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Chapter 5 

Texture features and illumination

Chapters 2 and 3 of this thesis have shown that image texture is affected by changes in

lighting and proposed that normalisation may compensate for slant angle variation.

However, for isotropic texture variation in illuminant tilt introduces changes in the

directional characteristics of the image which may not be compensated for in the same

manner. Chapter 4 reviewed texture measures and selected three sets of features for

further investigation as regards illumination effects. This survey also showed that little

had been published on the effects of illuminant variation on texture classification. Hence

the main purpose of this chapter is to determine the effects of changes in the illuminant’s

tilt and slant on the three feature sets.

The feature sets chosen in the preceding chapter for further investigation are : (i)

Laws’ masks, (ii) co-occurrence features, and (iii) Linnett’s operator. Thus this chapter

comprises three main sections  one for each feature set. Each of these sections is further

sub-divided to address three aspects of feature set behaviour. Firstly, as the image model

in chapter 2 and the subsequent empirical investigation in chapter 3 were based in the

frequency domain, the frequency responses of the features is examined. This both

provides a common view of their directional characteristics and gives an insight into their

tilt and slant angle responses. Secondly the tilt and slant angle responses of the features

applied to images of isotropic and directional texture are presented; and thirdly the effect

of normalisation is investigated.

5.1. Laws’ masks

Laws [Laws79] [Laws80] developed a set of two-dimensional masks derived from three

simple one-dimensional filters.
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They are :

L3 = (1,2,1) - Level detection,

E3 = (-1,0,1) - Edge detection, and

S3 = (-1,2,-1) - Spot detection.

Laws convolved these with each other, to provide a set of symmetric and anti-symmetric

centre-weighted masks with all but the level filters being zero sum. These were convolved

in turn with transposes of each other to give various sizes of square masks. He found the

most useful to be those shown below. Note that the letters used in the mnemonics stand

for Level, Edge, Spot, and Ripple.

-1 -2 0 2 1 -1 0 2 0 -1

-4 -8 0 8 4 -2 0 4 0 -2

-6 -12 0 12 6 0 0 0 0 0

-4 -8 0 8 4 2 0 -4 0 2

-1 -2 0 2 1 1 0 -2 0 1

L5E5 E5S5

1 -4 6 -4 1 -1 0 2 0 -1

-4 16 -24 16 -4 -4 0 8 0 -4

6 -24 36 -24 6 -6 0 12 0 -6

-4 16 -24 16 -4 -4 0 8 0 -4

1 -4 6 -4 1 -1 0 2 0 -1

R5R5 L5S5

Figure 5.1 - Four of Laws most successful masks (note the above would normally be used
in conjunction with E5L5, S5E5, & S5L5 : the transposes of L5E5, E5S5, & L5S5)

The above  masks are convolved with the original image to produce a number of images

which are themselves passed through a second stage, which Laws termed a "macro

statistic" [Laws79]. This consists of a moving window estimation of the energy within the

images. Thus Laws’ feature measures estimate the energy within the passband of their

associated filters and he therefore called his operators "texture energy measures". He

noted that variance is defined in terms of a sum of squares partly for mathematical

convenience and proposed as an alternative, a cheaper but approximate measure : the

average of the absolute values (ABSAVE). He found this to be just as successful, and as it

requires less computation it will normally be used here.
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As the masks are made up by convolving two one-dimensional components they

are separable [Lim90], that is :

H(ω1,ω2) = H1(ω1)H2(ω2) (5.1)

where

H(ω1,ω2) is the frequency response of the two-dimensional mask,

H1(ω1) and H2(ω2) are the frequency responses in the x and y directions respectively,

and

ω1 and ω2  are the angular frequencies in the x and y directions respectively.

Hence the frequency responses of the one-dimensional filters will be presented as a

precursor to a description of the two-dimensional cases. The latter provide insight into the

directionality of the operators and their response to image texture; a frequency domain

model of which was presented in chapters 2 and 3. These frequency responses are

followed by an examination of the effects of illuminant variation, using both the

previously developed image model, and empirical observations. The issue of

normalisation is also addressed.

5.1.1. Frequency response

a) One-dimensional frequency responses

The seven two-dimensional masks above may be obtained from four one-dimensional

non-recursive filters, the weights of which are defined below :

L5 = (1,4,6,4,1)

E5 = (-1,-2,0,2,1)

S5 = (-1,0,2,0,-1)

R5 = (1,-4,6,-4,1)

The magnitude frequency response of L5 is simply obtained :

H e e e eL
j j j j
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2 2
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4 1
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Note that as L5 = L3*L3 (where *  represents the convolution operator) its magnitude

response may be obtained from that of the L3 filter HL3 1 12 1( ) ( cos )ω ω= + . Similarly for

E5, S5 and R5. Thus :

( )
H H HE L E5 1 3 1 3 1

1 14 1

( ) ( ). ( )

sin cos

ω ω ω

ω ω

=

= +   
(5.3)

H H HS E E5 1 3 1 3 1

2
14
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sin

ω ω ω

ω

=

=
(5.4)

( )
H H HR S S5 1 3 1 3 1

1
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4 1

( ) ( ). ( )

cos

ω ω ω

ω

=

= −
(5.5)

L5, S5, and R5, are zero phase lowpass, bandpass, and highpass filters. E5 is a bandpass

filter which introduces a phase change of 90° and whose passband is between those of L5

and S5. This is confirmed by figure 5.2, which contains plots of theoretical and empirical

responses of the above one-dimensional features. The empirical results were obtained by

applying the features to synthetically generated sine wave images followed by processing

with the ABSAVE macro statistic (average of the absolute values).
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Figure 5.2 - Laws’ one-dimensional operators : observed and theoretical (T) frequency
responses
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The observed responses of the one-dimensional feature measures match well with the

theoretically derived results.

b) Two-dimensional frequency responses

Since Laws’ masks are made up from separable one-dimensional filters, their frequency

response may be simply obtained by substituting into (5.1), i.e. by multiplication in the

frequency domain :

( )
H H HL E L E5 5 1 2 5 2 5 1

2
2

1 14 1 4 1

( , ) ( ). ( )

( cos ) sin cos

ω ω ω ω

ω ω ω

=

= + +   
(5.6)
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and for the relevant transposes :
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H H HE L E L5 5 1 2 5 2 5 1
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In addition to the above theoretically derived responses, empirical results were also

obtained. Sets of "corrugated" sine wave surfaces were used as inputs to the feature

measures and the average output measured. The results are shown below. Since the

empirical plots were similar to the theoretical responses only the former are shown.



