
 
 
 
 
Calibrated and Uncalibrated Photometric Stereo 

for Surface Texture Acquisition 

 
 
 
 

Andrew D. Spence B.Sc. M.Sc. 
 
 
 
 

Thesis submitted for the Degree of Doctor of Philosophy 
 

Heriot-Watt University 
School of Mathematical and Computing Sciences 

 

 
 
 
 

February 2005 
 
 
 
 
 
 

This copy of the thesis has been supplied on condition that anyone who consults it is understood to 
recognise that the copyright rests with its author and that no quotation from the thesis and no information 
derived from it may be published without the prior consent of the author or the University (as may be 
appropriate). 

 



 i 

 
Abstract 

 
 
  Pursuing a goal of realistic rendering for mixed reality applications using bump mapping 

demands the acquisition of both surface height and reflectance data of real textures.  In this 

thesis we consider the use of various computer vision techniques for this purpose.  We 

focus on establishing a practical implementation of Lambertian photometric stereo 

[Woodham1980].  Our objective is to make the technique more accessible so that it could 

potentially complement consumer-oriented visualisation applications.  In this regard it is 

important to be unambiguous with respect to the standard operating procedure for optimal 

performance.  It is also vital to minimise the requisite calibration of equipment.   

  With regard to three-image calibrated photometric stereo we determined that the optimal 

placement of the illumination vectors corresponds to an orthogonal arrangement.  We also 

established that if the slant angle is constant, the optimal configuration corresponds to a 

difference of l20° between successive illumination tilt angles.  Ignoring shadowing, we 

found the optimal slant angle to be a maximum of 90° for smooth surfaces and 

approximately 55° for rough surfaces. 

  With a view to reducing the requisite calibration, we developed a technique based on 

uncalibrated photometric stereo [Hayakawa1994].  It is practical to implement for surface 

texture planes and merely requires a single illumination tilt angle to be known.  Its 

performance was found to be comparable to the equivalent calibrated technique. 
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Chapter 1  
 
Introduction 
 
 
1.1 Motivation 
   

  This thesis is concerned with the acquisition of three-dimensional surface texture data 

and corresponding surface reflectance data.  The motivation for this work is to enable 

more accurate modelling of rough patterned surface textures in mixed reality 

visualisation applications.  This technology is relevant to areas such as advertising, 

entertainment and computer-aided design where photorealistic rendering is a desirable 

and potentially valuable tool. 

   
Figure 1.1 The appearance of a textile illuminated from different directions. 

 

  Texture mapping is a computer graphics technique which is commonly used to 

enhance the realism of a virtual scene.  It involves the use of an image of a texture to tile 

the surface of a polygon object.  However, in this case only the shape of the object is 

taken into account with regard to scene illumination.  Since the appearance of rough 

surface textures depends on both viewpoint and illumination direction [Chantler1995], it 

is important to model this effect to attain more convincing levels of realism (see Figure 

1.1).  Bump mapping [Blinn1978] is a computer graphics technique which can be used 

to represent the surface relief associated with texture.  Used in conjunction with texture 

mapping it enables surface texture to be included in lighting calculations.  Until recently 

its implementation on standard PC equipment was limited to software-based calculation 

and scene rendering times were of the order of seconds.  With the advent of inexpensive 

programmable PC graphics cards, however, rendering in real-time is now feasible from 

an economic point of view.  This is due to the fact that both bump mapping and texture 
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mapping techniques are compatible with the cards and can therefore be implemented in 

hardware [Robb2003].  As a result this technology is likely to find wider use in practical 

visualisation applications. 

 

  

  
 

Figure 1.2  Utah teapot rendered in real-time using a photometrically-acquired textile 
bump map and texture map.  Generated using an application written by Mike Robb.  
Scene updated on change of illumination direction, object pose or viewing position (70 
frames per second). 

 

  Pursuing a goal of realistic rendering in this way demands generating the bump maps 

of real textures.  Photometric stereo [Woodham1980] is one computer vision technique 

which provides a means of determining the requisite data.  It allows the surface normals 

from which the bump map is derived and the corresponding reflectance which provides 

a colour texture map to be estimated.  The focus of this work is to investigate methods 

for obtaining this data with a view to establishing a practical implementation which 

could potentially complement consumer-oriented visualisation applications.  The 

intention is to make the selected techniques more accessible so that for example, a 

product designer could independently create a visualisation based on selected textile 
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samples taken from a swatch using a simple image acquisition system.  In this regard it 

is important to be unambiguous with respect to the standard operating procedure for 

optimal performance.  It is also vital to minimise the requisite calibration of equipment.  

