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Chapter 6 

Classification

The previous chapter has shown that variation of the illumination’s direction can affect the

outputs of Laws’, Linnett’s’ and co-occurrence feature sets. Such variations may be

encountered in a variety of situations (as described in chapter 1). Unfortunately the effect

of illuminant variation on classification accuracy is likely to be dependent on the

application. This is because alterations in lighting effect a movement of class members in

feature space. But these displacements are only significant if they cross decision surfaces,

the position of which are dependent upon the characteristics of the original training set.

Hence the number of classification errors caused by a change in lighting is a function of

the feature set selected, the number of textures, the characteristics of the textures, and of

course the illuminant variation itself. Thus the effects of illuminant variation can only be

assessed with respect to a particular classification task.

It is not within the scope of this chapter to identify and test classification tasks

representative of all of the applications mentioned in chapter 1. Rather the aims of the

following sections are :

(i) to show that lighting variation can significantly affect a classification task,

(ii) to develop a prototype compensation scheme, and

(iii) to show that such a compensation scheme can reduce the effects of illuminant

variation for the chosen classification task.

Thus the purpose of the work described in this chapter was not to develop an optimum

classifier, but rather it is to investigate the effects of illumination variation on a

representative classifier. Effort was not invested in feature selection  the feature sets

used were selected purely on the basis of popularity in the literature and ease of

implementation. Nor was any post-processing, such as mode filtering  [Greenhill93],

employed.
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The investigation reported here, uses one model classification example throughout. The

job consists of classifying montages of four textures under varying illuminant tilt and

slant angles. That is either the tilt or slant angle is varied between training and

classification sessions. Thus the first objective of this chapter is to assess the effect of

illuminant variation on this model task. The second objective is to investigate the effect of

image normalisation  as previous chapters have suggested that normalisation may

reduce classification errors that are due to variations in illuminant direction. The third and

final objective is the development of a prototype tilt-compensation scheme  the aim

here being, not the development of an optimum compensation scheme per se, but rather to

show that the image models developed earlier may be used to develop a scheme which is

capable of reducing tilt related errors.

However, before the above are addressed the main tool required for these

investigations will first be introduced; that is the classifier itself.

6.1. Supervised statistical classification

Classification is the task of assigning objects to groups, or classes, given sets of object

measurements. If the classes are known beforehand then the process is termed supervised

classification. In the context of texture classification the process becomes one of

assigning pixels, or groups of pixels, to texture classes, where the sets of "object

measurements" are feature vectors comprising features such as Laws’ energy masks.

Previous chapters have reviewed and selected three sets of feature measures for use

here. These features are however of little use without a method of developing a set of

discrimination rules which may be used to assign pixels to texture classes. Hence a simple

statistical classifier has been selected. Such classifiers are relatively straightforward to

understand and implement [James85] [Tou74], offer reasonable performance [Linnett91a]

[Clarke92], and had the advantage of being available to the author. The next section

introduces the theory behind these classifiers.
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6.1.1. Discriminant theory

Bayes’ rule provides the basis for probabilistic classifiers that seek to minimise the "total

error of classification" or TEC [James85] [Tou74]. It may be expressed as follows:

Assign the pixel with feature vector f to group Gi  for which

P G P G j ii j( ) ( )f f> ∀ ≠    (6.1)

where

P Gi( )f  is the conditional probability that the pixel with feature vector f belongs to
group Gi .

Unfortunately these conditional probabilities are difficult to obtain. Bayes’ theorem

however, expresses them in terms of more easily obtained data :
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Thus a maximum likelihood classification rule may be expressed in terms of conditional

probabilities, where P Gi( )f  is the probability of a pixel from group Gi  having a feature

vector of f, and P Gi( ) is the a priori probability of a pixel belonging to group Gi . To

further simplify the classification rule, the associated probability distribution functions are

often assumed to be multivariate normal, that is :
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where :

n is the number of feature measures contained within the column feature vector f,

Ci  is the n by n variance/covariance matrix of group i,

µ i  is the n element column vector of feature measure means for group i.

( )f − ′µ i  is the transpose of  ( )f − µ i

Substituting (6.2) and (6.3) into (6.1), taking natural logs (ln), and reversing the inequality

[James85, p20] gives the following rule :
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assign the pixel with feature vector f to groupGi  if
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For convenience the terms in the LHS of (6.4), with the exception of the a priori

probability, are often collected together in one function di ( )f  referred to as the

discriminant function. Where

( ) ( )iiiiid �� −′−+= − fCfCf 1ln)( (6.5)

expanding (6.5) gives

di i i i i i i i( ) lnf C f C f f C C= + ′ − ′ + ′− − −1 1 12 µ µ µ (6.6)

This form is known as a quadratic discriminant (due to the ′ −f C fi
1  term). If the

variance/covariance matrices of all classes are identical then the quadratic and natural log.

terms may be eliminated to give a linear discriminant

di i i i i i( )f C f C= ′ − ′− −µ µ µ1 12 (6.7)

Assuming equal a priori probabilities the classification rule now becomes :

assign the pixel with feature vector f to the groupGi with the lowest discriminant
score di ( )f

The simpler linear discriminant is used here as it is straightforward to implement and

because of its reported robustness and performance [James85]. It assumes a multivariate

normal distribution and identical variance/covariance matrices Ci . As these matrices are

not normally identical they are often replaced by the pooled variance/covariance matrix

Cp , in which each element is the average of the corresponding elements of the individual

group variance/covariance matrices Ci  [James85].