- 93 -

5 6 7 8 6

5 6 7 9 8

6 7 6 6

6 7 9 8

6 7 6 6
6 7 9 8
6 7 8 6
6 7 6

6 7 :

6 7 8

6 7 ;

< 7 6

= > ? >

ω

ω

@

A

B C D E C

B C D F E

C D C C

C D F E

C D C C
C D F E
C D E C
C D C

C D G

C D E

C D H

I D C

J K L K

ω

ω

M

N

5 6 7 8 6

5 6 7 9 8

6 7 6 6

6 7 9 8

6 7 6 6
6 7 9 8
6 7 8 6
6 7 6

6 7 :

6 7 8

6 7 ;

< 7 6

= > O >

ω

ω

@

A

P Q R S Q
P Q R T S
Q R Q Q
Q R T S Q R Q Q

Q R T S

Q R S QQ R Q

Q R U

Q R S

Q R V

W R Q

X Y X Y

ω ωZ [

Vertical scales : average operator output

Horizontal scales : fraction of sampling frequency

Figure 5.3 - Laws’ operators : empirical two-dimensional frequency responses

The above graphs show that E5L5 and S5L5 (and hence their transposes) are uni-

directional, while E5S5 is bi-directional. What is interesting however, is that the mask of

the R5R5 feature which at first glance appears to be isotropic is in fact bi-directional;

being sensitive to high frequencies at 45° and 135°. Thus, with the exception of L5L5, all

of Laws' masks are directional and all are likely to be affected by variation in illuminant

tilt.
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5.1.2. Tilt angle response

This section investigates the response of Laws’ operators to changes in the tilt angle of the

illuminant. Firstly the theoretical tilt response of the L5E5 uni-directional operator is

examined using the image model of topological texture developed previously, and the

operator’s theoretical frequency response. The resulting predictions are compared with

empirical results obtained from laboratory experiments. Secondly, the empirical response

of Laws’ bi-directional operators to isotropic and directional textures is presented.

Thirdly, the effects of image normalisation are investigated, with the aim of assessing

whether or not such a procedure compensates for the effects of variation in tilt.

a) The tilt response of the uni-directional operator L5E5

This section examines the theoretical response of laws’ L5E5 operator; which is obtained

from the product of its transfer function and the frequency domain model of image texture

developed in chapters 2 and 3. These results are compared with those obtained from

laboratory experiment. The purpose of this investigation is two-fold : firstly it is to

establish the tilt response of the operator and secondly it is to show the utility of the

image model developed earlier.

As only variations due to changes in the illuminant’s tilt are of interest, it is

assumed that the illuminant’s slant does not vary, and the contribution of the

corresponding component in the image model is a constant kσ. Thus the model presented

in equations (2.14 to 2.17) reduces to :

F F F kI s( , ) ( , ). ( , ).ω θ ω θ ω θτ σ= (5.13)

Now if the test textures are assumed to be isotropic and the radial shapes of the log-log

magnitude spectra assumed to be straight lines, then the magnitude of the surface

response component may be represented by :

F ks

I

( , )ω θ ωβ

β
=

−
2 (5.14)

The parameters kβ and β I  may be estimated by obtaining the gradient and y-intercept of

the best-fit straight line to the average log-log radial plots. Furthermore in chapter 3 the
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directional characteristics of these textures was shown to approximate to a raised cosine

(3.8) i.e.

F m bτ τ τθ θ τ( ) ( cos( ) )= − + 1 (5.15)

and the parameters mτ  and bτ  were estimated for each of the test textures (see table 3.2).

In order to prevent estimations of the power of the spectra being included twice in the

model the directional characteristics were modelled by a normalised tilt angle component

( )′Fτ θ .

′ = ′ − + ′F m bτ τ τθ θ τ( ) ( cos( ) ) (5.16)

where

( ) ( )′ = ′ =m m
F

b b
Fτ

τ

τ
τ

τ

τθ θ  and  

Hence the image texture magnitude spectra of the four samples may be modelled by

combining (5.13), (5.14) and (5.16) to give :

( )F k m b kI

I

( , ) cos( ) .ω θ ω θ τβ τ τ σ
β

= ′ − + ′−
2 (5.17)

Now if only relative magnitudes are required, kσ  may be eliminated and all remaining

parameters estimated for each of the test textures as described previously.

Thus the output of the first stage of Laws’ operators is simply derived, e.g. for

L5E5 combining (5.6) and (5.17) gives :

{ }{ }

{ }

Y H F

k m b k

L E L E I5 5 5 5

2

2

1 1

( , ) ( , ) ( , )

sin( cos ) cos( cos ) cos( sin ) .

cos( ) .

ω θ ω θ ω θ

ω θ ω θ ω θ

ω θ τβ

β

τ τ σ

=

= + +

′ − + ′
−

         

(5.18)

where :

ω θ ω ω θ ωcos , sin= =1 2 , and

YL E5 5( , )ω θ   is the two-dimensional magnitude spectrum of the output of L5E5.

As previously discussed, the second stage of Laws’ operators use variance or, more

cheaply, the average of absolutes as an "energy measure". Normally the latter is used in

                                                
1ω has been omitted here as the tilt component is not a function of frequency.
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this thesis. In this section however, the average of the squares will also be used (this is

identical to the variance for zero-mean images). The latter is used in this section because

it is more tractable analytically. It provides an estimate of the "power" of the image

texture and hence the integral of the PSD [Ogilvy91] [Cooper86]. Note this assumes that

the process under consideration is at least wide-sense stationary [Peebles87]. The PSD S(

ω,θ) may in turn be obtained from the magnitude of the Fourier transform of the output of

the filter. Hence the mean output of the L5E5 operator will be :

{ }{ } { }

y S d d

Y d d

k m b k d d

L E

L E

5 5
2

2
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2

0
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   (5.19)

The solution of the above integral for the general case is not trivial. However, it may be

estimated numerically when the values of the parameters are known. Hence the four

parameters ( ′ ′m bτ τ, ,  kβ, and β I ) were calculated for each of the four isotropic test textures

beans1, chips1, rock1 and stones1; using the estimation techniques described previously.

The integral (5.19) was evaluated for each of these four sets of parameter values for

nineteen angles of illuminant tilt (0° to 180° in 10° steps). The results are shown in figure

5.4.
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Figure 5.4 - Predicted effect of tilt angle variation on L5E5 output2

For comparison figure 5.5 shows the equivalent results obtained by processing images of

the textures with the feature measure itself  an L5E5 mask coupled to a mean square

macro statistic.
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Figure 5.5 - Observed effect of tilt angle variation on L5E5 output2

The above graphs show that for the Laws’ L5E5 operator, (i) the output is affected by

variation in illuminant tilt, and (ii) the image model of the four isotropic textures

developed in chapter 3 predicts the effects of variation in tilt reasonably well. For

comparison the output of the same L5E5 mask but with the cheaper ABSAVE macro

statistic is shown  in figure 5.6.  It can be seen that the cheaper average of absolutes

macro statistic gives similar results to the mean square operator. Indeed for the case

shown the former would seem to give better separation between the classes. Laws found

little difference between the performance of these macro statistics and therefore preferred

the cheaper ABSAVE operator. Hence this macro statistic will be used in the remainder of

this document.