It is these issues in particular which are considered in this thesis. 

  Three-dimensional surface texture data and corresponding surface reflectance data not 

only facilitate visualisation applications but are employed for other purposes.  This may 

mean that a practical implementation of a suitable technique finds further application in 

the field of computer vision.  Other uses include segmentation and classification 

[McGunnigle1998, McGunnigle2001], surface height recovery for inspection 

[Smith1999a, Smith1999b, Gullón2002], texture synthesis [Dong2002, Dong2003a], 

face recognition [Georghiades2003a] and forensic science [McGunnigle2001].  

 

1.2 Scope 
 
  Our objective is to facilitate the relighting of rough patterned surface textures by 

generating a suitable surface representation.  A number of approaches have been 

developed in the field of computer vision with regard to recovering three-dimensional 

surface data.  Contact methods, which generally employ a stylus which is moved across 

the surface, are outwith the scope of the thesis.  We concentrate on non-contact methods 

although disregard the use of direct measurement methods such as time-of-flight due to 

the equipment expense and complexity.  We assume the use of a single CCD camera in 

a fixed position and hence do not consider multiple view techniques such as stereo 

vision and optical flow.  These methods are better suited to determining the shape of 

objects rather than texture.  Furthermore they do not recover the reflectance 

characteristics of the object surface which is necessary for relighting.  We focus on 

producing bump maps and corresponding albedo images by processing colour images of 

a surface texture captured from a fixed camera under different illumination directions 

using the shape from shading technique photometric stereo.  Other representations 

which can be generated with image-based techniques are also discussed, however. 

  Whilst the surface representations can be utilised in the generation of 3D visualisations 

such as Figure 1.2, the specific details of the implementation for this, such as the design 

of the graphics pipeline, are not covered in this thesis.  When we refer to relighting, we 

mean that an image of the texture is generated under a novel lighting direction.  We use 

these images to assess the performance of the various algorithms tested.  As mentioned, 

the appearance of rough surface textures changes under both viewpoint and illumination 
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position.  We consider only the latter in the numerical assessment and provide visual 

examples of the former when the bump map and albedo texture map are applied to an 

object. 

 

1.3 Criteria 
  
 Although the scope of this work is limited to images of textures captured from the same 

viewpoint but under different illumination directions, there remain a range of techniques 

which can be employed to process the intensity data and hence generate suitable surface 

representations.   In order to distinguish between them and identify those most suited to 

our needs we use the following criteria: 

1.  Suitable for globally flat diffuse surfaces 

The texture should be globally flat such that its mean surface normal is aligned with the  

line of sight of the camera.  Surface reflection should be able to be approximated by the 

Lambertian model. 

2.   Use of consumer-level equipment. 

Image capture should be possible with inexpensive camera equipment.  Specialised 

hardware should not be required for real-time relighting.  A PC or laptop with a 

consumer-level programmable graphics card should be sufficient for this purpose. 

3. Practical input data capture. 

The image capture procedure should be simple, straightforward and not time-consuming.  

As few images as possible should be required.  Calibration should be avoided where 

possible.  Calibration objects should not be used.  

4. Computationally efficient generation of representation. 

The algorithm used to produce the representation should be ‘fast’.  Ideally iterative 

techniques should be avoided. 

5. Compact and compatible representation. 

The representation should be of a low dimension.  It should also be compatible with 

consumer-level programmable graphics cards. 

6. Computationally efficient generation of accurate relit images. 

Real-time per-pixel rendering should be possible with the graphics card and the 

representation.  The resulting images should be accurate and convincing.  This means 

that the representation should be able to approximate the reflectance characteristics of 

the surface texture to a sufficiently high level.   
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To summarise: the ideal technique uses inexpensive equipment, requires few input 

images and minimal calibration.  The resulting representation is fast to compute, 

compact i.e. of low dimension, compatible with programmable graphics cards and 

provides accurate relit images of diffuse surface textures. 

 

1.4 Contribution 
 
This thesis makes the following contributions: 

1. The optimal operating conditions are determined for the three-image Lambertian 

photometric stereo technique.  Prior to this work, the use of the maximum 

practical illumination slant angle and the avoidance of co-planar illumination 

arrangements were the sole recommendations.  We show that the relative 

arrangement of the three illumination vectors has an impact on performance.  

We prove that an orthogonal arrangement is optimal through the use of a derived 

figure of merit.  On a practical basis whereby the slant angle is constant we 

prove and verify by experiment that a tilt angle separation of 120° is optimal.  

This helps to clarify the standard operating procedure for the method.   