6.1.2. Supervised classification of test textures

Having decided upon (i) the form of the discriminant function and (ii) the feature set to be

used, implementation of a classifier is straightforward. First the training set must be

selected, comprising representative samples of each texture class. Second, feature images

of each sample are generated using the chosen feature set. Third, statistics µ i i and C  of
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the feature image set of each groupGi  must be calculated and used to implement the

discriminant functions di ( )f . Finally the discriminant functions are built into the classifier

as shown in figure 6.1.

Texture
image

Feature
generator

Discriminant
function

Classified 
imageFeature

images

Training set
statistics

Figure 6.1 - Supervised statistical classification of image texture

To perform a classification of a multi-texture image, feature images are first generated

using a feature set such as Laws’ energy masks. Secondly, these feature images are used to

calculate discriminant scores for each group at each pixel position. The output image

resulting from this process is a class map in which the value of each pixel corresponds to

the group with the lowest discriminant score at that pixel position. Figure 6.2 illustrates

the effect of applying such a classifier to montage1  a montage assembled from one

directional and three isotropic textures.

Class map Class boundaries overlaid on original

Figure 6.2 - Classification of the four texture image "montage1"
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The results were obtained using the Laws’ features described in chapter 5. This classifier

is referred to here as "Laws1" and is defined in table 6.2. It was trained and tested on the

image shown in figure 6.2. Note that its three isotropic textures represent a deceptively

easy classification task  as these textures have very similar directional characteristics

when imaged under the same illumination conditions (see chapter 3). Despite this, the

results show that the classifier has been reasonably successful; correctly identifying 96%

of the pixels.

6.2. The effect of illuminant variation on classification

If the effect of illuminant variation on a feature set is significant, then it is reasonable to

expect that a classifier using such a feature set would be able to discriminate between

differing illumination conditions. Hence this section first examines the ability of the

Laws1 classifier to classify images of the same physical texture imaged under two lighting

conditions, as belonging to different classes. The second and third sections directly

investigate the effect of illuminant slant and tilt angle variation on classification accuracy.

6.2.1. Discrimination between illumination conditions

In order to test the ability of a statistical classifier to discriminate between differing

lighting conditions, a test image "montage2" was constructed from four samples of image

texture. The four samples consisted of images of beans1 and rock1 captured with

illuminant tilt angles of 0° and 90°. This test set was used both for training and testing the

Laws1 classifier. Figure 6.3 and table 6.1 contain the results of this classification test.

They show that a standard classifier, using Laws' features, is capable of discriminating

between different illumination conditions. Thus such features may be of value for the

estimation of illuminant tilt. More importantly for this thesis however, is that they show

without doubt that the classifier is affected by illuminant variation.
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Class map Class boundaries overlaid on original

Figure 6.3 - Classification of "montage2" : two physical textures imaged under two
illumination conditions

TEC beans1, τ = 0°
(upper left)

beans1, τ = 90°
(lower left)

rock1, τ = 0°
(upper right)

rock1, τ = 90°
(lower right)

5.5% 2.4% 1.8% 1.0% 0.30%

Table 6.1 - Classification errors for figure 6.3

6.2.2. Slant response

The significance of the effects of illuminant variation can only be judged with respect to a

particular classification task. Classification of textures that differ greatly from one

another may not be affected at all, on the other hand textures which are "close" to one

another in the feature space may be particularly sensitive to illuminant variation. Here

therefore the effect of slant variation on the classification of the test set montage1 is

examined in detail. This test set contains the isotropic textures beans1, chips1, rock1, and

the directional texture card1. It was used to investigate the behaviour of three classifiers

the feature sets of which are defined in table 6.2. Each of the feature sets has been defined

such that they use the same local window size (e.g. Laws’ 5x5 masks together with a

29x29 ABSAVE operator uses a local window or context of 33x33).  Each of the

classifiers was trained on montage1 with illumination parameters τ = 0°, σ = 50°. After

training, the classifiers were tested with montages constructed from the same physical

textures imaged under a range of illuminant slant angles (σ = 10°, 20°, .....80°). The

results for the Laws1 classifier are shown in figures 6.4 and 6.5.
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Classifier Feature set

Laws1 Laws’ 5x5 masks L5E5, E5L5, E5S5, S5E5, L5S5, S5L5, and R5R5 together with a

29x29 ABSAVE (average of absolutes) macro-statistic.

cooc1 Co-occurrence features CON, COR, ENT and ASM using a 33x33 local window,

with displacement vectors d = (1,0) and (0,1). The number of grey-levels used  Ng =

16

frac1 One iteration of Linnett’s 3x3 operator with λ = 1 for all seven directional masks,

followed by a 31x31 ABSAVE  macro-statistic.