                                                
2Note that the data presented in figures 5.4 and 5.5 was obtained by taking averages of feature
images, and that together with figure 5.3 these graphs have been scaled to a maximum value of
1.0 for comparison purposes.
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Figure 5.6 - Effect of tilt angle variation on L5E5 output (ABSAVE macro statistic)2

The behaviours of feature means are obviously important for classification and

segmentation purposes, but they do not provide sufficient information to allow the likely

effects to be assessed. What is required are the behaviours of the distributions. A small

variation in mean due to change in illuminant tilt may be significant for distributions of

large variance, but insignificant for those of small variance. For example the figure below

shows distributions of L5E5 (with a 29x29 ABSAVE macro statistic) for two textures

under two lighting conditions.
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Figure 5.7 - Effect of tilt variation on L5E5 distributions
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Assuming equal prior probabilities a maximum likelihood classifier trained under an

illuminant tilt of 0° would have a decision surface at approximately L5E5 = 580. That is

"halfway" between the beans1 (τ = 0°) and  chips1 (τ = 0°) distributions (solid line

graphs). However, the dashed graphs show the result of changing the tilt to 90° : the mean

of chips1 is now clearly to the left of L5E5 = 580, and so the majority of this class at τ =

90° would be mis-classified. Note that in this case increasing the window size of the

macro statistic would be likely to increase the number of incorrectly classified beans1

pixels  as it would most likely reduce the variance of this distribution.

Thus changes in the illuminant's tilt have been shown to affect the output of Laws'

L5E5 operator. Experiments using the four isotropic test textures with the other uni-

directional feature (L5S5) gave similar results to those shown above.

b) Bi-directional operators

So far only the behaviour of uni-directional operators has been considered, but what of the

bi-directional operators ? Clearly illumination tilt will not affect isotropic operators when

used on isotropic physical textures. However, R5R5 and other operators produced by

convolving a one-dimensional bandpass or highpass filters with other similar filters are

not isotropic. Instead they are bi-directional (being sensitive to diagonal or near diagonal

components). Thus it would be reasonable to expect such directional filters to be affected

by illuminant tilt. The figure below shows the tilt responses of two bi-directional

operators obtained from four isotropic textures (beans1, chips1, rock1, and stones1).
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Figure 5.8 - Tilt response of the bi-directional operators E5S5 and E5E5
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The E5S5 and E5E5 results show that although these operators are affected by tilt, the

effects are not nearly as pronounced as for uni-directional operators. This may be

explained by the fact that these feature measures are sensitive to two near mutually

perpendicular directions, and as one is being attenuated by a particular illuminant tilt the

other is being enhanced. Thus bi-directional operators with mutually perpendicular axes

of sensitivity, will be least affected by illuminant tilt when used with isotropic textures. If

the angle between the two axes is reduced, then the behaviour will tend towards that of

the uni-directional case.

However, if the physical texture is not isotropic, then bi-directional features such

as E5E5 may be significantly affected by illuminant tilt; as is shown in the figure below.

card45
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Figure 5.9 - The tilt response of E5E5 for the directional texture "card45"

The above shows a sample of uni-directional texture "card45", and the corresponding tilt

response of E5E5. Here there is no compensating effect as was the case for the isotropic

textures, and so the operator is significantly affected.

c) Normalisation

A number of texture classification schemes normalise image data in some manner to

remove "brightness variation". This is usually performed either by histogram equalisation

or by re-scaling the data to have a common mean and variance, e.g. see [Greenhill93]

[Bovik87] [duBuf90] [Laws79] [Weska76] and  [Haralick73]. Chapter 2’s image model
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predicts that, for isotropic textures, normalisation could compensate for variation in

illuminant slant but not tilt. Here therefore, the tilt response of the L5E5 operator applied

to normalised image data is examined. Each image of the test set was scaled to have a

mean of 127 and a variance of 100 (note that local brightness variation is compensated for

by using registration images as described in chapter 3). The figure below shows the mean

output of L5E5 for tilts of between 0° and 180° using normalised images of the four

isotropic test textures.
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Figure 5.10 - The effect of normalisation on L5E5 tilt angle response

The above shows that normalisation does affect the tilt response but it certainly does not

compensate for it. Indeed normalisation of the images has actually reduced the separation

between the classes beans1, chips1, and rock1, thereby complicating the classification

task for this operator (compare the above with figure 5.6). The closeness of the

distributions is more clearly shown in the figure below.
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Figure 5.11 - Effect of normalisation on the L5E5 output distribution for tilts of 0° and
90°.

The solid line plots of figure 5.11 show that normalisation has made the distributions of

L5E5, for the two textures beans1 and chips1, almost identical for τ = 0°. However,

variation of illuminant tilt (to τ = 90° - dashed line plots) still produces a significant

change in mean values and considerable mis-classification would again occur. Note that

normalisation will compensate for variation in the intensity of the illuminant, but that it

also has the unfortunate effect of normalising a significant discriminatory feature : image

variance.

5.1.3. Slant angle response

From chapter 2 the predicted illuminant slant angle (σ) response (2.17) is :

Fσ σ= sin

As this is independent of frequency it effects a uniform amplification or attenuation of

image texture across the spectrum. All of Laws' feature measures will therefore be

affected in a similar manner as they provide an estimate of the power in their passbands.

Un-normalised slant angle responses of L5E5, for the four isotropic test textures and a

fifth uni-directional texture card1, are shown below. Note : card1 is the corrugated

cardboard surface shown in figure 5.9 except that the corrugations run vertically.
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Figure 5.12 - Un-normalised slant angle response of Laws’ L5E5 operator

The above figure shows that the L5E5 slant angle responses mimic those of the magnitude

spectra of figure 3.35; that is there is a gradual increase in the mean output with

increasing σ for all textures up until 50°, after which all but stones1 and chips1 continue

to increase. Since shadows are longer and cover larger areas at higher slant angles, the

power of the frequency components may decrease as the slant angle increases. Note that

shadowing is particularly noticeable in the images of stones1 and chips1; and that, for

these two textures, the output of the L5E5 operator is reduced at higher slant angles.

What is important however, is that the illuminant slant angle does significantly

affect the L5E5 operator when used on un-normalised images.

If change in illuminant slant does effect a uniform amplification/attenuation across

the spectrum as suggested in chapter 2, then normalisation will compensate for these

variations. In order to investigate this effect the test image sets were normalised as before

to have a mean = 127 and a variance = 100. The Laws' L5E5 operator was applied to the

resulting images. Its mean output, as a function of illuminant slant, is shown below.
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Figure 5.13 - Normalised response of Laws’ L5E5 operator

When compared with the previous figure, the graphs above show that normalisation has

significantly reduced the variation due to changes in slant. These results suggest that

normalisation may reduce the effect of changes in illuminant slant on classification.

However, this reduction in variation with slant angle has been bought at the expense of

reduced separation of class means.  Thus normalisation may actually increase

classification errors rather than decrease them.

The subject of normalisation is further addressed in sections 5.2 and 5.3 on Linnett’s

and co-occurrence feature measures.

5.1.4. Summary

This section has investigated the response of Laws’ operators to changes in the

illuminant’s tilt and slant angles. The following points summarise its findings.