2. We propose the use of the figure of merit to gauge the effect of various 

illumination configurations on performance.  We show that McGunnigle’s 

simplified photometric stereo scheme [McGunnigle1998] which uses a 

difference in tilt angle of 90° is sub-optimal but not significantly so.  We believe 

that this is also relevant to robust photometric stereo techniques which use more 

than three images but select the best three intensity values at each pixel position.  

Discarding the outlying intensity values may mean that the illumination 

configuration corresponding to the remaining intensities is far from optimal. 

3. We identify an uncalibrated version of photometric stereo as a promising 

candidate for bump map and albedo image estimation with minimum equipment 

calibration.  A  practical implementation of the method is developed for specific 

use with surface texture planes.  For relighting purposes, it assumes that the light 

source intensity is constant and that a single illumination tilt angle is known.  

The technique is tested in simulation with synthetic textures and with thirty-one 

real textures.  We thus demonstrate that it is of practical use and attains accuracy 

levels comparable to the equivalent calibrated technique. 
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1.5 Thesis Organisation 
 
This thesis is organised into nine chapters.  In Chapter 2 we present a review of relevant 

literature and we select several approaches which best satisfy the criteria stated in 

Section 1.3.  The synthetic and real textures whose images are used as input data to test 

the performance of the selected methods are described in Chapter 3.  In Chapter 4 a 

sensitivity analysis of one of the selected methods, three-image Lambertian calibrated 

photometric stereo, is described with a view to determining the optimal illumination 

arrangement.  The uncalibrated photometric stereo method is detailed in Chapter 5 and 

subsequently developed for texture-specific use in Chapter 6.  The results of a series of 

simulation experiments with both calibrated and uncalibrated techniques are reported in 

Chapter 7.  In Chapter 8 their performance with real textures is reported.  Finally we 

summarise the thesis and draw conclusions in Chapter 9.  

 

A brief synopsis of each chapter is given in the following: 

Chapter 2 
We initially consider the processes which take place when light is reflected from a 

surface and review the models which are used to describe them.  We then survey the 

various approaches taken in the literature with regard to relighting a textured surface.  

We determine that these fall into two groups: model-based and image-based methods.  

For the purposes of this thesis we establish that the methods most suited to our needs 

are model-based shape from shading algorithms by considering the stated criteria.  In 

particular we single out photometric stereo in both calibrated and uncalibrated forms for 

further investigation. 

Chapter 3 
We define surface texture as rough surfaces with a planar megastructure which are of 

colour and potentially patterned.  We introduce three synthetic and thirty-one real 

textures which satisfy this definition.  The images of these textures, both generated and 

captured, form the input data which are to be processed by the selected algorithms.  We 

characterise the textures in terms of surface roughness measures and we also consider 

their second order statistics. 

Chapter 4 
We outline the approach taken to evaluate the optimal illumination arrangement for 

three-image calibrated photometric stereo.  We describe a sensitivity analysis which is 

utilised to examine the presence of noise in the output images.  We derive an overall 

figure of merit via this approach.  It is an equation which approximates the total noise in 
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a relit image and is expressed in terms of the illumination tilt and slant angles.  We 

prove the optimal illuminant arrangement by using the figure of merit and verify the 

result through experiment by analysing the data for each of the thirty-one real textures. 

Chapter 5 
We introduce the uncalibrated photometric stereo method in detail and indicate that the 

main issue involved concerns the reduction and resolution of the inherent ambiguity.  

We consider the various methods employed to solve it.  These are based on three main 

constraints.  We reject the use of the integrability constraint since we are working with 

rough potentially discontinuous surfaces.  Furthermore, we reject the use of the 

consistent viewpoint constraint since this requires a specular reflecting surface and the 

majority of the thirty-one real textures exhibit diffuse reflection.  We point out that the 

constant light source intensity which constrains the magnitude of the illumination 

vectors to be constant is a potentially suitable approach. 

Chapter 6 
We consider the constant light source intensity approach to ambiguity reduction for 

uncalibrated photometric stereo in greater detail.  We determine that the residual 

ambiguity is orthogonal in nature and consider ways to resolve it without resorting to 

complete calibration.  We develop a stepwise method which uses the fact that the 

textures are globally flat to orient the vector field with regard to the z-axis.  For 

relighting purposes, a single illumination tilt angle is merely required to provide a 

rotation about the z-axis. 

Chapter 7 
We test a number of variants of photometric stereo, both calibrated and uncalibrated 

methods, under various conditions.  Since Lambertian photometric stereo assumes ideal 

diffuse reflection, we evaluate the performance of the algorithms with shadowing, 

specularities and point lighting. We also test the algorithms with noisy input.  We 

investigate the effect of varying the number of input images and the relative 

arrangement of the corresponding illumination directions. 