Table 6.2 - Definition of feature sets
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Figure 6.4 - The effect of illuminant slant variation on classifier Laws1

Class map Class boundaries overlaid on original

Figure 6.5 - An example of increased failure rate due to variation in illuminant slant
(training σ = 50°, test case σ = 30°)
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Figures 6.4 and 6.5 show that variation of illuminant slant between training and

classification can have a dramatic effect on error rates. Classification using the two other

feature sets, frac1 and cooc1, produced similarly catastrophic failures to those shown

above. Clearly these classifiers are not invariant to changes in the illumination’s slant

angle.

Normalisation

The image model of topological texture developed in chapters 2 and 3 predicts that

normalisation will compensate for slant angle variation. Indeed, chapter 5 showed that

normalisation does reduce the variation of the features due to changes in illuminant slant.

It is to be expected therefore, that normalisation of images will reduce the error rate of a

classifier that has to cope with variation in slant.

Figure 6.6 shows the classification error that results from using normalised images

(i.e. all images were adjusted to a mean of 127 and a variance of 100 before construction

of the montages).
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Figure 6.6 - The effect of normalisation on the slant response of the Laws1 classifier
(data set : "normalised" montage1)

It can be seen that the use of normalised images produces disappointing results. Although

the classification error has been reduced for angles of slant less than 50° it has increased

for larger angles. An examination of the slant responses of the features of chapter 5
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(figures 5.13, 5.19 and 5.28) shows that in most cases normalisation reduces variation due

to changes in slant  especially for angles of 50° or less. Unfortunately it also reduces

the separation between class means (see graphs of beans1, chips1, and rock1). This

reduction in separation means that the classifiers using normalised images are more

sensitive to any changes due to illuminant variation (such as "over-compensation"

effects). Hence normalisation of texture images may not necessarily improve a classifier's

invariance to illuminant slant.

Tests with cooc1 and frac1 classifiers produced similar error rates to those shown

above, reinforcing the proposition that normalisation does not necessarily improve a

classifier's ability to cope with variation in illuminant slant. Hence the conclusion of this

section is that classifiers using feature sets similar to those tested are not invariant to

changes in illuminant slant whether or not image normalisation is employed.

6.2.3. Tilt response

Chapter 5 showed that Laws', co-occurrence, and Linnett's features, are affected by

variation in illuminant tilt. In addition a previous section of this chapter has shown that

the Laws1 classifier is capable of distinguishing between images of the same physical

texture captured under differing values of illuminant tilt. Hence it is to be expected that

illuminant tilt variation may cause significant problems for supervised texture

classification. As with the previous investigation into the effects of illuminant slant,

sensitivity to illuminant tilt may only be assessed with respect to a particular classification

task. Here therefore, the same test set montage1 is used as in the previous section. The

three classifiers were again trained on textures captured with σ = 50° and τ = 0°, but for

this experiment the tilt angle (τ) of the test sets was varied in 10° steps from 0° to 180°,

while the slant was kept constant at σ = 50°. The resulting classification error rates are

shown below for the Laws1 classifier (figure 6.7) together with images of one of the worst

classifications (figure 6.8).
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Figure 6.7 - The effect of tilt variation on the classifier Laws1 (data set : montage1)

Class map Class boundaries overlaid on original

Figure 6.8 - Classification failure at τ = 90° for the Laws1 classifier (data set :
montage1)

Figures 6.7 and 6.8 show that, for this data set, the Laws1 classifier is (i) significantly

affected by variation of illuminant tilt, and (ii) that the TEC (total error of classification)

is dominated by the failure to correctly classify the majority of class card1 between tilts

of 50° and 120°. Experiments on the cooc1 and frac1 classifiers using the same data set

gave similar results (see figure 6.9).

These results clearly demonstrate that variation of illuminant tilt between training

and classification sessions can have a dramatic effect on the accuracy of a statistical

classifier.
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cooc1 (co-ocurrence) frac1 (Linnett’s)
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Figure 6.9 - The effect of illuminant tilt variation on "cooc1" and "frac1" classifiers

6.2.3.1 Normalisation

In chapter 5 it was shown that normalisation does not have a significant effect on images

of isotropic texture taken under varying values of illuminant tilt  as although a change

in tilt does alter the balance between the texture energy in differing directions, it does not

alter the overall energy of the texture image. Thus normalisation has the same effect on

each image of an isotropic texture regardless of illuminant tilt. However, the same was

shown not to be the case for unidirectional textures. The variance of an image of a

unidirectional texture does vary with illuminant tilt. That is as τ approaches 90° to the

texture direction, image variance is reduced. Normalisation however, makes the variance

of each image identical regardless of tilt. Thus, in theory, normalisation should reduce the

effect of tilt variation on images of unidirectional texture. Figure 6.10 and 6.11 illustrate

the effect of applying image normalisation. Note that each texture was normalised before

being added to the test montage  simulating an ideal local normalisation process.