• The two-dimensional magnitude frequency responses of the popular Law’s operators

have shown that they are either uni-directional or bi-directional.

• The image model developed in chapters 2 and 3 was used to predict the tilt response

of the L5E5 operator. The results were similar to those obtained empirically

showing (i) the utility of the image model, and (ii) that the L5E5 operator is not

invariant to changes in illuminant tilt.



- 105 -

• The bi-directional operator E5E5 was less affected by changes in tilt when applied

to images of isotropic textures, but it was significantly affected when used on the

uni-directional texture card45.

• Image normalisation did not compensate for these variations as far as isotropic

textures were concerned.

• The L5E5 operator was significantly affected by changes in illuminant slant.

• Normalisation reduced the variations due to changes in slant, but also reduced the

separation between test textures’ means.

5.2. Co-occurrence matrices

Co-occurrence matrices have been widely used for texture classification [Haralick73]

[Weska76] [Conners80] [Zucker80] [Davis81b] [Unser86] [Castrec88] [duBuf90]

[Lovell92], but perhaps because of their computational cost they have been used less

frequently for segmentation [duBuf90]. A co-occurrence matrix is a two dimensional

histogram of pixel pairs defined by a displacement vector d. They are an estimate of the

joint probability function of these pixel pairs. Haralick [Haralick73] defined 14 statistics

to provide an economical way of describing these distributions, and it is these that are

used as features for texture discrimination. Here only four of the most popular will be

investigated. They are ASM (angular second moment), ENT (entropy), COR

(correlation), and CON (contrast) :
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where

p(i,j) = P(i,j)/n,

P(i,j) is the (i,j)th element of the un-normalised co-occurrence matrix defined by a

displacement vector d and window W,

n is the normalising constant n P i j
j

Ng

i

Ng

=
=

−

=

−

∑∑ ( , )
0

1

0

1

,

Ng is the number of grey-levels, and

µ µ σ σx y x y, , ,  and  are the means and standard deviations of the marginal

distributions.

In the forms above it is difficult to determine their frequency response and they are also

expensive to compute. The next section therefore derives alternative expressions for two

of the features. They are formulated directly in terms of image grey-levels, and do not use

co-occurrence matrices. These alternative expressions are used as the basis for efficient

moving window implementations. In the case of the contrast operator the alternative

expression is also used to derive its frequency response, which is presented in the

following section along with empirical results for the other operators. Finally the results

of laboratory experiments on illuminant variation are presented and the issue of

normalisation is investigated.

5.2.1. An alternative formulation

The contrast feature is commonly used in an alternative form expressed directly in terms

of grey-levels :

CON i j p i j

n
i j

j

Ng

i

Ng

i j D

= −

= −

=

−

=

−

∈

∑∑

∑

( ) ( , )

( )
( , )

2

0

1

0

1

22
(5.24)

where

D is the set of pixel pairs defined by the displacement vector d within a window W.

This form is amenable to efficient implementation and frequency domain analysis. To the

author’s knowledge no such equivalent expressions have been published for the other
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features; although Unser did derive more efficient and in some cases approximate

alternatives using sum and difference histograms [Unser86]. The correlation feature

however, may be formulated directly in terms of grey-levels and statistics of the marginal

distributions. From (5.22)
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Similarly for the marginal distribution statistics :
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where

D2 is the set of pixel values contained within the pixel pairs in D.

Note that because p(i,j) is symmetric about the leading diagonal

µ µx y= (5.28)

σ σx y
2 2= (5.29)

and the normalising constant may be calculated directly :

n

w d w d

i D

x x y y
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= − −
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2

2

( )( )

(5.30)

where

wx and wy = size of the window W in x and y respectively, and
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dx and dy = Cartesian components of the displacement vector d.

Using (5.25) to (5.29) the correlation feature may be expressed as

COR ij
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Thus (5.31) and (5.32) allow the correlation feature to be calculated directly from image

data, without need to reference the co-occurrence matrix itself. Indeed only three running

totals need to be maintained in an incremental algorithm. They are :

i i ij
i D i D i j D∈ ∈ ∈
∑ ∑ ∑

2 2

2,
( , )

      and  

Thus all variables (apart from image data) may be kept in registers and the computation

incurred in matrix address calculations may be avoided.

The above expressions for COR, CON, were used as the basis for moving-window

feature measures. They incorporate an incremental update mechanism similar to the

technique used by Huang et al to create a fast median filter [Huang78]. The window is

initialised in the top left corner of the image and moved across the image pixel by pixel.

Each time the window is moved, the last column is removed, a new first column added,

and intermediate and feature values are updated accordingly. Thus considerable re-

computation is avoided. Although the ENT and ASM features do not lend themselves to

transformation into a grey-level based formulation, the incremental update method using a

moving window may be applied. This involves the maintenance of P(i,j) in an

incremental manner, but again the saving in processing time is considerable. For a 35x35

moving window the incremental form involves a little over 70 operations per window

position, whereas a "straight" implementation involves 1225.

For classification purposes feature sets need only be calculated for each unknown

region  whereas segmentation requires feature values to be generated for every pixel in

the image. Thus the use of the alternative implementations, described above, makes the
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use of co-occurrence features for segmentation of sequences of 512x512 images practical

on a standard workstation within two to three minutes.

5.2.2. Frequency response

The image model of topological texture previously developed, and the ensuing empirical

investigations used frequency domain representations. In order to gain an insight into the

effects of illuminant variation on co-occurrence features, and to provide an alternative

view of their directional characteristics, their frequency responses will now be

investigated. These responses should however be viewed with caution; as the co-

occurrence operators are non-linear.

The contrast operator CON is straightforward to analyse and will now be presented.

The three other features are not, and so they will only be investigated empirically.

a) Contrast feature : frequency response

From the image based form of the CON feature (5.24) it can be seen that it is simply an

edge operator followed by square and average functions. The latter two functions form an

energy measure  as used in Laws’ filters. For a displacement vector d = (1,0) the edge

operator becomes a horizontal non-recursive filter with weights of (-1,1), hence the

frequency response of the CON(1,0) filter is :

H eCON
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ω ω
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1
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= − +

=

−
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The output of the contrast feature itself, will be the square of the filter response (5.33) 

due to the operator’s mean square function. Thus the CON feature is a high pass filter and

energy measure; the directionality of the former being controlled by displacement vector

d.