Chapter 8 
We test the proposed texture-specific method with the thirty-one real textures and 

compare its performance against that attained by the other techniques.  We investigate 

the effect of varying the number of input images and the relative arrangement of the 

corresponding illumination directions.  We also examine the general impact of texture 

character on relighting accuracy. 
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Chapter 9  
We summarise the thesis and draw conclusions.  We indicate that we have determined 

the optimal operating conditions with regard to the illumination configuation for 3-

image photometric stereo.  We propose the uncalibrated photometric stereo algorithm 

we developed as a practical method for the capture of bump maps and albedo images of 

surface texture. 
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Chapter 2  
 
Literature Review 
 
 
2.1 Introduction 
 
  When light is incident on a surface, it may be reflected, absorbed and transmitted.  The 

extent to which each process occurs depends on the material.  This page provides a 

physical illustration: the ink of the printed letters absorbs the light it encounters and thus 

appears black whilst the white paper reflects it.  Transmission also occurs through the 

paper and can be observed if the single sheet of A4 is held up to the light.  With regard 

to the appearance of illuminated surface textures, it is only the light which reaches the 

viewer from the surface which we will consider.  In this thesis we are concerned with 

the reflectance of light.  In this chapter we briefly review the physical processes 

involved in order to appreciate the rationale behind the various reflection models 

described.  The formulation of these models suggests one approach for relighting under 

arbitrary illumination which is based on obtaining representations of both surface 

geometry and reflectance.  We present a literature survey of existing techniques which 

determine such representations from intensity images of a surface.  Alternative 

approaches which do not explicitly determine surface orientation are also detailed.  The 

overall goal of this chapter is to identify relighting techniques from the literature which 

satisfy the criteria specified in Section 1.3. 

 
 
This chapter is organised as follows :   

  The reflection of light and ways of modelling it are briefly introduced in Sections 2.2 

and 2.3.  A comprehensive but concise survey of approaches to relighting is presented in 

Section 2.4.  The mathematical procedure for implementing some of the suitable 

methods is detailed in Section 2.5.   We summarise the chapter in Section 2.6. 
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2.2 Reflection of Light 
 
  Two main processes are often assumed to account for the total light reflected from an 

object and are briefly considered here. 

 
Interface reflection 
If the object material is homogeneous in an optical sense then it has a uniform refractive 

index throughout.  The implication is that a ray of light will not be able to penetrate the 

body of the object and will effectively be reflected from the air-object interface.  If the 

object surface is flat then the reflected ray forms a single well-defined beam which 

mirrors the corresponding incident ray (Figure 2.1a).  This is known as specular 

reflection.  It is noted that the reflected light retains the original spectral characteristics 

of the incident light because it effectively does not interact with the material of the 

object.  

  With regard to surface roughness, if the surface irregularities are relative in size to the 

wavelength of the incident light, the resulting light beams will be scattered to some 

extent.  Interface reflections still take place but the varied surface orientation ensures a 

variety of reflection directions (Figure 2.1b).  If the deviations in surface height are 

small, the object will appear glossy rather than specular.  If the deviations are large the 

object will appear matte.  Interface reflection from a very rough surface therefore 

contributes to diffuse reflection. 

 

(a) (b) (c) 

 

 
Figure 2.1 Reflection of light from a surface (a) specular, (b) glossy, (c) diffuse or matte.   

 
Body scattering 
A common mechanism for diffuse reflection is body scattering.  In this case the object 

material is inhomogeneous and the light penetrates the surface due to refraction at the 

surface.  It subsequently undergoes refraction and reflection at interfaces between 

regions of differing refractive indices in the body of the object thus scattering the light 

internally.  Some eventually reaches the surface and radiates back into the air in random 

directions (Figure 2.1c).  During this subsurface scattering process interactions with the 

object material occur and result in changes in the spectral characteristics of the reflected 
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light.  The resulting colour depends on both the reflectance spectrum of the object 

material and the spectrum of the incident light in this case. 

 

2.3 Modelling Light Reflection 
 
  Before considering the various approaches taken to model the reflectance of light from 

a surface it is useful to state the standard radiometric terms which will be used in their 

development.  Flux ! is the rate of incident/emitted light energy measured in watts (W).  