When figure 6.10 is compared with the un-normalised error rates (figure 6.7) it is

clear that normalisation has reduced the mis-classification of the directional texture card1,

and hence it has also reduced the TEC (total error of classification).
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Figure 6.10 - The effect of normalisation on the previous classification problem (Laws1
classifier; data set : normalised montage1)

Class map Class boundaries overlaid on original

Figure 6.11 - Classification at τ = 90° (Laws1 classifier, normalised montage1)
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Figure 6.12 - The effect of tilt variation on the Laws1 classifier using normalised images
(data set : montage3)
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However, because a texture’s variance is one of its distinguishing characteristics,

normalisation might also be expected to reduce the classification accuracy in some cases.

Hence another test set, montage3, was constructed using different samples of rock1 and

chips1. It was presented to the Laws1 classifier as before. The resulting error rates are

displayed in figure 6.12. It shows that while normalisation has reduced the classification

error of the directional texture card1 in montage3, it has also unfortunately increased the

error associated with the isotropic texture rock1. Thus normalisation may actually

increase error rates, as well as decrease them.

Figure 6.13 shows the results of repeat experiments for the cooc1 and frac1

classifiers (co-occurrence and Linnett’s features respectively). Again the graphs show that

the errors associated with the directional texture card1 have been significantly reduced,

and that those associated with the isotropic textures have increased  particularly those of

beans1. Re-examination of table 5.1 reveals further supporting evidence that

normalisation can reduce classification accuracy  the class separation figures of all of

Linnett’s features are significantly lower in their normalised form. The same holds for co-

occurrence features with the exception of the COR measure.

cooc1 - normalised frac1 - normalised
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Figure 6.13 - The effects of image normalisation on cooc1 and frac1 classifiers (data set :
montage1)
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Thus although normalisation does reduce the classification error rates of the

directional class card1, it has also been shown to increase the error rates of some of the

isotropic textures.

6.2.4. Summary of illuminant variation investigation

This section has described the effects of variations in the illuminant’s slant and tilt angles

on the classification of directional and isotropic textures. The illuminant tilt and slant

responses of three classifiers have been presented, and the effects of normalisation have

also been investigated. To summarise :

• A classifier using Laws’ features has been shown to be capable of discriminating

between two sets of illumination conditions.

• Variation in illuminant tilt and slant have both been shown to significantly reduce

the classification accuracy of three classifiers when applied to a test montage of

isotropic and directional textures.

• Image normalisation was shown to have little effect on these slant induced errors.

• Image normalisation was shown to reduce the tilt related classification errors of the

directional texture card1.

• Image normalisation was shown to increase the tilt related classification errors of

some of the isotropic test textures.

6.3. Compensation for illuminant tilt variation

The previous section has shown (i) that variation in illuminant tilt can significantly affect

supervised classification of three-dimensional texture, (ii) that normalisation can help

compensate for such variations where directional textures are concerned, and (iii) that

normalisation may actually degrade a classifier’s ability to classify isotropic texture.

Normalisation is however only one of a number of possible compensation schemes. Some

alternatives are now proposed.

Proposal 1

The simplest solution is to train the classifier over the range of illuminant conditions that

are likely to occur during classification sessions. However, such an approach may
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significantly reduce the accuracy of the system from its potential optimum, as the

variance of each class is likely to be higher than would be the case for fixed illumination

conditions.

Proposal 2

If the tilt angle of the illuminant is varied during training, then a family of discriminant

functions may be developed. This would provide what is essentially a lookup table of

discriminants indexed by tilt angle. Alternatively the tilt angle may be used as a feature

itself. Both approaches are only viable if the appropriate training sets are available and the

tilt angle of the test data is known. They would also require additional resources for

gathering and handling the data and performing the training. It must be said however, that

such methods are likely to be simple and may well produce good results.

Proposal 3

Use unsupervised classification techniques; e.g. k-means clustering [Tou74] for training

set identification followed by a statistical classifier [Linnett91a]. If illuminant variation

affects each texture in a similar manner then a change in lighting will impart

approximately the same displacement in feature space to each texture class. Thus it is to

be expected that unsupervised techniques will not be as severely affected as supervised

ones  as the clustering will track the changes in class centres and the discriminants will

be adjusted accordingly. However, the segmentation of an image into homogeneous

regions would not at first sight be of great benefit if the job is to classify textures into

previously defined groups. Nevertheless this segmentation process is of value  as larger

texture regions maybe used for more sophisticated feature generation processes. Such an

approach may for instance enable FFTs to be used to provide information on the radial

shape of a texture’s PSD  as in chapter 2 it was suggested that such characteristics are

intrinsic to the texture. Thus segmentation using unsupervised techniques followed by

extraction of features based on PSD radial shape may provide a lighting invariant

classification scheme.



- 148 -

Proposal 4

Reverse the directional filtering effect of single point illumination by using a family of

compensating filters each one constructed for a particular value of tilt. Thus each image,

be it a training or test image, would be passed through a filter corresponding to the

illuminant tilt angle under which the image was captured. Hence in theory tilt related

characteristics would be removed  allowing classifiers to be trained under one set of

illumination conditions but to be used with arbitrary tilt angles. Note that this method

requires the illuminant’s tilt angle either to be known or obtainable from a reliable

estimator.