Changing the size of d effectively changes the sampling frequency of the filter. For

instance a vector d = (2,0) reduces the effective sampling frequency by half and changes

the operator into a bandpass filter with weights (-1,0,1). Hence the frequency response of

the CON(2,0) filter is :
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HCON( , ) sinω ω ω1 2 12 2= (5.34)

Popular values for d are (1,0), (0,1), (1,1), (1,-1), (2,0), (0,2), (2,2) and (2,-2). Thus the

contrast feature is in fact formed from a family of directional highpass and bandpass

filters. This is confirmed by the theoretical and actual responses of the operator shown in

figure 5.14.
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Figure 5.14 - CON operator : effect of changing the size of the displacement vector

b) Other co-occurrence features

The other three features ASM, ENT, and COR, have non-linearities which make their

analysis in the frequency domain difficult. They were therefore only investigated

empirically. The figure below shows one-dimensional plots of these three features.
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Figure 5.15 - One-dimensional frequency responses of co-occurrence features (d=(1,0),
Ng = 16)
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The above plots were obtained by running the co-occurrence features on strips of sine

wave aligned parallel to the x-axis, and taking the average of the output. They show that

the COR feature is a low pass filter. The frequency responses of the ENT and ASM

operators are, in contrast, irregular. These "irregularities" are caused by sampling effects.

When the period of the test sine wave is an integer multiple of the sampling period (which

occurs at relative frequencies of 1/2, 1/3. 1/4 etc.) there are only a small number of unique

grey-levels in the image. Thus at these frequencies the co-occurrence matrix is sparsely

populated by a few high values of occurrences. Hence the ASM operator, which

calculates the sum of squares of these occurrences (5.20), gives a high output value. The

ENT operator is also a sum of a non-linear function of occurrences, and thus exhibits a

similar behaviour. Since the frequency responses of these two operators are an extreme

function of sampling effects, they will not be considered further here.

c) Two dimensional frequency responses

Co-occurrence features are essentially one-dimensional operators, in which the direction

of the axis of the single dimension, is specified by the angle of the displacement vector d.

Thus it is reasonable to expect the two-dimensional frequency response of an operator, to

be the product of the operators’ one-dimensional responseθd  and a unity gain element in

the orthogonal direction. The figures below show this to be the case.
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Figure 5.16 - Two-dimensional frequency responses of the co-occurrence contrast and
correlation features for a displacement vector d = (0,1)
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The frequency responses displayed above, were generated using images of corrugated

sinusoids of the required x and y frequencies. They show that the CON and COR features

are highly directional. They are therefore likely to be affected by illuminant tilt and slant,

in a similar manner to Laws’ uni-directional energy masks.

5.2.3. Tilt angle response

The illuminant tilt angle response was obtained by applying co-occurrence feature

measures to the same test-set used in the Laws experiments. Unlike the Laws’ operators

they have no averaging filter (such as the ABSAVE macro statistic) rather the co-

occurrence matrices are calculated directly from large windows. Indeed, such is the cost

of these features, that they are most commonly calculated on large (e.g. 64x64) non-

overlapping windows [Haralick73] or on the texture samples as a whole. Thus they are

normally used either for classification of whole images or for very coarse segmentation.

Few papers report their use for pixel level segmentation - an exception being [duBuf90] in

which the use of a 7x7 moving window is described. Here a 33x33 moving window was

used : in order to match the context employed by the Laws’ features (a 5x5 mask plus a

29x29 macro statistic). In common with other researchers [duBuf90] the number of grey-

levels Ng, and hence the size of the co-occurrence matrix used, did not noticeably affect

the response of the features. Experiments with 16 and 256 grey-levels for instance gave

similar results. The cheaper Ng = 16 option was therefore employed.

a) Isotropic and uni-directional textures

The tilt angle response of the four co-occurrence operators was obtained in an identical

manner to that used for the Laws’ masks. The responses of CON and COR to the four

isotropic textures are shown below : similarly for ENT and ASM, except that the

responses obtained using the directional texture card1 are also shown.
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Figure 5.17 - Tilt angle response of co-occurrence features, Ng = 16, d = (1,0).

The above graphs show that the CON and COR features are sensitive to illuminant tilt.

The former has a tilt angle response close to that of L5E5, which is not surprising given

the similarity between their two-dimensional frequency responses (i.e. they both filter out

frequencies in the direction θ = 90°). However, the correlation feature COR produces

almost the opposite angular response; having maxima at τ = 90° and minima at τ = 0°,

180°. Since the same displacement vector, d = (1,0), was used for both operators, the

results show that the direction of d cannot be used in isolation to predict the form of the

tilt response. Examination of the operators' frequency responses shows why  CON(1,0)

attenuates frequency components with an angle θ close to 90°, whereas COR(1,0)

amplifies them.
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In contrast the ENT and ASM features have relatively flat tilt responses when

applied to the isotropic test textures (beans1, chips1, rock1, and stones1). However, when

applied to the uni-directional texture card1  a corrugated surface in which the majority

of frequency components run at θ = 0°  their tilt responses show that these operators are

not invariant to tilt for all textures.

b) Normalisation

In section 5.1.2 the effect of image normalisation on the tilt response of Laws' operators

was investigated, the motivation being that normalisation is used to compensate for

lighting variations. Here therefore, its effect on the tilt response of co-occurrence features

is described. Figure 5.18(a) below illustrates the COR feature's tilt response using images

of the four isotropic textures, each normalised to a mean of 127 and a variance of 100.

a) COR operator (normalised images of isotropic
textures)

b) ENT operator (uni-directional texture card1)
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Figure 5.18 - The effect of normalisation on co-occurrence features

As was the case for Laws’ operators, normalisation clearly does not compensate for

variation in illuminant tilt when the surface textures are isotropic. However, for uni-

directional textures a different response would be expected. For an isotropic texture

variation in illuminant tilt does not affect the total variance of the image. Enhancement of

components coincident with τ is compensated for by attenuation of components at 90° to 

τ. Hence normalisation will have the same effect on each image regardless of tilt. The

variance of a uni-directional texture however, will be affected by changes in tilt; as the
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energy is concentrated in one direction. Thus normalisation may compensate for variation

due to tilt when the texture is uni-directional. Figure 5.18(b) above shows the ENT tilt

responses to normalised and un-normalised images of a uni-directional texture card1. In

this case normalisation has significantly affected the tilt response, indeed for τ = 80° to

100° it has "overcompensated". This effect is addressed in section 5.3.2(b). What is clear

however, is that unlike the isotropic case, normalisation of a uni-directional texture does

significantly affect the tilt response; and that for the example card1, it has flattened it.

5.2.4. Slant angle response

Section 5.1.3 showed that normalisation of texture images, can help compensate for the

effects of slant angle variation for Laws' L5E5 operator. The experiment was therefore

repeated, to determine whether or not co-occurrence features may be similarly

compensated. Figure 5.19(a) below shows that the ASM feature is not invariant to σ when

used with un-normalised images.

a) ASM (un-normalised) slant response b) ASM (normalised) slant response
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Figure 5.19 - The effect of image normalisation on the ASM slant response.

The second graph, 5.19(b), shows that normalisation has partly compensated for variation

in illuminant slant. It has not been as successful as was the case for L5E5 (figure 5.13), as

there are marked variations in the normalised response for σ greater than 60°.

Nevertheless, normalisation has significantly reduced the variation in the operator's
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response for values between 10° and 50°. Note however, that this has again been

purchased at the cost of reduced separations between test texture means.