Irradiance Ei = d!/dA and is the flux incident on a surface measured in watts per unit 

surface area (Wm-2).  Radiance Lr = d!/(dA cos!r d"r) and is the flux emitted from a 

surface into a solid angle1 centred around the direction of the radiated light measured in 

watts per unit foreshortened area per steradian (Wm-2sr-1).  See Figure 2.2 for an 

illustration.  The foreshortened area is the area of illuminated surface patch multiplied 

by the cosine of the angle between the radiated light direction v towards the viewer and 

the surface normal n.  It accounts for the effective surface area seen from the standpoint 

of the viewer. 

 

 
 
 
 
 

 

 

 

Figure 2.2  Diagram to illustrate the radiance definition. 

 

It is important to note that the radiance term is related to the brightness of the surface 

patch observed by the viewer i.e. the pixel intensity value in an image of the surface.   

 

                                                 
1 For a cone it is the ratio of the area ‘cut out’ of a sphere with its centre at the cone apex to the square of 
the sphere’s radius. 
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2.3.1 Arbitrary Reflectance 
  Surface reflectance can be accurately described by the bidirectional reflectance 

distribution function (BRDF) [Nicodemus1977].  In standard radiometric terms it is 

defined as the ratio of the reflected radiance to incident irradiance and therefore takes 

units of inverse steradians.  The BRDF is usually expressed as a four parameter 

function: 
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The diagram in Figure 2.3 depicts the relevant angles.  This version of the BRDF 

assumes monochromatic light and ignores subsurface scattering such that the outgoing 

position is the same as the incoming.  The BRDF represents a measure of the brightness 

of the surface viewed from one direction when it is illuminated from another direction.  

The reflectance is determined by integrating the function over a range of incident and 

reflected angles.   

 

 

 

 

 

 

 

 

 

Figure 2.3  Definition of BRDF parameters. 

 

The BRDF can hence be used to optically characterise the material of an object.  Real 

world materials are likely to be inhomogeneous, however, since both reflectance and 

microgeometry may vary on a local basis.  The bidirectional texture function (BTF) was 

defined to account for this [Dana1999].  The BTF extends the BRDF by allowing it to 

vary spatially across the surface to capture its texture.  It is hence a six parameter 

function.  The distinction between the BRDF and the BTF depends on the scale of 

observation. 

  Measuring either the BRDF or the BTF is challenging due to the high dimensionality 

of the data.  With regard to the BRDF, robot arms have been utilised to precisely place a 
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photometer and light source over the hemisphere of potential directions above a planar 

sample of material; a single measurement is taken at each position.  This is time-

consuming even for a sparse sampling of the function and ways to improve the 

efficiency have been presented e.g.[Ward1992, Lu1998, Lu2000, Marschner1998].  

Dana et al used a robotic system to sample the BTF for 61 textures collecting over 200 

images for each and these form the CUReT database.  A novel technique for measuring 

the BTF in situ with no mechanical movement was recently presented whereby a 

kaleidoscope enables the surface to be viewed simultaneously from many directions 

[Han2003].  The acquisition of densely sampled data sets for the BTF of arbitrary 

surfaces was recently reported; each texture data set contains around 10,000 images 

[Koudelka2003]. 

 

2.3.2 Reflectance Models 
  Reflectance models are commonly used in both computer graphics and computer 

vision as a practical alternative to the empirical BRDF & BTF.  Their relative simplicity 

is advantageous although the range of applicability for those with fewer parameters is 

restricted. 

 
Diffuse Reflection 
The oldest model was presented by Lambert in 1760.  It describes reflectance from a 

perfectly diffuse surface.  In this case the appearance of the illuminated surface is 

assumed to be the same (i.e. equally bright) from all viewing directions.  The 

implication is that the Lambertian BRDF is constant.  The brightness is proportional to 

the cosine of the angle between the illumination vector and the surface normal !i (see 

Figure 2.4a).  Although empirically-derived, this effect can be attributed to the 

foreshortened surface area from the point of view of the light source.  Ignoring 

shadowing/interreflections and assuming a point light source at infinity, an image pixel 

intensity for a Lambertian surface is given as follows: 

bn •== !"#!" iL yxi cos),(     (2.2) 
 
where " is the diffuse albedo and is defined as the proportion of incident light which is 

reflected as diffuse light, # is the light source intensity. 

  Oren and Nayar reported deviations from ideal diffuse reflection for rough surfaces 

[Oren1994].  They generalised Lambert’s model to take account of the increase in 

brightness observed as viewing direction approaches the lighting direction.  Other 

contributions to the development of more accurate physically-based diffuse reflection 
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models include that for smooth surfaces [Wolff1994], layered materials [Hanrahan1993] 

and both rough and smooth surfaces [Wolff1998].  Despite such improvements, 

Lambert remains popular because this simple model gives reasonable results for a wide 

range of matte surfaces.  Furthermore, it often features as the diffuse component in 

hybrid models of both body scattering and interface reflection. 