Choice

It is not practical within this thesis to address all of the above avenues. It was therefore

decided to choose just one for investigation here. The first two proposals are

straightforward. However, the first is unlikely to provide good performances for difficult

texture classification tasks and the second requires extensive training. The third proposal

is interesting in that it does not need illuminant tilt as input, but it is more speculative and

would be more complex to implement than the other proposals. The last proposal does

require illuminant tilt to be known, but is simple to develop, and offers the potential

advantage that training requirements would be significantly reduced compared with

proposal 2. For these reasons the fourth proposal based on the development of a

compensating filter will be investigated.

6.4. Frequency domain tilt-compensation

This section proposes a tilt-compensation method which is based upon the frequency

domain model of image texture developed earlier. Its purpose is not to develop an

optimum compensation scheme and extensively test it; rather it is to show that the model

of image texture may be used to develop a scheme which is capable of reducing tilt

related errors.



- 149 -

Chapters 2 and 3 developed an image model of topological texture. If slant (σ) is

constant then, as in chapter 5, the model reduces to equation (5.13) :

F F F kI S( , ) ( , ). ( , ).ω θ ω θ ω θτ σ=

and substituting (3.8) gives

F F m b kI S( , ) ( , ).( cos( ) ).ω θ ω θ θ ττ τ σ= − + (6.8)

Thus if the illuminant tilt is known, a tilt-compensation filter of the form

H
m bcτ

τ τ

ω θ
θ τ

( , )
cos( )

=
− +

1
(6.9)

may, in theory, be applied to remove variations due to changes in tilt angle. This filter

must of course be applied to all test images and to all training images. It should be

applied before feature generation; as shown in figure 6.14.

Filtered texture
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Discriminant
function
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images
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Texture
image

Filter
process

Illuminant
tilt

Figure 6.14 - The use of a tilt-compensating filter in the texture classification process

Hence the main advantage of this scheme is that training images only need to be obtained

under a single set of illuminant tilt conditions  as tilt-compensation filters will in theory

compensate for any variations due to changes in τ.

The coefficients mτ  and bτ  in (6.9) were obtained in the first instance by taking an

average of estimates derived from four isotropic textures. The estimates were calculated

by using a least squares fit of the tilt response model (i.e. the inverse of equation 6.9) to a

set of polar plots of the two-dimensional magnitude spectra. These plots which were

normalised to have a mean = 1.0, were of the textures rock1, beans1, chips1, and stones1,

imaged with τ = 0°. (Figure 3.26 shows un-normalised polar plots of the four textures.)

Thus a value of 0.6 was used for both mτ  and bτ . The resulting family of tilt-

compensation filters, referred to as "F1" in the following text, is defined below.
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HF1

1

0 6 0 6
( , )

. cos( ) .
ω θ

θ τ
=

− +
(6.10)

Figure 6.15 shows the magnitude frequency response of filter F1(τ = 0°).
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Figure 6.15 - Magnitude frequency response of F1(τ = 0°), and its effect on a
checkerboard image.

The τ = 0° filter amplifies components with an angle θ = 90° and attenuates those with θ

=0°. This effect is readily apparent in the image, shown in figure 6.15, which results from

the application of F1(τ = 0°) to a checkerboard image.

Unfortunately application of this filter family to images of a test set, comprising

isotropic textures (set a), actually increases the average tilt sensitivity of the Laws'

features (see table 6.3). A closer examination reveals that only the higher frequency

masks R5R5, E5L5, and E5S5 were adversely affected, which suggests that the tilt

response model above is inadequate at higher frequencies.

6.4.1. An improved frequency domain model

The previous section found that application of the tilt-compensation filter family F1 can

actually increase the tilt sensitivity of texture features, rather than decrease them as

intended. Hence this section investigates the magnitude spectra of the four isotropic

textures in more detail  the aim being to provide a frequency domain model which will

facilitate the development of a tilt-compensation filter that does reduce tilt sensitivity.
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It was noted in the previous section that the higher frequency feature measures were

adversely affected compared with their lower frequency counterparts. Here therefore, the

polar characteristics of texture magnitude spectra are examined over a number of

frequency bands. This contrasts previous polar plots in which the magnitude response was

averaged over the whole radial frequency range for each value of θ. Thus each of the plots

on the graph below shows the polar characteristics of one of a series of concentric rings

taken from the two dimensional magnitude spectrum of rock1. Each plot is labelled with

the centre frequency of the "ring".
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Figure 6.16 - Polar frequency characteristics of rock1 texture (τ = 0°)

