day. Many other remote sensing systems that provide their

own illumination, e.g. active sonar and radar, are non-stationary and hence the illuminant

-1-



vector is dependent upon the approach and orientation of the survey platform. Thus there
are awide range of applications in which texture classification may have to be performed
under varying illumination conditions. The work described here was therefore divorced
from the original underwater application.
Thus the aims of thisthesisare:
(i)  to provide an understanding of the effects that variation in illuminant direction has
on images of physical texture,
(i) toinvestigate the impact of these effects on texture classification and segmentation,
and
(ili) to propose methods of reducing classification errors caused by variation in

illuminant direction.

1.2. Scope of theresearch
This section outlines the scope of the work described in this thesis. For reasons of brevity
not all of the restrictions are described here [0 further details are given in the appropriate
chapters.

Texture classification, as referred to in this thesis, normaly involves three

processes, asillustrated in figure 1.1.

Imaging 9 Feature Classification
device generator rules
"lusngll?rigon Digitised Classified
image I_:eature image
images
\ \\
Physical texture
Image acquisition Feature generation Classification

Figure 1.1 - Processesin texture classification



First, the subject texture must be illuminated and its image acquired (in the case of
images taken in the visible spectrum this is normally performed using a stills camera and
scanner, or alternatively a video camera and frame store). Second, feature operators are
applied to the digitised image to produce a set of feature images that provide a numerical
description of the characteristics of the texture(s). Third, a set of rules is applied to
classify the image into texture classes.

This thesis concentrates on the effects of variations in the image acquisition process.
More specificaly it is concerned with the effects that changes of illuminant direction have
on feature generation and classification.

Among other restrictions, the illumination is assumed to be unidirectional and the
physical texture assumed to consist only of surface relief; that is it is assumed to contain
only topological texturel. The experiments are confined to the variation of illuminant
direction; the viewer’'s position being fixed vertically above the physical texture which
lies upon a horizontal plane (as depicted in figure 1.1). The investigation into the effects
on classification is restricted to the case where the illumination is varied between training

and classification sessions.

1.3. Thesisorganisation
This thesis essentially consists of two parts. The first part, comprising chapters 2 and 3, is
concerned with the image acquisition process; that is it investigates the effects of
variation in illuminant direction on image texture. The second part, comprising chapters
4, 5, and 6, examines the impact that these effects have on feature generation and
classification, and proposes methods for reducing the resulting errors.

Hence chapter 2 provides a short review of research into the effects of illuminant
variation on image texture. One model due to Kube and Pentland [Kube88] is identified

and presented. Its implications for texture classification are assessed. Chapter 3

1The term topological texture is used solely to refer to the three-dimensional variation, or relief
of a physical surface. In contrast the term albedo texture is used to refer only to surface
markings. Image texture consists of intensity variations in the image plane and can be due to
either topological or albedo texture or a combination of the two. However, as stated above, only
the former is of direct concern here.
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investigates the validity of this theoretical model using simulations and laboratory
experiments.

Having investigated the effect of changes in the illumination direction on image
acquisition, the second part of the thesis addresses its effect on feature generation and
classification. In chapter 4 feature sets employed in texture classification are surveyed and
three are selected for further investigation. Chapter 5 reports the results of this further
investigation which uses images of isotropic textures captured under controlled
illumination conditions. In chapter 6 these same images, augmented with images of a
directiona texture, are made up into montages and used to test the effects of variation in
illuminant vector on three classifiers. The second half of this chapter proposes several
methods for the reduction of classification errors induced by changes in illuminant tilt2,
and one proposal isimplemented and tested on montages of the test textures.

Finally, in chapter 7, the work is summarised and final conclusions presented.

1.4. Original work

It is believed that this thesis contains two topics which represent original work. First, the
effect of variation in illuminant direction on supervised texture classification has been
explicitly investigated; and second, a compensation scheme has been developed which is
shown to be capable of reducing classification errors induced by changes in illuminant
tilt.

1. In chapter 5 variation of the illuminant vector is shown to affect the outputs of
three sets of texture features when they were applied to images of isotropic
textures, and an existing metric [0 the Mahalanobis distance [ is adapted for use
as anew measure of sensitivity to tilt variation. In chapter 6 classifiers based upon
these three feature sets are shown to be adversely affected by changes in

illuminant direction between training and classification sessions. While this

2The tilt angle of the illuminant as referred to here, is the angle that the projection of the
illuminant vector onto the texture reference plane makes with an axis in that plane. Its
companion, slant angle, is the angle that the illuminant vector makes with a normal to the
reference plane (see figure 2.1).
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behaviour seems obvious, it is believed that it has not been investigated and

reported before from the perspective of automated texture classification.
The second half of chapter 6 is devoted to the development of a scheme that is
designed to compensate for variation in illuminant tilt. This scheme comprises a set
of filters derived from a frequency domain model of image texture. The model,
originally due to Kube and Pentland [KubeB8], was further developed in the light
of empirical evidence presented in chapters 3 and 6. Application of the scheme to
three classifiers reduced tilt induced errors when tested on montages of isotropic
and directional textures. It is believed that this scheme represents a novel approach

to illuminant tilt compensation.



Chapter 2

lmage models of topological texture

This chapter surveys possible sources of mathematical models or empirical studies that
would enable predictions to be made about the effect of illuminant vector variation on
images of topological texture. It reviews models of image texture in general, and places
particular emphasis on models that define image characteristics in terms of topological
texture and illumination parameters. The latter type will be referred to as image models of
topological texture. This terminology is necessary in order to differentiate such models
from the purely two-dimensional image texture models, used extensively by the texture
classification community, and the "three-dimensional texture models® [0 models of
albedo texture on three-dimensional surfaces used by computer graphics and shape from
texture researchers [ Cohen91c] [Patel91].

Thus the term image model of topological texture is exclusively used to refer to a
model that, given certain characteristics of the physical surface together with a description
of the illumination and the viewer’s position, can be used to predict characteristics of
texture in the image.

Four areas of research would seem to be likely candidates for the development of
such models :

(i) texture synthesis (mainly used in computer graphics to add realism to images),

(i)  texture segmentation and classification,

(iif) shape from texture, and

(iv) scattering theory.

Each of these areas will now be reviewed in turn with the objective of identifying sources
of suitable theory or empirical studies, that will enable predictions to be made about the
behaviour of texture under varying illumination conditions. These reviews are brief [1 as

there is surprisingly little in the way of published literature on the effects of lighting on
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image texture in the first three areas, while the last is not directly applicable. These review
sections are followed by an examination of one model in detail, and the chapter concludes

by considering the implications that this model has for texture analysis.

2.1. Review

2.1.1. Texturesynthesis
One of the most frequent criticisms of early computer graphics was the lack of realism
due to the apparent smoothness of the three dimensiona surfaces portrayed. It is not
surprising therefore that one of the main uses of texture synthesis has been to improve the
realism of such graphics. Heckbert [Heckbert86] surveyed texture mapping techniques
which are concerned with mapping two-dimensional arrays or functions of texture onto
screen space according to the three-dimensional surfaces contained in object space.
Texture mapping is most commonly used to modulate surface colour [Blinn90] and for
"bump mapping" i.e. surface normal perturbation [Blinn78] [Haruyama84] [Baston75].
The former treats texture purely as a set of surface markings, while the latter provides a
simplified way of imitating the effects of topological texture (occlusion and shadowing
are ignored). Blinn [BIinn90] states that surface marking based schemes produce images
that look like smooth surfaces with photographs of wrinkles glued on [0 as the light
source directions are rarely the same in the original texture map and graphics model. He
notes that the effect of wrinkles on intensity is primarily due to variation of the surface
normal, and therefore goes on to develop a texture scheme based upon small
perturbations of surface normals. His results are extremely realistic, and justify his
assumption that the major effects of topological texture (consisting of small perturbations)
can be modelled solely as variations of the surface normal. This assumption is aso made
in a later section of this chapter, which presents an image model of topological texture
due to Kube and Pentland [Kube88].

An alternative to texture mapping was first developed by Gagalowicz and Ma
[Gagalowicz86]. Their model-based approach essentially parameterises a planar texture

model (based on second order statistics) with three-dimensional spatial parameters.
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Synthesisis thus performed directly on the surface and avoids the mapping process above.
Cohen and Patel developed a similar model-based approach but they used the more
parsimonious Markov random field (MRF) model [Cohen91c] [Patel91] [Patel93]. Their
"three-dimensional texture model" is a two-dimensional MRF model, with additional
surface shape parameters, that enables the foreshortening effects due to surface orientation
and perspective projection to be taken into account. Neither of these approaches are
however of direct interest to this survey, as they do not consider topological texture or
illuminant effects.

A very popular area of computer graphics that does use models of topological
texture, and does take illumination into account, is that of fractals [Mandelbrot85].
Spectacular "natural” images have been generated by Voss [V 0ss88], Saupe [Saupe8s],
Bouville [Bouville85] and others, using random fractals. These researchers are primarily
concerned with the appearance of the final image, and while they do use stochastic
topological texture models, and do explicitly take into account illumination, they have not
in general devel oped corresponding image models. Pentland [Pentland84] [Pentland86] in
his shape from shading work did however investigate such a model, and this is discussed
in the Shape from texture section of thisreview.

Boulanger, Gagalowicz, and Rioux [Boulanger89] also used topologica texture
models — but for data compression purposes. They recreated the appearance of surface
texture on museum artefacts using an autoregressive model and Lambertian shading
model, but, as for the majority of the fractal work, they were primarily concerned with the
appearance of the resulting image and itsimage model was therefore not investigated.

To summarise : texture synthesis researchers have explicitly considered and used
models of topological texture (e.g. fractals) and have taken into account lighting
conditions. However, as their primary concern is the appearance of the fina image, they
have no requirement or motivation to develop mathematical models of the resulting image
texture. Cohen et al, and Gagalowicz et al, developed texture models that incorporate
surface orientation and camera projection parameters. However, they did not take lighting

effects into account and their texture modd s are two-dimensional .
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2.1.2. Texture analysis - ssgmentation and classification

Random field models have been used for the synthesis of perfect test textures with known
and consistent characteristics for the testing of texture segmentation and classification
algorithms. The models themselves have also been used as the basis of texture
segmentation and classification methods. If a model is capable of representing and
synthesising a range of textures, then estimates of its parameters may provide a useful
feature set. For such a model-based approach to be successful there must exist a
reasonably efficient and appropriate parameter estimation scheme and the model itself
should be parsimonious, i.e. use the minimum number of parameters. Popular random
field models used for texture analysis and testing include fractals [ Pentland84] [Peleg84]
[Medioni84], autoregressive models [Kashyap80] [Khontanzad87], fractional differencing
models [Kashyap84] [Choedla], and Markov random fields [Chellappa85a] [Cohen91b].
To the best of the author’'s knowledge (see chapter 4 for a detailed review) all of these
models are used purely as image texture models; that is they are used to represent and
synthesise two-dimensional intensity textures directly in the image plane. Only very
rarely is consideration given to topological texture and lighting. Indeed, even on the wider
subject of machine vision, few papers or books give details of lighting schemes used for
image acquisition, and fewer still give any background theory for such schemes
[DaviesoO].

Davis [Davis8la] describes two approaches to modelling image texture. A
"physically based" model takes into account surface relief, abedo, illumination, and the
position and frequency response of the viewer. "Image-based”, models on the other hand,
model textures directly in the image plane without regard to their physical origin. He
states that physically based models are ordinarily very difficult to construct, and this in
part explains their scarcity. Davis however, does not consider the effects of illumination
in his experiments. Nor do many of the other papers on texture segmentation and
classification (see chapter 4). This is particularly surprising for papers on "rotation
invariant" schemes, where one might reasonably expect researchers to rotate the physical

textures on their own without rotating the associated lighting.
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Pentland is one of the few researchers to develop a segmentation scheme who does
consider topological texture and lighting [Pentland84]. He states that "the lack of a 3-D
model for such naturally occurring surfaces has generally restricted image-
under standing efforts to a world populated exclusively by smooth objects, a sort of 'Play-
Doh’ world". He uses fracta dimension as a feature measure, and shows that it is
theoretically independent of illuminant direction. That is he proves that the fracta
dimension of texture in the image plane, is the same as the fractal dimension of the
components of the normals of the physical surface being imaged (assuming a Lambertian
reflectance function, constant illumination and constant albedo).

Pentland also used fractal models in his shape from texture algorithms, and these

are described in the next section.

2.1.3. Texture analysis - shape from texture
This section gives a brief overview of the two main shape from texture techniques [J
texture gradient based approaches and isotropy based approaches. This is followed by a
more detailed review of the associated literature that has considered topological texture
and illumination issues. Shape from shading techniques - e.g. [Ikeuchi81], [Horn89]- have
not been reviewed here, as they normally assume that the surfaces under consideration are
smooth [Pentland86], and they do not employ models of topological texture.
a) Texturegradient and isotropy approaches
There are two ways that surface shape affects images of texture. Firstly, perspective
projection effects a uniform compression which is dependent on the distance of the
surface from the viewer, the greater the distance the greater the compression. Secondly,
projection of surfaces that are not perpendicular to the viewing direction will result in a
foreshortening effect. The degree of foreshortening is proportiona to the cosine of the
surface inclination angle (surface slant angle og), and the direction of maximum
foreshortening is the direction of the steepest descent (surfacetilt angle 1g).
Correspondingly, two approaches have been employed to estimate the tilt and slant

of surfaces. The first exploits the concept of "texture gradients® and is due to Gibson
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[Gibson50]. It assumes that physical texture is homogeneous and exploits the gradient of
texture densities caused by perspective projection. The second uses a statistical approach
first proposed by Witkin [Witkin81]. The distribution of orientations in a texture image is
biased towards a direction perpendicular to the tilt angle and the degree of biasing is a
function of the slant. Both surface slant and tilt can therefore be estimated from the
distribution of orientations (assuming that the original texture is isotropic). These two
approaches have been extensively researched. Bajcsy [Bajcsy76] uses a texture gradient
based on "preferred” frequencies derived from Fourier transforms of 128x128 windows.
Blostein [Blostein89] expicitly identifies texture elements (textels) in textures. She
defines atexel as "the repetitive unit of which the texture is composed"”, and uses the texel
area gradient to extract depth information. Rosenfeld [Rosenfeld75] suggested the use of
an edge operator as a simple method of measuring texture gradient. Researchers who have
built upon Witkin's ideas include Davis [Davis83], Kanatani [Kanatani84] and Blake
[BlakeQ0], who have all suggested ways of estimating surface orientation from the
distribution of orientations of the texture.
b)  Topological textureand illumination
The subject of shape from texture is not an easy one and it is therefore not surprising that
both of the above schools (i.e. both texture gradient and isotropy researchers) have
implicitly assumed that the effects of occlusion in topological textures and the effects of
illuminant vector variations do not significantly affect image textures. That is they have
effectively assumed that image texture results only from surface markings. Exceptions
include Kender, Chen & Keller, Choe & Kashyap, Pentland, and Kube & Pentland.

Kender [Kender80] considered surfaces in which texture primitives were either
"painted” (paralel to the surface plane) or "pointed” (perpendicular to the surface plane).
He did not consider both simultaneously and commented that "textures formed by
arbitrary angles to a surface are amost intractable”. He did not consider illumination
effects on texture.

Chen & Keller [Chen90] state that most shape from texture techniques are based on

the assumption that the surfaces are smooth and uniformly covered with flat textured
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markings or texels. Although Chen & Keller do discuss the use of fractional Brownian
motion (FBM) to model the topological texture, and do use a topological model to
generate test images, they do not use such a model in their shape from texture algorithm
directly. Instead they use it to model the intensity texture which could result from either
height or albedo variation. They make use of the "average Holder constant”, which is a
fractal-related parameter that changes with scale [Keller87]. This parameter is used to
calculate the distance ratio between points on a "planar” surface in order to determine the
surface’s orientation (i.e. it is a gradient measure). As an intensity model of textureis used
it cannot be shown that the average Holder constant is invariant to illumination. This lack
of consideration of illumination effects is reinforced by the use of test textures consisting
of computer scaled and rotated Brodatz images [Brodatz66]. Such rotation ignores
illumination effects or at best implicitly assumes that the illumination has been similarly
rotated.

Choe and Kashyap [ChoeQla] [Choe9lb] presented a hybrid shape from
shading/shape from texture technique. They assume that the image is made up of a
random texture component and a component due to a smoothed version of the surface (i.e.
a surface without topological texture). The smoothed surface is assumed to be
Lambertian. An explicit model of the surface’s topological texture is not used. Rather, the
intensity texture in the surface normal plane is modelled directly as a "fractional
differencing model” which has the ability to model anisotropic textures and has a separate
variance parameter (see chapter 4).

The key point however, as concerns this thesis, is that Choe & Kashyap effectively
assume that a two-dimensional or abedo texture pattern is mapped onto a three
dimensional surface and no account is taken of lighting effects. Furthermore, as with
Chen & Kaéller, these assumptions are implicit in the selection of the image test set :
images from Brodatz's standard texture album [Brodatz66] were digitised, and then
subjected to a projection/rotation process. The effects of lighting on three-dimensional or

topological textures were therefore not investigated.
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Kashyap and his colleagues have also used the fractional differencing model for
rotation invariant texture classification [Choe91la] and this will be discussed later in this
thesis.

Pentland was the first to report the use of a realistic model of natural topological
texture for the purposes of determining shape from texture and texture segmentation. He
uses a "spatialy isotropic fractal Brownian surface” [Pentland84]. He proposes a proof
that the fractal dimension of an imaged texture is identical to that of the components of
the surface normals of a spatially isotropic fractal Brownian surface, and goes on to use
the fractal dimension as a feature measure for texture segmentation. The two main
conclusions of [Pentland84], for shape from shading, are (i) that as real fractal surfaces
are fractal over afinite range of scales the perspective gradient of these limits can provide
orientation information, and (ii) that fractal dimension can be used as a test for non-
isotropy.

In [Pentland86] the use of fracta models for shape from shading is further
developed. An image texture measure is presented which is a function of the expectation
of the 2nd derivative of the surface normal. This measure is independent of illuminant
direction i.e. it isintrinsic to the surface (however it is not clear as to how the illuminant
vector is eliminated). Asit is affected by foreshortening it can be used to estimate surface
tilt and slant. Thus the main conclusion that can be drawn from Pentland’s work, for the
purposes of this research, is that the fractal dimension of the image of a spatially isotropic
fractal Brownian surfaceisidentical to that of the components of the surface normals.

Kube and Pentland [Kube88] further investigated the effects of illumination on
images of topological texture. They developed a frequency domain model which, given
the illuminant vector and the power roll-off factor of a fractal model of the physica
texture, allows the two-dimensional power spectrum of the image texture to be predicted.
They concluded that the resulting image texture would also be fractal, having a power
roll-off factor two less than that of the surface. Their model may be used to predict the

directiona characteristics of image texture and these predictions have important

-13-



implications for the mgjority of texture segmentation and classification schemes (this is
discussed further in the last part of this chapter) .

Thus of the shape from texture work Kube and Pentland’s fractal-based model
would seem to offer the most promising theory. However, before this is described in
greater detail the last category of this short review will be presented [0 i.e. that of

scattering theory.

2.1.4. Scattering theory
The effect of rough surfaces on wave scattering has been the subject of many papers and
books over the last thirty years. Both electromagnetic and acoustic waves have been
investigated and application areas include ultrasonics, sonar, radar imaging, and optics
[Ogilvy91]. A vast wealth of literature has been published on this subject. Ogilvy gives an
excellent in-depth introduction to this area [Ogilvy91] [Ogilvy87]. Bennett provides a
layman’s guide to measuring surface roughness of optical and machined components
[Bennett89], while Beckmann & Spichino’s book [Beckmann63] still provides an often
cited reference on the scattering of electromagnetic waves. With many of the titles and
abstracts including terms such as "random rough surfaces’ the area would seem to be
extremely relevant to this thesis. However, as the work is concerned with the scattering of
acoustic or electromagnetic waves, the term "rough surface" is defined with respect to the
wavelength of the incident irradiation. Thus the typical root mean square (rms) roughness
taken into consideration is of the order of 0.2um or less [Vorburger93], whereas the rms
roughnesses of typical test textures used in classification are of the order of millimetres
(see [Brodatz66]). The research into scattering is thus concerned with the intimate details
of reflection characteristics, whereas for the work described here it is sufficient to assume
areflection characteristic, and use this to investigate the effect of changes in illumination
direction on images of comparatively gross surface relief.

Note that some work has been done on composite roughness models [Jackson86]
[McDaniel83] in which the surface is modelled as a small-scale roughness superimposed

on a higher amplitude, lower frequency, large-scale roughness [Ogilvy91]. The large-
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scale roughness is normally used to modify the surface normals of the small-scae
roughness in a similar manner to Kube and Pentland [Kube88]. Kube and Pentland’s
theory is however much simpler, as it assumes a Lambertian reflection model [0 whereas
the composite roughness work uses modified normals in the standard Kirchoff or small
perturbation theory [Ogilvy91l]. The resulting theory is therefore very complex, but it
allows the characteristics of the small-scale roughness to be taken into account. Here
however, it is mainly the effects that variation in the direction of illuminant incident upon
"large-scale” roughness that are of concern. Hence the simpler theory due to Kube and

Pentland will be used in this thesis.

2.1.5. Summary

The preceding sections have briefly reviewed four potential areas of image models of
topological texture : texture synthesis; texture segmentation and classification; shape from
texture; and scattering theory.

Texture synthesis researchers have extensively used three-dimensiona models of
texture [ both for "bump mapping" and generation of fractal landscapes. They have not
however generated corresponding models of image texture, which is not surprising given
that they are primarily concerned with the appearance of their images. On the other hand
the texture segmentation and classification researchers might have been more reasonably
expected to have developed such models [0 as "rotation invariant” classification schemes
have been reported. However, the majority of this research has not considered problems
associated with illuminant variation and surface relief (see chapter 4 for a more detailed
review). The third category, shape from texture, yielded Kube and Pentland’s frequency
domain model which allows the effect of illuminant variation on images of topological
texture to be predicted. They assume perfectly diffuse reflection, whereas the last
category, scattering theory, is intimately concerned with the details of reflection
characteristics. "Surface roughness" in this case refers to variations of the same order as
the illuminant wavelength (i.e. hundreds of nanometres). In this thesis however, rms

roughness of the test textures is several order of magnitudes higher. In addition the theory
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is extremely complex. For these reasons it was decided to investigate Kube and Pentland’s

modd in more detail.

2.2. An image model of topological texture

In this section a model of the image of an illuminated fractal surface due to Kube and
Pentland [KubeB8] is presented. More specifically, an expression for the spectrum of the
image that results when such a surface is illuminated by a distant point light source is
developed. The theory here differs from [Kube88] in that a simplifying axis-rotation is
introduced [0 this both reduces the complexity of the derivation, and results in an
expression for the model, in which the directiona effects of lighting are more easily
understood. The model is generalised to non-fractal surfaces and this is followed by an

examination of the implications that the theory has for texture analysis.

2.2.1. A fractal based image model

A prerequisite for the development of an image model of topological texture is the choice
of representation of surface relief. Kube and Pentland chose fractal Brownian motion
[Mandelbrot83] to model natural surfaces, as it is widely used in computer graphics
[Voss88] [SaupeB8]. Their paper essentially applies a simplified version of the
Lambertian surface reflectance model to an expression for the power spectral density of
the fractal height-map. The theory is split into two parts. Case 1 considers the situation
where the illuminant vector is not perpendicular to the reference plane of the surface
texture [0 alowing the Lambertian reflectance model to be linearised and used in the
frequency domain. Case 2 considers the situation in which the direction of illumination is
perpendicular or close to the perpendicular. Here the quadratic term becomes significant
and cannot be ignored. The theory becomes complex, involves additional assumptions,
and does not yield an expression as afunction of either illuminant slant or tilt. Hence only
case 1 will be considered here.

The following theory assumes :

() aLambertian surface (i.e. perfectly diffuse reflection),
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(i)

(iii)
(iv)
(V)

The following theory first develops a linear model of the intensity image; second, it
shows that the two-dimensional partial derivativeis alinear operator; third, it introduces a

fractal model of the surface; and fourth, it combines the three preceding elements together

that the fractal Brownian surface V,(x)y) is band limited such that it is

differentiable,
an orthogonal camera model,

aconstant illuminant vector over the scene, and

a viewer-centred co-ordinate system, in which the reference plane of the surface is

perpendicul ar to the viewing direction.

to provide the frequency domain model.

a)

A linear image model of topological texture

The normalised image intensity I(x,y) of the surfaceis

I(x,y) =nlL

_ —pcosTsing - gsinTsing + coso

(2.1)

where

N = the unit vector normal to the surface at the point (x,y)

_H -p -q 1 H

_B\/pz+q2+1’\/p2+q2+1’\/p2+q2+15

L = (cost.sing, sint.sing, coso) is the unit vector towards the light source

T and o are the illuminant vector’'stilt and slant angles as defined in figure 2.1.
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Figure 2.1 - Definition of axis and illumination angles

Now in a departure from [Kube88] and without loss of generality, choose a new axis

(X,y’,2) which is rotated T about the z axis such that the projection of L onto the x-y plane

will be parallel to the X' axis, as shown in figure 2.2.

g

Height-map (elevation

Xy

Figure2.2 - (x,y,2) and (X,y',2) axes.

In this new axis system the expression for intensity simplifiesto

-rsinc + coso

(X, =nL =
(X,y) N
where
r=w'*,andt=wH
X 12

Taking the MacL aurin expansion of }/ o yields
r

(X y)= (—rsina+c0w)g_ (r2 +t2)+ 9(r2 +t2)2
B 2 4

A proof of this expansion is provided in appendix A.
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Now if the surface slope angles are less than 15°, then r?,t* <<1; and the quadratic
and higher order terms may be neglected. Note that the error introduced by this
approximation, for aslope angle of 15°, is 3.5% (see figure 2.3). With this approximation
(2.3) becomes

1 (x,y)=(-rsino +coso) (2.4)
which is simply the mean, plus a linear contribution of the surface gradient measured in
the direction of the illuminant's tilt angle. Thus equation (2.4) is alinear model of image
intensity, while (2.3) which retains the quadratic and higher order terms is a non-linear
model of image intensity. It is the former which is of interest here, but both will be

referred to in later chapters.

Error (%)

Angle of slope (degrees)

Figure 2.3 - Error dueto linear approximation.

Note that if the slant angle is small then sin o = 0 and the quadratic terms in (2.3) will
become important (thisis Kube's case 2). For case 1, Kube therefore further assumessin o

> 0.1, i.e. theilluminant vector L is not within 6° of the z-axis.

b) Thepartial derivative operator oki

Consider a single sinusoid surface V,(x,y) of spatial angular frequency «,, angle 6

(w.r.t. the x-axis), and phase ¢ :

V, (%, y) = sin[ew, (xcosg, + ysing,) + g] (2.5)
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Transforming to the (X',y',2) co-ordinate system gives:

V; (X, y) =sinje(x cod8, - 1)+ y'sin(g, - 7)) + ] (2.6)
and

I

N, _. L
Wl’ =iw codd,-1)V, (X,Y) 2.7)
wherei represents a 90° phase shift.