5.2.5. Summary

This section has investigated the effect of variation in illuminant tilt and slant on co-

occurrence features. To summarise :

• A formulation of the COR operator has been developed, which provides an efficient

implementation in which co-occurrence matrices do not need to be maintained.

• The features' frequency responses show that the CON and COR operators are

similar to Laws' masks, in that they are directional low, high, and band pass filters.

• These directional operators were shown not to be invariant to illuminant tilt.

• The ENT and ASM features were not invariant to tilt when applied to the uni-

directional texture card1.

• Normalisation of images was shown to be able to compensate (in fact over-

compensate) for tilt variation effects when applied to the uni-directional test texture,

but it had little effect on isotropic test textures.

• Normalisation was shown to be capable of compensating for illuminant slant

variations at lower angles (less that 60°), but it was also observed that it reduced the

separations between the test texture means.

5.3. Linnett’s operator

Fractal dimension [Mandelbrot83] is an appealing concept to use as a basis for a texture

feature as it  has been suggested that it provides a measure of roughness [Pentland84]

[Arduini92] [Dennis89]. A number of researchers have used estimates of fractal

dimension for texture classification with mixed results [Pentland84] [Medioni84]

[Keller89] [Mosquera92] [Peli90]. The main problems being the computational cost of

and the limited classification accuracy available from this single feature measure.

Linnett's operator [Linnett91a] does not in fact estimate fractal dimension  rather it

utilises the information available from the first one, two, or three iterations, of an iterative

process that does. Thus the computational complexity is greatly reduced. In addition,
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instead of using a single isotropic measure, Linnett used the masks shown below to

produce seven operators each having a different directional characteristic.

X X X

X X X X X X

X X X

m1 m2 m3 m4

X X X X X X

X X X X X X X

X X X X X X

m5 m6 m7

Figure 5.20 - The seven directional masks for Linnett’s operator

Linnett’s operator is based upon Peleg’s iterative blanket method for estimating the fractal

dimension of a surface [Peleg84]. Peleg’s algorithm creates a series of upper and lower

surfaces each of which is a radius of λ from the previous upper or lower surface,

respectively.

Figure 5.21 - Sections from example surfaces of the blanket method : original surface
(middle), upper blanket (top), and lower blanket (bottom)

It is the scaling behaviour of the volume enclosed between upper and lower pairs that

yields the estimate of fractal dimension. Linnett however, uses the enclosed volume

directly as a texture feature and therefore avoids the requirement for repeated iterations.

Thus his operator does not provide an estimate of fractal dimension.

For iteration n the upper u x yn( , ) and lower l x yn( , ) blankets are defined as :

{ }u x y u x y u x i y j i j mn n n( , ) max ( , ) , ( , ) ( , )= + + + ∀ ∈− −1 1λ (5.35)
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{ }l x y l x y l x i y j i j mn n n( , ) min ( , ) , ( , ) ( , )= − + + ∀ ∈− −1 1λ (5.36)

where

m is a neighbourhood of pixels defined by one of the masks shown in figure 5.20,

u x y l x y I x y1 1( , ) ( , ) ( , )= =  = the original image.

The feature images themselves are derived from the volume enclosed locally by the upper

and lower blankets :

v x y u x y l x yn n n( , ) ( , ) ( , )= − (5.37)

Thus Linnett’s operator is similar to Dinstein’s maxdif (maximum difference) operator

[Dinstein84]  its key feature being its directional characteristics as defined by the seven

masks.

5.3.1. Frequency response

a) The one dimensional case

Linnett examined the one dimensional frequency response of his operator both

theoretically and empirically for a single iteration [Linnett91a]. He determined that it

would behave as any one of six non-recursive filters depending upon the data. The

frequency responses of these six modes of operation are :

v x I x I x H i1 1 1( ) ( ) ( ) ( ) cos sin= − − ⇒ = − + −ω ω ω (5.38)

v x I x I x H i2 1 1 2( ) ( ) ( ) ( ) sin= − − + ⇒ = −ω ω (5.39)

v x I x I x H i3 1 1( ) ( ) ( ) ( ) cos sin= − − ⇒ = − +ω ω ω (5.40)

v x I x I x H i4 1 1( ) ( ) ( ) ( ) cos sin= − + ⇒ = − −ω ω ω (5.41)

v x I x I x H i5 1 1 2( ) ( ) ( ) ( ) sin= + − − ⇒ =ω ω (5.42)

v x I x I x H i6 1 1( ) ( ) ( ) ( ) cos sin= + − ⇒ = − + +ω ω ω (5.43)

He observed from the above that there are in fact only two different magnitude responses:

H1 2( ) sinω ω=  (5.44)

H2 2 2( ) cos ,ω ω= −  (5.45)

Linnett verified  these theoretical results by measuring the response of each of the six

modes (5.38) to (5.43) to a sine wave with frequencies up to the Nyquist limit. Note that
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the operator was not used in the normal way but fixed into the operating mode under

investigation. What is of greater interest here though is the operator’s frequency response

per se.  Hence the graph below shows the observed frequency response of the operator

itself without any restrictions as to its modes of operation. For comparison the magnitude

frequency responses of (5.44) and (5.45) above have also been plotted on this graph.
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Figure 5.22 - Observed one dimensional frequency response of Linnett’s operator,
together with the two theoretical cases

The figure above shows that the observed frequency response is a combination of the two

theoretically derived cases. It is a type of band-pass filter and would therefore be expected

to have a similar performance to Laws’ S5 mask or the co-occurrence CON texture

measure.

b) The two-dimensional case

The directional characteristics of the operator are controlled by the mask that it is used

with.  Linnett used seven masks shown above in figure 5.20. Masks m1 to m4 are uni-

directional and their two-dimensional response would be expected to be a straight

projection of the one-dimensional case. On the other hand Masks m5 to m7 are multi-

directional and their responses are more difficult to predict. The figure below shows the

responses of six of the seven versions of the operator to corrugated sinusoidal images with
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spatial frequencies up to the Nyquist limit. The frequency response of m4 has not been

shown, it is simply a 90° rotation of m2.
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Figure 5.23 - Linnett’s operator : observed two dimensional frequency responses
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The above show that m1, m3, m2 (and hence m4) are highly directional, whereas m5, m6,

and m7 are largely isotropic. The first four masks are therefore likely to be affected by

illuminant tilt in a similar manner to Laws’ L5E5 operator, i.e. they are not anticipated to

be invariant to tilt even when used on isotropic textures. The other three masks would be

expected to be tilt invariant for isotropic texture but not for directional texture.

5.3.2. Tilt angle response

Tilt angle responses of the seven masks were obtained using one directional and four

isotropic textures. A single iteration of each version of the operator was used. The

experimental procedure was as used to obtain the tilt response of Laws’ filters, the only

difference being that, as the seven masks are based on 3x3 kernels, a 31x31 ABSAVE

macro statistic was used to keep the overall size of the local neighbourhood at 33x33.

a) Un-normalised tilt response

Figure 5.24 depicts the responses of four of the masks to un-normalised images of the

four isotropic textures (beans1, chips1, rock1, stones1) and the directional texture

(card1).