From the above it can be seen that energy in the texture rock1 falls off with frequency. It

is assumed that this is a function of the topological texture and will therefore be ignored

here. Thus for the purposes of developing a tilt-compensation filter, polar plots are

normalised to have a mean = 1.0. Figure 6.17 shows the result of plotting these

normalised values against cos(τ - θ) for two values of frequency (ω). From this graph it

can be seen that there is an approximate linear relationship with cos(θ - τ) at both

frequencies, but that the values of the linear coefficients change with frequency.
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Figure 6.17 - Plot illustrating the FI ( , )ω θ ∝  mτ cos(θ - τ) + bτ  relationship for ω = 0.05
and 0.20 times the sampling frequency

Figures 6.18 and 6.19 provide a more extensive view of the behaviour of these

coefficients as a function of frequency.
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Figure 6.18 - Variation of mτ  with frequency

These estimates of mτ  and bτ  were obtained by averaging least squares estimates at τ = 0°

and 90° in order to reduce any directional artefacts that might have been introduced by

the data capture or analysis processes.
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Figure 6.19 - Variation of the parameter bτ  with frequency

What is clear from the above two graphs is that the directional characteristics exhibited

are strongest at low frequencies  as the Nyquist frequency is approached the polar plots

tend towards a flat, isotropic response (i.e. mτ  = 0, bτ  = 1). One explanation for this

behaviour is that, as has been shown in chapter 3, the energy of the textures reduces with

increasing frequency. Thus noise will become more significant as frequency increases and

hence if the noise is isotropic, it will tend to flatten the polar response.

A simple model was developed in order to account for this behaviour. Least squares

estimates of the linear behaviour of mτ  and bτ  as a function of frequency were derived

from the mean behaviour of the four textures giving :

m sτ ω ω= − +1 8 0 7. . ,  b sτ ω ω= +0 8 0 6. . (6.11)

where

ωs is the sampling frequency.

However, (6.11) gives a negative value of mτ  for ω ωs  > 0.39, that is the directional

characteristic of the resulting filter would be the inverse of that predicted in chapter 2.

Thus the model was modified to a more conservative set of coefficient definitions :
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Note that the filter defined by (6.12) in conjunction with (6.9) has unity gain at

frequencies ω ωs  ≥ 0.5, as opposed to the inverse directional characteristic described

above. Hence this modified model (6.12) was used together with equation (6.9) to specify

the "F2" family of tilt-compensation filters.

6.4.2. Filter implementation

Both F1 and F2 filter families were implemented in the frequency domain using forward

and inverse FFTs (fast Fourier transforms) as depicted in figure 6.20. First, the two-

dimensional magnitude spectrum of the required filter is generated using the illuminant

tilt angle as input to the F1 filter equation (6.10) or the F2 filter equations (6.9) and (6.12)

as required. Second, the texture image is FFTed to provide real and imaginary component

images of its complex spectrum. Third, both the real and imaginary images are multiplied,

coefficient by coefficient, by the filter image. Finally the filtered real and imaginary

images are inverse transformed back into the spatial domain to provide the filtered texture

image.

Texture
image

FFT

Illuminant
tilt

Inverse
FFT

Filter

Filtered real and
imaginary images

Real and
imaginary images

Filtered texture
image

Figure 6.20 - Frequency domain filtering

In comparison with the spectral analysis described in chapter 3, circular Hann windows

and the spatial averaging of the Welch periodgram method were not employed. Spatial

averaging which was used in chapter 3 purely to aid interpretation is not required here;

while artefacts introduced by the forward transform, through the use of non-circular

windows, are largely removed by reverse transforms using the same window.
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Figure 6.21 shows the result of applying an F2 filter to an image of the texture

rock1.

Original image F2 filtering Accentuated filtering

Figure 6.21 - The effect of filter F2(τ = 0°) on the texture "rock1"

As the effect is difficult to discern an accentuated version of the filtering is also shown (in

which the directional effect has been exaggerated).

6.4.3. Effect of tilt-compensation on features

If the F1 and F2 filters are useful for tilt-compensation then their application to texture

images will reduce the feature measures’ tilt sensitivities. That is the separation between a

feature’s distributions at differing angles of illuminant tilt should be reduced by the filters.

Figure 6.22 shows the distributions (histograms) of the output of a tilt-compensated

Laws’ L5E5 texture measure. It has been applied to four image textures : two physical

textures each imaged at two values of tilt (τ = 0° and 90°).That is each texture image was

processed with the appropriate F2 compensation filter before application of the L5E5

operator.
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Figure 6.22 - The effect the "F2" filters on tilt behaviour of Laws’ L5E5 feature

If these histograms are compared with figure 5.7 (which shows the distributions of the

same operator used directly on the original images) it can be seen that the F2 filters :

(i) have not significantly distorted the shape of the distributions,

(ii) have reduced the displacement of the mean of class beans1 due to change in τ, and

(iii) have almost eliminated the displacement of the mean of chips1.

In addition, if the above graph (figure 6.22) is compared with that showing the result of

normalisation (figure 5.11), it can be seen the F2 filters have not reduced the separation

between the class means as has happened for normalisation.