Taking the Fourier transform yields
|
F% i cod6, - 1) Fy(@,6) 28)
H

where
a isthe angular frequency of the Fourier component

O isitsdirection w.r.t. the x-axis

F[9(x,y)] isthe two-dimensional Fourier transform of g(x,y), and
F(@8) = Iey]= 7V ¢,y
Thus the partial derivative operator Oki is alinear operator, as it does not change either

the angular frequency (w) or the direction (0) of atwo-dimensional sine wave.

c) A fractal modd of the surface

From [Kube88] afracta surfaceis represented by
AVi, (% V)] = . (£,8)= e (29)
where
fisthe spatial rotational frequency = w/27,
@isarandom phase element,

B, isthe power roll-off factors.

SNote that for a surface the power roll-off factor B is related to the fractal dimension D by : D =
(7 - 2B)/2 [Voss88]. The power roll-off factor will be used in preference to fractal dimension, as
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d) Combining thelinear intensity model, the partial derivative operator, and the
fractal surface model

By superposition, (2.8) and (2.9)

_BH
F% E= icwcodd - T)@L%E “ele (2.10)

Now from (2.4)

I(X,y) = - g‘* sinog + coso (2.11)

Hence if the mean isignored the Fourier transform of the intensity image is:
F(«,0)=FI (x y)]

= F%%sin UE

= —sina.F%g (2.12)

0 By
= —sina.ﬂwcos(@—r)BﬁH e’
- R0

]
= —icod8-7)sino(2n) " w® YV ge

The above is mathematically equivalent to Kube and Pentland’s case 1, but it contains a
simpler expression in terms of 6 and T, which alows the directional effects of
illumination to be more easily understood.

Note that the image is predicted to be fractal with a magnitude roll-off of -%24,
but that its directional properties have been atered compared with the original surface, i.e.
the magnitude of the frequency componentsis now afunction of their angle (8) in relation
to thetilt angle () of the lighting.
e) Generalisation
Although Kube and Pentland used a fractal model of topologica texture it is straight-

forward to generaise their theory to non-fractal surfaces. If the requirement for the

the latter depends upon the measurement method and choice of measurement scale [V 0ss38]
[Mandelbrot85].
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surface to have fractal PSD characteristics is relaxed, then as the partia derivative is a

linear operator, the Fourier transform of the partia derivative 0% of the surface

Vi (x,y) is

F%éz iwcod6-1)F,, (,6) 2.13)
where

F, («, 6) isthe Fourier transform of the surface V,,(x,y) which now need not have
fractal characteristics.
Hence taking the Fourier transform of (2.11), ignoring the mean, and substituting (2.13)

gives:

F (w,8)= FE— z',* sinag

(2.14)
=[-iaF, (,0)|[codd - r)][sino]

This model (2.14) is now divided into three parts, both to aid understanding, and to
facilitate future discussion. The three parts of the model are:

(i) The surface response component
F(w, 6) = -iaF, («, 6) (2.15)
(if) Thetilt response component
F.(«w, 8) = co((8-1) (2.16)
(iii) The slant response component
F.(w,6)=sino (2.17)
Thus Kube and Pentland’s model provides theory which alows the influence of illuminant

tilt (1), illuminant slant (o), and surface characteristics, to be clearly identified.

2.2.2. Implicationsfor texture analysis

In order to aid the design of texture analysis schemes that are robust under lighting
variations, it is useful to know which texture characteristics are intrinsic to the physical
texture, i.e. independent of illuminant, and which are extrinsic, i.e. dependent upon the

illuminant. In the case of the latter, a knowledge of the behaviour of the texture property
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under varying illumination conditions, would aid the design of suitable compensation
schemes and/or systems that could determine the illuminant’s directional characteristics.

The main conclusion of [Kube88] is that a fractal surface with a power spectrum
proportional to f ™ produces an image with a power spectrum proportional to f># . That
is the power roll-off factor ((3,) of an image is predicted to be an intrinsic property of a
fractal texture [0 asit is predicted to be independent of the illuminant vector. Asfar asthe
directionality of the image is concerned, they merely noted that "the spectrum depends, as
expected, upon the illuminant direction" and that one of the directional effects could be
used for determining the direction of the illuminant. It is however, the directional effects
of lighting that are most likely to significantly affect the performance of existing texture
analysis schemes [0 as the mgority of texture features surveyed in chapter 4 exploit
image texture directionality.

In the following sections the more general model (2.14) is examined with the
objective of identifying potentially intrinsic or extrinsic characteristics of image texture.
(i) The radial shape of an image's magnitude spectrum is predicted to be directly

related to the radial shape of its surface’s spectrum. The term "radia shape” is used

here to refer to the shape of a section or dlice passing through the coefficient

representing the mean. It is purely a function of the surface response F,, and is
therefore an intrinsic characteristic. That is, for any value of 8, 8, the spectrum in
direction 6, is

F (@,6,) =k, (-iaF, (0,6)) (2.18)
where

k., is the constan cos(@, — 7).sino

Thustheradia shape of the log-magnitude/log-frequency graph in any direction 6 is
predicted to be constant under changes in illumination except for an additive term.

Thisis summarised graphically in figure 2.4.
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2-D magnitude spectrum Radial section

Figure 2.4 -The predicted effect of variation in illuminant direction on the radial shape of
the magnitude spectrum.
(i) The magnitude of any point in the spectrum is a function of illuminant slant (and

hence the variance is a function of illuminant sant). So if surface relief and

illuminant tilt are held constant the magnitude of a component at any point (c,, 6,)
is

F(w,8)=k,sino (2.19)
where

k, isthe constant —iw,F, (e, , 6,).cos(6, — 1)
Thus the absolute values of the magnitude spectrum are a function of gand any
feature based upon these absolute values is an extrinsic measure of texture.

(ilf) Theangular distribution of frequency components for an isotropic surfaceis related
to the illuminant tilt angle T by a cosine function. That is for a"ring" of magnitude
spectrum components with radiusw = «,

F (w,, 6) =k, cos(6- 1) (2.20)
where

k., isthe constant -« F, («,).Sino
In addition the angular distribution of energy of images of anisotropic surfaces
(except those surfaces that are perfectly unidirectional) will be a combination of the

tilt response and surface directionality4. Thus, except for the purely unidirectional

case, the directional nature of image texture is predicted to be an extrinsic

4The term surface directionality is used to refer to the angular distribution of a surface's variance.
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characteristic. This has important implications for texture classification schemes as
many make use of directional features.
Normalisation
Some texture classification and segmentation schemes employ normalisation to account
for variation in lighting conditions [Greenhill93] [duBuf90] [Laws79] [Weska76]
[Haralick73]. Thus they remove any dependence upon absolute magnitude, and so
variation in illuminant slant will, according to point (ii) above, be compensated for
automatically. However, tilt angle variation cannot be compensated for in the same
manner (except if all textures are perfectly unidirectional and all have the same direction).
Thus many of texture feature sets that do exploit directionality will not be invariant to
variation in tilt, unless the test data consists of individually normalised directiona
textures. This point seems obvious but has not, to the author’s knowledge, been

considered explicitly in the texture analysis literature (see chapter 4).

2.3. Conclusions
This chapter has briefly reviewed four possible sources of image models of topological
texture :
(i) texturesynthesis,
(if) texture segmentation and classification,
(iif) shape from texture, and
(iv) scattering theory.
From these areas a simple frequency domain image model, due to Kube and Pentland, has
been selected and presented. This model predicts that image variance and directionality
are dependent upon illuminant direction, and only radial shape of magnitude spectra may
be intrinsic to the underlying physical texture.

The most important implication that this model has for texture classification and
segmentation is that it predicts that many schemes are not invariant to changes in
illuminant tilt, and that, unlike dlant variation, these effects may not normally be

compensated for through the use of normalisation.
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However, a number of significant assumptions were made in the derivation of the

preceding theory, and validity of the model is therefore the subject of the next chapter.
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Chapter 3

An investigation into an image model
of topological texture

The previous chapter introduced an image model of topological texture (2.14). This model
was used to predict relationships between surface relief, illuminant direction, and image
texture [0 which, if valid, may have significant implications for texture classification.
However, the model’s derivation relied upon a number of assumptions associated with the
projection geometry and the linearisation of the model. In addition shadowing of the
surface was ignored. Thus the primary aim of this chapter is to investigate the validity of
this model.

For natural textures the most restrictive of the assumptions made, in the author’s
opinion, are that slope angles are low and shadowing effects are not significant. Hence the
investigation reported here paid particular attention to these two aspects.

Chapter 2 divided the model up into three components corresponding to the
response of image texture to
(i) changesin surfacerelief (i.e. changesin topological texture),

(i) changesinilluminant tilt angle, and

(iii) changesinilluminant slant angle.

In addition to the above responses the model predicts that the radial shape of image
magnitude spectra is a characteristic which is intrinsic to the underlying surface relief.
That is, it isonly afunction of (i) and not afunction of (ii) or (iii). Hence the objectives of
this chapter are to assess the validity of the model by

@ investigating each of the responses (i) to (iii) above, and

(b) investigating the intrinsic nature of the radial shape characteristic.

Thus this chapter is organised as follows. First, the response of image texture to changes

in surface relief is examined. That is the relationship between the magnitude spectra of
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surface relief and the magnitude spectra of image texture is investigated. Second, the
response of image texture to variation in illuminant tilt and slant is presented, and the
intrinsic nature of the radial shape characteristic is also examined here. Third and last, the
conclusions of the chapter are presented and the implications for texture classification and

segmentation re-examined.

3.1. Theresponse of image textureto changesin surfacerelief
Chapter two's model of image texture (2.14) predicts that the radial shape of image
magnitude spectra are determined solely by surface relief characteristics, and therefore
may be an intrinsic characteristic of texture. Hence this section focuses upon this
important relationship. It was investigated by synthesising height-maps of textures of
varying spectra, simulating illumination, and examining the spectra of the resulting
images. Physical experiments reported in later sections were used for the investigations
into illuminant tilt and slant responses.

As fractal Brownian motion [Mandelbrot85] was used in the development of the
image model [Kube88] it is also used here to model and synthesise surface relief. It has
the advantages that it is easy to generate and provides natural looking images [V 0ss88]
[SaupeB8]. Compare for instance, figure 3.14 with figure 3.23.

The power spectrum of atwo-dimensional fractal is of the form f® where 3 isthe
power roll-off factor [Kube88], i.e. thelog-log PSD plot is a straight line of agradient of -
. Equation (2.12) implies that, for the fractal case, the power roll-off factor of the image
texture (5,) isrelated to the topological texture's power roll-off factor (5,,) by

B =2 (3.1)
and thisis indeed the main conclusion of [Kube88]. Thus the investigation into the radial
shape of texture spectra was restricted to the linear roll-off case. Initialy the [
relationship (3.1) was examined for a range of surface roll-off factors. The major concern
however, was the effect of high slope angles and shadowing. Hence the second and third

parts of the experiment investigated these aspects.
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However, before the results are presented it is appropriate to describe the process

through which they were created.

3.1.1. Image generation

An overview of the process used to generate al of the simulation results described in this

chapter isgivenin figure 3.1.

(®.) . N
f /

Random Lambertian

phase illumination
(0.1)

Magnitude

66

Shadowing

. (optional)
Intensity /

image

‘ll"

Figure 3.1 - Smulation process showing the major parameters (5., S 0, 1)

All surfaces were synthesised using Fourier filtering [Linnett9la] [Saupe88]. A two-
dimensional complex frequency spectrum was created with the desired isotropic power
roll-off factor 5, and random phase. This was processed with an inverse Fast Fourier
Transform (inverse FFT), and the resulting data where treated as a height-map for input
into a Lambertian illumination program followed (optionally) by shadowing.

Details of the illumination program are as follows. The illumination vector was a
constant over the scene. Orthogonal projection was used with the viewing direction
paradlel to the zaxis (as in the previous theory). A Lambertian shading model
[Newman79] [Rogers85] was employed; the shading equation being derived from (2.1).
Estimates of the surface normals () were calculated from local 2x2 neighbourhoods of

height samples as defined below:
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A =(A,.A,,A,) (3.2)

Multiple reflections were not considered.
The parameters varied in the simulations presented in this chapter are :
B, -  roll-off factor of the log-log PSD of the surface (default 3.5),
S - heght scaling factor — used to vary the surfaces variance, and hence
average estimated slope angle (default S= 1),
o - dantangleof theillumination (default 50°), and

1 - tiltangleof theillumination (default 0°).

3.1.2. The power roll-off factor

The S relationship (3.2) relates power roll-off factors of topological and image textures.
Implicit in this relationship is the assumption that the radial shape of the log-log PSD is a
straight line, and that the gradient of this line (£) is an intrinsic characteristic of texture.
This section reports an investigation into the [ relationship (3.1) itself. The intrinsic
nature of the PSD’s radial shape is further investigated in following sections on slant and
tilt angle responses.

A set of simulations was performed where only S,, was varied, the height scaling
factor was kept at S= 1 (in order to reduce the effects of the non-linear terms), shadowing
was not employed, and the lighting direction was kept constant at T = 0° and o = 50°. The
power roll-off (8,) of the resulting images was measured and the rel ationship between the
two parameters estimated. Figure 3.2 shows three of the surfaces displayed as height-
maps (where intensity represents height) and the corresponding intensity images. Mean
radial sections of the two-dimensional magnitude spectra of the these height-maps and
intensity images were obtained by averaging radia sections from 6 = 0° to 180°. The
resulting plots, together with least square estimates of power roll-off factors, are shown in

figures 3.3 and 3.4.
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Height-maps (intensity encoded)

S3

Intensity images
Ss1 . . _ S3

Figure 3.2 - Height-maps V,,(x,y) of the surfaces, and their corresponding synthetically
generated intensity images I (x,y). The illumination source is to the right of the surfaces.
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Figure 3.3 - Averageradial sections of surface magnitude spectra shown with estimates

of B,.

-31-




1.E+7 3 I I
‘ |
) !
S | M‘B =0.98
® 1.E+6 & [~ —39 |
o] L -S3 =149
3 s4
=} —
@ B=197
@ LE+5 S5 I
o = 5
3 2.4
3
og 1.E+4 + B=292
[=2]
IS
1S
[}
=
B 1.E+3
[}
4
1.E+2
.01 .10
Fraction of sampling frequency

1.00

Figure 3.4- Average radial sections of intensity magnitude spectra shown with estimates

The above show that both surface and image spectra have linear roll-off characteristics
and that, as the theory predicts, the power roll-off factors of the images are approximately
two less than their surfaces. Figure 3.5 shows this linear relationship more clearly. Here

estimates of power roll-off factor of the images have been plotted against estimates of the

original surfaces.

of S,.

3.0 T

20 +

10 »

0.0

3.0

3.5

4.0

By

4.5

5.0

Figure3.5- 3, vs. B, of surfaces Sl - 5.

The least squares estimate of a linear relationship between [3, and[3, (i.e. the best fit

straight line to the graph shown in figure 3.5) is:

B, =0.978, -1.92
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This compares favourably with the [ relationship (3.1) derived from the model. Note that
the average estimated slope angle (a)! varied between 2.5° for surface S5, up to 19.0°
for surface S1. Thus the relationship between power roll-off factors of topological and
image textures has been verified for low to moderate slope angles and no shadowing. The

next two sections investigate each of these restrictionsin turn.

3.1.3. Largeslope angles

The use of the linear image model (2.14) presumes low slope angles and hence low height
variance. In order to investigate the effect of larger slope angles the experiment reported
above was repeated for increased surface variances. Height-map elements were multiplied
by a height scaling factor (S) in the range 1 to 100, while (3, was kept constant at 3.5. The
surfaces' average estimated slope angles (&), and height variances (s?), are given in table
3.1. The average estimated slope angles (&) are calculated from the angles of the
gradients between immediately neighbouring height samples in both x and y directions

and averaged over the whole height-map (as defined below).

(3.4)

a, =tan v, (x y) -V, (x+ 1 y)
a, =tanV,, (x y) -V, (x. y + 1)

the summation is calculated over the depth-map, and
n is the number of samples contained in the depth-map.

The height variance is defined as :

S 1S Vi -V () (35)
where

V,, isthe mean height of the surface.

1The average estimated slope angle (&) is defined in section 3.1.3
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Height scaling factor 1 2 4 10 20 40 100
C)

Surface variance (Sf. ) 7 28 112 700.8 2,803 | 11,212 | 70,076
in distance units?

Average estimated 8.6° 16.2° 28.0° 47.5° 61.1° 71.5° 80.4°
sopeangle (&)

Table 3.1. Average estimated slope angles and height variances, for surfaceswith a
range of height scaling factors (9

Figure 3.6 shows sections through surfaces of different height scaling factors. Note that
the surface with a height scaling factor of S= 100 has an average estimated slope angle of
80.4° and is therefore not typical of natural surface relief. Nevertheless it is still of value
to investigate such extreme data, as they often exaggerate characteristics that might

otherwise be overlooked.

200 +

180 +

100 +

Height

50 +

0 50 100 180 200 2850

Position in cross-section

Figure 3.6 - Sections through four surfaces with height scaling factors S= 1, 4, 20 and
100 (note only part of S= 100 is shown for reasons of space)
Each of the surfaces listed in table 3.1 was used as input to the synthetic illumination
process. Frequency spectra of the resulting intensity images are depicted in figure 3.7.
They show that the gross shape is maintained, but that as the variance of the surface
increases that of the corresponding intensity images saturates at a height scaling factor of
S=20. However, the image model (2.14) predicts that image variance is linearly related

to surface variance. Not surprisingly, repeating the simulation with the linear illumination
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scheme implied by the image model [0 i.e. using equation (2.4) O does not show this
saturation effect. Hence it must be due to the quadratic and higher order terms of the

Lambertian model (2.3) which are neglected in the linear image model (2.14).

1.E+8

S=4 $=10,20,40, & 100.

S=1 L
1E+7 + \’\§ z

b e,
N

Relative magnitude (averaged over 180°)

Increasing surface
variance

1.E+6
0.001 0.010 0.100 1.000
Fraction of sampling frequency

Figure 3.7 - Magnitude spectra of intensity images showing the effect of increasing
surface variance.

This supposition is supported by figure 3.8. It shows the effect of increasing the
amplitude of a sinusoidal corrugated surface on images generated using (a) the
Lambertian model (2.3) and (b) the linear model (2.4). Clearly, as the magnitude of the
surface is increased the energy of the intensity radiated by the Lambertian model is
reduced compared with its linear companion.

Despite this saturation effect the gross radial shape remains constant over a wide
range of average estimated slope angles.

As before roll-off parameters of the intensity images ([3,) were estimated and plotted
against surface roll-off factor (8,) to illustrate the (3 relationship at a variety of height
scaling factors. For clarity the (3 relationships for only three height scaling factors are
shown in figure 3.9. They show that athough some deviation from the original

relationship isintroduced, it is surprisingly small.
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Figure 3.8 - The effect of increasing surface amplitude (from 0.05 to 0.10) on the intensity

predicted by Lambertian and linear illumination models
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Figure 3.9- The S relationship at height scaling factors S= 1, 10, and 100.
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3.1.4. Shadowing

After verifying the B relationship over a range of average estimated slope angles the
experiments were repeated with the addition of shadowing. Shadowing was simulated by
setting the intensity corresponding to a shadowed height-map sample to zero [0 thus no
account was taken of multiple reflections. The two figures below show "shadowed"

intensity images and their spectra for surfaces of constant power roll-off factor but

varying height-map variances.

e g e e

AT

4
i
|4

Figure 3.10 - Intensity images (with shadowing) of surfaces of varying height scaling
factors (S=1, 2, 4, 10)
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Figure 3.11 - Magnitude spectra of intensity images (with shadowing) showing the
effects of increasing the variance of the surface (S= 1, 2, .....40, 100)

The magnitude spectra above illustrate that after a certain point (S=10 in the above case)
the power spectral density of the intensity images actually decreases as the surface power
is increased. However, as before, the straight line nature of the radial shape and its
gradient remain largely unchanged.

For clarity figure 3.12 shows the 3 relationship for only three height scaling factors.
From this graph it can be seen that the deviation from the predicted response is
surprisingly small given that the theory did not take into account shadowing. This is
especially so considering the high degree of shadowing that occurs for surfaces of higher

variance [1 over 80% for a height scaling factor of 100.
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Figure 3.12 - Effect of shadowing, at different surface variances, on the £ relationship.

3.1.5. Summary of surfaceresponseresults
The previous sections have examined the relationship between characteristics of
topologica texture and image texture through simulation. Of particular interest was the
radia shape of magnitude spectra, as the image model presented in chapter 2 predicts that
this property is intrinsic to the surface, i.e. it is not affected by variation in illuminant
vector. In the case where the radial shapes are straight lines with a roll-off factor 3, the
relationship reducesto (3.1) :

B =By -2
It isthis [ relationship which was the subject of the investigations. Of particular concern
was the effect of shadowing and high slope angles. The former had not been considered in
chapter 2, while the latter was specifically precluded in order that a linear approximation
could be used. The results presented have shown that high average estimated slope angles

shadowing make the simulation output deviate from that predicted by the linear

model (2.14). The magnitude of the spectra saturated due to the inclusion of non-linear
terms and even reduced when shadowing was included. However, the important result is
that the gross radial shape of the spectra was not affected even for high a.

Thus these results show that for the simulation the [3 relationship is representative

over a wide range of surface variance, but they do not however directly support the
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suggestion that radial shape is an intrinsic characteristic of texture. The next two sections
investigate the effect of variation of illuminant vector, and therefore alow such a proposal

to be investigated.

3.2. Thetilt angle response of image texture
The preceding section investigated the first part of the image model of topological texture
(2.14), i.e it investigated the surface response component (2.15). This section
investigates the validity of the second part of the model [ the tilt response component
(equation 2.16) :

F.(«w, 8) = cos(6-1)
This predicts that the frequency components of a texture, in the same direction (6) as the
tilt angle of the illumination (1), will be accentuated compared with those components at
right angles to this illumination. Thus it implies that an image forming process using
directed illumination acts as a directional filter of texture. Such an effect is likely to have
important implications for texture classification schemes. It implies that the directional
properties of image texture are not intrinsic to the surface, but that they are considerably
affected by variation in illuminant tilt. This is unfortunate, as the majority of the feature
sets reviewed in chapter 4 exploit directiona characteristics.

Unlike the previous study, which was primarily required to vary surface relief in a
controlled manner, the main requirement of this investigation is much ssmpler 00 that of
varying the illuminant’s tilt angle. Thus both simulation and laboratory experiment were
used. Simulation was employed as before to selectively examine the effect of the non-
linear terms and shadowing. Physical experiments were conducted to provide confidence
that the simulations were reasonably representative of the behaviour of real texture, and to
investigate a number of differing surface reliefs.

As with the discussion of the surface response, the tilt angle response is first
investigated for low slope angles followed by an investigation into the effects of

increasing the surface variance and the addition of shadowing.
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3.21. Lowslopeangles

An isotropic surface was generated and illuminated synthetically as before (S=1, 3 = 3.5,
0 = 50° & 1 = 0°). Figure 3.13 shows a polar plot of the FFT of the resulting image
texture, in which each point on the graph represents the sum of the magnitude coefficients

in one direction (i.e. for one value of 6 : the angle of the frequency component).

2.E+6

TN
/

Intensity image and best fit
cosine

1E+6

Relative magnitude

Isotropi ¢ surfacel

0.E+0
-90° -60° -30° 0° 30° 60° 90°
Angle of frequency components

Figure 3.13- Polar frequency plot of image texture (7= 0°), and corresponding best fit
cosine (original surface also shown).

The directionality in the image is clearly evident in the polar plot shown above, especially
when the graph is compared to the ailmost flat plot of the original surface. As predicted by
the image model the polar response is greatest in the direction of the illuminant tilt and it
follows a cosine distribution very closely. However these data do not illustrate the effect
of variation in illuminant tilt angle : figure 3.14 shows images for illuminant tilt angles of

0° and 90°.

-41 -



Figure 3.14 - Intensity images showing variation with tilt angle (7)

The effect on these images could not be described as dramatic but it is clearly discernible.
However, in the frequency domain the response to a change in tilt is much more obvious

as shown in the polar plots below.

T=30° T=060°

2.E+6 2.E+6
1.E+6 1E+6 v /

0.E+0 0.E+0
-90° 0° 90° -90° 0° 90°
T=90° T=120°
2.E+6 2.E+6
—'\\ //N

0 2 v
/

0.E+0 0.E+0
-90° 0° 90° -90° 0° 90°

Figure 3.15 - Polar frequency plots of image texture showing the effect of variation in
illuminant tilt (7). Axesare asfigure 3.13.

The above demonstrate that, in simulation, the tilt angle responses of images of isotropic

topologies closely follow the directiona characteristics predicted by the model. These
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results are not surprising as the synthetic surface had an average estimated slope angle of
8.6° I and the effect of the quadratic and higher order terms neglected in the linear
model(2.14) would be small. The next section therefore examines the effects of larger

slope angles on the directional characteristics of image texture.

3.2.2. Largeslope angles
As before slope angles were increased simply by multiplying the origina height-map by a
height scaling factor (S), which naturally also increases the surface height variance G .

Figure 3.16 shows polar plots of the two dimensional magnitude spectra of the resulting

images.

8.E+6 T

6.E+6 T

4.E+6 T

Relative magnitude

2.E+6 +

Effect of non-linear
terms
|
{

t
-90° -60° -30° 0° 30° 60° 90°
Angle of frequency components

0.E+0

Figure 3.16- The effect of increasing average slope angles on the polar plots of
magnitude spectra

These results show that large slope angles affect the cosine form of the image textures
directional characteristic very little. Increasing the surface variance increases image
variance as predicted, except that, as was the case in the previous section on the 3
relationship, the image variance saturates at S = 20. This is due to the non-linear
Lambertian illumination expression used in the simulation, as discussed in the previous
section. However, the most interesting non-linear directional effects occur at 8 = T £ 90°.
Here the linear model predicts that all components will be filtered out, but figure 3.16

shows this is not the case. Repesating the simulation using the linear illumination model
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removes the "saturation” and modified directional filtering effects, and shows that both
are due to the quadratic and higher order terms of the Lambertian model (2.3).

If a surface consisting solely of components with a direction 6 = 1 £ 90° is
considered, then

_ov,
ox'

r

=0 (3.6)
substituting (3.6) into the Lambertian model (2.3), and ignoring the mean term gives

0 t2 4 U
|(X, y) = COSO'D-t_+9t_ ...... 0 (37)
o2 4 O

Thus the image will also consist only of components at 6 = T + 90°. They are generated by
the square and higher order t terms that are neglected in the linear model (2.14). For an
image of an isotropic surface these terms will giverise to the "non-linear effects’ seen at
0 =1 £ 90° in figure 3.16, and will naturally become more significant at higher slope
angles.

Therefore the "directional filtering" effect is reduced at higher surface variances.

When shadowing isincluded it is further reduced as is shown in the next section.

3.2.3. Shadowing

As in the previous section, on the surface response, shadowing was investigated through
the use of ssmulation. From figure 3.17 it is clear that shadowing only affects the polar
plots significantly for height scaling factors of S = 10 and above. The polar plots of
surfaces with a height scaling factor of S = 4 or less resemble their non-shadowed
counterparts very closely. However, for surfaces with a height scaling factor of 10 and
above, the variance of shadowed images actually reduces as the surface variance
increases. This echoes the results obtained for the 3 relationship. Note however, that these
polar plots still retain their cosine characteristic, but that they would be better represented
by araised cosine as the minima (at 8 = t = 90°) increase with surface variance. Thus the

“directional filtering effect” is most severe at low slope angles.
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Figure 3.17- Magnitude vs. angle of frequency components of shadowed images for
various height scaling factors.