Directional masks

Mask m1 is clearly not invariant to variation in illuminant tilt and has a very similar

response to Laws’ L5E5 operator, which is explained by the similarity between their low

frequency responses. (Note that the lower frequencies are likely to dominate the above

responses due to the exponential nature of the textures’ PSDs.) With respect to the

isotropic textures; masks m2, m3, and m4, give similar results to m1  rotated by the

appropriate angle. For example the maxima in m2's response occur at 45°. Note however

that m3's response to card1 is in contrast with the other three directional masks almost flat 

 this is due to it being insensitive to spatial frequencies at 0°, and hence it detects very

little energy from the vertical corrugations.
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Vertical axes : mean operator output, horizontal axes : illuminant tilt angle

Figure 5.24 - Linnett’s operator (un-normalised) : tilt response

Isotropic masks

The frequency responses of m5, m6, and m7 have shown them to be largely isotropic. It is

not surprising therefore that their tilt responses are (i) very similar to each other, and (ii)

invariant to changes in tilt when applied to isotropic texture. Consequently only m7’s tilt

response is shown above in figure 5.24.

The flat responses of isotropic operators to isotropic textures occur because

directional illumination enhances texture components coincident with the illuminant tilt

but attenuates those components at right angles to it. Unfortunately the same is not true of
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directional textures. Uni-directional textures will be attenuated by the imaging process

when the illuminant tilt is perpendicular to the texture’s direction, and there will be no

compensation from amplified frequency components co-incident with the illuminant’s

direction of tilt because there are none present in the texture. An example of this effect is

m7’s tilt response to the uni-directional texture card1 - a corrugated surface in which the

majority of frequency components run at θ = 0°. This response shows that for uni-

directional textures the operator is certainly not invariant to tilt. Masks m5 and m6 gave

similar responses to this texture.

b) Normalised tilt response

The illuminant tilt angle response of Linnett's operator using normalised images was

investigated as before. The aim being to determine whether or not such pre-processing

compensates for variation in τ. Figure 5.25 below shows the response of the operator

using m1.
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Figure 5.25 - The effect of normalisation on mask m1’s tilt response

The shape of the responses of the four isotropic textures have slightly flattened but are

still clearly affected by tilt. The response of the directional texture card1 has in contrast

been markedly affected. Indeed normalisation appears to have "over compensated" for

angles of τ around 90°. An explanation for this behaviour is as follows.
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From the Lambertian image model (2.1) :

( ) ( ) ( )
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(5.46)

Now, for a directional texture that contains components only in the direction θ = 0°

q
V

y
H= =∂

∂
0 (5.47)

Hence, for an illuminant tilt angle of τ = 0°

( )I x y p
p p

τ σ σ= ° = − + − +



0

2 4

1
2

9

4
( , ) sin cos

! !
g (5.48)

and for τ = 90°

I x y
p p

τ σ= ° = − +



90

2 4

1
2

9

4
( , ) cos

! !
h (5.49)

By comparing (5.48) and (5.49) it can be seen that changing the illuminant tilt from 0° to

90° removes the proportional and other odd terms (− psinσ  etc.). Thus compared with its 

τ = 0° counterpart, the  τ = 90° image will not contain the fundamental frequency or odd

harmonics. Now if both images are normalised to have the same variance, the net result of

the change of tilt angle from 0° to 90°, will be a shift of power from the odd to the even

harmonics. Figures 5.26 and 5,27 show that this is indeed what happens.

τ = 0° τ = 90°

Figure 5.26 - Normalised 128x128 samples of card1 at illuminant tilt angles of 0° and
90° (frequency of corrugations ≅ 0.08 times the sampling frequency)
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From figure 5.27 it can be seen that (i) the m1 operator is more sensitive to the 2nd

harmonic (ω ω≅ 0 16. s) than the fundamental (ω ω≅ 0 08. s), and that a tilt of 90° reduces

the first and amplifies the second.
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Figure 5.27 - Radial sections of magnitude spectra (at θ = 0°) of card1 and operator m1

Thus the end result is that the frequencies to which Linnett’s m1 operator are more

sensitive are boosted in normalised images as the illuminant tilt approaches an angle of

90° : hence the "over compensation" effect.

An "over-compensation" effect of normalisation is also apparent, although less

obvious in the slant response described in the next section.

5.3.3. Slant angle response

Previous sections of this chapter have shown that normalisation of images can help

compensate for the effects of variation in illuminant slant (σ) on Laws' and co-occurrence

texture features. This section therefore addresses the same issue for Linnett's operator.

The slant responses were obtained using the same test set of normalised and un-

normalised image textures as used in the Laws' and co-occurrence experiments. Mask

m6's responses are depicted below.
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a) Un-normalised b) Normalised
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Figure 5.28 - The effect of normalisation on mask m6

It is apparent from the above graphs that normalisation has helped reduce the variation of

mask 6’s output, but that it has again "over-compensated": the mean output at low angles

of slant σ being greater than that of higher angles. As the slant angle approaches the

vertical, that is σ → 0, the proportional and other odd terms in (5.46) again tend to zero,

giving a similar effect to the "over compensation" of tilt variation discussed previously.

Note that the separation between class means has again been reduced.

5.3.4. Summary - Linnett’s operator

This section has investigated the effect of variation in illuminant tilt and slant on Linnett’s

operator. The main points to emerge from this section are as follows.

• The directional operators m1 to  m4 are not invariant to variation in tilt, with respect

to either the normalised or un-normalised test textures.

• Masks m5, m6, and m7, which have approximately isotropic frequency responses,

are not affected by tilt when applied to the isotropic test textures, but are affected

when applied to the directional texture card1.

• Normalisation of images of the directional texture card1 over-compensates for

variations in tilt at tilts of around 90° to the texture direction.

• Normalisation of images of both isotropic and directional test textures does

compensate for slant angle variation (although some over compensation is evident).
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However, this effect is provided at the expense of reduced separation between

feature means.

5.4. Metrics for class separation and sensitivity to illuminant

variation

The three preceding sections of this chapter have discussed qualitatively the effects of

illuminant variation. This is sufficient to explain the general phenomena observed. The

development of a quantitative measure of these effects would however, facilitate feature

selection and provide a valuable tool to extend the previous discussion. The Mahalanobis’

distance [Tou74] is commonly used to provide a measure of the ability of a feature set to

separate two classes. It uses separation between the class means adjusted by a factor to

account for classes’ variances. For a single feature this measure reduces to the

"generalised difference" [Davis73] :

D
p

2 1 2
2

2
= −( )µ µ

σ
(5.50)

where

σ p
2 is the pooled variance [Davis73] of the two classes concerned, and

µ µ1 2,   are the means of the feature measure’s outputs for the two classes.

In cases where more than two classes are involved it is normal to compute D2 for each

possible class pair and choose the worst case (lowest) result.