 

 

 

 

Figure 2.4  Illustration of  vector geometry  at surface facet for various reflectance 
models (a) Lambert, (b) Phong and  (c) Torrance-Sparrow. 

 

Specular Reflection 
The BRDF of a perfectly specular reflecting surface can be modelled as a Dirac delta 

function [Horn1989, Chap.8].  This is equivalent to the case of interface reflection from 

a flat surface such that the reflected light direction mirrors that incident about the 

surface normal as illustrated in Figure 2.1a.  In contrast to the perfect diffuse model 

which is often adequate for describing reflection from real matte surfaces, this perfect 

specular model will not produce satisfactory results for real world surfaces which 

exhibit specular highlights.  Parametric models have been developed for such non-

Lambertian reflectance.  In general these are hybrid models and are a linear combination 

of a diffuse and a specular component.  It is noted that an ambient component may also 

be included but as this merely acts as offset it will not be considered here. 

  The most commonly-used parametric model for specular reflection in computer 

graphics applications is the empirically-based Phong model [Phong1975].  It is a linear 

combination of Lambertian diffuse reflection and a cosine function raised to a power 

which corresponds to a specular lobe.  An image pixel intensity for a specularly 

reflecting surface is given as follows by the Phong model: 
n
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where v is the viewing vector, r is the mirror reflection of the incident light vector, !s is 

the specular albedo (the fraction of incident light reflected as specular light) and n is the 
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Phong exponent (See Figure 2.4b).  The vector r can be written in terms of the surface 

normal and the illumination vector such that bnnbr != • )(2 .  

  Although it provides reasonable results the Phong model has no physical basis.  For 

example, it does not model the off-specular peak observed for both many metallic and 

non-metallic surfaces.  The Torrance-Sparrow model (T-S) is derived from geometrical 

optics and does model this effect [Torrance1967].  An image pixel intensity for a 

specularly reflecting surface is given as follows by the T-S model: 
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where ! is the surface roughness, "a is the angle between the surface normal and the 

bisector of the illumination and viewing directions, Q is the geometric attenuation factor 

to account of masking and shadowing, and F is Fresnel reflectivity which depends on 

the refractive index and the bisecting angle "’ between the lighting and viewing 

directions (see Figure 2.4c). 

  Various improvements to the T-S model have been suggested.  Blinn augmented the T-

S model with an alternative distribution function [Blinn1977].  Nayar et al proposed a 

hybrid model which unites the geometric optics and physical optics approaches.  Their 

model consists of a diffuse lobe, a specular lobe and a specular spike [Nayar1991].  

These components are based on Lambert, Torrance-Sparrow and Beckmann-

Spizzichino respectively.  Cook and Torrance proposed a reflectance model which takes 

into account the spectral appearance [Cook1982].  The dichromatic reflectance model is 

based on an interface reflection component and a body scattering component which are 

each described with a geometrical and a spectral term [Shafer1985].  He et al extended 

the Cook-Torrance model to include specular reflection for reduced surface roughness 

and introduced a directional diffuse term [He1991]. 

 

2.4 Relighting under Arbitrary Illumination 
 
  In the previous section we considered various ways to either represent or model the 

reflection of light from surfaces with different reflectance characteristics.  It is readily 

apparent that if the parameters of a model are known as is the surface geometry then it 

is possible to generate image intensities which correspond to an arbitrary illumination 

direction i.e. by substituting the corresponding vector into the equation.  In this section 

we survey the techniques which can be utilised to simultaneously determine geometry 

and model parameters to facilitate arbitrary relighting in this manner.  We do not 
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consider separate determination of surface geometry through the use of range finders e.g. 

[Ikeuchi1991, Sato1997], or techniques such as optical flow or binocular stereo.         

Model-based techniques are generally termed ‘shape from shading’ although we will 

focus on photometric stereo.  We also consider alternative approaches which do not 

explicitly determine surface geometry.  These are appearance-based methods which use 

mathematical techniques to provide compact representations of a set of images of the 

surface under various illumination directions.  The relighting procedure depends on the 

specific technique but is generally achieved by manipulation of the resulting 

coefficients.   

 
2.4.1 Criteria 
  Before considering either appearance-based or model-based relighting, we re-cap the 

criteria stated in Section 1.3 which will be used to identify the techniques most suited to 

our needs.  The criteria are: 

1.  Suitable for globally flat diffuse surfaces. 

2. Use of consumer-level equipment. 

3. Practical input data capture. 

4. Computationally efficient generation of representation. 

5. Compact and compatible representation. 

6. Computationally efficient generation of accurate relit images. 

 
The ideal technique uses inexpensive equipment, requires few input images and 

minimal calibration.  The resulting representation is fast to compute, compact, 

compatible with programmable graphics cards and provides accurate relit images of 

diffuse surface textures. 