3.2.4. Four physical textures

All of the results presented so far have been obtained via simulation. Its use has enabled
the power roll-off and variance of surface textures to be precisely controlled in order that
non-linear effects could be investigated. Shadowing has aso been selectively
investigated. These experiments would have been either difficult or impossible to perform
with real textures. However, the exclusive use of simulation may result in fase
conclusions being drawn due to the incorrectness of either explicit or implicit
assumptions. Hence in this section results of laboratory experiments are presented using

four different samples of texture. These samples were selected using the following criteria

() The textures had to be isotropic in appearance to minimise their impact on the

directional characteristics of the image textures.
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(i) The"scale" of each texture had be such that it could (a) be detected by the imaging
system, and (b) was not so large that a representative sample of it would not fit onto
one of the 60 cm sguare mounting boards used in the experiment.

(ili) The textures had to be of amaterial that could be spray painted.

(iv) The texture samples had to be "globally" flat.

Images of the four textures are shown below in figure 3.18.

Figure 3.18 - The test textures.

If experimental results are to be of value then it is important that the phenomena

that they exhibit are seen to be due to the process under investigation rather than the
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experimental procedure or anaysis. The following section therefore describes the
experimental set-up and the analysis techniques employed after which the results are
presented. As directional characteristics are important here specia attention was paid to
their possible artificial introduction, both in the capture of the images and the ensuing

frequency domain analysis.

a) Experimental technique

General set-up

Each of the textures was sprayed matte white to eliminate any albedo texture and to
provide an approximately Lambertian reflectance characteristic. Images (512x512x8bit)
were captured using a CCD2 camera with a 40 mm lens (aperture = f11) connected to a

frame store mounted in a workstation. The texture samples were mounted as shown in

|—F| Camera

|
| Ve
N

Texture sam
M

Figure 3.19 - Experimental set-up

figure 3.19.

That is they were mounted perpendicularly to the cameras line of sight at a distance of
3.3m; and illumination was provided by a 500W lamp, 1.6m from the subject. The
position of the illumination was varied in terms of tilt and slant angles, and all other

parameters were kept constant.

2Charge coupled device
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Compensation for illuminant intensity variation

As the illumination source was mounted relatively close to the texture, and, asits lighting

pattern was unknown, the variation in intensity of illumination incident on the textures

surfaces was investigated. It was especially important to remove any directional trends [

as spectral leakage in the FFT process could smear the low frequency components due to
the illumination trend to affect higher frequencies : thereby giving the illusion of a general
trend over the whole frequency range. Variation in illumination was assessed by taking

"registration images' of a flat matte white board;. A variation of 18% was observed in

grey-levels. Registration images were therefore captured for each texture image and used

to compensate for illumination intensity variation. Each texture image grey-value was
divided by the corresponding registration grey-value.3

b)  Spectral estimation of image textures

The images shown in figure 3.18 are random in nature. Estimation of their spectra

therefore becomes the problem of spectral estimation of random fields [Brigham88]

[Marple87] [Kay81]. The main criteriafor this estimation task are:

(i) directiona artefacts should be minimised,

(i) genera trends of the spectra are more important than specific detail,

(iii) changes from one magnitude spectrum to another, due to variation in illuminant tilt
and dlant angles, are more important than the absolute accuracy of the spectra
themselves.

Unfortunately the raw application of atwo-dimensional FFT routine to the image textures

presents two problems : firstly the variance of the coefficients appears high relative to the

underlying trend, and secondly large directional artefacts areintroduced at 6 = 0° and 90°.

Directional artefacts

Directiona FFT artefacts can be detected simply by rotating a digital image of texture and

performing FFTs on the rotated and original images. Their polar plots (normalised with

SNote registration images were first normalised to a mean of 1.0 O by dividing each registration
image pixel by the original registration image mean.
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respect to 8) will then be identical except for any directional artefacts introduced. An

example for the texture rockl for a45° rotation is shown below.

1.40E+06

Artefacts
1.20E+06 + « ‘/A/
o

1.00E+06 +
3 - &
2
E 8.00E+05
o
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£ 6.00E+05 -
5
&

4.00E+05 +

2.00E+05 +

0.00E+00
-Q0° -60° -30° 0° 30° 60° Q0°

Angle of frequency components

Figure 3.20 - Directional artefacts of raw FFT process

The above artefacts are caused by discontinuities formed by the straight edges of the
image, and can be reduced by the application of a circular window [Huang72]
[Brigham88, p252]. The next figure shows a sample of the results obtained by applying a

circular window to a sequence of images.
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— - 80°

Relative magnitude

1.50E+05 +
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t t
-90° -60° -30° 0° 30° 60° 90°

Angle of frequency components

Figure 3.21 - Effect of a circular Hann window
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These images were generated by rotating the camera about its viewing axis in 10° steps.
Note that each plot has ben off-set by the appropriate camera off-set angle. All of the
resulting polar plots were similar to the sample shown. Their similarity shows that no
significant directional artefacts are introduced in either data capture or anaysis providing

acircular window is used.

Variance of Fourier coefficients

As the texture images are effectively random fields, it is not surprising that estimates of
spectral coefficients obtained via the straight forward application of an FFT routine
appear to exhibit high variance relative to the underlying trend. Standard methods of
reducing variance of classical periodogram PSD estimators involve either spatial or
frequency averaging. The Welch periodogram [Welch67] is straightforward to implement
and has proven to be a robust estimator [Marple87]. It divides the data up into segments
which overlap each other by 50%. The segments are windowed (using a circular Hann
window) to reduce spectral leakage [Marple87], and transformed with an FFT to provide
multiple periodograms which are averaged together. The figure below shows the radia
sections of spectral estimates using three differing segment sizes. Note that a 512x512
image was used and so "one 512x512 segment” refers to a straight (non-averaged) FFT

process. It has been plotted for comparison purposes.

1.0E+6

1.0E+5 +

1.0E+4 Forty nine 128x128 segments
YO gments

f \j\/\
V WW Nine 256x256 segments
1.0E+3 & nm"l%
(NI

i/}

001 .010 .100 1.000

Fraction of sampling frequency

Relative magnitude

)( One 512x512 segment ‘

Figure 3.22 - Spatial averaging of magnitude spectra (note the spectra have been
displaced vertically for display purposes)
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The above figure shows that, as expected, reducing the segment size reduces the variance.
In this thesis overall trends in response to illuminant variation are of interest rather than
detail of spectra. The ability to reduce the "spread” of plots is valuable as it alows
differences between graphs to be more easily observed, rather than being obscured by
their own variance. Hence the Welch periodogram was used for the generation of all
spectral estimates of images of physical textures.

c) Tilt response: experimental results

The illuminant’s tilt angle (t) was varied in 10° steps over 180° for the four textures. The
experimental set-up was as described in (a) above. Two examples of the resulting images
are shown in figure 3.23. Magnitude spectra of the images were estimated using the
Welch periodogram method using forty nine overlapping segments. Examples of the

polar plots of the two-dimensional spectra of rockl, are shown in figure 3.24.

Figure 3.23 - Images of "rock1" captured at two different illuminant tilt angles

As predicted, illuminant tilt clearly has a considerable impact on directionality of image
texture rockl (note that the angular position of the magnitude peak follows t1). What is
perhaps more surprising however, is the similarity of the above plots to those obtained via
simulation. Compare, for instance, the T = 30° plot above with that of figure 3.15; both

resemble araised cosine and both have clear minimawithin afew degrees of -60°.

-51-



1=0° T=30°

3.0E+6 3.0E+6

2.5E+6 2.5E+6 /\J\ﬂL\‘
$ $
2 20E+6 2 2.0E+6
= =
g / K g /
€ 15E+6 € 1.5E+6
[ [ \\ /\///
2 2
B 10E+6 B 1.0E+6
2 ) ~

5.0E+5 5.0E+5

Q.0E+Q | ! 0.0F+0 | | |

90° -60° -30° [od 30° 60° 90° 90° -60° -30° Q° 30° 60° 90°
Angle of frequency components (theta) Angle of frequency components (theta)
T=60° T=90°

3.0E+6 3.0E+6 -

2.5E+6 e~ 2.5E+6
o IJ o
T T
2 20E+6 2 2.0E+6
= =
g \ g
€ 15E+6 € 1.5E+6 -
2 2
B 1.0E+6 B 1.0E+6
& &

5.0E+5 5.0E+5

Q.0E+Q | ! 0.0F+0 | | |

90° -60° -30° [od 30° 60° 90° 90° -60° -30° Q° 30° 60° 90°
Angle of frequency components (theta) Angle of frequency components (theta)

Figure 3.24 - Effect of illuminant tilt angle on image directionality (rockl)

The cosine relationship is more obvious in figure 3.25, in which magnitude has

been plotted against cos(B - T).
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Figure 3.25 - cos(6 - 1) relationship for rockl, and best fit straight line
y=m,coy(8-1)+b, (whereyistherelative magnitude)

It shows that there is an approximately linear relationship between magnitude and

cos(0 - 1). Here the magnitude of the "platform™ of the raised cosine can be determined
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from the y-intercept of the graph (b,). The platform was caused in the simulation by non-
linear terms [0 the height of the platform being related to the average estimated slope
angle of the original surface. Increasing the slope angles increases the contributions of
the non-linear terms and resultsin a higher platform. Thus if an image of a surface with
apparently higher slope angles such as stonesl were captured, its spectra would be
expected to exhibit a higher platform. Table 3.2 below shows the slope and intercept
estimates for all four textures including stonesl. The estimates were obtained using |east

squares linear regression.

rockl beansl chipsl stonesl
slope(Im,) 2.1E+6 2.2E+6 2.2E+6 1.7E+6
y-intercept(b,) 0.47E+6 1.7E+6 3.2E+6 2.7E+6

Table 3.2. Best fit raised cosine parameters fory = m_cos(6- 1) + b,

Figure 3.26 shows polar plots of the four image textures together with their best-fit raised

COosInes.
rockl beansl
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Figure 3.26 - Polar plots, and best fit cosines, of the textures beansl, chipsl, and stonesl
(1= 0°).
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Table 3.2 and figure 3.26 show that stonesl does indeed exhibit a higher platform than
rockl, as do chipsl and beansl [0 supporting the suggestion that the platform height is
related to surface variance. This support however is tentative given the small sample and
lack of quantitative surface height data. What is clear however, is that al four image
textures exhibit distinct directional characteristics which "follow" the angle of tilt. These
empirical results therefore
(i)  show that image texture directionality is not an intrinsic characteristic, and
(i) support the cos(0 - 1) relationship between illuminant tilt and image texture, but
show that it should be more accurately modelled by adding an additive term to
account for the raised cosine effect. That is it shows that the tilt component should
be modified to :
F.(«,0) =m_cos(6—-1)+b, (3.8)
d) Radial shape- anintrinsic characteristic ?
The above shows that the directional characteristics of image texture are not independent
of illuminant tilt O as predicted by the image model presented in chapter 2. This model
also predicts that radial shape of magnitude spectra is an intrinsic property (see figure
2.5). If thisisindeed the case it will be independent of illuminant tilt. Thus radial plots of
image texture will show that variation in tilt changes the level but not the form of the log-
log radial response. Figure 3.27(a) shows the response of rockl image texture to variation
in illuminant tilt (1). It contains radial sections through the periodograms at an angle 6 =
0°. These sections show that, as predicted by the image mode (2.14), the magnitudes
reduce as T deviates from 6, and that the plots are similar to each other in shape athough
they converge towards each other at the Nyquist frequency.

Figures 3.27 (b), (c) and (d) show radial sections of the other three isotropic
textures. These plots together with those at other values of 6 all show similar results [
gross radia shape is maintained but the plots converge as the Nyquist frequency is
approached. That is the gradients of sections (particularly of beansl and chipsl) are

dependent upon the tilt angle of the illuminant. Hence, contrary to predictions derived



from the image model (2.14), estimates of the power roll-of factors of these textures

would not in thisinstance provide a feature which is independent of illuminant tilt angle.
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1.0E+6 1.0E46 +
L —
[ — - —
1.0E45 + 10645 L
1.0E+44 1.0E+4 +
AN
% N
‘W&W
1.0E+3 + 1.0E+3 |
0.01 0.10 1.00 0.01 0.10 1.00
C) chipsl d) stonesl

1.0E+6 & 1.0E+7 —

1.0E+6 T
1.0E+5 +

1.0E+5 +
1.0E+4 +

1.0E+4 +
1.0E+3 + | 1.0E+3 |

0.01 0.10 1.00 0.01 0.10 1.00

T =0° (top traces), T = 30° (2nd top traces), T = 60°(2nd bottom traces), T = 90° (bottom traces)
6=0° 0 =50
Axes asfor figure 3.24

Figure 3.27 - Effect of tilt on radial shape of magnitude spectra (axes as previous figure)

3.2.5. Summary of tilt response investigation

This section has presented the results of an investigation into the effects of variation in

illuminant tilt angle, on image texture; through the use of simulation and laboratory

experiment. To summarise :

. Results from simulation and experiment show that the directional characteristics of
image texture are not intrinsic I but that they are dependent upon illuminant tilt.

. The linear image model (2.14) predicts a pure cosine relationship : cos(0 - 1) but

the results of simulation and laboratory experiment show that a raised cosine :

F, =m_cos(6- 1) +b, [I ismore appropriate for textures with larger slope angles.
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. The shapes of radial sections of the test textures at different illuminant tilt angles
are similar, athough convergence of the sections towards the Nyquist frequency
was observed. Thus in this instance estimates of the power roll-off factor (3 are not

independent of thetilt angle of the illuminant.

3.3. The dant angle response of image texture
The two preceding sections of this chapter have investigated the response of image texture
to variations in surface relief and illuminant tilt angle (t). The results presented support
the first two parts (F, andF,) of the image model of topological texture (2.14). The third
component of the model concerns the response of image texture to changes in illuminant
slant angle (2.17) :
F,=sino
This implies that, as the angle the illuminant vector makes with the vertical is increased,
the whole magnitude spectrum is uniformly amplified by afactor equal to the sine of that
angle.
The aims of this section are therefore :
(i) toassessthevalidity of the slant response predicted by (2.17), and
(i) to further investigate the intrinsic nature of the radial shape of image texture
magnitude spectra.
As in the previous section, simulation was used to gain an insight into the effect of high
dope angles and shadowing, while laboratory experiment provided results with real
textures. The intrinsic nature of PSD radia shape is discussed again here [0 from the

perspective of slant angle response; and the section finishes with a summary.

3.3.1. Low slope angles

Synthetic images of texture were generated as described in section 3.2.1 using low
average slope angles (height scaling factor S = 1). For these simulations the illuminant’s

tilt (t) was kept constant at 0°, while the slant angle (o) was varied in 10° steps between
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10° and 80°. Figures 3.28 and 3.29 show samples of four of the resulting images and their
magnitude spectra.
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Figure 3.28 - Samples of intensity images /7 showing the effect of changing o .
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Figure 3.29- Frequency spectra of surface height map and intensity images for o= 10,
304 50°¢, and 80“.

-57-



As predicted by the image model (2.14) the slope of the above spectra do not change (i.e.
the power roll-off factor 3, remains constant) but the variance of the image texture does
increase with slant angle (o). In order to establish whether equation (2.17) represents the
sant angle response, magnitudes of frequency components (at w = 0.12wg) were
estimated for each image*. These estimates were calculated using the least squares fit of a
straight line to the log-log magnitude spectra. They are plotted against sin o in the graph
below.

3.E+6

2.E+6

1.E+6

Least squares est. of magnitude

0.E+0 t t t t |
0.00 0.20 0.40 0.60 0.80 1.00
sin(sigma)

Figure 3.30 - Sant angle (o) response showing the sino relationship (for
0=1020°...809).
The above graph shows that the simulated magnitude response is alinear function of  sin
o as predicted by the image model (2.14).

3.3.2. Large slope angles and shadowing
The simulations were repeated for a variety of surface variances in order to test the
applicability of the slant angle relationship for larger slope angles. Figure 3.31 shows that
the relationship remains linear, athough it is obvious that the y-intercept constant
increases with surface variance.

Unfortunately this linear relationship does not continue to hold once shadowing has
been introduced. Figure 3.32 shows images at the same slant angles as before, but for a

surface variance of 112 (S= 4) and with the addition of shadowing.

4Where wy is the sampling frequency.
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Figure 3.31 - Effect of power (scale = 1, 2, 4 & 10) on slant angle response

Figure 3.32 - Intensity images showing variation due to change of slant angle for a height
scaling factor S= 4
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As the graph below shows adding shadowing to the simulation severely distorts the linear

relationship.
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Figure 3.33- Effect of shadowing at various powers (scale = 1, 2 & 4) on the slant angle
response.

For each of the height scaling factors shown, a significant reduction in magnitude occurs

when the area in shadow exceeds 1-2%. Thus the slant angle response is severely

modified by even slight shadowing.

In conclusion therefore, simulation results predict that "sin " slant response holds
while the degree of shadowing is small, but that it is severely affected by even small
amounts of shadowing.

The following section therefore investigates this relationship using four red

textures.

3.3.3. Experimental results: slant response

The four textures used in the tilt angle experiments; rockl, beansl, chipsl, and stonesl,
were imaged as before, except that illuminant tilt was kept constant at T = 0°, and slant
was varied in 10° steps between 10° and 80°. Four samples of the resulting intensity

images and their magnitude spectra are shown in figures 3.34 and 3.35.
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Figure 3.34 - Intensity images of rockl showing variation with slant angle
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Figure 3.35 - rockl : slant angle response (0 = 10¢, 30°¢, 50° & 80°)

Figure 3.35 of average radial sections of rockl's magnitude spectrum shows that image
variance does increase with slant angle. It is however difficult to assess whether or not it
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followsthe sin o relationship (2.17) derived in chapter 2. Estimation of the magnitude at a

particular frequency via a straight line approximation is not appropriate here, as radia

sections of spectra of the test textures are not straight lines. Hence a simple alternative

was employed : the average of the coefficients in the range w = 0.05wx to 0.20g Was

taken. These magnitude estimates were plotted as before against sin g, and are shown

below in figure 3.36.
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Figure 3.36 - Magnitude estimates vs. sin (0)

Clearly the graphs above do not display alinear relationship over the entire range of slant

angle. However, for the lower values of slant (o< 5C°), where the shadowing has less

effect, the graphs do show a sin o relationship.
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3.3.4. Radial shape - slant angle response

The above has shown that, with respect to the test textures, the values of magnitude
spectra are dependent upon slant angle, and that a sine relationship holds for slant angles
of 50° or less. The image model developed in chapter 2 predicted that radial shape is an
intrinsic property of texture, and therefore independent of illuminant slant o. Figure 3.37
alows the intrinsic nature of this characteristic to be assessed for the four test textures. It
shows radial sections through the two dimensional magnitude spectra, at 6 = 0° for four
values of illuminant slant. It can be seen that the shapes of the graphs do not change
significantly with variation in illuminant slant. However, as with the tilt angle response,
the plots again converge towards the Nyquist frequency, and except for stonesl, their
gradients are not independent of 0. Hence estimates of the power roll-off factor g, are

unlikely to provide a texture measure which is purely afunction of the surface relief.
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Figure 3.37 - Radial shape : slant angle (o) response.
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3.3.5. Summary of slant response investigation

This section has investigated the slant angle (o) response of image texture.

. The results of simulation and laboratory experiment have shown that image
magnitude spectra are not independent of the illuminant’s slant angle.

. In simulation, shadowing severely affected the predicted "sin ¢ relationship.

. Laboratory experiments have shown that the slant angle responses of the four test
textures, approximates a linear function of sin o for slant angles of up to 50°.

. Laboratory experiments have also shown that the gross radial shape of magnitude
spectra of the four test textures, is unaffected by illuminant slant. However, the
gradients of these spectra (and hence the power roll-off factors) are not independent

of illuminant glant.

3.4.Conclusions
This section summarises the investigations reported in this chapter and briefly assesses
their likely impact on texture classification and segmentation.

Chapter 2 presented an image model of topological texture due to Kube and
Pentland [Kube88]. This model is important to texture classification and segmentation as
it predicts that many texture features will be affected by changes in illuminant direction.
However, the model was derived assuming that slope angles are low, and shadowing was
ignored. Thus the purpose of this chapter was to investigate the model's validity
particularly with regard to these two aspects.

Chapter 2 divided the model into three parts corresponding to
(i) theresponse of image texture to changesin surface relief,

(i) theresponse of image texture to changesin thetilt angle of the illuminant (1), and
(iii) the response of image texture to changes in the slant angle of the illuminant (o).
Hence this chapter reported results from three investigations; one for each type of

response. The main conclusions from each of these are repeated below :
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a) Theresponse of imagetextureto changesin surfacerelief
The investigation into the effect of surface relief on image texture used an isotropic fractal

model of topological texture. For such surfaces the radial shape of the surfaces PSD plot
is of the form f and the image mode (2.14) predicts that the radial shape of the

image's PSD plot will be of theform ™, where 5, = 8, — 2 (the B relationship). Results

showed that in simulation :

. the [3 relationship is representative over arange of surface variances, and

. the (3 relationship is still valid when shadowing occurs.

These results therefore, also support the surface response component of the image model

(2.14), from which the (3 relationship was derived.

b) Theresponse of image textureto changesin thetilt angle of the illuminant

The second component of the image model (2.14) predicts that the tilt response of a

textureis of theform:
F.=coy(6-1)

Simulation and laboratory experiment were used to investigate this response :

. Results from simulation and experiment show that the directional characteristics of
image texture are not intrinsic, but are dependent upon illuminant tilt.

. The results of simulation and laboratory experiment, show that araised cosine (3.8)
. F, =m_cos(6- 1) +b,, rather than the straight cosine relationship above, provides
amore accurate representation of the tilt response.

c) Theresponse of imagetextureto changesin the slant angle of the illuminant

The third component of the image model (2.14) predicts that the slant response of a

texture is of the form :
F,=sino

As for the previous response both simulation and laboratory experiment were used in the

investigation. They showed that :

. the variance of image texture is not an intrinsic characteristic as it is dependent on
the slant angle of the illuminant,

. that shadowing severely affects the predicted sin ¢ relationship, and
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. that for the four test textures the slant angle response follows a sine law for values
of slant angle less than or equal to 50°.

d) Theintrinsic natureof PSD radial shape

Chapter two's linear image model (2.14) implies that the radial shape of power and
magnitude spectra are independent of the illuminant's direction. This characteristic was
investigated during slant and tilt experiments. Both showed that the gross shapes of radia
sections of the test textures are invariant to the direction of the illumination. However
their gradient is affected by variation in the illuminant vector. Hence estimates of the
power roll-off factor would not provide a texture feature which is invariant to changes in

the orientation of the illuminant.

3.4.1. Implicationsfor texture classification
Many of the feature sets surveyed in chapter 4 contain directional texture measures. In
addition some are clearly a function of image variance (see chapter 4). Hence two of the
most important of the above conclusions are that
(i) thedirectionality of image texture is not solely a function of surface directionality,
but that it is also afunction of illuminant tilt, and
(i) that variation in illuminant slant, can also affect image variance.
Thus classification accuracy may well be reduced if the direction of the illumination
either (@) changes between training and classification sessions, or (b) varies over a scene
due, for instance, to the proximity of the lighting source.
The purpose of the next chapter therefore, is to review and choose sets of texture

features for investigation as to the effects of variation of illuminant direction.
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Chapter 4

Texture features : review and
selection

The two preceding chapters have used theory, simulation, and laboratory experiment, to
investigate the way in which changes in illuminant direction affect image texture. For the
test sets employed, it has been shown that variations in either illuminant slant or tilt affect
image texture. It was suggested that normalisation may compensate for changes in the
former but not the latter; as variation in tilt affects the directionality of image texture.
Since directional features are used in texture classification and segmentation schemes; it
IS to be expected that variation in tilt may affect the performance of some of these
schemes.
In reviewing texture features for use in classification and segmentation schemes this
chapter therefore has two main objectives :
(i) to identify research on the effect of variation in illuminant direction on texture
classification and segmentation, and
(i) to select three sets of feature measures for further investigation as regards changes
inilluminant slant and tilt.
However, it is not practical to provide an exhaustive survey of all texture measures here.
Given the extent of the literature such atask is beyond the scope of this thesis. Rather this
chapter reviews some of the more popular techniques. Concerning point (ii) above, the
criteriaused for the selection of the features were :
(& popularity in the literature,
(b) easeof implementation and use, and
(c) reported performance.
Before describing feature measures in earnest, the meanings of three terms

necessary to the following discussion : segmentation, classification and feature measure,
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are defined. The review itself starts by considering survey papers, which divide the
subject into statistical and structural approaches. Only the former will be reviewed here.
Within statistical methods two further groupings can be discerned. They are (a) model-
based approaches (i.e. based upon parameter estimation techniques) and (b) non-model-
based methods. Descriptions of these two feature measure types are followed by a resume
of "rotation invariant" feature measures : the motivation for this discussion being that the
rotation of subject texture under fixed lighting, would normally imply an effective change
in illuminant vector relative to the texture. Finaly the conclusion summarises the
literature reviewed, with particular emphasis on the consideration given to lighting

variations, and it identifies three types of feature measure for further investigation.

4.1. Definition of segmentation, classification and feature
measur e.
Before discussing the various texture features it is helpful to clarify what the terms
segmentation, classification and feature measure, as used in this thesis, refer to. Texture
segmentation is used to refer to the process of dividing an image up into homogeneous
regions according to some homogeneity criteria. It is therefore intimately concerned with
establishing the boundaries between these regions without regard to the type or class of
the regions. For brevity the term segmentation on its own will normally be used to
describe this process.

Texture classification refers to the process of grouping test samples of texture into
classes, where each resulting class contains similar samples according to some similarity
criterion. If the classes have not been defined a priori, the task is referred to as
unsupervised classification. Alternatively, if the classes have aready been defined
(normally through the use of training sets of sample textures) then the process is referred
to as supervised classification. In the following text nearly all the texture classification
tests reported are of the supervised type and this process will be referred to simply as
classification. Unsupervised classification will therefore be specifically identified as such.

Note that classification tests may be performed on separate samples of texture, in which
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case the samples are presented as a number of separate, normally square, images and
segmentation is not required. Alternatively, a single image containing multiple textures
may be presented, requiring segmentation prior to classification. Note that if classification
is performed on a pixel by pixel basis within a single image then, as a by-product,
segmentation also occurs.

Before either segmentation or classification can take place, some homogeneity or
similarity criterion must be defined. These criteria are normally specified in terms of a set
of feature measures, which each provide a quantitative measure of a certain texture
characteristic. These feature measures are alternatively referred to here as texture
measures or just ssimply features. Groups of feature measures assembled for segmentation
or classification purposes are often referred to as feature vectors.

Note that when the performance of feature measures are compared, it is misleading
to compare classification and segmentation accuracies. The former normally refers to the
percentage of correctly classified texture samples or regions, while the latter may refer to

the number of correctly identified pixels.