Since the Mahalanobis distance provides a measure of the separation between two

distributions, it may be adapted to provide an illuminant sensitivity metric. That is, it may

be used to measure the maximum displacement of an operator’s output distribution caused

by a change in illumination. Thus a measure of the tilt sensitivity of a feature, with

reference to a given texture, may be computed as follows :

(i) Obtain feature images of the texture over the required range of illuminant tilt.

(ii) Determine D2 for each possible pair of feature images.

(iii) Choose the worst case (highest) result.
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The above is an expensive procedure : a cheaper alternative is to calculate D2 between the

feature images having the highest and lowest mean values. This will yield similar results

to the above if image feature variance does not change significantly with illuminant tilt.

Thus the tilt sensitivity metric used here is defined as

Dτ
µ µ

σ σ
2

2

2 2

2
=

+
+

( )max min

max min

(5.51)

where

µ max and µ min are the maximum and minimum mean operator outputs over the

required range of illuminant tilt, and

σmax
2 and σmin

2 are the variances of the operator’s output at tilt angles at which µ max

and µ min occur.

For a number of textures the mean tilt sensitivity across texture types provides a single

figure of merit. Thus the mean tilt sensitivity referred to in table 5.1 is defined as

D
n

Dτ τ
2 21= ∑

For each
 texture

(5.52)

where

n is the number of textures

Table 5.1 contains the results of applying this metric to co-occurrence, Laws’, and

Linnett’s features. Two texture sets were used : set a comprising the four isotropic test

textures, and set b consisting of set a together with the directional texture card1. Both the

original 512x512 floating point images (512f) and their normalised versions (512N) were

used. For convenience the first five rows of the table contain means of five different

groups of features, collected by feature type (Laws, Linnett, or co-occurrence) and

normalisation.
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Mean tilt sensitivity

( )Dτ
2

Class separation

( )D2

set a set b set a set b
Mean co-occurrence 0.80 9.33 0.09 0.05
Mean Laws 1.14 9.17 1.01 0.37
Mean Linnett 1.46 8.96 0.15 0.11
Mean 512f 1.22 10.67 0.58 0.24
Mean 512N 1.12 7.99 0.64 0.24
Cooccurrence ASM 512f 0.32 3.43 0.19 0.11
Cooccurrence CON 512f 2.02 8.22 0.12 0.09
Cooccurrence ENT 512f 0.47 11.79 0.32 0.12
Cooccurrence COR 512f 0.76 32.72 0.01 0.01
Cooccurrence ASM 512N 0.28 1.28 0.02 0.01
Cooccurrence ENT 512N 0.26 1.80 0.05 0.03
Cooccurrence CON 512N 1.51 6.43 0.01 0.01
Cooccurrence COR 512N 0.77 9.00 0.04 0.02
Linnett m1 512f 2.20 17.84 0.19 0.14
Linnett m2 512f 2.81 12.94 0.17 0.10
Linnett m3 512f 2.71 2.46 0.11 0.11
Linnett m4 512f 2.00 12.46 0.23 0.14
Linnett m5 512f 0.43 10.74 0.26 0.19
Linnett m6 512f 0.25 9.95 0.34 0.23
Linnett m7 512f 0.32 9.84 0.28 0.20
Linnett m1 512N 1.53 8.76 0.03 0.03
Linnett m2 512N 2.74 7.61 0.03 0.03
Linnett m3 512N 2.70 5.03 0.09 0.05
Linnett m4 512N 1.89 6.91 0.04 0.04
Linnett m5 512N 0.40 5.86 0.12 0.12
Linnett m6 512N 0.22 8.10 0.04 0.04
Linnett m7 512N 0.27 6.99 0.09 0.09
Laws E5E5 512f 0.16 0.15 0.00 0.00
Laws E5S5 512f 0.41 0.35 0.02 0.02
Laws L5E5 512f 2.55 18.03 0.28 0.21
Laws L5S5 512f 2.90 12.94 0.15 0.14
Laws R5R5 512f 0.05 0.10 0.01 0.00
Laws E5E5 512N 0.19 9.40 0.06 0.05
Laws E5S5 512N 0.30 9.82 1.26 0.41
Laws L5E5 512N 1.95 2.56 0.08 0.08
Laws L5S5 512N 2.62 26.74 0.18 0.18
Laws R5R5 512N 0.27 11.62 8.03 2.58

Table 5.1 - Tilt sensitivity and class separation of Laws’, Linnett’s, and co-occurrence
features.

Table 5.1 shows that :

(i) Normalisation significantly reduces the tilt sensitivity of features derived from set b

which contains the directional texture card1.

(ii) Normalisation does not significantly affect the tilt sensitivity of set a which contains

only isotropic textures.
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(iii) Features with frequency responses which are approximately omnidirectional or bi-

directional have low tilt sensitivities when used with isotropic textures (set a). See

for instance Linnett’s m4, m5, & m7, Laws’ R5R5 & E5E5, and co-occurrence

features ENT and ASM.

(iv) Conversely features with uni-directional frequency responses have high tilt

sensitivities and thus Laws L5S5, E5S5, Linnett’s m1 to m4, and the co-occurrence

feature CON, would all provide discrimination between differing illumination tilts.

Thus they would be useful in tilt estimation schemes.

(v) For the texture test set employed Laws’ energy masks provide on average the best

potential class separation. The next best is provided by Linnett’s operator.

5.5. Conclusions

This chapter has examined the effects of variation of illuminant slant (σ) and tilt (τ) on

three sets of texture features. Of particular interest was the effect of normalisation; as it

had been suggested in chapter 2 that normalisation of images could compensate for slant

variation but not for tilt variation (except where uni-directional images are concerned).

The behaviour of each feature set was therefore investigated. Images of four isotropic

textures and one uni-directional texture were captured under a range of illuminant slant

and tilt conditions. These data sets were presented to the feature measures and the effects

on the resulting output distributions, in terms of means and histograms, were recorded. In

addition a new tilt sensitivity metric, based upon the Mahalanobis distance, was

developed and used to assess the effect of tilt variation on these features.

To summarise, the main conclusions drawn from the preceding investigations with

respect to the limited set of test textures employed, are as follows.

• The effect of change in illuminant tilt angle was shown to alter according to the

directional characteristics of the test texture and the feature measure concerned. The

following table summarises these findings :
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Isotropic
features

Bi-directional
features

Uni-directional
features

Isotropic texture

(beans1, chips1, rock1 &
stones1)

Not significant Affected Significantly
affected

Uni-directional texture
(card1)

Significantly
affected

Significantly
affected

Significantly
affected

Table 5.2 - The effect of illuminant tilt on directional and isotropic feature
measures

• Normalisation was shown to reduce the tilt sensitivity of features when applied to

the directional texture card1.

• It was also shown that normalisation does not significantly affect the tilt sensitivity

of features when applied to the isotropic test textures.

• Variation in illuminant slant has been shown to significantly affect each of the three

feature sets.

• Image normalisation has been shown to reduce this variation (at a cost of an

associated reduction in separation between class means).
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