The above is a qualitative, subjective assessment and contrasts with the quantitative

objective measure of tilt sensitivity developed in chapter 5. The metric, developed from

the Mahalanobis distance, was defined to aid comparison of texture measures. Table 6.3

below contains the results of applying this metric to Laws’ texture measures using images

pre-processed with the F1 (512fF1) and F2 (512fF2) filter sets. Results using the original

512x512 images (512f) are repeated here for convenience. In addition class separation

measures are shown to allow the relative effect of the tilt-compensation filters to be

assessed. Data sets set a and set b are as defined in chapter 5. That is set a contains only

isotropic textures whereas set b contains the unidirectional texture card1 in addition to the

textures of set b.
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Mean tilt sensitivity Class separation

set a set b set a set b

Mean 512f 1.21 6.31 0.09 0.08

Mean 512N 1.07 12.03 1.92 0.66
Mean 512fF1 1.79 3.13 0.10 0.08
Mean 512fF2 0.78 2.78 0.09 0.07

Laws E5E5 0.16 0.15 0.00 0.00

Laws E5S5 0.41 0.35 0.02 0.02

Laws L5E5 512f 2.55 18.03 0.28 0.21

Laws L5S5 2.90 12.94 0.15 0.14

Laws R5R5 0.05 0.10 0.01 0.00

Laws E5E5 1.18 1.13 0.03 0.03

Laws E5S5 1.53 1.64 0.03 0.03

Laws L5E5 512f F1 1.38 6.83 0.29 0.22

Laws L5S5 1.28 2.59 0.13 0.12

Laws R5R5 3.59 3.45 0.01 0.00

Laws E5E5 0.69 0.59 0.01 0.01

Laws E5S5 0.59 0.53 0.02 0.02

Laws L5E5 512f F2 1.29 8.96 0.29 0.20

Laws L5S5 1.25 3.72 0.14 0.11

Laws R5R5 0.05 0.10 0.01 0.00

Table 6.3 - Tilt sensitivity and class separation of Laws features pre-filtered with F1 and
F2 filters. The original floating point figures (512f) are repeated here for convenience.

The tilt sensitivity figures above show that

(i) The filter set F1 reduces the average tilt sensitivity of Laws’ features when used on

set b  (containing a directional texture) but the same filter set increases the tilt

sensitivity when used with the isotropic data set set a,

(ii) The filter set F2 reduces average tilt sensitivity in both cases, and

(iii) neither filter set markedly affects class separation.

Thus these results indicate that pre-processing with the F2 filter set should reduce tilt

related classification errors. It will therefore be used in the next section which describes

an investigation into the effect of tilt-compensation on classification error.

6.4.4. Effect of tilt-compensation on classification

This section analyses the effect of the F2 tilt-compensation filter family on tilt related

classification errors. These experiments mirror those described in section 6.2.3, which
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determined the consequences of varying the illumination’s tilt angle on uncompensated1

images. The same four texture data set (montage1) is used here. Training is again

performed on images captured at τ = 0° with classifications being processed at a range of

illuminant tilts angles. In this case however, all images are passed through the appropriate

F2 filter (selected by tilt angle τ) before feature processing.

The investigation into this tilt-compensation scheme is reported in three parts :

firstly the class error rates are discussed; secondly the total error rates of uncompensated,

normalised and tilt-compensated schemes are compared; and thirdly the distribution

between isotropic and directional errors is presented.

a) Error rates of individual textures of montage1

Figures 6.23 and 6.24 show the results of the first tilt-compensation experiment 

performed with the Laws1 classifier.
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Figure 6.23 - The effect of tilt-compensation on the Laws1 classifier (data set : F2 tilt-
compensated montage1)

All images of the data set montage1 were pre-processed with the appropriate F2 filter

before feature processing. As in previous tilt experiments the illuminant slant angle was

maintained at σ = 50°, the classifier was trained at an illuminant tilt angle τ = 0°, and it

                                                
1Note that the term "uncompensated" is used in this and subsequent sections to refer to images that have
been neither normalised nor pre-processed with a tilt compensation filter.
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was tested over the range of tilt angles (τ = 10°, 20° .......180°). Figure 6.24 shows the

classification result which occurred at τ = 90°.

Class map Class boundaries overlaid on original

Figure 6.24 - The effect of tilt-compensation on the classification at τ = 90° (Laws1
classifier, data set : F2 tilt-compensated montage1)

Comparison of the above results with the equivalent uncompensated versions (figures 6.7

and 6.8) show that the classification errors associated with the directional texture card1

have been significantly reduced. This was to be expected, given the reduced tilt

sensitivities of the tilt-compensated Laws’ features (see table 6.3). The error rates of the

isotropic textures however, do not show a similar reduction. The flat graphs of error rates

of the uncompensated isotropic textures, shown in figure 6.8, suggest that variation in

illuminant tilt does not affect the appearance of these textures enough to cause significant

mis-classification. Hence it is not surprising that the tilt-compensation scheme does not

reduce isotropic error rates in this instance.