4.2. Surveys

Haralick provided the classic survey of texture measures [Haralick79]. He listed and
described a number of texture extraction methods which he divided into two types :
structural and statistical, as did Wechsler [Wechsler80]. More recently Van Gool et al
produced an excellent survey of texture analysis [VanGool85]. They again divided the
field into structural and statistical camps. The former use primitives to describe texture
elements and placement rules to describe the spatial relationship between elements. This
approach is better suited to textures that exhibit a regular macro-structure, and will not be
discussed further. The statistical approaches are better suited to micro textures, and
Haralick identified techniques based upon auto correlation functions, frequency domain
analysis, edge operators, grey-level co-occurrence matrices, grey-level run lengths, and
autoregressive models. The taxonomy of statistical techniques due to Van Gool et d, is

similar to Haralick’s, but it aso includes the use of filter masks such as Laws' energy
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features, and grey-level sum and difference histograms. In addition it provides a summary
of reported performance.

The surveys referred to above were performed in the late seventies and early
eighties since which there has been an explosion of interest in model-based techniques
(Markov fields, fractals etc.). These are well reviewed in arecent survey by Reed and du
Buf [Reed93], which also covers feature-based methods (including statistical approaches)
and structural methods.

The following review is therefore divided into two main groupings : model-based

and non-model-based features.

4.3. Modd-based features

A number of random field models (i.e. models of two-dimensional random processes)
have been used for modelling and synthesis of texture. If a model is shown to be capable
of representing and synthesising a range of textures, then its parameters may provide a
suitable feature set for classification and/or segmentation of the textures. For a model
based approach to be successful, there must exist a reasonably efficient and appropriate
parameter estimation scheme, and the model itself should be parsimonious, i.e. use the
minimum number of parameters. Popular random field models used for texture analysis
include fractals, autoregressive models, fractional differencing models, and Markov
random fields. These will now briefly be reviewed. A more extensive review of these

approaches may be found in [Ahuja81] and [Reed93].

4.3.1. Fractal models

Fractals [Mandelbrot83] have, as discussed earlier, been used very successfully to
synthesise natural looking textures [V oss88] [Saupe88]. Their use for synthesis together
with their ability to characterise "roughness’ [Pentland84] make their major parameter,
fractal dimension, a natural candidate as a feature measure of texture. Many researchers
have estimated the fractal dimension and used this directly as a texture measure. Such
estimates are obtained either in the frequency domain, by estimating the gradient of the
log-log plot of the power spectrum, or from the spatial domain by a variety of methods

-70 -



[Voss88]. Note however, that as fractal dimension describes scaling behaviour, it is
necessary to perform measurements over at least two scales, and that one would expect
that the wider the variation in scales the more accurate would be the estimation procedure.
Accurate estimation of fractal dimension therefore seems to be at odds with the accurate
determination of texture boundaries 0 however, this is a trade-off that al texture
segmentation schemes must make.

Pentland reported one of the earliest uses of fractal dimension estimates for
segmentation purposes [Pentland84]. He used the power spectrum method to provide an
omnidirectional estimate of the fractal dimension of 8x8 pixel blocks, which he used to
segment a variety of indoor and outdoor scenes. From the results presented it appears that
the scenes have all been coarsely segmented into textured and non-textured regions,
something which could not have been achieved with straight grey-level thresholding.

Medioni and Yasumoto [Medioni84] also used a single omnidirectiona fractal
dimension estimate as a feature measure. They tried to segment an image containing
multiple textures and obtained unsatisfactory results. They commented that "it (fracta
dimension) suffers the drawbacks associated with any single feature measurement space:
it describes one aspect of texture and therefore can only separate textures which differ
enough in roughness’. Keller and Chen [Keller89] similarly state that "fractal dimension
aloneis not sufficient to characterise natural textures'.

Two techniques have been used to enhance the classification power of fractal
dimension based methods. Firstly, additional parameters such as "lacunarity” have been
utilised. Secondly, directionality, a key feature of most texture analysis schemes, has been
employed by relaxing the assumption of isotropy and providing directiona estimates of
fractal dimension.

The term lacunarity was derived by Mandelbrot from the Latin term for gap
(lacuna) and he used it to describe the size of holes in images of galaxies [Mandelbrot83].
Linnett [Linnett91a] likened this characteristic to "structure" in texture, which is
dependent on phase information [Clarke92]. Keller and Chen [Keller89] used a measure

of lacunarity together with an omnidirectional estimate of fractal dimension for
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segmentation purposes. They found that the use of this additional parameter, considerably
improved the results achieved with a test image, consisting of a montage of Brodatz
textures [Brodatz66].

Directionality is commonly exploited for texture classification and segmentation. It
is not surprising therefore, that when Pentland [Pentland84] extended his study to
compare the performance of his method against that of Laws, he used estimates of fractal
dimension in x and y directions. Pentland reported a classification accuracy of 84.4% on a
Laws test image (a Brodatz texture montage) which compared well with other techniques.
Mosquera et a [Mosquera92] estimated fractal dimension in four directions (vertical,
horizontal and the two diagonals) using a spatial domain method based on a 12x12 kernel.
They achieved good segmentation results on synthetic and Brodatz textures.

Peleg [Peleg84] extended the "sausage' method of measuring the length of a fractal
curve [Mandelbrot83] to produce a "blanket” method of measuring the area of a fractal
surface. In both cases the way in which the measurement (Ilength L or area A) scales with
the "measurement yardstick €" is an exponential function of the fractal dimension D. Thus
D can be estimated from the gradient of the log-log plot of A against €. Peleg used an
iterative method for the calculation of the area A at different values of € I he simply
calculated the position of the next blanket's surfaces by adding a radius onto the previous
blanket’s surfaces. In this manner he was able to generate 50 blankets, from which he
obtained 48 estimates of the log-log gradient (each from a set of three blankets). The 48
gradients were then used as features to successfully classify a set of Brodatz textures.

Peleg also described the possible use of directiona versions of his "blanket" based
feature, a technique which Linnett and his colleagues [Linnett91a] [Linnett9lb]
[Linnett93] used to great effect in his segmentation scheme. As well as using directional
operators Linnett
(1)  used the blanket thickness as a feature measure directly, rather than the estimates of

fractal dimension,

(i) wused the thickness a each position in the image for spatially accurate

segmentations,
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(ili) used only a low number of blanket iterations (typically two or three) thereby
reducing the computational load considerably,

(iv) used a moving window averaging filter to improve the robustness of the
classification (by reducing feature variances), and

(v) used an iterative statistical classification method [Linnett91a)].

Linnett achieved impressive results on side scan sonar images of the sea bed and a

Brodatz texture montage (4.3% classification error).

Clarke [Clarke92] further extended Linnett's techniques to provide an elegant
method of rotation invariant classification. His scheme transforms the feature space of
each segmented region using principal components analysis (PCA). The analysis is
performed separately on each region in turn and the resulting principal components are
used as features for classification.

The quality of these results inspired the author to apply Linnett's scheme to

underwater images [Chantler91] and to embark on this research.

4.3.2. Autoregressive models

Autoregressive models have been used for spectral estimation [Marple87], coding
[Kashyap80], segmentation and classification [Khotanzad87], and image restoration
[Chellappa82).

A time series autoregressive model is a random process model in which the current
value of the output is expressed as the sum of its mean value, the current value of a white
noise process, and a linear aggregate of previous output values [Box76]. The number of
output values used is known as the order of the modedl (p). An autoregressive model
therefore has p + 2 parameters. p coefficients, the mean, and the variance of the white
noise. These parameters may be estimated using either least square error or maximum
likelihood techniques [Khotanzad89]. Autoregressive models have been used to model
images as random fields (two-dimensional random processes) by a number of researchers
[Kashyap83] [Kartikeyan91l] [Ma092]. In the two-dimensional spatial case the "previous

values' of the time series process are replaced by the grey values of local neighbourhood
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pixels. Unlike the temporal case there is normally no preferred direction in a lattice and
neighbourhoods are therefore normally defined to consist of variables both "before" and
"after” the variable being modelled, i.e. they are non-causal (two-sided). Again the
parameters may be estimated either by using least square error or maximum likelihood
techniques.

Khotanzad and Kashyap [Khotanzad87] used "simultaneous autoregressive models'
for texture classification. They selected the order of the models to use via texture
synthesis. They fitted ssmple local neighbourhood models to the test textures and the
resulting parameter sets were used to synthesise textures. If the synthesised textures were
dissmilar to one another, then their parameters were deemed to have good discriminatory
powers over the test textures. However, if the converse were true, the process was
repeated with a higher order model.

Kartikeyan & Sarkar [Kartikeyan91] reported a classification scheme in which they
first identified the most suitable model parameters for each training class and then
estimated the value of the parameters themselves. Thus each training class has its own
feature space, consisting of the parameters of its model. Classification was performed by
calculating a set of feature vectors (one for each of the feature spaces) for a test texture
and determining likelihood of the texture belonging to a class by using the corresponding
class feature space. This method achieved a miss-classification rate of "about 2.4%" on a
set of four Brodatz textures.

As far as parameter estimation is concerned, Khotanzad and Chen [Khotanzad89]
found little difference between least squares and maximum likelihood methods. They
used a six parameter autoregressive model and edge detection in feature (parameter) space
for segmentation of natural textures.

Kashyap and Khotanzad [Kashyap86] developed a rotation invariant classification
scheme which uses two autoregressive models. Firstly they use a "circular symmetric
autoregressive model” in which all the weights for the local neighbourhood are lumped
together to give an isotropic (directionally insensitive) parameter. Secondly, a

conventional autoregressive model is used to provide a measure of "directionality” : this
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feature is essentidly the maximum difference between right-angled pairs of
neighbourhood parameters e.g. (1,1) and (1,-1). Kashyap and Khotanzad tested their
scheme on twelve Brodatz textures at seven different rotations and obtained an average
classification accuracy of 91%.

Mao & Jain [Mao92] developed a similar rotation invariant autoregressive model.
It also uses the sum of unit circle based neighbourhood grey-levels, but in addition
extends the order of the model to take in parameters based on wider radius circles. A
directional measure is not used. Instead, to improve classification accuracy, a multi-
resolution approach was adopted, in which the parameter estimation is repested at
different scales. By using a second order model at four different resolutions 100%
classification accuracy was achieved. It should be noted however that, as in other
"rotation invariant” tests, the test set was created by rotating images rather than rotating

the natural textures themsalves.

4.3.3. Fractional differencing models

Kashyap and his colleagues have extensively investigated the use of fractional
differencing models (also termed long correlation models) for modelling, synthesis,
classification, and segmentation, of texture [Kashyap84] [Kashyap89] [Choedld]
[Choe91b]. The one-dimensional fractional differencing model was suggested by Hosking
[Hosking81] as a generaisation of Box and Jenkins ARMA(p,d,q) model, where p,d,q are
the orders of the autoregressive (AR), differencing, and moving average (MA) parts of the
model respectively [Box76]. The generdisation is a relaxation on the differencing
parameter d (which is normally alow valued positive integer) to alow it to be real valued
(i.e. fractional). Hosking defines the fractional difference operator (19 of order d using the
binomial series:

0¢=1-dB-,d(1-d)B’ - d(1-d)(2-d)B°........

where B is the backward shift operator.
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Thus for positive fractiona values of d the ARMA(0,d,0) process is in fact equivaent to
an infinite order AR(autoregressive) model. This explains its "long memory"
characteristics [Choe9la].

Kashyap and Eom used this model to develop a texture segmentation scheme. The
model’s parameters are estimated in the frequency domain and used as features for texture
boundary detection. They obtained reasonable results in tests using checker board images
of Brodatz textures. Later, for classification and shape from texture purposes, Choe and
Kashyap [Choe9la] [Choe9lb] used both first and second order models. Their
hierarchical approach performs a first level classification based on surface roughness.
This uses a rotation invariant first order model in which the two directional fractal
differencing parameters are lumped into a single omnidirectional measure. The second
level uses a more complex model. It employs two additional directional parameters w, &
w, to account for pattern (as opposed to roughness) and aso embodies surface tilt, slant,
and rotation parameters. A maximum likelihood estimate of these parameters is made
given the subgroup of classes indicated by the level one classification. Feature measure
means and variances for a test set of Brodatz textures are reported. They indicate that
classification would be successful for the magority of the textures, and that feature
measure estimates for rotated, tilted and slanted textures differ very little from those of
the original textures. Note again that this "rotation invariant" test uses rotated images of

texture; amore realistic test would be to use images of rotated texture.

4.3.4. Markov random fields

Markov random fields are a two-dimensional generalisation of Markov chains which are
defined in terms of conditional properties. The conditiona probabilities are the same
throughout the chain (or field) and are dependent only on a variable's neighbourhood (the
Markov assumption). The size and form of the neighbourhoods are defined by the order of
the model. The first, second, third, and fourth order neighbourhoods of x are shown
below, where the first order neighbourhood consists of the variables labelled with a "1",

the second order consist of all "1"sand "2"s etc.
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Figure 4.1 - Markov random field neighbourhoods

Hassner and Sklansky [Hassner80] adapted a Markov random field (MRF)
simulation algorithm originally used for gas models. They used it to generate first order
isotropic MRF textures which lacked realism because they were binary. They pointed out
that the number of parameters needed rose roughly with the square of the number of grey-
levels. They however, also suggested that parameter estimation of MRF models could be
used for classification purposes. In the specia case where the texture is Gaussian, an
MRF model may be parsimoniously characterised by a linear model [Chellappa85a].

Kashyap and Chellappa investigated parameter estimation schemes of, and texture
synthesis with, both autoregressive and Markovian models. They concluded that selection
between the two model types should depend entirely upon the data being considered
[Kashyap83]. Chellappa et a further used MRF models for texture classification
[Chellappa85a] and coding [Chellappa85b]. They tested a fourth order MRF model based
feature set (i.e. 12 linear equation parameters). The test set consisted of 64x64 samples of
Brodatz textures and they reported classification accuracies of 99% and 93% for the two
feature sets respectively.

Cohen et a [Cohen91b] have aso developed classifiers based on MRF models.
Their application involves the detection of fabric defects, and in their tests a sixth order
MRF parameter estimation scheme detected test defects with 100% accuracy.

Cohen also developed a rotation and scale invariant classification scheme using
Markovian models [Cohen91a]. They developed a Gaussian MRF model that incorporates
scale and rotation parameters, and showed that they could obtain estimates of these
parameters given the normal MRF model. The classification scheme therefore first
obtains maximum likelihood estimates for the scale and rotation factors of atest texture
for each training class; and second, it determines the likelihoods of the test texture

belonging to each class, given these estimated scalings and rotations. In a test using
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Brodatz images they obtained good estimates of orientation and scaling factors, and 100%

accurate classification results.

4.4. Non-model-based features

This section briefly reviews co-occurrence matrices, grey-level sum and difference

histograms, Laws” masks, frequency domain methods, and Gabor filters.

4.4.1. Grey-level co-occurrence and other related features

Haralick [Haralick73] developed a set of fourteen feature measures based on "grey-tone
spatial-dependence matrices’, commonly referred to as grey-level co-occurrence matrices
(GLCM). These matrices are essentially two-dimensional histograms of the occurrence of
pairs of grey-levels for a given displacement vector. Typical displacement vectors include
(1,0), (0,1, (1,2), (1,-1), (2,0). He achieved classification success rates of between 82%
and 89% for photomicrographs of sandstones, aerial photographs, and satellite imagery.

Many researchers [Weska76] [Conners80] [Zucker80] [Davis8lb] [Unser86]
[Castrec88] [duBuf90] [Lovell92] [Shang93] have used Haralick’s co-occurrence based
features. The most popular features include Contrast, Angular Second Moment,
Correlation, Inverse Difference Moment, and Entropy, with small displacement vectors
e.g. (1,0) and (0,1) [Conners80].

Zucker [Zucker80] used a X2 test of independence for co-occurrence feature
selection; the assumption being that the pairs of pixels would be independent of one
another if the distance vector did not coincide with the structure of the texture. Lovell et
al [Lovell92] used heuristic rules in a segmentation agorithm that combined Laws, co-
occurrence, fractal dimension, and other feature measures; to produce good results on a
diverse set of images which included an underwater image of an ROV (remotely operated
vehicle).

Shang and Brown [Shang93] employed principal components anaysis (PCA) to
reduce the dimensionality of their co-occurrence based feature space. This improves the
efficiency of training and classification sessions using neural network. They reported

good results with Brodatz and side-scan sonar test sets.
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Cheaper but related alternatives to grey-level co-occurrence features are those based
upon grey-level differences [Weska76] [Conners80] [Davis8la] & [Castrec88]. These
features are computed from histograms of differences between pairs of pixels (the pairs
again defined by a displacement vector). Weska et @ and Conners et a reported that
performances from both feature sets are comparable, which is not surprising given their
similarities. Their similarities are reinforced by the fact that the successful co-occurrence
feature "contrast" can be computed directly from grey-level difference data. Unser went
one step further and computed both sum and difference histograms [Unser86], from which
he was able to calculate exact equivalents to nine of Haralick’s co-occurrence features and
estimate the remaining five. He used a test set of Brodatz images to compare his features
against Haralick’s. The results were almost identical.

Davis et a, generalised the grey-level co-occurrence matrix (GLCM) to take
account of any features that may be generated from a pixel’s neighbourhood (e.g. edge
value and direction) rather than just their grey-levels [Davis8la]. The results of their
experiments with a database of eight textures showed that the grey-level based descriptors
(i.e. GLCM descriptors) gave the best results. Davis [Davis81b] also used "polarograms’
as away of showing the directional distribution of GLCM features, and proposed a set of
polarogram statistics which are rotationally invariant. Haralick [Haralick73] had earlier
suggested that rotation invariant features could be obtained from co-occurrence matrices
by taking the average and range of each feature type over the four angles that he used.
Rather than average existing features, Sun and Wee [Sun83] developed a directionally
insensitive measure : the "neighbouring grey level dependence matrix". These matrices
(indexed by grey-level k, and number of neighbours s) indicate the number of times a
pixel of grey-level k, has s neighbours of a grey-level differing by less than a from k.
Neighbourhoods are defined as all pixels within a specified radius. Hence the matrices,
and features derived from them, contain no directiona information. Despite this, tests
using two features on Landsat images achieved percentage classification ratesin the lower

eighties.
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4.4.2. Laws textureenergy filters

Laws [Laws79] [Laws80] investigated three texture feature generation methods in detail :
co-occurrence, correlation, and spatial-statistical techniques. From the myriad of spatial
statistical texture measures [1 essentially a set of statistical moments of a very wide and
often ad hoc set of masks [1 and a desire to produce a computationally efficient method,;
Laws developed a coherent set of "texture energy” masks. All the masks were derived
from three ssimple one-dimensional non-recursive filters. These may be convolved with
each other to give a variety of one and two-dimensional filters. Laws found the most
useful to be a set of seven bandpass and highpass directiona filters, implemented as 5x5
masks. The outputs from these masks are passed to "texture energy"” filters. These consist
of amoving window calculation of variance (hence justifying the term "energy filter" ) or,
more cheaply, a moving window average of absolute values. Laws used 15x15 windows,
as a compromise between classification accuracy and computational cost. Texture energy
images are used either directly, or via principal components analysis, as feature images
for segmentation and/or classification.

Laws used Brodatz textures and other images to compare his masks with co-
occurrence and correlation based features. He achieved pixel classification success rates
of 94%, 72%, and 65% respectively. Castrec [Castrec88] however, found grey-level sum
and difference based features to be superior for segmentation of side scan sonar images.
Pietikainen et a [Pietikainen82] [Pietikainen83] tested Laws, co-occurrence contrast, and
"edge per unit area’ operators on Brodatz and geological terrain types. They found that
the Laws operators performed consistently better than either edge or co-occurrence based
features. Miller & Astley [Miller91] used Laws masks and morphological operators to
detect glandular tissue in breast X-rays. They found that Laws masks R5R5, L5L5, and
S5R51; combined with a 31x31 local variance filter gave good results.

Greenhill and Davies [Greenhill93] employed 3x3 Laws masks in conjunction with

aneural network classifier. The output of the neural net is passed through a mode filter to

1L aws masks are defined in chapter 5.
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remove small areas which have been incorrectly classified. They reported the results of a
set of experiments on a Brodatz montage that used a variety of sizes of averaging and
mode filters. They concluded that the optimum sizes for these two filters are 11x11 and
13x13 respectively, and that mode filters represent a valuable but underused technique.

Harwood et a [Harwood85] reported 92% and 94% success rates for classification
of 120x120 samples of six Brodatz textures using L5E5 and L5S5 masks respectively.
DuBuf et a [duBuf90] used the variances of the masks' outputs within a relatively small
7x7 window and concluded that Laws features were among the best tested out of a wide
variety of texture measures.

In summary therefore a number of researchers in addition to Laws himself have
found these easily implementable "texture energy measures' to compare very well with

alternative approaches.

4.4.3. Frequency domain methods

Two-dimensional power or magnitude spectra provide information on texture coarseness
and directionality from their radial and angular distributions respectively [Weska76]. The
most commonly extracted features consist of sums of coefficients within wedges, rings, or
sectors of two-dimensional power spectra [Lendaris70] [Kruger74] [Weska76] [He88].
Weska et al [Weska76] and Conners and Harlow [Conners80] found these features to give
inferior results to those obtained using grey-level co-occurrence or difference based
features. Other frequency domain measures include those derived from the characteristics
of "spectral peaks'. D’Astous and Jernigan [D’Astous84] used features which included the
frequency (f), direction (0), area, and relative power of spectral peaks. They tested their
features against co-occurrence matrices and concluded that the former provided a higher
level of discrimination between a test set of Brodatz textures. He et al [He38] later used
the same spectral peak features together with co-occurrence and power spectra sector
based measures on a Brodatz test set. However, when they used stepwise forward feature
selection to select ten texture measures, they found six of the first seven were co-

occurrence based and the remainder were derived from power spectra sectors, i.e. none of
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the first ten were derived from spectral peaks. The disappointing results of such frequency
based techniques are not surprising given the difficulty of obtaining reliable spectra

estimates from small samples of random signals [Marple87].

4.4.4. Gabor filters

Related to the Fourier based techniques described previously, are those that use banks of
filters to highlight sections of two-dimensional spectra. Unlike the pure Fourier
technigues however, the output is a set of images (one for each filter) that retain spatial
information, and can therefore be used for segmentation purposes. Gabor filters are
popular because the human vision system is also thought to employ similar banks of
directiona bandpass filters [Jain91]. Bovik et a provided an accessible description of
Gabor filters in [Bovik87] where they also describe the separate use of magnitude and
phase outputs for segmentation. Jain and Farrokhnia [Jain91] used banks of Gabor filters,
followed by energy filters similar to those used by Laws [Laws80]. Segmentation tests on
avariety of texture combinations, including Brodatz and M RF textures, gave good results,

with pixel miss-classification rates ranging between 0.5% an 13%.

4.5. Comparative studies

This section collects together various comparative studies that have been mentioned in the
above review. Its purpose is to alow a comparison to be made from "independent” tests
of feature measures. Unfortunately these comparative studies do not cover al the features
described above and in particular model-based features are poorly represented.

Weska et a [Weskar6] investigated three types of texture measure for the
classification of aerial and Landsat images. They used features based upon angular and
radia power spectra, grey-level co-occurrence, grey-level difference, and grey-level run
length. From the results of their experiments they concluded that
(i) Features based on grey-level difference or co-occurrence measures gave similar

performances. Both gave better results than features derived either from power

Spectraor run length statistics.
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(i) The computationally cheapest feature, the mean of the grey-level differences, did
about aswell as other grey-level difference and co-occurrence measures.

Conners and Harlow [Conners80] reported a theoretical comparison of four types of

texture measure that Weska et a investigated empirically. They measured the "amount of

texture-context information contained in the intermediate matrices of each agorithm",

using a set of synthetically generated Markovian textures. Their conclusions were similar

to those of Weska et al.

Du Buf, Kardan & Spann [duBuf90] tested the ability of seven types of feature
measure (computed in a 7x7 mask) to segment a set of synthetic test textures. They
concluded that co-occurrence and Laws gave among the best results. The grey-level co-
occurrence features were calculated using images requantised to 64 grey-levels. Distance
vectors of (0,1) and (1,0) and features contrast and difference variance were found to give
good results for single feature segmentation, while a combination of (1,0), (0,1), (1,1) and
(1,-1) directions for the contrast feature gave the best multi-feature segmentation results.
Of the Laws operators R5R5, E5L5, E5S5, and L5S5, managed to segment most of the
test images. It is interesting to note that they describe these 5x5 masks as low cost Gabor
functions. They also used fractal dimension but obtained "disappointing” results which
they attributed to the coarse estimation methods they employed.

Castrec and Kernin [Castrec88] investigated the use of grey-level co-occurrence
matrices, grey-level sum and difference histograms, and Laws texture energy filter
features. They applied these measures to the task of side scan sonar image segmentation.
They found that the Laws features did not perform as well as the other two techniques,
and that the co-occurrence contrast, correlation and variance features could be calculated
60 times more efficiently from grey-level sum and difference histograms. Their
conclusion therefore was that features based on the latter technique were the most
promising.

He et a [HeB88] did not perform an explicit comparison of texture feature
performance, rather they used a standard feature selection procedure (forward stepwise) to

select ten feature measures out of a mix of co-occurrence, PSD, and spectral peak based
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texture measures. Six out of the first seven selected were derived from co-occurrence
matrices, while the rest were PSD sectors. None were based upon spectral peaks. This
confirms the results reported by Weska et a, and Conners and Harlow, that Fourier
spectrum based features do not seem to perform as well as their co-occurrence based

competitors.

4.5.1. A leaguetable of feature measures

The table below summarises the findings of comparative studies described above. The
numbers indicate the relative order, in terms of classification and/or segmentation
performance, that each study placed the particular feature concerned. Note that there are
several joint placings and that 1 = first place (i.e. best). Blanks indicate that the feature

was not investigated by the researchers.

Co- Sum and Laws | Run Fractal PSD PSD
occurrence | difference | masks | length | dimension | wedges peaks
and rings
Weska 1 1 2 2
Conners 1 1 2 2
duBuf 1 1 2
Castrec 1 1 2
He 1 2 3

Table 4.1 - Comparative studies of texture features

As the educationa institutions are well aware, league tables should be treated with
caution. However, from the above two points are immediately apparent. Comparative
studies have tended to concentrate on non-model-based approaches, and of the features
tested, co-occurrence matrices and their cheaper alternatives, the sum and difference

based features, are reportedly better than other approaches.

4.6. Rotation invariance
A number of the papers discussed above have reported the development of rotation
invariant texture features. It might be expected that such research would encompass the

effects of variation in illuminant vector. However, few of the papers reviewed in this
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chapter discuss this topic and none investigate it in detail. They therefore implicitly
assume that

(1) the textures concerned consist of surface markings only (albedo texture), or that
(i)  theilluminate vector is perpendicular to the surface of the texture, or that

(@iii)  theillumination is omnidirectional (flat).

The use of Brodatz textures as test cases reinforces the above assertion, as the only
practical way of obtaining rotated examples of these textures is to rotate Brodatz's album
before scanning, or alternatively to rotate the images once they have been scanned in. In
either case thisis clearly not the same as rotating the physical textures themselves, as the
illumination is effectively rotated with the texture. Note that many of the Brodatz textures
were photographed using directional-lighting to highlight surface relief.