 
2.4.2 Appearance-based Relighting 
  Shashua showed that a linear combination of three images of a Lambertian surface 

illuminated from different directions is sufficient to form arbitrarily lit images of the 

surface [Shashua1992].  This is equivalent to a 3-dimensional basis in which the basis 

vectors are actually images.  Principal component analysis and singular value 

decomposition have been used extensively to find such low-dimensional representations 

for large sets of images of a surface or object [Turk1991, Hallinan1994, Epstein1995, 

Belhumeur1998, Georghiades1999, Lin1999, Nishino2001, Ramamoorthi2002, 

Dong2003a].  Depending on the specific application (e.g. recognition), the images 

sample a range of illumination or viewing directions.  With regard to the former, 
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Epstein et al found that the first three eigenimages correspond to the diffuse component, 

the fourth to the specular lobe and the remainder to the specular spike, shadows and 

occlusions.  Linear combinations of such basis images generate new images under 

arbitrary illumination.   

  Other mathematical techniques have been successfully utilised to express a set of 

sample images as linear and non-linear combinations of functions e.g. 9-dimensional 

spherical harmonics [Basri2001].  With specific reference to texture, Malzbender 

proposed the 6-dimensional representation of polynomial texture maps (PTM) which 

enable shadows and interreflections to be modelled [Malzbender2001].  However, 

PTMs are not suitable for modelling specular reflectance.  Although more often 

concerned with viewpoint variation, image-based rendering has also been employed to 

relight surfaces with more general reflection properties but entails the acquisition of 

densely sampled image sets [Koudelka2001, Debevec2000]. 

  The large size of the datasets resulting from measurement of the BRDF or the BTF 

means that it is impractical to use the raw data directly.  Various representations have 

been proposed to compress the data.  Basis functions such as spherical harmonics 

[Cabral1987][Westin1992], Zernike polynomials [Koenderink1996a], wavelets 

[Lalonde1997] and cosine lobes [Lafortune1997] have been used to approximate the 

BRDF but can require large numbers of coefficients especially for materials exhibiting 

specular reflectance.  3D textons were introduced to represent the BTF [Leung2001] but 

the dimensionality of the appearance vectors is extremely high and the computational 

cost of reconstruction is expensive [Tong2002].  With regard to the densely sampled 

datasets, singular value decomposition was used to generate a basis for the BTF; this 

required more than 150 eigenvectors [Koudelka2003]. 

 
2.4.3 Model-based Relighting 
  These methods require relatively fewer images than the appearance-based techniques 

previously described.  The disadvantage is that the reflectance model approximates the 

actual surface reflectance.  Shape from shading (SFS) algorithms attempt to utilise a 

single image for this task [Horn1986].  However, it is impossible to unambiguously 

infer surface geometry, which has two degrees of freedom, from one pixel intensity 

without restricting the solution in some way or making assumptions.  It is noted that the 

SFS problem is compounded for a Lambertian surface of varying albedo.  This implies 

solving Equation 2.2 for three unknowns if it is sufficient to determine the product of 

albedo and intensity as a single parameter.  A number of approaches to the SFS problem 
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have been detailed in the literature and a good survey is available although poor results 

are reported for all of the algorithms [Zhang1999]. 

  The use of additional images makes the problem tractable.  Lambertian photometric 

stereo uses multiple input images to determine the two surface gradients and albedo 

[Woodham1980].  Unlike SFS, photometric stereo is not under-determined and is 

straightforward to solve in this case.  With regard to acquiring input data, the object or 

surface is illuminated from several different directions and images are captured by a 

static camera.  Each image corresponds to one light source direction.  The fact that both 

camera and object remain static means that registration problems are avoided since the 

images are automatically aligned with each other. 

 

Lambertian Photometric Stereo 
Photometric stereo largely entails using at least three images and in some cases many 

more to cope with non-Lambertian conditions.  Two-image Lambertian techniques have 

been proposed in the literature but necessitate assumptions such as constant albedo, 

smooth surfaces and linearisation of the reflectance map by a Taylor’s series expansion 

thus limiting their application [Onn1990, Lee1993, Hansson2000, Gullón2002].  