Figure 6.25 below shows the result of using the F2 filters with co-occurrence and

Linnett’s features. In the case of the former, the graphs are not as convincing as for the

Laws’ features  tilt-compensation has reduced the error rate around τ = 90°  but has

actually increased it at tilt angles of 30° and 40°.
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Figure 6.25 - Classification error rates of tilt-compensated cooc1 and frac1 classifiers

In contrast with the co-occurrence results the use of F2 filters with Linnett’s features

(classifier frac1) has been more successful. Here the average error rate has been

significantly reduced. Again it is the effect on the directional texture which dominates the

change in the total error rates.

Class map Class boundaries overlaid on original

Figure 6.26 - Reduced classification error at τ = 90° (frac1 classifier)

b) A comparison of total error rates

The figures above have depicted individual error rates for each texture and total error of

classification (TEC) for the three tilt-compensated classifiers. However, these graphs do

not allow easy comparison of the performance of uncompensated, normalised, and tilt-
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compensated, classification schemes. The next three figures therefore show the total error

rates that result from applying these three schemes to each classifier in turn.
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Figure 6.27 - TEC for Laws1 classifier using original(512f), normalised(512N) and tilt-
compensated(512fF2) images.
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Figure 6.28 - TEC for co-occurrence (left) and Linnett’s classifiers (right) using
uncompensated, normalised, and tilt-compensated images (512f, 512N and 512f F2

respectively).

Figures 6.27 and 6.28 show that tilt-compensation with the F2 filter set produces the best

results with Linnett and co-occurrence features. Of the feature sets, Laws’ are clearly

better  with little to choose between the tilt-compensated and normalised images.

However, a word of caution must be sounded  in that an alternative data set (montage3)

showed that Laws’ features with normalisation can actually increase isotropic error rates
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(see figure 6.11). This alternative data set was used as input to the other classifiers as well

and with the exception of the normalised Laws1 classifier results were very similar to

those above. That is the tilt-compensated co-occurrence and Linnett classifiers are

generally superior to their normalised counterparts.

c) Directional versus isotropic errors

What is not clear from the above graphs is the overall distribution of classification errors

between directional and isotropic textures. The next figure therefore contains two graphs

which show the average isotropic and directional errors for each compensation scheme.

That is each point on each graph is an average calculated from the appropriate error rates

of the Laws, Linnett, and co-occurrence classifiers. Thus the overall effect of each

compensation scheme on isotropic and directional error rates may be examined.

From the previous theory and experimentation it might be expected that both

normalisation and tilt-compensation would reduce directional texture errors, but that these

two pre-processing techniques would have differing effects on isotropic textures. The

graphs below, which were compiled from the results of over thirty million classification

decisions, show that this is indeed the case.
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Figure 6.29 - Mean error rates for directional and isotropic texture classes (means
calculated from co-occurrence, Laws’, and Linnett’s features; test set - montage1)

The main points that can be drawn from figure 6.29 above are :
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• both normalisation and tilt-compensation reduce classification errors of the

directional texture card1,

• normalisation produces the best results for card1,

• normalisation increases the average error rate of the test isotropic textures, and

• tilt-compensation does not significantly change the classifiers’ ability to classify the

isotropic textures of the test set.

This last point is a little disappointing given that F2 does reduce the tilt sensitivities of all

three feature sets (see table 6.3). However, the flat nature of the isotropic error rates of the

uncompensated schemes (see figure 6.7) suggests that there are few tilt induced isotropic

errors to compensate for in these data sets.

6.5. Conclusions

This chapter has introduced three statistical classifiers  based upon a linear discriminant

and the three feature sets investigated previously. These classifiers were used to

investigate the effect of variation in the direction of the illumination on supervised

classification. That is the tilt and slant angles of the illuminant were varied between

training and classification sessions. The test data used consisted of montages of

directional and isotropic textures. The main conclusions of these investigations are as

follows.

• Variation in illuminant slant between training and classification sessions induced a

significant increase in the number of classification failures in all three classifiers.

• Image normalisation did not markedly reduce the number of slant induced

classification errors.

• Variation in illuminant tilt between training and classification sessions significantly

increased the number of mis-classifications of the directional test texture.

• Normalisation significantly reduced the number of these tilt induced errors (for the

directional texture).
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• However, normalisation also degraded the classifiers’ performances with respect to

the isotropic test textures.

In addition a tilt-compensation scheme has been developed. It is based upon an improved

frequency domain model derived from four isotropic test textures. The scheme consists of

a family of filters  one for each value of illuminant tilt. They are used to process images

before feature generation at the training and classification stages. The conclusions drawn

after testing this compensation scheme and comparing its results with those achieved with

uncompensated and normalised images are :

• Tilt-compensation reduces tilt related errors for the directional texture card1.

• Normalisation gives better results than tilt-compensation for this directional texture.

• Unlike normalisation, tilt-compensation does not degrade a classifier’s ability to

classify the three isotropic textures.

• Tilt-compensation was shown to reduce the average tilt sensitivity of Laws, Linnett,

and co-occurrence feature measures, when applied to the test textures.

Hence the main conclusion is that the tilt-compensation scheme developed in this chapter

offers a promising method of countering variation in illuminant tilt  as it is pertinent to

both directional and isotropic textures, whereas normalisation is only appropriate for

directional texture.
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