For ease of reference the "rotation invariant” feature measures discussed above will
now be summarised. They naturally fall into two camps. Firstly there are those that ignore
directional information completely, i.e. they only consider omnidirectional measures or
averages of directional features. Secondly there are those that exploit relative directional
information, i.e. directional information that is independent of absolute angle, such as the

angle between the two magjor directionsin the texture etc.

4.6.1. Omnidirectional feature measures

Haralick [Haralick73] suggested computing omnidirectional features from directiona
measures by averaging his co-occurrence based features over the four directions. Sun and
Wee [Sun83] took this to its logical conclusion and computed omnidirectional features
directly from an omnidirectional matrix : the neighbouring grey-level dependence matrix
whose entries depend on the values of neighbours in al directions. Kashyap and
Khotanzad [Kashyap86] developed a circular autoregressive model which simply
averaged all the pixels on the unit circle neighbourhood into a single value associated
with a single parameter [1 producing a model containing no directional information. Mao
and Jain [Mao92] took this one stage further by increasing the order of this rotation

invariant autoregressive model to take in neighbourhood pixels on larger radii.
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4.6.2. Rotation invariant directional feature measures

This section briefly describes texture features that measure directional characteristics of
texture, yet are "rotation invariant”. Such features include relative angular measures, such
as the angle between the two major directions in the texture etc. Eichmann [Eichmann88]
performed a Hough transform and then extracted rotation invariant features from
parameter space. Although they were rotationally invariant they did exploit directiona
information : the angles between sets of lines, the spacing between paralel lines, and the
number of principal line directions. Davis [Davis81b] constructed "polarograms’ from
GLCM features, from which he computed rotation invariant moments which he used as
feature measures. Kashyap and Khotanzad [Kashyap86] augmented the omnidirectional
"circular" autoregressive model with a directional one, from which they extracted a
measure of directionality. Cohen et al [Cohen9la integrated scaling and rotation
parameters into an MRF model. Choe and Kashyap [Choe9la] [Choedlb] used a two
level classification system : firstly an omnidirectional fractional differencing model was
used for coarse classification according to texture roughness, and secondly, a second
order directional model with rotation, tilt and slant parameters was used to refine the
classification. Clarke [Clarke92] used principal components analysis on each texture

region separately and then performed classification on the resulting principal components.

4.7. Conclusion
The preceding sections have reviewed a number of model-based and non-model-based
feature measures, their purpose being to facilitate the selection of three types of texture
measure for investigation as regards the effects of variation in illuminant vector. Papers
dealing with illuminant vector effects are therefore particularly relevant to this selection.
Unfortunately the author has not been able to find investigations of such effects in any of
the literature reviewed above. This is particularly surprising in the case of rotation-
invariant schemes.

The selection of texture measures for investigation has therefore used the following

rather pragmatic criteria:
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(1) popularity in the literature,
(i)  easeof implementation and use, and
(@iii)  performance.
From the table summarising the results of comparative studies the co-occurrence based
features stand out as being prime candidates due to their popularity and performance.
They were therefore selected for investigation. Texture measures based on Laws masks
were aso selected. These features are particularly ssmple and efficient, are popular in the
literature, and have the added bonus that they may be easily implemented in hardware.
The third feature set was selected on a mixture of pragmatics and performance : Linnett’'s
fractal inspired operator had been used by the author for segmentation of underwater
images [Chantler9l], and perhaps more importantly had achieved good results at the
hands of Linnett and his colleagues e.g. [Linnett91a] [Clarke92] [Linnett93].

To summarise [0 the features selected for investigation as to the effects of
illuminant vector variation are:
(1) Laws texture energy masks [Laws80],
(i)  co-occurrence features [Haralick73], and

(i)  Linnett's fractal based operator [Linnett91a).
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Chapter 5

Texture features and illumination

Chapters 2 and 3 of this thesis have shown that image texture is affected by changes in
lighting and proposed that normalisation may compensate for slant angle variation.
However, for isotropic texture variation in illuminant tilt introduces changes in the
directiona characteristics of the image which may not be compensated for in the same
manner. Chapter 4 reviewed texture measures and selected three sets of features for
further investigation as regards illumination effects. This survey also showed that little
had been published on the effects of illuminant variation on texture classification. Hence
the main purpose of this chapter is to determine the effects of changes in the illuminant’s
tilt and slant on the three feature sets.

The feature sets chosen in the preceding chapter for further investigation are : (i)
Laws masks, (ii) co-occurrence features, and (iii) Linnett’s operator. Thus this chapter
comprises three main sections [1 one for each feature set. Each of these sectionsis further
sub-divided to address three aspects of feature set behaviour. Firstly, as the image model
in chapter 2 and the subsequent empirical investigation in chapter 3 were based in the
frequency domain, the frequency responses of the features is examined. This both
provides a common view of their directional characteristics and gives an insight into their
tilt and slant angle responses. Secondly the tilt and slant angle responses of the features
applied to images of isotropic and directional texture are presented; and thirdly the effect

of normalisation isinvestigated.

5.1. Laws masks

Laws [Laws79] [Laws80] developed a set of two-dimensional masks derived from three

simple one-dimensional filters.
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They are:

L3=(1,21) - Level detection,

E3=(-1,0,1) - Edge detection, and

S3=(-1,2,-1) - Spot detection.
Laws convolved these with each other, to provide a set of symmetric and anti-symmetric
centre-weighted masks with all but the level filters being zero sum. These were convolved
in turn with transposes of each other to give various sizes of square masks. He found the
most useful to be those shown below. Note that the letters used in the mnemonics stand

for Level, Edge, Spot, and Ripple.

-1 0|21 1lo]l2]o0o]x
-4 0 4 2]l ol 4a]o]-2
6 |-12] 0 |12] 6 olololo]o
-4 0|8 ]| a 2l o|-4a]lo]2
-1 0 1 1|lo]-2]o0]1
L5E5 E5S5
1|46 |41 10 0| 1
-4 | 16 | 24| 16 | 4 4]0 0| -4
6 | 24|36 |-24] 6 6| 0 12| 0| -6
-4 | 16 | 24| 16 | 4 4]0 0| -4
1|46 ]-4]1 1] 0 0| 1
R5R5 L5S5

Figure 5.1 - Four of Laws most successful masks (note the above would normally be used
in conjunction with ESL5, SBE5, & S5L5 : the transposes of L5ES, E5SD, & L5S6)

The above masks are convolved with the original image to produce a number of images
which are themselves passed through a second stage, which Laws termed a "macro
statistic" [Laws79]. This consists of a moving window estimation of the energy within the
images. Thus Laws' feature measures estimate the energy within the passband of their
associated filters and he therefore called his operators "texture energy measures'. He
noted that variance is defined in terms of a sum of squares partly for mathematical
convenience and proposed as an aternative, a cheaper but approximate measure : the
average of the absolute values (ABSAVE). He found this to be just as successful, and as it

requires less computation it will normally be used here.
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As the masks are made up by convolving two one-dimensional components they
are separable [Lim90], that is:
H(oy,0,) = Hy(w)H,(w,) (5.2)

where

H(w,,w,) isthe frequency response of the two-dimensional mask,

H,(w,) and H,(w,) are the frequency responsesin the x and y directions respectively,
and

w, and w, are the angular frequenciesin the x and y directions respectively.
Hence the frequency responses of the one-dimensional filters will be presented as a
precursor to a description of the two-dimensional cases. The latter provide insight into the
directionality of the operators and their response to image texture; a frequency domain
model of which was presented in chapters 2 and 3. These frequency responses are
followed by an examination of the effects of illuminant variation, using both the
previously developed image model, and empirica observations. The issue of

normalisation is a so addressed.

5.1.1. Frequency response
a) Onedimensional frequency responses
The seven two-dimensional masks above may be obtained from four one-dimensional
non-recursive filters, the weights of which are defined below :
L5=(1,4,64,1)
E5=(-1,-2,0,2,1)
S5=(-1,0,2,0,-1)
R5=(1,-4,6,-4,1)
The magnitude frequency response of L5 issimply obtained :

Hig(@)| =[e7%* +4e7* +6+4e/* +e** 52)
= 4(1+cosw,)?
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Note that as L5 = L3*L3 (where * represents the convolution operator) its magnitude
response may be obtained from that of the L3 filter |H, ;(w,)| = 2(1+cosw,). Similarly for

E5, S5 and R5. Thus:

|HE5 (w1)| = |H (). H ES(w1)|

(5.3)
= 4sinw,(1+ cosw, )
|Hss(w1)| = |HE3(w1)- HE3(CU1)|
(5.4)
= 4sin’ o,
|HR5(a)1)| = |Hsa(a)1)- Hss(w1)|
(5.5)

= 4(1- cosw,)’
L5, S5, and R5, are zero phase lowpass, bandpass, and highpass filters. E5 is a bandpass
filter which introduces a phase change of 90° and whose passband is between those of L5
and Sb. Thisis confirmed by figure 5.2, which contains plots of theoretical and empirical
responses of the above one-dimensional features. The empirical results were obtained by
applying the features to synthetically generated sine wave images followed by processing

with the ABSAVE macro statistic (average of the absolute values).

L5
0.8 +

0.6 +
— 1M

ESM
— SM

Normalised output

- —— - R&(D

02 +

0 A ; 1 1 1 | | tom

0 0.05 0.1 0.15 02 0.25 0.3 0.35 04 0.45 0.5

Fraction of sampling frequency

Figure 5.2 - Laws one-dimensional operators: observed and theoretical (T) frequency
responses
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The observed responses of the one-dimensional feature measures match well with the
theoretically derived results.

b) Two-dimensional frequency responses

Since Laws masks are made up from separable one-dimensional filters, their frequency
response may be simply obtained by substituting into (5.1), i.e. by multiplication in the

frequency domain :

|HL5E5(a)l' a)z)| = |HL5(w2)' HES(w1)|

(5.6)

= 4(1+ cosw,)*4sinw, (1+ cosw, )

|HE555(a)17w2)| = |HE5(a)2)' HSS(wl)| (5.7
:4Sina)2(1+ cosa)2)4sin2 w, |

|HR5R5(w1’ w2)| = |HR5(w2)' HR5(w1)| (5.8)
= 4(1+ cosw,)" 4(1+ cosa,)” |

|H|_5ss(w1’w2)| = |H|—5(w2)' Hsz(wl)| (5.9
= 4(1-cosw, ) 4sin” w,

and for the relevant transposes :

|HE5L5(wl’ w2)| = |HE5(w2)' H'-5(wl)| (5.10)
= 4sinw,(1+ cosw, ) 4(1+ cosw, )’

|H85E5(a)l’w2)| = |HS5(a)2)' HE5(a)1)| (5.11)
= 4sin® w,4sinw,(1+ cosw, )

|HSSL5(w1’w2)| = |H55(w2)' H'-5(w1)| (5.12)

= 4sin® w, 4(1- cosw,)*
In addition to the above theoretically derived responses, empirical results were also
obtained. Sets of "corrugated" sine wave surfaces were used as inputs to the feature
measures and the average output measured. The results are shown below. Since the

empirical plots were similar to the theoretical responses only the former are shown.
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Figure 5.3 - Laws operators: empirical two-dimensional frequency responses

The above graphs show that E5L5 and S5L5 (and hence their transposes) are uni-
directional, while ESS5 is bi-directional. What is interesting however, is that the mask of
the RS5R5 feature which at first glance appears to be isotropic is in fact bi-directional;
being sensitive to high frequencies at 45° and 135°. Thus, with the exception of L5L5, al

of Laws masks are directional and al are likely to be affected by variation in illuminant

tilt.
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5.1.2. Tilt angleresponse
This section investigates the response of Laws' operators to changes in the tilt angle of the
illuminant. Firstly the theoretical tilt response of the L5E5 uni-directional operator is
examined using the image model of topological texture developed previously, and the
operator’s theoretical frequency response. The resulting predictions are compared with
empirica results obtained from laboratory experiments. Secondly, the empirical response
of Laws bi-directional operators to isotropic and directional textures is presented.
Thirdly, the effects of image normalisation are investigated, with the aim of assessing
whether or not such a procedure compensates for the effects of variation in tilt.
a) Thetilt response of the uni-directional operator L 5E5
This section examines the theoretical response of laws L5E5 operator; which is obtained
from the product of its transfer function and the frequency domain model of image texture
developed in chapters 2 and 3. These results are compared with those obtained from
laboratory experiment. The purpose of this investigation is two-fold : firstly it is to
establish the tilt response of the operator and secondly it is to show the utility of the
image model developed earlier.

As only variations due to changes in the illuminant’s tilt are of interest, it is
assumed that the illuminant's slant does not vary, and the contribution of the
corresponding component in the image model is a constant k,. Thus the model presented

in equations (2.14 to 2.17) reducesto :

F (% 6)=F(w6).F,(w,6).k, (5.13)
Now if the test textures are assumed to be isotropic and the radial shapes of the log-log
magnitude spectra assumed to be straight lines, then the magnitude of the surface
response component may be represented by :

IF.(0,6) = ko /2 (5.14)
The parameters k, and 3 may be estimated by obtaining the gradient and y-intercept of

the best-fit straight line to the average log-log radia plots. Furthermore in chapter 3 the
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directiona characteristics of these textures was shown to approximate to a raised cosine
(3.8)i.e

F (6)=(m, cos(6-1)+Db,)’ (5.15)
and the parameters m_ and b, were estimated for each of the test textures (see table 3.2).

In order to prevent estimations of the power of the spectra being included twice in the

model the directional characteristics were modelled by a normalised tilt angle component
F(6).

T

F/(6) = (m; cog(6-1) +D;) (5.16)

,_m, by
m =" ™= g

Hence the image texture magnitude spectra of the four samples may be modelled by

where

combining (5.13), (5.14) and (5.16) to give:

I, (@,8)| = ko " (M. cos(@ - 7) + b.). k, (5.17)
Now if only relative magnitudes are required, k, may be eliminated and all remaining

parameters estimated for each of the test textures as described previously.
Thus the output of the first stage of Laws operators is smply derived, e.g. for
L5ES5 combining (5.6) and (5.17) gives:

[Yeses(@, 6)| = [Hises (@, O)|F (w0, 6)
= sin(wcos@){ 1+ cos(wcosB)}{1+ cos(wsin6)} °. (5.18)

ko 2{ml cos(6- 1) + by} .k,
where:
wcosf= w,,wsinf= w,, and
|YL5E5(a), @| is the two-dimensional magnitude spectrum of the output of L5ES.

As previoudly discussed, the second stage of Laws operators use variance or, more

cheaply, the average of absolutes as an "energy measure”. Normally the latter is used in

*0 has been omitted here as the tilt component is not a function of frequency.
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this thesis. In this section however, the average of the squares will also be used (this is
identical to the variance for zero-mean images). The latter is used in this section because
it is more tractable analytically. It provides an estimate of the "power" of the image
texture and hence the integral of the PSD [Ogilvy91] [Cooper86]. Note this assumes that
the process under consideration is at least wide-sense stationary [Peebles87]. The PSD §
w,0) may in turn be obtained from the magnitude of the Fourier transform of the output of
the filter. Hence the mean output of the L5ES operator will be :

1 o 27

Z = w,6)d&dw
o= ] J 4
1 o 27T

= HJ QJ:'C‘]YLSES(CU, 6)" ddw

=0

1 o 27

v IO A’O %n(wcos&){ﬁ cos(@wcos@)} {1+ cos(wsinb)} °. kﬁa)_%{ m; cos(8 - 1) + b} .k, gdedw
(5.19)

The solution of the above integral for the general case is not trivial. However, it may be

estimated numerically when the values of the parameters are known. Hence the four

parameters ( m;, b;, k;, and f,) were calculated for each of the four isotropic test textures

beansl, chipsl, rockl and stonesl; using the estimation techniques described previously.

The integral (5.19) was evaluated for each of these four sets of parameter values for

nineteen angles of illuminant tilt (0° to 180° in 10° steps). The results are shown in figure

5.4.
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Figure 5.4 - Predicted effect of tilt angle variation on L5E5 output?

For comparison figure 5.5 shows the equivalent results obtained by processing images of
the textures with the feature measure itself [1 an L5E5 mask coupled to a mean square

macro statistic.

08 +

— = beans]
0.6 +
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Figure 5.5 - Observed effect of tilt angle variation on L5E5 output®

The above graphs show that for the Laws L5E5S operator, (i) the output is affected by
variation in illuminant tilt, and (ii) the image model of the four isotropic textures
developed in chapter 3 predicts the effects of variation in tilt reasonably well. For
comparison the output of the same L5E5 mask but with the cheaper ABSAVE macro
statistic is shown in figure 5.6. It can be seen that the cheaper average of absolutes
macro statistic gives similar results to the mean square operator. Indeed for the case
shown the former would seem to give better separation between the classes. Laws found
little difference between the performance of these macro statistics and therefore preferred
the cheaper ABSAVE operator. Hence this macro statistic will be used in the remainder of

this document.

’Note that the data presented in figures 5.4 and 5.5 was obtained by taking averages of feature
images, and that together with figure 5.3 these graphs have been scaled to a maximum value of
1.0 for comparison purposes.
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Figure 5.6 - Effect of tilt angle variation on L5E5 output (ABSAVE macro statistic)?

The behaviours of feature means are obviously important for classification and
segmentation purposes, but they do not provide sufficient information to allow the likely
effects to be assessed. What is required are the behaviours of the distributions. A small
variation in mean due to change in illuminant tilt may be significant for distributions of
large variance, but insignificant for those of small variance. For example the figure below
shows distributions of L5E5 (with a 29x29 ABSAVE macro statistic) for two textures

under two lighting conditions.
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Figure 5.7 - Effect of tilt variation on L5ES distributions
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Assuming equal prior probabilities a maximum likelihood classifier trained under an
illuminant tilt of 0° would have a decision surface at approximately L5E5 = 580. That is
"halfway" between the beansl (t = 0°) and chipsl (1 = 0°) distributions (solid line
graphs). However, the dashed graphs show the result of changing the tilt to 90° : the mean
of chipsl is now clearly to the left of L5E5 = 580, and so the magjority of thisclassat T =
90° would be mis-classified. Note that in this case increasing the window size of the
macro statistic would be likely to increase the number of incorrectly classified beansl
pixels [0 asit would most likely reduce the variance of this distribution.

Thus changes in the illuminant's tilt have been shown to affect the output of Laws
L5ES operator. Experiments using the four isotropic test textures with the other uni-
directional feature (L5S5) gave similar results to those shown above.
b) Bi-directional operators
So far only the behaviour of uni-directional operators has been considered, but what of the
bi-directiona operators ? Clearly illumination tilt will not affect isotropic operators when
used on isotropic physical textures. However, R5R5 and other operators produced by
convolving a one-dimensional bandpass or highpass filters with other similar filters are
not isotropic. Instead they are bi-directional (being sensitive to diagonal or near diagona
components). Thus it would be reasonable to expect such directional filters to be affected
by illuminant tilt. The figure below shows the tilt responses of two bi-directiona

operators obtained from four isotropic textures (beansl, chipsl, rockl, and stonesl).

E5S5 ESES

—*— becrs]
—0— chisl
0 —*+— rokl 0
o ko3 & @ a3 [Ged o ko3 & @ e [Ged [l:e3
liurrinertfit cngle ¢ shores lurrinertfit ongle

Figure 5.8 - Tilt response of the bi-directional operators E5S5 and ESE5S
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The E5S5 and E5SES results show that although these operators are affected by tilt, the
effects are not nearly as pronounced as for uni-directional operators. This may be
explained by the fact that these feasture measures are sensitive to two near mutualy
perpendicular directions, and as one is being attenuated by a particular illuminant tilt the
other is being enhanced. Thus bi-directional operators with mutually perpendicular axes
of sensitivity, will be least affected by illuminant tilt when used with isotropic textures. If
the angle between the two axes is reduced, then the behaviour will tend towards that of
the uni-directional case.

However, if the physical texture is not isotropic, then bi-directional features such

as ESES may be significantly affected by illuminant tilt; asis shown in the figure below.
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Figure 5.9 - Thetilt response of ESES for the directional texture "card45"

The above shows a sample of uni-directional texture "card45", and the corresponding tilt
response of ESES. Here there is no compensating effect as was the case for the isotropic
textures, and so the operator is significantly affected.

¢) Normalisation

A number of texture classification schemes normalise image data in some manner to
remove "brightness variation". Thisis usually performed either by histogram equalisation
or by re-scaling the data to have a common mean and variance, e.g. see [Greenhill93]

[Bovik87] [duBuf90] [Laws79] [Weskar6] and [Haralick73]. Chapter 2's image model
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predicts that, for isotropic textures, normalisation could compensate for variation in
illuminant slant but not tilt. Here therefore, the tilt response of the L5ES operator applied
to normalised image data is examined. Each image of the test set was scaled to have a
mean of 127 and a variance of 100 (note that local brightness variation is compensated for
by using registration images as described in chapter 3). The figure below shows the mean
output of L5E5 for tilts of between 0° and 180° using normalised images of the four

isotropic test textures.
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Figure 5.10 - The effect of normalisation on L5E5 tilt angle response

The above shows that normalisation does affect the tilt response but it certainly does not
compensate for it. Indeed normalisation of the images has actually reduced the separation
between the classes beansl, chipsl, and rockl, thereby complicating the classification
task for this operator (compare the above with figure 5.6). The closeness of the

distributions is more clearly shown in the figure below.
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Figure 5.11 - Effect of normalisation on the L5E5 output distribution for tilts of 0° and
90°.
The solid line plots of figure 5.11 show that normalisation has made the distributions of
L5E5, for the two textures beansl and chipsl, amost identical for T = 0°. However,
variation of illuminant tilt (to T = 90° - dashed line plots) still produces a significant
change in mean values and considerable mis-classification would again occur. Note that
normalisation will compensate for variation in the intensity of the illuminant, but that it

also has the unfortunate effect of normalising a significant discriminatory feature : image

variance.

5.1.3. Slant angleresponse
From chapter 2 the predicted illuminant slant angle (o) response (2.17) is:
F,=sino

As this is independent of frequency it effects a uniform amplification or attenuation of
image texture across the spectrum. All of Laws feature measures will therefore be
affected in a similar manner as they provide an estimate of the power in their passbands.
Un-normalised slant angle responses of L5E5, for the four isotropic test textures and a
fifth uni-directional texture cardl, are shown below. Note : cardl is the corrugated

cardboard surface shown in figure 5.9 except that the corrugations run vertically.
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Figure 5.12 - Un-normalised slant angle response of Laws' L5E5 operator

The above figure shows that the L5E5 slant angle responses mimic those of the magnitude
spectra of figure 3.35; that is there is a gradua increase in the mean output with
increasing o for all textures up until 50°, after which all but stonesl and chipsl continue
to increase. Since shadows are longer and cover larger areas at higher slant angles, the
power of the frequency components may decrease as the slant angle increases. Note that
shadowing is particularly noticeable in the images of stonesl and chipsl; and that, for
these two textures, the output of the L5E5 operator is reduced at higher slant angles.

What is important however, is that the illuminant slant angle does significantly
affect the L5ES operator when used on un-normalised images.

If change in illuminant slant does effect a uniform amplification/attenuation across
the spectrum as suggested in chapter 2, then normalisation will compensate for these
variations. In order to investigate this effect the test image sets were normalised as before
to have amean = 127 and a variance = 100. The Laws L5ES operator was applied to the

resulting images. Its mean output, as a function of illuminant slant, is shown below.
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Figure 5.13 - Normalised response of Laws' L5E5 operator

When compared with the previous figure, the graphs above show that normalisation has
significantly reduced the variation due to changes in slant. These results suggest that
normalisation may reduce the effect of changes in illuminant slant on classification.
However, this reduction in variation with slant angle has been bought at the expense of
reduced separation of class means. Thus normalisation may actually increase
classification errors rather than decrease them.

The subject of normalisation is further addressed in sections 5.2 and 5.3 on Linnett’s

and co-occurrence feature measures.

5.1.4. Summary

This section has investigated the response of Laws operators to changes in the

illuminant’'stilt and slant angles. The following points summarise its findings.

. The two-dimensional magnitude frequency responses of the popular Law’s operators
have shown that they are either uni-directional or bi-directional.

. The image model developed in chapters 2 and 3 was used to predict the tilt response
of the L5E5 operator. The results were similar to those obtained empirically
showing (i) the utility of the image model, and (ii) that the L5E5 operator is not

invariant to changesin illuminant tilt.
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. The bi-directional operator ESES was less affected by changes in tilt when applied
to images of isotropic textures, but it was significantly affected when used on the
uni-directional texture card4bs.

. Image normalisation did not compensate for these variations as far as isotropic
textures were concerned.

. The L5ES operator was significantly affected by changes in illuminant slant.

. Normalisation reduced the variations due to changes in slant, but also reduced the

separation between test textures' means.

5.2. Co-occurrence matrices

Co-occurrence matrices have been widely used for texture classification [Haralick73]
[Weskar6] [Conners80] [Zucker80] [Davis8lb] [Unser86] [Castrec88] [duBuf90]
[Lovell92], but perhaps because of their computational cost they have been used less
frequently for segmentation [duBuf90]. A co-occurrence matrix is a two dimensional
histogram of pixel pairs defined by a displacement vector d. They are an estimate of the
joint probability function of these pixel pairs. Haralick [Haralick73] defined 14 statistics
to provide an economical way of describing these distributions, and it is these that are
used as features for texture discrimination. Here only four of the most popular will be
investigated. They are ASM (angular second moment), ENT (entropy), COR
(correlation), and CON (contrast) :

Ng-1Ng-1

ASM= 5y oG, j)? (5.20)

ENT= Y Y ~p(i.§)log(p(i. i) 521)
St O

COR= gz Z (ij) (i, J) - ﬂxﬂyg (5.22)

Ng-1Ng-1

CON= Z ;(i -1)? p(i.J) (5.23)
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where
p(@i.j) = P(i.,j)/n,
P(i,j) isthe (i,j)th element of the un-normalised co-occurrence matrix defined by a
displacement vector d and window W,

Ng-1Ng-1

nisthe normalising constant n = Z Z P(@,j),
1=0 |=

Ng is the number of grey-levels, and

Uy, M, 0,, ando, are the means and standard deviations of the marginal

distributions.
In the forms above it is difficult to determine their frequency response and they are also
expensive to compute. The next section therefore derives alternative expressions for two
of the features. They are formulated directly in terms of image grey-levels, and do not use
co-occurrence matrices. These aternative expressions are used as the basis for efficient
moving window implementations. In the case of the contrast operator the aternative
expression is aso used to derive its frequency response, which is presented in the
following section along with empirical results for the other operators. Finally the results
of laboratory experiments on illuminant variation are presented and the issue of

normalisation is investigated.

5.2.1. An alternative formulation
The contrast feature is commonly used in an alternative form expressed directly in terms

of grey-levels:

CON=Y 3 (i-1)* p(i.})
2':0 =0 (5.24)
== 5 ({-j)?
N o

where

D isthe set of pixel pairs defined by the displacement vector d within awindow W.
This form is amenable to efficient implementation and frequency domain analysis. To the

author’s knowledge no such equivalent expressions have been published for the other
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features, although Unser did derive more efficient and in some cases approximate
aternatives using sum and difference histograms [Unser86]. The correlation feature
however, may be formulated directly in terms of grey-levels and statistics of the margina

distributions. From (5.22)

COR= L[5S (i) P11} ~ 1,
R= O ij) p(i,J) = 4,00
0.0, S; JZO yD
(5.25)
=1 % i = pp B
0,0y M (LJZDD 0
Similarly for the marginal distribution statistics :
Ng_l . .
M=) 1.p (i)
1=0
Ng—l . .
-y HR0) (5.26)
1=0 n
1.
==3i
Nifp,
Ng1 . .
g2 =% (=) p)
(5.27)
=23 Gi-u)°
n,fp, "
where
D, isthe set of pixel values contained within the pixel pairsin D.
Note that because p(i,j) is symmetric about the leading diagonal
My = H, (5.28)
o’=0) (5.29)
and the normalising constant may be calculated directly :
n= ; 1
D2 (5.30)

=2(w, - d,)(w, - d,)
where

wx and wy = size of the window Win x and y respectively, and
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dxanddy = Cartesian components of the displacement vector d.

Using (5.25) to (5.29) the correlation feature may be expressed as

U B O
COR:iZD ij—E&ZiDD (5.31)
J@,JDD EniDDZDE
where
m _
P=ol=02=15P - S0 (5.32)
ng g O

Thus (5.31) and (5.32) alow the correlation feature to be calculated directly from image
data, without need to reference the co-occurrence matrix itself. Indeed only three running
totals need to be maintained in an incremental algorithm. They are:

i, iZ and Y ij

s, i, (.5
Thus all variables (apart from image data) may be kept in registers and the computation
incurred in matrix address cal culations may be avoided.

The above expressions for COR, CON, were used as the basis for moving-window
feature measures. They incorporate an incremental update mechanism similar to the
technique used by Huang et a to creste a fast median filter [Huang78]. The window is
initialised in the top left corner of the image and moved across the image pixel by pixel.
Each time the window is moved, the last column is removed, a new first column added,
and intermediate and feature values are updated accordingly. Thus considerable re-
computation is avoided. Although the ENT and ASM features do not lend themselves to
transformation into a grey-level based formulation, the incremental update method using a
moving window may be applied. This involves the maintenance of P(i,j)) in an
incremental manner, but again the saving in processing time is considerable. For a 35x35
moving window the incremental form involves a little over 70 operations per window
position, whereas a"straight” implementation involves 1225.

For classification purposes feature sets need only be calculated for each unknown
region [J whereas segmentation requires feature values to be generated for every pixel in

the image. Thus the use of the aternative implementations, described above, makes the
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use of co-occurrence features for segmentation of sequences of 512x512 images practical

on a standard workstation within two to three minutes.

5.2.2. Frequency response

The image model of topological texture previously developed, and the ensuing empirical
investigations used frequency domain representations. In order to gain an insight into the
effects of illuminant variation on co-occurrence features, and to provide an alternative
view of their directional characteristics, their frequency responses will now be
investigated. These responses should however be viewed with caution; as the co-
occurrence operators are non-linear.

The contrast operator CON is straightforward to analyse and will now be presented.
The three other features are not, and so they will only be investigated empirically.

a) Contrast feature: frequency response

From the image based form of the CON feature (5.24) it can be seen that it is Simply an
edge operator followed by square and average functions. The latter two functions form an
energy measure /7 as used in Laws' filters. For a displacement vector d = (1,0) the edge
operator becomes a horizontal non-recursive filter with weights of (-1,1), hence the
frequency response of the CON(1,0) filter is:

|Heon (@), @,)| = ‘1—e‘j“’1‘

= (1-cosw;)® +sin’ w, (5.33)
=/2sinw,
The output of the contrast feature itself, will be the square of the filter response (5.33) [
due to the operator’s mean square function. Thus the CON feature is a high pass filter and
energy measure; the directionality of the former being controlled by displacement vector
d.

Changing the size of d effectively changes the sampling frequency of the filter. For
instance a vector d = (2,0) reduces the effective sampling frequency by half and changes
the operator into a bandpass filter with weights (-1,0,1). Hence the frequency response of
the CON(2,0) filter is:
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|Hc0N(C‘)1’ w2)| =2sin2w, (5.34)
Popular values for d are (1,0), (0,1), (1,1), (1,-1), (2,0), (0,2), (2,2) and (2,-2). Thus the
contrast feature is in fact formed from a family of directional highpass and bandpass

filters. Thisis confirmed by the theoretical and actual responses of the operator shown in

figure 5.14.
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Figure 5.14 - CON operator : effect of changing the size of the displacement vector

b) Other co-occurrencefeatures
The other three features ASM, ENT, and COR, have non-linearities which make their
analysis in the frequency domain difficult. They were therefore only investigated

empiricaly. The figure below shows one-dimensional plots of these three features.
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Figure 5.15 - One-dimensional freguency responses of co-occurrence features (d=(1,0),
Ng = 16)
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The above plots were obtained by running the co-occurrence features on strips of sine
wave aligned parallel to the x-axis, and taking the average of the output. They show that
the COR feature is a low pass filter. The frequency responses of the ENT and ASM
operators are, in contrast, irregular. These "irregularities’ are caused by sampling effects.
When the period of the test sine wave is an integer multiple of the sampling period (which
occurs at relative frequencies of 1/2, 1/3. 1/4 etc.) there are only a small number of unique
grey-levels in the image. Thus at these frequencies the co-occurrence matrix is sparsely
populated by a few high values of occurrences. Hence the ASM operator, which
calculates the sum of squares of these occurrences (5.20), gives a high output value. The
ENT operator is also a sum of a non-linear function of occurrences, and thus exhibits a
similar behaviour. Since the frequency responses of these two operators are an extreme
function of sampling effects, they will not be considered further here.

c) Twodimensional frequency responses

Co-occurrence features are essentially one-dimensional operators, in which the direction
of the axis of the single dimension, is specified by the angle of the displacement vector d.
Thus it is reasonable to expect the two-dimensional frequency response of an operator, to

be the product of the operators’ one-dimensional responsed, and a unity gain element in

the orthogonal direction. The figures below show this to be the case.

con cor

Figure 5.16 - Two-dimensional frequency responses of the co-occurrence contrast and
correlation features for a displacement vector d = (0,1)

-111-



The frequency responses displayed above, were generated using images of corrugated
sinusoids of the required x and y frequencies. They show that the CON and COR features
are highly directional. They are therefore likely to be affected by illuminant tilt and slant,

inasimilar manner to Laws’ uni-directional energy masks.

5.2.3. Tilt angleresponse

The illuminant tilt angle response was obtained by applying co-occurrence feature
measures to the same test-set used in the Laws experiments. Unlike the Laws' operators
they have no averaging filter (such as the ABSAVE macro statistic) rather the co-
occurrence matrices are calculated directly from large windows. Indeed, such is the cost
of these features, that they are most commonly calculated on large (e.g. 64x64) non-
overlapping windows [Haralick73] or on the texture samples as a whole. Thus they are
normally used either for classification of whole images or for very coarse segmentation.
Few papers report their use for pixel level segmentation - an exception being [duBuf90] in
which the use of a 7x7 moving window is described. Here a 33x33 moving window was
used : in order to match the context employed by the Laws' features (a 5x5 mask plus a
29x29 macro statistic). In common with other researchers [duBuf90] the number of grey-
levels Ng, and hence the size of the co-occurrence matrix used, did not noticeably affect
the response of the features. Experiments with 16 and 256 grey-levels for instance gave
similar results. The cheaper Ng = 16 option was therefore employed.

a) I'sotropic and uni-directional textures

The tilt angle response of the four co-occurrence operators was obtained in an identical
manner to that used for the Laws masks. The responses of CON and COR to the four
isotropic textures are shown below : similarly for ENT and ASM, except that the

responses obtained using the directional texture cardl are also shown.
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Figure 5.17 - Tilt angle response of co-occurrence features, Ng = 16, d = (1,0).

The above graphs show that the CON and COR features are sensitive to illuminant tilt.
The former has a tilt angle response close to that of L5ES, which is not surprising given
the similarity between their two-dimensional frequency responses (i.e. they both filter out
frequencies in the direction 8 = 90°). However, the correlation feature COR produces
almost the opposite angular response; having maxima at T = 90° and minima at t = 0°,
180°. Since the same displacement vector, d = (1,0), was used for both operators, the
results show that the direction of d cannot be used in isolation to predict the form of the
tilt response. Examination of the operators frequency responses shows why [1 CON(1,0)
attenuates frequency components with an angle 6 close to 90°, whereas COR(1,0)

amplifies them.
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In contrast the ENT and ASM features have relatively flat tilt responses when
applied to the isotropic test textures (beansl, chipsl, rockl, and stonesl). However, when
applied to the uni-directional texture cardl [0 a corrugated surface in which the majority
of frequency componentsrun at 6 = 0° I their tilt responses show that these operators are
not invariant to tilt for all textures.

b) Normalisation

In section 5.1.2 the effect of image normalisation on the tilt response of Laws operators
was investigated, the motivation being that normalisation is used to compensate for
lighting variations. Here therefore, its effect on the tilt response of co-occurrence features
is described. Figure 5.18(a) below illustrates the COR feature's tilt response using images

of the four isotropic textures, each normalised to amean of 127 and a variance of 100.

a) COR operator (normalised images of isotropic b) ENT operator (uni-directional texture card1)
textures)
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Figure 5.18 - The effect of normalisation on co-occurrence features

As was the case for Laws operators, normalisation clearly does not compensate for
variation in illuminant tilt when the surface textures are isotropic. However, for uni-
directiona textures a different response would be expected. For an isotropic texture
variation in illuminant tilt does not affect the total variance of the image. Enhancement of
components coincident with T is compensated for by attenuation of components at 90° to
T. Hence normalisation will have the same effect on each image regardless of tilt. The

variance of a uni-directional texture however, will be affected by changes in tilt; as the
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energy is concentrated in one direction. Thus normalisation may compensate for variation
due to tilt when the texture is uni-directional. Figure 5.18(b) above shows the ENT tilt
responses to normalised and un-normalised images of a uni-directiona texture cardl. In
this case normalisation has significantly affected the tilt response, indeed for T = 80° to
100° it has "overcompensated”. This effect is addressed in section 5.3.2(b). What is clear
however, is that unlike the isotropic case, normalisation of a uni-directional texture does

significantly affect thetilt response; and that for the example cardl, it has flattened it.

5.2.4. Slant angleresponse

Section 5.1.3 showed that normalisation of texture images, can help compensate for the
effects of slant angle variation for Laws L5E5 operator. The experiment was therefore
repeated, to determine whether or not co-occurrence features may be similarly
compensated. Figure 5.19(a) below shows that the ASM feature is not invariant to o when

used with un-normalised images.

a) ASM (un-normalised) slant response b) ASM (normalised) slant response
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Figure 5.19 - The effect of image normalisation on the ASM dlant response.

The second graph, 5.19(b), shows that normalisation has partly compensated for variation
inilluminant slant. It has not been as successful as was the case for L5ES (figure 5.13), as
there are marked variations in the normalised response for o greater than 60°.
Nevertheless, normalisation has significantly reduced the variation in the operator's

-115-




response for values between 10° and 50°. Note however, that this has again been

purchased at the cost of reduced separations between test texture means.

5.2.5. Summary

This section has investigated the effect of variation in illuminant tilt and slant on co-

occurrence features. To summarise :

. A formulation of the COR operator has been developed, which provides an efficient
Implementation in which co-occurrence matrices do not need to be maintained.

. The features frequency responses show that the CON and COR operators are
similar to Laws masks, in that they are directional low, high, and band pass filters.

. These directional operators were shown not to be invariant to illuminant tilt.

. The ENT and ASM features were not invariant to tilt when applied to the uni-
directional texture cardl.

. Normalisation of images was shown to be able to compensate (in fact over-
compensate) for tilt variation effects when applied to the uni-directiona test texture,
but it had little effect on isotropic test textures.

. Normalisation was shown to be capable of compensating for illuminant slant
variations at lower angles (less that 60°), but it was also observed that it reduced the

separations between the test texture means.

5.3. Linnett’'s operator

Fractal dimension [Mandelbrot83] is an appealing concept to use as a basis for a texture
feature as it has been suggested that it provides a measure of roughness [Pentland84]
[Arduini92] [Dennis89]. A number of researchers have used estimates of fracta
dimension for texture classification with mixed results [Pentland84] [Medioni84]
[Keller89] [Mosquera92] [Peli90]. The main problems being the computational cost of
and the limited classification accuracy available from this single feature measure.
Linnett's operator [Linnett9la] does not in fact estimate fractal dimension [ rather it
utilises the information available from the first one, two, or three iterations, of an iterative
process that does. Thus the computational complexity is greatly reduced. In addition,
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instead of using a single isotropic measure, Linnett used the masks shown below to

produce seven operators each having a different directional characteristic.

X X X
X | X | X X X X
X X X
ml m2 m3 m4
X X X X | X
X | X | X X X | X
X X X X | X | X
m5 m6 m7/

Figure 5.20 - The seven directional masks for Linnett’s operator

Linnett’s operator is based upon Peleg’s iterative blanket method for estimating the fractal
dimension of a surface [Peleg84]. Peleg’s algorithm creates a series of upper and lower

surfaces each of which is a radius of A from the previous upper or lower surface,

respectively.

Figure 5.21 - Sections from exampl e surfaces of the blanket method : original surface
(middle), upper blanket (top), and lower blanket (bottom)
It is the scaling behaviour of the volume enclosed between upper and lower pairs that
yields the estimate of fractal dimension. Linnett however, uses the enclosed volume
directly as a texture feature and therefore avoids the requirement for repeated iterations.

Thus his operator does not provide an estimate of fractal dimension.

For iteration n the upper u, (x,y) and lower | (x,y) blankets are defined as:

U (% Y) = max{u, ,(x,y) + A, Uy, (x+i,y+ D} OG, ) Om (5.35)
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L% y) = min{l (%, y) = AL (x+i,y+ D}OG, j) Om (5.36)
where
mis aneighbourhood of pixels defined by one of the masks shown in figure 5.20,
u (x,y)=1(x,y) =1(x,y) = the origina image.
The feature images themselves are derived from the volume enclosed locally by the upper
and lower blankets :

Vo (X, ) =U, (%, y) =1, (X, y) (5.37)
Thus Linnett’s operator is similar to Dinstein’s maxdif (maximum difference) operator
[Dinstein84] O its key feature being its directional characteristics as defined by the seven
masks.

5.3.1. Frequency response

a) The onedimensional case

Linnett examined the one dimensional frequency response of his operator both
theoretically and empirically for a single iteration [Linnett91al. He determined that it
would behave as any one of six non-recursive filters depending upon the data. The

frequency responses of these six modes of operation are:

v,(x) = 1(x=1) = 1(x) O H(w)=-1+cose—isinw (5.38)
v, (x) = 1 (x=1) = 1 (x+1) O H(e) = —i2sine (5.39)
v3(x) = 1(x) = 1(x-1) 0 H(w)=1-cosw+isina (5.40)
v, (x) = 1(x) = 1 (x+1) O H(w)=1-cose—isine (5.41)
Vo(x) = 1(x+1) = 1(x=1) 0 H(w)=i2sinw (5.42)
Ve(X) = 1(x+1) - 1(x) O H(w) = -1+ cos +isina (5.43)

He observed from the above that there are in fact only two different magnitude responses:

|H,(w)| = 2sinw (5.44)
|H,(w)|=+2-2cosw, (5.45)

Linnett verified these theoretical results by measuring the response of each of the six

modes (5.38) to (5.43) to a sine wave with frequencies up to the Nyquist limit. Note that
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the operator was not used in the normal way but fixed into the operating mode under
investigation. What is of greater interest here though is the operator’s frequency response
per se. Hence the graph below shows the observed frequency response of the operator
itself without any restrictions as to its modes of operation. For comparison the magnitude

frequency responses of (5.44) and (5.45) above have aso been plotted on this graph.

1.00 +

090 +

0.80 +

Observed
response

0.70 +

0.60 +

0.50 +

Mean operator response (hormalised)

t t t
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fraction of sampling frequency

Figure 5.22 - Observed one dimensional frequency response of Linnett’s operator,
together with the two theoretical cases

The figure above shows that the observed frequency response is a combination of the two
theoretically derived cases. It is atype of band-pass filter and would therefore be expected
to have a similar performance to Laws S5 mask or the co-occurrence CON texture
measure.

b) The two-dimensional case

The directional characteristics of the operator are controlled by the mask that it is used
with. Linnett used seven masks shown above in figure 5.20. Masks ml to m4 are uni-
directiona and their two-dimensional response would be expected to be a straight
projection of the one-dimensional case. On the other hand Masks m5 to m7 are multi-
directional and their responses are more difficult to predict. The figure below shows the

responses of six of the seven versions of the operator to corrugated sinusoidal images with
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spatial frequencies up to the Nyquist limit. The frequency response of m4 has not been

shown, it issimply a 90° rotation of m2.
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Figure 5.23 - Linnett’s operator : observed two dimensional frequency responses
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The above show that m1, m3, m2 (and hence m4) are highly directional, whereas m5, m6,
and m7 are largely isotropic. The first four masks are therefore likely to be affected by
illuminant tilt in a similar manner to Laws' L5ES operator, i.e. they are not anticipated to
be invariant to tilt even when used on isotropic textures. The other three masks would be

expected to be tilt invariant for isotropic texture but not for directional texture.

5.3.2. Tilt angleresponse

Tilt angle responses of the seven masks were obtained using one directional and four
isotropic textures. A single iteration of each version of the operator was used. The
experimental procedure was as used to obtain the tilt response of Laws filters, the only
difference being that, as the seven masks are based on 3x3 kernels, a 31x31 ABSAVE
macro statistic was used to keep the overall size of the local neighbourhood at 33x33.

a) Un-normalised tilt response

Figure 5.24 depicts the responses of four of the masks to un-normalised images of the
four isotropic textures (beansl, chipsl, rockl, stonesl) and the directional texture

(cardl).

Directional masks

Mask ml is clearly not invariant to variation in illuminant tilt and has a very similar
response to Laws' L5E5 operator, which is explained by the similarity between their low
frequency responses. (Note that the lower frequencies are likely to dominate the above
responses due to the exponentia nature of the textures PSDs.) With respect to the
isotropic textures; masks m2, m3, and m4, give similar results to ml [0 rotated by the
appropriate angle. For example the maxima in m2's response occur at 45°. Note however
that m3's response to cardl isin contrast with the other three directional masks amost flat
[ thisisdueto it being insensitive to spatial frequencies at 0°, and hence it detects very

little energy from the vertical corrugations.
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Figure 5.24 - Linnett’s operator (un-normalised) : tilt response

| sotropic masks

The frequency responses of m5, m6, and m7 have shown them to be largely isotropic. It is
not surprising therefore that their tilt responses are (i) very similar to each other, and (ii)
invariant to changes in tilt when applied to isotropic texture. Consequently only m7’s tilt

response is shown above in figure 5.24.

The flat responses of isotropic operators to isotropic textures occur because
directiona illumination enhances texture components coincident with the illuminant tilt

but attenuates those components at right angles to it. Unfortunately the same is not true of
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directiona textures. Uni-directiona textures will be attenuated by the imaging process
when the illuminant tilt is perpendicular to the texture's direction, and there will be no
compensation from amplified frequency components co-incident with the illuminant’'s
direction of tilt because there are none present in the texture. An example of this effect is
m7’s tilt response to the uni-directional texture cardl - a corrugated surface in which the
majority of frequency components run at 8 = 0°. This response shows that for uni-
directiona textures the operator is certainly not invariant to tilt. Masks m5 and m6 gave
similar responsesto this texture.

b) Normalised tilt response

The illuminant tilt angle response of Linnett's operator using normalised images was
investigated as before. The aim being to determine whether or not such pre-processing

compensates for variation in 1. Figure 5.25 below shows the response of the operator

using ml.
140 +
A
120 + \
&
i \
100 + /A/ A\ —=— peans]
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—*— rockl
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— o o e
A——— — ——— cardl
40 + B e == o
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0.0 }
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Figure 5.25 - The effect of normalisation on mask ml'stilt response

The shape of the responses of the four isotropic textures have dlightly flattened but are
still clearly affected by tilt. The response of the directiona texture cardl has in contrast
been markedly affected. Indeed normalisation appears to have "over compensated” for

angles of T around 90°. An explanation for this behaviour is as follows.
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From the Lambertian image model (2.1) :

—pcosrsino - qsSinTsing + coso

0y)= T
0 (p2+q2) +9(p2+q2)2

=(-pcosrsino - gsinrsino + cosa)%— T 2

0

.0
H

(5.46)

Now, for adirectional texture that contains components only in the direction 6 = 0°

Y

q=—F= (5.47)
&
Hence, for an illuminant tilt angle of T =0°
- (%, Y) = (~psino + ) Lot 5.48
(%) = (-psino +coso) -7+ = (5.48)
and for T =90°
2 4
|r=goo(X,Y)=cosa@— b~ 9p ﬁ (5.49)

21 4l
By comparing (5.48) and (5.49) it can be seen that changing the illuminant tilt from 0° to
90° removes the proportiona and other odd terms (—psin o etc.). Thus compared with its
T = 0° counterpart, the T = 90° image will not contain the fundamental frequency or odd
harmonics. Now if both images are normalised to have the same variance, the net result of
the change of tilt angle from 0° to 90°, will be a shift of power from the odd to the even

harmonics. Figures 5.26 and 5,27 show that thisisindeed what happens.

T=0°

Figure 5.26 - Normalised 128x128 samples of cardl at illuminant tilt angles of 0° and
90° (frequency of corrugations £ 0.08 times the sampling frequency)
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From figure 5.27 it can be seen that (i) the ml operator is more sensitive to the 2nd

harmonic (« C 0.16a,) than the fundamental (e C 0.08c,), and that atilt of 90° reduces

the first and amplifies the second.

Tit angle = 0°
- -~ — Tit angle = 90°

= = linnett's operator

08 +

=0%

06 +

Odd harmonics
attenuated by tilt of 90°

04 +

Relative magnitude (theta

00 0.1 02 0.3 04 0.5

Fraction of sampling frequency

Figure 5.27 - Radial sections of magnitude spectra (at € = 0°) of card1 and operator ml

Thus the end result is that the frequencies to which Linnett's m1 operator are more
sensitive are boosted in normalised images as the illuminant tilt approaches an angle of
90° : hence the "over compensation™” effect.

An "over-compensation” effect of normalisation is also apparent, athough less

obvious in the slant response described in the next section.

5.3.3. Slant angle response

Previous sections of this chapter have shown that normalisation of images can help
compensate for the effects of variation in illuminant slant (o) on Laws and co-occurrence
texture features. This section therefore addresses the same issue for Linnett's operator.
The dant responses were obtained using the same test set of normalised and un-
normalised image textures as used in the Laws and co-occurrence experiments. Mask

MG's responses are depicted below.
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a) Un-normalised b) Normalised
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Figure 5.28 - The effect of normalisation on mask m6

It is apparent from the above graphs that normalisation has helped reduce the variation of
mask 6's output, but that it has again "over-compensated": the mean output at low angles
of dant o being greater than that of higher angles. As the slant angle approaches the
vertical, that is o — 0, the proportional and other odd terms in (5.46) again tend to zero,
giving a similar effect to the "over compensation™ of tilt variation discussed previously.

Note that the separation between class means has again been reduced.

5.3.4. Summary - Linnett’s operator

This section has investigated the effect of variation in illuminant tilt and slant on Linnett’s

operator. The main points to emerge from this section are as follows.

. The directional operators ml to mé are not invariant to variation in tilt, with respect
to either the normalised or un-normalised test textures.

. Masks m5, m6, and m7, which have approximately isotropic frequency responses,
are not affected by tilt when applied to the isotropic test textures, but are affected
when applied to the directional texture cardl.

. Normalisation of images of the directional texture cardl over-compensates for
variationsin tilt at tilts of around 90° to the texture direction.

. Normalisation of images of both isotropic and directional test textures does

compensate for slant angle variation (although some over compensation is evident).
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However, this effect is provided at the expense of reduced separation between

feature means.

5.4. Metricsfor class separation and sensitivity to illuminant
variation

The three preceding sections of this chapter have discussed qualitatively the effects of
illuminant variation. This is sufficient to explain the general phenomena observed. The
development of a quantitative measure of these effects would however, facilitate feature
selection and provide a valuable tool to extend the previous discussion. The Mahalanobis
distance [Tou74] is commonly used to provide a measure of the ability of a feature set to
separate two classes. It uses separation between the class means adjusted by a factor to
account for classes variances. For a single feature this measure reduces to the

"generalised difference" [Davis73] :

D2 = (4 _/;2)2 (5.50)

Oy

where

ap2 Is the pooled variance [Davis/3] of the two classes concerned, and

W, 1, arethe means of the feature measure's outputs for the two classes.

In cases where more than two classes are involved it is normal to compute D2 for each
possible class pair and choose the worst case (lowest) result.

Since the Mahalanobis distance provides a measure of the separation between two
distributions, it may be adapted to provide an illuminant sensitivity metric. That is, it may
be used to measure the maximum displacement of an operator’s output distribution caused
by a change in illumination. Thus a measure of the tilt sensitivity of a feature, with
reference to a given texture, may be computed as follows :

(i) Obtain feature images of the texture over the required range of illuminant tilt.
(i) Determine D2 for each possible pair of feature images.

(iii) Choose the worst case (highest) result.
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The above is an expensive procedure : a cheaper aternative is to calculate D2 between the
feature images having the highest and lowest mean values. This will yield similar results
to the above if image feature variance does not change significantly with illuminant tilt.

Thusthetilt sensitivity metric used here is defined as

D 2 — 2(Iumax +lumin)2

T 2 2
Umax + Umin

(5.51)
where

U, and u . are the maximum and minimum mean operator outputs over the

required range of illuminant tilt, and

2
max

o .2 and o ? arethe variances of the operator’s output at tilt angles at which x,

and 4, occur.
For a number of textures the mean tilt sensitivity across texture types provides a single
figure of merit. Thus the mean tilt sensitivity referred to in table 5.1 is defined as

pz=1 y D/’ (5.52)

T
n For each
texture

where
n is the number of textures

Table 5.1 contains the results of applying this metric to co-occurrence, Laws, and
Linnett’'s features. Two texture sets were used : set a comprising the four isotropic test
textures, and set b consisting of set a together with the directional texture cardl. Both the
original 512x512 floating point images (512f) and their normalised versions (512N) were
used. For convenience the first five rows of the table contain means of five different
groups of features, collected by feature type (Laws, Linnett, or co-occurrence) and

normalisation.
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Mean t|It_senst|V|ty Class separ ation
(o) (D)

seta setbh seta setb

M ean co-occurrence 0.80 9.33 0.09 0.05
Mean Laws 1.14 9.17 1.01 0.37
Mean Linnett 1.46 8.96 0.15 0.11
M ean 512f 1.22 10.67 0.58 0.24
Mean 512N 1.12 7.99 0.64 0.24
Cooccurrence |ASM 512f 0.32 3.43 0.19 0.11
Cooccurrence |CON 512f 2.02 8.22 0.12 0.09
Cooccurrence |[ENT 512f 0.47 11.79 0.32 0.12
Cooccurrence |COR 512f 0.76 32.72 0.01 0.01
Cooccurrence |ASM 512N 0.28 1.28 0.02 0.01
Cooccurrence |[ENT 512N 0.26 1.80 0.05 0.03
Cooccurrence |CON 512N 1.51 6.43 0.01 0.01
Cooccurrence |COR 512N 0.77 9.00 0.04 0.02
Linnett ml 512f 2.20 17.84 0.19 0.14
Linnett m2 512f 2.81 12.94 0.17 0.10
Linnett m3 512f 2.71 2.46 0.11 0.11
Linnett m4 512f 2.00 12.46 0.23 0.14
Linnett mb5 512f 0.43 10.74 0.26 0.19
Linnett m6 512f 0.25 9.95 0.34 0.23
Linnett m7 512f 0.32 9.84 0.28 0.20
Linnett ml 512N 1.53 8.76 0.03 0.03
Linnett m2 512N 2.74 7.61 0.03 0.03
Linnett m3 512N 2.70 5.03 0.09 0.05
Linnett m4 512N 1.89 6.91 0.04 0.04
Linnett mb5 512N 0.40 5.86 0.12 0.12
Linnett m6 512N 0.22 8.10 0.04 0.04
Linnett m7 512N 0.27 6.99 0.09 0.09
Laws ESES 512f 0.16 0.15 0.00 0.00
Laws E5SH 512f 0.41 0.35 0.02 0.02
Laws L5E5 512f 2.55 18.03 0.28 0.21
Laws L5% 512f 2.90 12.94 0.15 0.14
Laws R5R5 512f 0.05 0.10 0.01 0.00
Laws ESES 512N 0.19 9.40 0.06 0.05
Laws E5SH 512N 0.30 9.82 1.26 0.41
Laws L5E5 512N 1.95 2.56 0.08 0.08
Laws L5% 512N 2.62 26.74 0.18 0.18
Laws R5R5 512N 0.27 11.62 8.03 2.58

Table 5.1 - Tilt sensitivity and class separation of Laws, Linnett’s, and co-occurrence
features.

Table 5.1 shows that :
(i) Normalisation significantly reduces the tilt sensitivity of features derived from set b
which contains the directional texture cardl.

(i)  Normalisation does not significantly affect the tilt sensitivity of set a which contains

only isotropic textures.
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(iif) Features with frequency responses which are approximately omnidirectional or bi-
directional have low tilt sensitivities when used with isotropic textures (set a). See
for instance Linnett's m4, m5, & m7, Laws R5R5 & ESES5, and co-occurrence
featuresENT and ASM.

(iv) Conversely features with uni-directional frequency responses have high tilt
sengitivities and thus Laws L5S5, ESS5, Linnett's m1 to m4, and the co-occurrence
feature CON, would al provide discrimination between differing illumination tilts.
Thus they would be useful in tilt estimation schemes.

(v) For the texture test set employed Laws' energy masks provide on average the best

potential class separation. The next best is provided by Linnett's operator.

5.5. Conclusions
This chapter has examined the effects of variation of illuminant slant (o) and tilt (T) on
three sets of texture features. Of particular interest was the effect of normalisation; as it
had been suggested in chapter 2 that normalisation of images could compensate for slant
variation but not for tilt variation (except where uni-directional images are concerned).
The behaviour of each feature set was therefore investigated. Images of four isotropic
textures and one uni-directional texture were captured under a range of illuminant slant
and tilt conditions. These data sets were presented to the feature measures and the effects
on the resulting output distributions, in terms of means and histograms, were recorded. In
addition a new tilt sensitivity metric, based upon the Mahalanobis distance, was
developed and used to assess the effect of tilt variation on these features.
To summarise, the main conclusions drawn from the preceding investigations with
respect to the limited set of test textures employed, are as follows.
. The effect of change in illuminant tilt angle was shown to ater according to the
directional characteristics of the test texture and the feature measure concerned. The

following table summarises these findings :
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| sotropic Bi-directional Uni-directional
features features features
| sotropic texture Not significant Affected Significantly
(beansl, chipsl, rockl & affected
stonesl)
Uni-directional texture Significantly Significantly Significantly
(cardl) affected affected affected

Table 5.2 - The effect of illuminant tilt on directional and isotropic feature

Normalisation was shown to reduce the tilt sensitivity of features when applied to

measur es

the directional texture cardl.

It was also shown that normalisation does not significantly affect the tilt sensitivity

of features when applied to the isotropic test textures.

Variation in illuminant slant has been shown to significantly affect each of the three

feature sets.

Image normalisation has been shown to reduce this variation (at a cost of an

associated reduction in separation between class means).
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Chapter 6

Classification

The previous chapter has shown that variation of the illumination’s direction can affect the
outputs of Laws, Linnett’s and co-occurrence feature sets. Such variations may be
encountered in avariety of situations (as described in chapter 1). Unfortunately the effect
of illuminant variation on classification accuracy is likely to be dependent on the
application. Thisis because alterations in lighting effect a movement of class membersin
feature space. But these displacements are only significant if they cross decision surfaces,
the position of which are dependent upon the characteristics of the original training set.
Hence the number of classification errors caused by a change in lighting is a function of
the feature set selected, the number of textures, the characteristics of the textures, and of
course the illuminant variation itself. Thus the effects of illuminant variation can only be
assessed with respect to a particular classification task.

It is not within the scope of this chapter to identify and test classification tasks
representative of all of the applications mentioned in chapter 1. Rather the aims of the
following sections are :

(i) toshow that lighting variation can significantly affect a classification task,

(i) to develop aprototype compensation scheme, and

(iii) to show that such a compensation scheme can reduce the effects of illuminant

variation for the chosen classification task.

Thus the purpose of the work described in this chapter was not to develop an optimum
classifier, but rather it is to investigate the effects of illumination variation on a
representative classifier. Effort was not invested in feature selection [ the feature sets
used were selected purely on the basis of popularity in the literature and ease of
implementation. Nor was any post-processing, such as mode filtering [Greenhill93],

employed.
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The investigation reported here, uses one model classification example throughout. The
job consists of classifying montages of four textures under varying illuminant tilt and
dant angles. That is either the tilt or dant angle is varied between training and
classification sessions. Thus the first objective of this chapter is to assess the effect of
illuminant variation on thismodel task. The second objective is to investigate the effect of
image normalisation [1 as previous chapters have suggested that normalisation may
reduce classification errors that are due to variations in illuminant direction. The third and
final objective is the development of a prototype tilt-compensation scheme [J the aim
here being, not the development of an optimum compensation scheme per se, but rather to
show that the image models devel oped earlier may be used to develop a scheme which is
capable of reducing tilt related errors.

However, before the above are addressed the main tool required for these

investigations will first be introduced; that is the classifier itself.

6.1. Supervised statistical classification

Classification is the task of assigning objects to groups, or classes, given sets of object
measurements. If the classes are known beforehand then the process is termed supervised
classification. In the context of texture classification the process becomes one of
assigning pixels, or groups of pixels, to texture classes, where the sets of "object
measurements” are feature vectors comprising features such as Laws' energy masks.
Previous chapters have reviewed and selected three sets of feature measures for use
here. These features are however of little use without a method of developing a set of
discrimination rules which may be used to assign pixels to texture classes. Hence asimple
statistical classifier has been selected. Such classifiers are relatively straightforward to
understand and implement [James85] [Tou74], offer reasonable performance [Linnett91a]
[Clarke92], and had the advantage of being available to the author. The next section

introduces the theory behind these classifiers.
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6.1.1. Discriminant theory
Bayes' rule provides the basis for probabilistic classifiers that seek to minimise the "total

error of classification” or TEC [James85] [Tou74]. It may be expressed as follows:
Assign the pixel with feature vector f to group G, for which
P(GIf)>P(G[f) 0Oj=#i (6.1)
where

P(G|f) is the conditional probability that the pixel with feature vector f belongs to
group G, .

Unfortunately these conditional probabilities are difficult to obtain. Bayes theorem
however, expresses them in terms of more easily obtained data :

P(f|G)P(G)
Z P(f|G)P(G)

P(GIf) = (62)

Thus a maximum likelihood classification rule may be expressed in terms of conditional
probabilities, where P(f|Gi) is the probability of a pixel from group G, having a feature

vector of f, and P(G,) is the a priori probability of a pixel belonging to group G,. To
further simplify the classification rule, the associated probability distribution functions are

often assumed to be multivariate normal, that is:
1 01 P O
PfG)=z ——— —\f- )JC{f - . 6.3
( | I) (27-[)%|C||% expg_z( |) i ( |)E ( )

where:

nisthe number of feature measures contained within the column feature vector f,

C, isthen by n variance/covariance matrix of group i,

M, isthe n element column vector of feature measure means for group i.

(f —4,)" isthetranspose of (f — )
Substituting (6.2) and (6.3) into (6.1), taking natural logs (In), and reversing the inequality
[James85, p20] givesthe following rule:
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assign the pixel with feature vector f to groupG, if

nc,|+( - ) CMf - )-2In(P(G)) < 60

njc,|+( - Jcr - )-2mPG)) oj#i '
For convenience the terms in the LHS of (6.4), with the exception of the a priori
probability, are often collected together in one function d(f) referred to as the

discriminant function. Where

d(f)=Inc|+f - )i - ) (6.5)
expanding (6.5) gives

d (f) = In|C|+£'C —26'Cl, +1, Cy, (6.6)
This form is known as a quadratic discriminant (due to the f'C;*f term). If the
variance/covariance matrices of all classes are identical then the quadratic and natural 1og.
terms may be eliminated to give alinear discriminant

d(f) =p, Cl, —2fC7y, (6.7)
Assuming equal a priori probabilities the classification rule now becomes :

assign the pixel with feature vector f to the groupG, with the lowest discriminant
score d. (f)

The simpler linear discriminant is used here as it is straightforward to implement and

because of its reported robustness and performance [James85]. It assumes a multivariate

normal distribution and identical variance/covariance matrices C,. As these matrices are

not normally identical they are often replaced by the pooled variance/covariance matrix

C,, inwhich each element is the average of the corresponding elements of the individual

group variance/covariance matrices C, [James35].

6.1.2. Supervised classification of test textures
Having decided upon (i) the form of the discriminant function and (ii) the feature set to be
used, implementation of a classifier is straightforward. First the training set must be

selected, comprising representative samples of each texture class. Second, feature images

of each sample are generated using the chosen feature set. Third, statistics p; andC, of
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the feature image set of each groupG, must be calculated and used to implement the

discriminant functions d, (f). Finally the discriminant functions are built into the classifier

asshownin figure 6.1.

Training set
statistics

Feature Discriminant
generator function

Texture Cl.assified
image Feature image
images

Figure 6.1 - Supervised statistical classification of image texture

To perform a classification of a multi-texture image, feature images are first generated
using afeature set such as Laws' energy masks. Secondly, these feature images are used to
calculate discriminant scores for each group at each pixel position. The output image
resulting from this process is a class map in which the value of each pixel corresponds to
the group with the lowest discriminant score at that pixel position. Figure 6.2 illustrates
the effect of applying such a classifier to montagel [ a montage assembled from one

directional and three isotropic textures.

Class map Class boundan% origi naI

Figure 6.2 - Classification of the four texture image "montagel"”
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The results were obtained using the Laws' features described in chapter 5. This classifier
is referred to here as "Lawsl" and is defined in table 6.2. It was trained and tested on the
image shown in figure 6.2. Note that its three isotropic textures represent a deceptively
easy classification task [ as these textures have very similar directional characteristics
when imaged under the same illumination conditions (see chapter 3). Despite this, the
results show that the classifier has been reasonably successful; correctly identifying 96%

of the pixels.

6.2. The effect of illuminant variation on classification

If the effect of illuminant variation on a feature set is significant, then it is reasonable to
expect that a classifier using such a feature set would be able to discriminate between
differing illumination conditions. Hence this section first examines the ability of the
Lawsl classifier to classify images of the same physical texture imaged under two lighting
conditions, as belonging to different classes. The second and third sections directly

investigate the effect of illuminant slant and tilt angle variation on classification accuracy.

6.2.1. Discrimination between illumination conditions

In order to test the ability of a statistical classifier to discriminate between differing
lighting conditions, atest image "montage2" was constructed from four samples of image
texture. The four samples consisted of images of beansl and rockl captured with
illuminant tilt angles of 0° and 90°. This test set was used both for training and testing the
Lawsl classifier. Figure 6.3 and table 6.1 contain the results of this classification test.
They show that a standard classifier, using Laws' features, is capable of discriminating
between different illumination conditions. Thus such features may be of value for the
estimation of illuminant tilt. More importantly for this thesis however, is that they show

without doubt that the classifier is affected by illuminant variation.
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Class boundaries overlaid on original
g R L L AL

i f ' y

Figure 6.3 - Classification of "montage2"” : two physical texturesimaged under two
illumination conditions

TEC beansl, T =0° beansl, T = 90° rockl, T1=0° rockl, T = 90°
(upper l€eft) (lower left) (upper right) (lower right)
5.5% 2.4% 1.8% 1.0% 0.30%

Table 6.1 - Classification errorsfor figure 6.3

6.2.2. Slant response

The significance of the effects of illuminant variation can only be judged with respect to a
particular classification task. Classification of textures that differ grestly from one
another may not be affected at all, on the other hand textures which are "close" to one
another in the feature space may be particularly sensitive to illuminant variation. Here
therefore the effect of dant variation on the classification of the test set montagel is
examined in detail. Thistest set contains the isotropic textures beansl, chipsl, rockl, and
the directional texture cardl. It was used to investigate the behaviour of three classifiers
the feature sets of which are defined in table 6.2. Each of the feature sets has been defined
such that they use the same loca window size (e.g. Laws 5x5 masks together with a
29x29 ABSAVE operator uses a local window or context of 33x33). Each of the
classifiers was trained on montagel with illumination parameters T = 0°, o = 50°. After
training, the classifiers were tested with montages constructed from the same physical
textures imaged under a range of illuminant slant angles (o = 10°, 20°, .....80°). The

results for the Lawsl classifier are shown in figures 6.4 and 6.5.
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Classifier Feature set

Lawsl Laws 5x5 masks L5E5, E5L5, E5S5, S5E5, L5S5, S5L5, and R5R5 together with a
29x29 ABSAVE (average of absolutes) macro-statistic.

coocl Co-occurrence features CON, COR, ENT and ASM using a 33x33 local window,
with displacement vectors d = (1,0) and (0,1). The number of grey-levelsused Ng =
16

fracl Oneiteration of Linnett’s 3x3 operator with A = 1 for all seven directional masks,

followed by a31x31 ABSAVE macro-statistic.

Table 6.2 - Definition of feature sets

60% T

50% + \
Training

0% + image

—=— TEC

— 1 beans]
30% + —*— rockl

—— chipsl

Classification error

20%

—— cardl

10% -

0%

0° 10° 20° 30° 40° 50° 60° 70° 80°

llluminant slant angle

Figure 6.4 - The effect of illuminant slant variation on classifier Lawsl

n

Class map Class boundaries overlaid on=or|g

Bk

Figure 6.5 - An example of increased failure rate due to variation in illuminant slant
(training o = 50°, test case 0 = 30°)
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Figures 6.4 and 6.5 show that variation of illuminant slant between training and
classification can have a dramatic effect on error rates. Classification using the two other
feature sets, fracl and coocl, produced similarly catastrophic failures to those shown
above. Clearly these classifiers are not invariant to changes in the illumination’s slant

angle.

Normalisation
The image model of topological texture developed in chapters 2 and 3 predicts that
normalisation will compensate for slant angle variation. Indeed, chapter 5 showed that
normalisation does reduce the variation of the features due to changes in illuminant slant.
It isto be expected therefore, that normalisation of images will reduce the error rate of a
classifier that has to cope with variation in slant.

Figure 6.6 shows the classification error that results from using normalised images
(i.e. al images were adjusted to a mean of 127 and a variance of 100 before construction

of the montages).

—"—— un-nomalised

— % normallised

Training
image

Classification error
w
Q
o

/

0° 10° 20° 30° 40° 50° 60° 70° 80°

llluminant slant angle

Figure 6.6 - The effect of normalisation on the slant response of the Lawsl classifier
(data set : "normalised” montagel)

It can be seen that the use of normalised images produces disappointing results. Although
the classification error has been reduced for angles of slant less than 50° it has increased

for larger angles. An examination of the dlant responses of the features of chapter 5
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(figures 5.13, 5.19 and 5.28) shows that in most cases normalisation reduces variation due
to changes in slant [0 especialy for angles of 50° or less. Unfortunately it aso reduces
the separation between class means (see graphs of beansl, chipsl, and rockl). This
reduction in separation means that the classifiers using normalised images are more
sensitive to any changes due to illuminant variation (such as "over-compensation”
effects). Hence normalisation of texture images may not necessarily improve a classifier's
invariance to illuminant slant.

Tests with coocl and fracl classifiers produced similar error rates to those shown
above, reinforcing the proposition that normalisation does not necessarily improve a
classifier's ability to cope with variation in illuminant slant. Hence the conclusion of this
section is that classifiers using feature sets similar to those tested are not invariant to

changesin illuminant slant whether or not image normalisation is employed.

6.2.3. Tilt response

Chapter 5 showed that Laws, co-occurrence, and Linnett's features, are affected by
variation in illuminant tilt. In addition a previous section of this chapter has shown that
the Lawsl classifier is capable of distinguishing between images of the same physical
texture captured under differing values of illuminant tilt. Hence it is to be expected that
illuminant tilt variation may cause significant problems for supervised texture
classification. As with the previous investigation into the effects of illuminant slant,
sensitivity to illuminant tilt may only be assessed with respect to a particular classification
task. Here therefore, the same test set montagel is used as in the previous section. The
three classifiers were again trained on textures captured with o = 50° and 1t = 0°, but for
this experiment the tilt angle (1) of the test sets was varied in 10° steps from 0° to 180°,
while the slant was kept constant at o = 50°. The resulting classification error rates are
shown below for the Lawsl classifier (figure 6.7) together with images of one of the worst

classifications (figure 6.8).
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—— chipsl

Classification error

10% +

—— card1
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llluminant tilt angle
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Figure 6.7 - The effect of tilt variation on the classifier Lawsl (data set : montagel)

Class map Class boundaries ovglaid on origirlal

Figure 6.8 - Classification failure at 7 = 90° for the Lawsl classifier (data set :
montagel)

Figures 6.7 and 6.8 show that, for this data set, the Lawsl classifier is (i) significantly
affected by variation of illuminant tilt, and (ii) that the TEC (total error of classification)
is dominated by the failure to correctly classify the majority of class cardl between tilts
of 50° and 120°. Experiments on the coocl and fracl classifiers using the same data set
gave similar results (see figure 6.9).

These results clearly demonstrate that variation of illuminant tilt between training

and classification sessions can have a dramatic effect on the accuracy of a statistical

classifier.
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Figure 6.9 - The effect of illuminant tilt variation on "coocl" and "fracl" classifiers

6.2.3.1 Normalisation
In chapter 5 it was shown that normalisation does not have a significant effect on images
of isotropic texture taken under varying values of illuminant tilt O as although a change
in tilt does ater the balance between the texture energy in differing directions, it does not
alter the overall energy of the texture image. Thus normalisation has the same effect on
each image of an isotropic texture regardless of illuminant tilt. However, the same was
shown not to be the case for unidirectional textures. The variance of an image of a
unidirectional texture does vary with illuminant tilt. That is as T approaches 90° to the
texture direction, image variance is reduced. Normalisation however, makes the variance
of each image identical regardless of tilt. Thus, in theory, normalisation should reduce the
effect of tilt variation on images of unidirectional texture. Figure 6.10 and 6.11 illustrate
the effect of applying image normalisation. Note that each texture was normalised before
being added to the test montage [1 simulating an ideal local normalisation process.

When figure 6.10 is compared with the un-normalised error rates (figure 6.7) it is
clear that normalisation has reduced the mis-classification of the directional texture cardl,

and hence it has also reduced the TEC (total error of classification).
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llluminant tilt angle

Figure 6.10 - The effect of normalisation on the previous classification problem (Lawsl
classifier; data set : normalised montagel)

Class map Class boundaries overlaid on original

[T.J' . T

Figure6.11 - Classification at 7= 90° (Lawsl classifier, normalised montagel)

Laws1 :normalised data

—*— TEC
— L beans]
—*— chipsl

—>— rockl

Classification emror

———— card]

llluminant tilt angle

Figure 6.12 - The effect of tilt variation on the Lawsl classifier using normalised images
(data set : montage3)
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However, because a texture's variance is one of its distinguishing characteristics,
normalisation might also be expected to reduce the classification accuracy in some cases.
Hence another test set, montage3, was constructed using different samples of rockl and
chipsl. It was presented to the Lawsl classifier as before. The resulting error rates are
displayed in figure 6.12. It shows that while normalisation has reduced the classification
error of the directional texture cardl in montages3, it has also unfortunately increased the
error associated with the isotropic texture rockl. Thus normalisation may actualy
increase error rates, as well as decrease them.

Figure 6.13 shows the results of repeat experiments for the coocl and fracl
classifiers (co-occurrence and Linnett's features respectively). Again the graphs show that
the errors associated with the directiona texture cardl have been significantly reduced,
and that those associated with the isotropic textures have increased particularly those of
beansl. Re-examination of table 5.1 reveads further supporting evidence that
normalisation can reduce classification accuracy [J the class separation figures of al of
Linnett’s features are significantly lower in their normalised form. The same holds for co-

occurrence features with the exception of the COR measure.

coocl - normalised fracl - normalised
——TEC
P —— bears] S "~ '\'\
3% o /./- \.,_\ . ) \ %+ o / -\./,/
/ - o | .
‘6 &
: /
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5 -
9 _
é
0

1%

ooooo

S — — S e e S S S

0% + 03

f f f
[0 x° 40 o & 1000 1200 M4 1@ 18 04 g £ o & o 2> wr 6>
lluminent tilt angle lllurvineri itk onde:

Figure 6.13 - The effects of image normalisation on coocl and fracl classifiers (data set :
montagel)
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Thus athough normalisation does reduce the classification error rates of the
directional class cardl, it has also been shown to increase the error rates of some of the

isotropic textures.

6.2.4. Summary of illuminant variation investigation

This section has described the effects of variations in the illuminant’s slant and tilt angles

on the classification of directional and isotropic textures. The illuminant tilt and slant

responses of three classifiers have been presented, and the effects of normalisation have
also been investigated. To summarise:

. A classifier using Laws' features has been shown to be capable of discriminating
between two sets of illumination conditions.

. Variation in illuminant tilt and slant have both been shown to significantly reduce
the classification accuracy of three classifiers when applied to a test montage of
isotropic and directional textures.

. Image normalisation was shown to have little effect on these slant induced errors.

. Image normalisation was shown to reduce the tilt related classification errors of the
directional texture cardl.

. Image normalisation was shown to increase the tilt related classification errors of

some of the isotropic test textures.

6.3. Compensation for illuminant tilt variation

The previous section has shown (i) that variation in illuminant tilt can significantly affect
supervised classification of three-dimensiona texture, (ii) that normalisation can help
compensate for such variations where directional textures are concerned, and (iii) that
normalisation may actually degrade a classifier's ability to classify isotropic texture.
Normalisation is however only one of a number of possible compensation schemes. Some
alternatives are now proposed.

Proposal 1

The simplest solution is to train the classifier over the range of illuminant conditions that
are likely to occur during classification sessions. However, such an approach may
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significantly reduce the accuracy of the system from its potential optimum, as the
variance of each classis likely to be higher than would be the case for fixed illumination
conditions.

Proposal 2

If the tilt angle of the illuminant is varied during training, then a family of discriminant
functions may be developed. This would provide what is essentialy a lookup table of
discriminants indexed by tilt angle. Alternatively the tilt angle may be used as a feature
itself. Both approaches are only viable if the appropriate training sets are available and the
tilt angle of the test data is known. They would also require additional resources for
gathering and handling the data and performing the training. It must be said however, that
such methods are likely to be simple and may well produce good results.

Proposal 3

Use unsupervised classification techniques; e.g. k-means clustering [Tou74] for training
set identification followed by a statistical classifier [Linnett91a]. If illuminant variation
affects each texture in a similar manner then a change in lighting will impart
approximately the same displacement in feature space to each texture class. Thusit is to
be expected that unsupervised techniques will not be as severely affected as supervised
ones [1 asthe clustering will track the changes in class centres and the discriminants will
be adjusted accordingly. However, the segmentation of an image into homogeneous
regions would not at first sight be of great benefit if the job is to classify textures into
previously defined groups. Nevertheless this segmentation processis of value 0 aslarger
texture regions maybe used for more sophisticated feature generation processes. Such an
approach may for instance enable FFTs to be used to provide information on the radial
shape of atexture's PSD [ as in chapter 2 it was suggested that such characteristics are
intrinsic to the texture. Thus segmentation using unsupervised techniques followed by
extraction of features based on PSD radial shape may provide a lighting invariant

classification scheme.
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Proposal 4

Reverse the directional filtering effect of single point illumination by using a family of
compensating filters each one constructed for a particular value of tilt. Thus each image,
be it a training or test image, would be passed through a filter corresponding to the
illuminant tilt angle under which the image was captured. Hence in theory tilt related
characteristics would be removed [0 alowing classifiers to be trained under one set of
illumination conditions but to be used with arbitrary tilt angles. Note that this method
requires the illuminant’s tilt angle either to be known or obtainable from a reliable
estimator.

Choice

It is not practical within this thesis to address all of the above avenues. It was therefore
decided to choose just one for investigation here. The first two proposals are
straightforward. However, the first is unlikely to provide good performances for difficult
texture classification tasks and the second requires extensive training. The third proposal
isinteresting in that it does not need illuminant tilt as input, but it is more specul ative and
would be more complex to implement than the other proposals. The last proposal does
require illuminant tilt to be known, but is ssmple to develop, and offers the potential
advantage that training requirements would be significantly reduced compared with
proposal 2. For these reasons the fourth proposal based on the development of a

compensating filter will be investigated.

6.4. Frequency domain tilt-compensation

This section proposes a tilt-compensation method which is based upon the frequency
domain model of image texture developed earlier. Its purpose is not to develop an
optimum compensation scheme and extensively test it; rather it is to show that the model
of image texture may be used to develop a scheme which is capable of reducing tilt

related errors.
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Chapters 2 and 3 developed an image model of topological texture. If slant (0) is
constant then, asin chapter 5, the model reduces to equation (5.13) :

F (@, 6) = FK(w, 0).F(w 6).k,
and substituting (3.8) gives

F (@, 6) = Fs(w, 6).(m, cos(6—-1)+Db,).k, (6.8)
Thusif the illuminant tilt is known, atilt-compensation filter of the form

~ 1
Hm(w’g)_m,cos(ﬁ— 3D, (6.9)

may, in theory, be applied to remove variations due to changes in tilt angle. This filter
must of course be applied to all test images and to al training images. It should be

applied before feature generation; as shown in figure 6.14.

Illuminant Training set
tilt statistics

; Filter ; ; Feature 9 Discriminant

process generator function
Texture Filtered texture Classified
image image Feature image

images

Figure 6.14 - The use of a tilt-compensating filter in the texture classification process

Hence the main advantage of this scheme is that training images only need to be obtained
under asingle set of illuminant tilt conditions [0 as tilt-compensation filters will in theory
compensate for any variations due to changesin T.

The coefficients m_ and b, in (6.9) were obtained in the first instance by taking an
average of estimates derived from four isotropic textures. The estimates were calculated
by using aleast squaresfit of the tilt response model (i.e. the inverse of equation 6.9) to a
set of polar plots of the two-dimensional magnitude spectra. These plots which were
normalised to have amean = 1.0, were of the textures rockl, beansl, chipsl, and stonesl,
imaged with T = 0°. (Figure 3.26 shows un-normalised polar plots of the four textures.)

Thus a value of 0.6 was used for both m,  and b,. The resulting family of tilt-

compensation filters, referred to as"F1" in the following text, is defined below.
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_ 1
Hea(@.6) = 0.6cog6-1)+0.6 (6.10)

Figure 6.15 shows the magnitude frequency response of filter F1(t = 0°).

Filter Filtered checkerboard

Magnitude

Figure 6.15 - Magnitude frequency response of F1(z = 0°), and its effect on a
checkerboard image.

The T = 0° filter amplifies components with an angle 8 = 90° and attenuates those with 6
=0°. This effect is readily apparent in the image, shown in figure 6.15, which results from
the application of F1(t = 0°) to a checkerboard image.

Unfortunately application of this filter family to images of a test set, comprising
isotropic textures (set a), actually increases the average tilt sensitivity of the Laws
features (see table 6.3). A closer examination reveals that only the higher frequency
masks R5R5, E5L5, and E5S5 were adversely affected, which suggests that the tilt

response model above is inadequate at higher frequencies.

6.4.1. An improved frequency domain model

The previous section found that application of the tilt-compensation filter family F1 can
actually increase the tilt sensitivity of texture features, rather than decrease them as
intended. Hence this section investigates the magnitude spectra of the four isotropic
textures in more detail [0 the aim being to provide a frequency domain model which will

facilitate the development of atilt-compensation filter that does reduce tilt sensitivity.
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It was noted in the previous section that the higher frequency feature measures were
adversely affected compared with their lower frequency counterparts. Here therefore, the
polar characteristics of texture magnitude spectra are examined over a number of
frequency bands. This contrasts previous polar plots in which the magnitude response was
averaged over the whole radia frequency range for each value of 8. Thus each of the plots
on the graph below shows the polar characteristics of one of a series of concentric rings
taken from the two dimensional magnitude spectrum of rockl. Each plot is labelled with

the centre frequency of the "ring".

3.0E+5

2.0E+5 +

Reative magnitude

1.0E+5 +

M

-90° -60° -30° 0° 30° 60° 90°
Illuminant tilt angle

0.0E+0

Figure 6.16 - Polar frequency characteristics of rockl texture (7 = 0°)

From the above it can be seen that energy in the texture rockl falls off with frequency. It
is assumed that this is a function of the topological texture and will therefore be ignored
here. Thus for the purposes of developing a tilt-compensation filter, polar plots are
normalised to have a mean = 1.0. Figure 6.17 shows the result of plotting these
normalised values against cos(t - 0) for two values of frequency (w). From this graph it
can be seen that there is an approximate linear relationship with cos(@ - 1) at both

frequencies, but that the values of the linear coefficients change with frequency.
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Figure 6.17 - Plot illustrating the F, (e, 6) U m,cos(6 - 7) + b, relationship for a = 0.05
and 0.20 times the sampling frequency

Figures 6.18 and 6.19 provide a more extensive view of the behaviour of these

coefficients as a function of frequency.

12 +
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1.0 ~
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——— Mean
04 +
02 +
00 +
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Figure 6.18 - Variation of m_ with frequency

These estimates of m, and b, were obtained by averaging least squares estimates at T = 0°
and 90° in order to reduce any directiona artefacts that might have been introduced by

the data capture or analysis processes.
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Figure 6.19 - Variation of the parameter b, with frequency

What is clear from the above two graphs is that the directional characteristics exhibited
are strongest at low frequencies I as the Nyquist frequency is approached the polar plots
tend towards a flat, isotropic response (i.e. m, = 0, b, = 1). One explanation for this
behaviour is that, as has been shown in chapter 3, the energy of the textures reduces with
increasing frequency. Thus noise will become more significant as frequency increases and
hence if the noiseisisotropic, it will tend to flatten the polar response.

A simple model was developed in order to account for this behaviour. Least squares
estimates of the linear behaviour of m, and b, as a function of frequency were derived
from the mean behaviour of the four textures giving :

m, =-18«/w,+0.7, b, =0.8a/w,+0.6 (6.11)
where

, isthe sampling frequency.

However, (6.11) gives a negative value of m, for «/w, > 0.39, that is the directional
characteristic of the resulting filter would be the inverse of that predicted in chapter 2.

Thus the model was modified to a more conservative set of coefficient definitions :

=-l4w/w, +0.70
i /e, D<w/w, <05
b, =08w/w, +0.6 [

m =000 (6.12)
' w. =05
b, =1.0 7%
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Note that the filter defined by (6.12) in conjunction with (6.9) has unity gain at
frequencies w/w, = 0.5, as opposed to the inverse directional characteristic described
above. Hence this modified model (6.12) was used together with equation (6.9) to specify

the "F2" family of tilt-compensation filters.

6.4.2. Filter implementation

Both F1 and F2 filter families were implemented in the frequency domain using forward
and inverse FFTs (fast Fourier transforms) as depicted in figure 6.20. First, the two-
dimensional magnitude spectrum of the required filter is generated using the illuminant
tilt angle asinput to the F1 filter equation (6.10) or the F2 filter equations (6.9) and (6.12)
as required. Second, the texture image is FFTed to provide real and imaginary component
images of its complex spectrum. Third, both the real and imaginary images are multiplied,
coefficient by coefficient, by the filter image. Finally the filtered real and imaginary

images are inverse transformed back into the spatial domain to provide the filtered texture

image.
llluminant
tilt
Texture Real and Filtered real and Filtered texture
image imaginary images imaginary images image

Figure 6.20 - Frequency domain filtering
In comparison with the spectral analysis described in chapter 3, circular Hann windows
and the spatial averaging of the Welch periodgram method were not employed. Spatial
averaging which was used in chapter 3 purely to aid interpretation is not required here;
while artefacts introduced by the forward transform, through the use of non-circular

windows, are largely removed by reverse transforms using the same window.

-154 -



Figure 6.21 shows the result of applying an F2 filter to an image of the texture

rockl.

_ Accentuated

= B .
;

Figure 6.21 - The effect of filter F2(7 = 0°) on the texture "rockl"

Asthe effect is difficult to discern an accentuated version of the filtering is aso shown (in

which the directional effect has been exaggerated).

6.4.3. Effect of tilt-compensation on features
If the F1 and F2 filters are useful for tilt-compensation then their application to texture
images will reduce the feature measures' tilt sensitivities. That is the separation between a
feature's distributions at differing angles of illuminant tilt should be reduced by the filters.
Figure 6.22 shows the distributions (histograms) of the output of a tilt-compensated
Laws L5ES5 texture measure. It has been applied to four image textures : two physica
textures each imaged at two values of tilt (T = 0° and 90°).That is each texture image was
processed with the appropriate F2 compensation filter before application of the L5E5S

operator.
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Figure 6.22 - The effect the "F2" filters on tilt behaviour of Laws  L5ES feature

If these histograms are compared with figure 5.7 (which shows the distributions of the
same operator used directly on the original images) it can be seen that the F2 filters:

(1) bhavenot significantly distorted the shape of the distributions,

(i)  have reduced the displacement of the mean of class beansl due to changein 1, and
(iii) have amost eliminated the displacement of the mean of chipsl.

In addition, if the above graph (figure 6.22) is compared with that showing the result of
normalisation (figure 5.11), it can be seen the F2 filters have not reduced the separation
between the class means as has happened for normalisation.

The above is a qualitative, subjective assessment and contrasts with the quantitative
objective measure of tilt sensitivity developed in chapter 5. The metric, developed from
the Mahalanobis distance, was defined to aid comparison of texture measures. Table 6.3
below contains the results of applying this metric to Laws' texture measures using images
pre-processed with the F1 (512fF1) and F2 (512fF2) filter sets. Results using the origina
512x512 images (512f) are repeated here for convenience. In addition class separation
measures are shown to allow the relative effect of the tilt-compensation filters to be
assessed. Data sets set a and set b are as defined in chapter 5. That is set a contains only
isotropic textures whereas set b contains the unidirectional texture cardl in addition to the

textures of set b.
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Mean tilt sensitivity Class separ ation

st a sth st a sth

M ean 512f 121 6.31 0.09 0.08
Mean 512N 1.07 12.03 192 0.66
Mean 512fF1 1.79 3.13 0.10 0.08
M ean 512fF2 0.78 2.78 0.09 0.07
Laws ESES 0.16 0.15 0.00 0.00
Laws E5 0.41 0.35 0.02 0.02
Laws L5E5 512f 2.55 18.03 0.28 0.21
Laws L5 2.90 12.94 0.15 0.14
Laws R5R5 0.05 0.10 0.01 0.00
Laws E5ES 1.18 113 0.03 0.03
Laws E5S 153 1.64 0.03 0.03
Laws L5E5 512f F1 1.38 6.83 0.29 0.22
Laws L5 1.28 2.59 0.13 0.12
Laws R5R5 3.59 3.45 0.01 0.00
Laws ESES 0.69 0.59 0.01 0.01
Laws E5 0.59 0.53 0.02 0.02
Laws L5E5 512f F2 1.29 8.96 0.29 0.20
Laws L5 1.25 3.72 0.14 0.11
Laws R5R5 0.05 0.10 0.01 0.00

Table 6.3 - Tilt sensitivity and class separation of Laws features pre-filtered with F1 and
F2 filters. The original floating point figures (512f) are repeated here for convenience.

Thetilt sensitivity figures above show that

(i) Thefilter set F1 reduces the average tilt sensitivity of Laws features when used on
set b (containing a directiona texture) but the same filter set increases the tilt
sensitivity when used with the isotropic data set set a,

(i) Thefilter set F2 reduces average tilt sensitivity in both cases, and

(iii) neither filter set markedly affects class separation.

Thus these results indicate that pre-processing with the F2 filter set should reduce tilt

related classification errors. It will therefore be used in the next section which describes

an investigation into the effect of tilt-compensation on classification error.

6.4.4. Effect of tilt-compensation on classification
This section analyses the effect of the F2 tilt-compensation filter family on tilt related

classification errors. These experiments mirror those described in section 6.2.3, which
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determined the consequences of varying the illumination’s tilt angle on uncompensated?
images. The same four texture data set (montagel) is used here. Training is again
performed on images captured at T = 0° with classifications being processed at a range of
illuminant tilts angles. In this case however, all images are passed through the appropriate
F2 filter (selected by tilt angle 1) before feature processing.

The investigation into this tilt-compensation scheme is reported in three parts :
firstly the class error rates are discussed; secondly the total error rates of uncompensated,
normalised and tilt-compensated schemes are compared; and thirdly the distribution
between isotropic and directional errorsis presented.

a) Error ratesof individual textures of montagel
Figures 6.23 and 6.24 show the results of the first tilt-compensation experiment [

performed with the Lawsl classifier.

30% T

20% -+ — " TEC
— 45— beans]

—*— rockl

| ]
/ —— chipsl
A
10% ‘ —— cardl
- / .\
.?_’./l/ - / I\
L2
L
T~ [ . A
. p—— P i e = e
] A t t T

Classification error

llluminant tilt angle

Figure 6.23 - The effect of tilt-compensation on the Lawsl classifier (data set : F2 tilt-
compensated montagel)
All images of the data set montagel were pre-processed with the appropriate F2 filter
before feature processing. Asin previous tilt experiments the illuminant slant angle was

maintained at o = 50°, the classifier was trained at an illuminant tilt angle t = 0°, and it

INote that the term "uncompensated” is used in this and subsequent sections to refer to images that have
been neither normalised nor pre-processed with atilt compensation filter.
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was tested over the range of tilt angles (t = 10°, 20° ....... 180°). Figure 6.24 shows the

classification result which occurred at T = 90°.

Class map

Figure 6.24 - The effect of tilt-compensation on the classification at 7= 90° (Lawsl
classifier, data set : F2 tilt-compensated montagel)

Comparison of the above results with the equivalent uncompensated versions (figures 6.7
and 6.8) show that the classification errors associated with the directional texture cardl
have been significantly reduced. This was to be expected, given the reduced tilt
sengitivities of the tilt-compensated Laws features (see table 6.3). The error rates of the
isotropic textures however, do not show a similar reduction. The flat graphs of error rates
of the uncompensated isotropic textures, shown in figure 6.8, suggest that variation in
ilfluminant tilt does not affect the appearance of these textures enough to cause significant
mis-classification. Hence it is not surprising that the tilt-compensation scheme does not
reduce isotropic error rates in thisinstance.

Figure 6.25 below shows the result of using the F2 filters with co-occurrence and
Linnett’s features. In the case of the former, the graphs are not as convincing as for the
Laws' features O tilt-compensation has reduced the error rate around T = 90° but has

actually increased it at tilt angles of 30° and 40°.
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Figure 6.25 - Classification error rates of tilt-compensated coocl and fracl classifiers

In contrast with the co-occurrence results the use of F2 filters with Linnett's features
(classifier fracl) has been more successful. Here the average error rate has been
significantly reduced. Again it is the effect on the directional texture which dominates the

changein thetotal error rates.

Class map

Figure 6.26 - Reduced classification error at 7 = 90° (fracl classifier)

b) A comparison of total error rates
The figures above have depicted individual error rates for each texture and total error of
classification (TEC) for the three tilt-compensated classifiers. However, these graphs do

not allow easy comparison of the performance of uncompensated, normalised, and tilt-
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compensated, classification schemes. The next three figures therefore show the total error

rates that result from applying these three schemes to each classifier in turn.

30% + R

—=— 5]2f

0% T —O0— 512fF2

—*— 512N

Classification error

10% +

[0 30° 60° o0° 120° 180° 180°

Hluminant tilt angle

Figure 6.27 - TEC for Lawsl classifier using original (512f), normalised(512N) and tilt-
compensated(512fF2) images.

Lot

Do+

Classification error

%6

0% t t t t t { 0% t t t t 1
o4 kg @& Rl o wr & [0 Ky o« g zig w a
lurrinortitt ende liurvinert fitt orge

Figure 6.28 - TEC for co-occurrence (left) and Linnett’s classifiers (right) using
uncompensated, normalised, and tilt-compensated images (512f, 512N and 512f F2

respectively).
Figures 6.27 and 6.28 show that tilt-compensation with the F2 filter set produces the best
results with Linnett and co-occurrence features. Of the feature sets, Laws are clearly
better [1 with little to choose between the tilt-compensated and normalised images.
However, aword of caution must be sounded [J in that an alternative data set (montage3)

showed that Laws' features with normalisation can actually increase isotropic error rates
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(seefigure 6.11). This alternative data set was used as input to the other classifiers as well
and with the exception of the normalised Lawsl classifier results were very similar to
those above. That is the tilt-compensated co-occurrence and Linnett classifiers are
generally superior to their normalised counterparts.

c) Directional versusisotropicerrors

What is not clear from the above graphs is the overall distribution of classification errors
between directional and isotropic textures. The next figure therefore contains two graphs
which show the average isotropic and directional errors for each compensation scheme.
That is each point on each graph is an average calculated from the appropriate error rates
of the Laws, Linnett, and co-occurrence classifiers. Thus the overall effect of each
compensation scheme on isotropic and directional error rates may be examined.

From the previous theory and experimentation it might be expected that both
normalisation and tilt-compensation would reduce directional texture errors, but that these
two pre-processing techniques would have differing effects on isotropic textures. The
graphs below, which were compiled from the results of over thirty million classification

decisions, show that thisisindeed the case.

Isolropic classes Diredliond dess (cadl)
A% 0% /‘\.\’
¥
— Mer(®
&%
§ 0% + ey
[
s &% \
i
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8
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c
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I}
= 10%
e
0% . . . . . | 873
0.d cog & o 120 180° 180° o
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Figure 6.29 - Mean error rates for directional and isotropic texture classes (means
calculated from co-occurrence, Laws', and Linnett's features; test set - montagel)

The main points that can be drawn from figure 6.29 above are :
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. both normalisation and tilt-compensation reduce classification errors of the

directional texture cardi,

. normalisation produces the best results for cardl,

. normalisation increases the average error rate of the test isotropic textures, and

. tilt-compensation does not significantly change the classifiers ability to classify the
isotropic textures of the test set.

Thislast point is alittle disappointing given that F2 does reduce the tilt sensitivities of all

three feature sets (see table 6.3). However, the flat nature of the isotropic error rates of the

uncompensated schemes (see figure 6.7) suggests that there are few tilt induced isotropic

errors to compensate for in these data sets.

6.5. Conclusions

This chapter has introduced three statistical classifiers [ based upon alinear discriminant

and the three feature sets investigated previously. These classifiers were used to

investigate the effect of variation in the direction of the illumination on supervised

classification. That is the tilt and slant angles of the illuminant were varied between

training and classification sessions. The test data used consisted of montages of

directional and isotropic textures. The main conclusions of these investigations are as

follows.

. Variation in illuminant slant between training and classification sessions induced a
significant increase in the number of classification failuresin all three classifiers.

. Image normalisation did not markedly reduce the number of slant induced
classification errors.

. Variation in illuminant tilt between training and classification sessions significantly
increased the number of mis-classifications of the directional test texture.

. Normalisation significantly reduced the number of these tilt induced errors (for the

directiona texture).
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. However, normalisation also degraded the classifiers’ performances with respect to
the isotropic test textures.

In addition a tilt-compensation scheme has been developed. It is based upon an improved

frequency domain model derived from four isotropic test textures. The scheme consists of

afamily of filters 0 onefor each value of illuminant tilt. They are used to process images

before feature generation at the training and classification stages. The conclusions drawn

after testing this compensation scheme and comparing its results with those achieved with

uncompensated and normalised images are :

. Tilt-compensation reducestilt related errors for the directional texture cardl.

. Normalisation gives better results than tilt-compensation for this directional texture.

. Unlike normalisation, tilt-compensation does not degrade a classifier's ability to
classify the three isotropic textures.

. Tilt-compensation was shown to reduce the average tilt sensitivity of Laws, Linnett,
and co-occurrence feature measures, when applied to the test textures.

Hence the main conclusion is that the tilt-compensation scheme developed in this chapter

offers a promising method of countering variation in illuminant tilt O asit is pertinent to

both directional and isotropic textures, whereas normalisation is only appropriate for

directional texture.
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Chapter 7

Summary and conclusions

7.1. Summary

The subjects of thisthesisare: (i) the effect of variation of illuminant direction on images
of topological texture, and (ii) the effect of these changes in image texture on supervised
classification. In addition a tilt compensation scheme was proposed and shown to be able
to reduce classification errors caused by changes in illuminant tilt between training and
classification sessions.

Chapters 2 and 3 investigated (i) above. First a brief survey was presented which
identified an image model of topologica texture due to Kube and Pentland [Kube88].
This model was presented using a simplifying axis transformation which resulted in
simpler expression for the model [0 providing a clearer view of its directional
characteristics. It was also generalised to non-fractal surfaces. More importantly however,
the implications of this model for texture classification were examined. The model
predicts that the directional characteristics of image texture are not only a function of
surface relief but (ignoring the more complex case uni-directional texture) are aso
dependent upon the tilt angle of the illumination. In addition it predicts that image
variance is a function of the illuminant’s slant angle. These effects are unfortunate as
many texture classification schemes exploit image directionality and some exploit image
variance. Variation in the latter may be removed by normalisation of images [ thereby in
theory removing any variations due to change in illuminant slant. Variation of image
directionality due to changes in illuminant tilt may not however be compensated for in the
same manner.

The third chapter used simulation and laboratory experiment to investigate the

validity of this theoretical model. The results confirmed that variation in illuminant tilt
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can affect the directional characteristics of image texture; and that for the four isotropic
test textures employed a "raised cosine' rather than the straight cosine relationship
predicted by the image model was more appropriate. Future work may be able to exploit
this characteristic to provide a frequency domain based illuminant tilt estimator.

The laboratory results also showed that image variance is a function of illuminant
slant, but the results of simulations suggest that the predicted "sine" relationship is
severely affected by shadowing. In addition the opportunity to assess the intrinsic nature
of the radial shape of image magnitude spectra was taken. The gross shape of radial
sections were shown to be maintained under changes in illuminant slant and tilt.
However, it could not be shown that the gradient of a straight line approximating the
radial section (i.e. a function of the power roll-off factor) would remain constant. Thus
radial shape may, or may not, provide the basis for a practical set of texture measures that
are invariant to changes in illuminant direction, but such a development must be the
subject of future work.

Having established that the variance and directionality of images of isotropic texture
are not invariant to changes in illuminant direction, the second part of this thesis
addressed the potential impact of these variations on supervised texture classification.

Chapter 4 surveyed feature measures employed in texture classification. It identified
three sets of texture measures for further investigation and in addition noted that no
literature on the effects of illuminant vector variation on texture classification had been
uncovered.

In chapter 5 the responses of the three sets of feature measures were investigated as
regards to the effect of variation in the illuminant vector. First, the two-dimensiona
frequency response of the features was presented; both to provide a common view of their
directionality and to give insight as to the effects predicted by the frequency domain
image model presented in chapters 2 & 3. Second, this image model was used to predict
the tilt response of one of Laws feature measures [ a comparison with empirical results
demonstrated the image model’s utility. Third, the tilt and slant responses of the features

were presented. All three feature sets were affected by variation in slant. These effects
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were reduced by image normalisation, but this compensation was accompanied by a
reduced separation between class means. The effect of tilt variation was found to depend
upon the directiona characteristics of the feature measure and the surface relief tested. If
either were uni-directional then the output was strongly affected by illuminant tilt
variation. Normalisation again reduced these effects but only if the texture was uni-
directional.

Having established the effect of variation in illuminant direction on the three feature
sets (as applied to the test textures) the next step was to assess the significance of these
variations with respect to particular classification tasks. Hence chapter 6 introduced a
simple statistical classification scheme employing a linear discriminant. This was
combined with each of the three feature sets and applied to montages of isotropic and
directiona textures. These tests showed that variation of the illuminant’s slant angle
between training and classification could significantly degrade classification accuracy.
Normalisation of the test sets did not markedly improve matters. Similar tests on tilt
variation showed that, for the test sets employed, significant classification errors could be
induced but that these were confined to the directional texture. Normalisation reduced
these errors but also increased the mis-classification of isotropic textures.

The second half of chapter 6 was devoted to the development of an illuminant tilt
compensation scheme. The image model developed in chapters 2 and 3 was used as the
starting point from which to design a set of tilt compensation filters. In order for this
scheme to be used the illuminant’s tilt angle must be known during training and
classification sessions [ as it is used to select the appropriate filter with which to pre-
process the images. Analysis of the results of employing this scheme showed that
(& itreduced the averagetilt sensitivity of all three feature sets,

(b) it reduced classification errors associated with the directional texture, and

(©) unlike normalisation it did not increase isotropic errors.
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7.2. Conclusions

This thesis has used theory, simulation and laboratory experiment, to investigate the effect
of changes in illuminant direction on image texture. It has been shown that variation in
illuminant tilt can ater the directional properties of image texture, while variation in
illuminant slant has been shown to effect a change in image variance. Both of these
effects have been shown to affect the output of three sets of texture measures and hence
also to significantly reduce the accuracy of classifiers employing these feature sets. To the
author’s knowledge the above points have not been explicitly addressed within texture
classification research before.

Normalisation of images was shown to reduce variations due to changes in sant,
but this was bought at the cost of reduced separation between class means of the test
textures, and classification errors were not significantly reduced. Normalisation aso
reduced the effect of changes in tilt on images of the directional test texture. In this case
classification errors associated with directional texture were reduced, whereas those
associated with some of the isotropic textures increased.

A frequency domain model due to Kube and Pentland of image texture [Kube88]
has, after being modified to take into account empirical observations, been used to
develop a set of tilt compensation filters. Application of these filters to images of the test
textures reduced the errors associated with the directional texture. Unlike normalisation it
has not increased errors associated with the isotropic test textures. Neither has it reduced
them. However, examination of the tilt responses suggest that there were few tilt induced
isotropic errors to compensate for. In addition the reduced tilt sensitivities of tilt
compensated features, when applied to isotropic textures, suggests that this scheme also

has potential to improve the classification accuracy of isotropic textures.
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Appendix A

The MacLaurin expansion of (="

The Taylor's series of afunction f(x,y) of two variablesis

f(a+r,b+t)= f(ab)+Df (a,b)+%*D2f(a,b)+é*D3f(a,b)...

Where

*D: i+ti%
x

Now if a=b =0 we obtain the MacLaurin series:

£(r,t)= f(0,0)+Ei+tiEr(0,0)

1 2> ., 0°
+ =522 +ort +1 (0,0)
2 oxdy oy
3 3 3 3
s 1gs ‘?—3 +3r2t dz +3rt2 2 2+3‘? (0,0)
Ag ox ékéy ooy o°
4 4 4
sl —+4r3t +6r2t2 f S+ 4rt® I S+t t* 9 (00)
4 Ky 2 "
...... (A1)
To find the MacL aurin expansion of
£(x,y) = +y? +1)*
we must first find the partial derivatives at (x,y) = (0,0)
J 1 -2
—f(x,y)=—-=(x*+y*+1) 2.2x
2 t(ey) =20 +y*+)
— _X(XZ + y2 +1)_%
J
0 —f(0,0)=0 A.2
5 100) (A2)
J? _0 0 oz, 2 400
%f(x,y)—gE x(x +y +1) i
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= {— (x2 +y? +1)_3}+ Erx. —g(x2 +y? +1)_§.2x§
(x +y? +1) +3x° (x +y? +1)

D%f(o,o):—

%x(x2 +y° +1)_% -15x° (x2 +y° +1)_%5
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(A.4)

(A.5)
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5
=3y(x2 +y? +1) 2 - 3xy.g(x2+y2+1)_z.2x
5 7
—Sy(x +y? +1)5 -15x y(x2+y2+1)_E
dS
U f = A7
a0a 100)=0 (A7)
4 5 _7
é;éy f(x y)= % %x(x2 +y? +1)_E —15x3(x2 +y? +1) 75
=§x—2(x +y? +1) 2y —QSX ——(x +y? +1) ZyE
—45xy(x +y? +1) +105x y(x +y? +1)%
9° _
O dxdyf(oo)-o (A.8)
"y Yt 1y +y2 +1) 10
dxz—o”yz xy——g?.yx +y?+1)2 =15x°y(x* + y? +1 i
5 7
=3(x* +y* +1) 2 —15y*(x* + y* +1) 2
7 22
—15x%(x* + y? +1) 2 =105x%y?*(x* + y* +1) 2
d4
0 dxz—oyzf(o,o)=3 (A.9)

Substituting the partial derivatives (A.2) to (A.9) in the MacL aurin expansion (A.1) gives:
f(r,t)=1+[r.0+t.0] +%[— r2+2rt.0-t?

+i[r3.o+3r2t.o+3rt2.o+t3.o]
3l

+%[r4.9+4r3t.0+6r2t2.0+4rt3.0+t4.9]
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