Legendre polynomials have been used to represent Lambertian surfaces and are used in 

an iterative version of photometric stereo which uses either two or three images as input 

[Kim1997].  McGunnigle presented a simplified scheme for three-image Lambertian 

photometric stereo which is valid under a specific light source distribution 

[McGunnigle1998].  Spence and Chantler determined the optimal lighting distribution 

for the 3-image case [Spence2003a].   

  When specular highlights or shadows are present in the input images Lambertian 

photometric stereo will inevitably produce less accurate results.  One strategy is to make 

the method robust by identifying and eliminating or attenuating outlying pixel intensity 

values.  Coleman and Jain use a fourth image which allows an albedo estimate for each 

of the four permutations of three lights; the lowest albedo value is taken to correspond 

to diffuse reflection and thus specular highlights are avoided [Coleman1982].  This 

four-image method was extended to detect both specular highlights and shadows for 

colour images [Petrou2001].  Rushmeier et al proposed using five images: at each pixel 

the extreme intensity values are discarded to avoid highlights and shadows 

[Rushmeier1997].  Schlüns and Wittig used the dichromatric reflection model to 

identify and discard the specular component based on its spectral profile [Schlüns1993].  

Polarisers have also been utilised to attenuate highlights in a method to determine the 
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topography of paper [Hansson2000].  Schlüns suggests a way to solve photometric 

stereo in the presence of self shadows but distinguishing these from cast shadows is 

difficult [Schlüns1997].  Woodham attempted to detect non-local phenomenon such as 

cast shadows and interreflections to make the photometric stereo algorithm more robust 

[Woodham1994].  Algorithms have been developed to cope with point light source 

illumination when the light is close to both the camera and the diffuse surface  

[Iwahori1990/1992/1994, Clark1992/1999].  These differential photometric stereo 

techniques utilise a moving point light source.  Cho and Minamitani used an iterative 

technique to obtain surface geometry under point illumination after thresholding the 

data to suppress specular highlights [Cho1993]. 

  In the case of noisy images, shape and albedo were iteratively recovered by 

formulating photometric stereo in the framework of the linear Kalman filter 

[Zhang1997].  Lee and Kuo use an explicit surface model and develop a photometric 

stereo algorithm which is less sensitive to noise because it is a global method rather than 

a local one [Lee1993].  A sensitivity analysis was carried out to determine the errors in 

surface normal orientation due to measurement errors in the input data [Jiang1991].  A 

technique to evaluate the noise robustness of photometric stereo has also been presented 

[Schlüns1997]. 

  Reflectance models other than Lambert’s law have been used in the photometric stereo 

algorithm. Tagare and deFigueiredo implemented a version of photometric stereo for a 

class of diffuse non-Lambertian surfaces by constructing corresponding reflectance 

maps from a mathematical expression [Tagare1991].  ‘Photometric sampling’ which 

entails using uniformly distributed extended light sources enables the recovery of the 

surface geometry and reflectance parameters of Nayar’s hybrid model for both diffuse 

and specular reflection [Nayar1990].  Saito et al capture images under uniformly 

distributed light source at a constant illumination slant angle, discard the outlying data 

and fit a sine to the remaining Lambertian data [Saito1996].  Not only is it then possible 

to use Lambertian photometric stereo but the parameters of the Phong specular 

component can also be fitted to the separated intensity highlight.  Ikeuchi implemented 

photometric stereo for specular reflecting surfaces to obtain the surface orientation by 

using distributed diffuse light sources and assuming perfect specular reflection 

[Ikeuchi1981].  Solomon and Ikeuchi used Coleman and Jain’s four-image technique to 

extract specular pixels; this data was then fitted to a simplified version of the T-S model 

[Solomon1996].  Kay and Caelli used non-linear regression techniques with a simplified 

T-S model and simultaneously estimated surface reflectance and surface geometry 
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although this is expensive in terms of processing time [Kay1995].  Christensen and 

Shapiro describe a procedure for colour photometric stereo which can employ various 

reflection models such as T-S [Christensen1994].  

 
Uncalibrated Photometric Stereo 
The aforementioned photometric stereo techniques can all be classed as calibrated 

because the light source directions are known.  Uncalibrated photometric stereo 

techniques in which they are unknown have also been extensively researched.  In this 

case image intensities are the only data input to the photometric stereo algorithm.  

Woodham et al considered images of a Lambertian surface illuminated from different 

unknown directions and concluded that six images were sufficient to determine a 

solution with three remaining degrees of freedom [Woodham1991].  However, the 

original uncalibrated photometric stereo (UPS) algorithm is generally attributed to 

Hayakawa [Hayakawa1994].  His method involves constructing an intensity matrix each 

column of which corresponds to an image of the illuminated Lambertian surface under 

different light source directions and then factorising it into initial estimates of the 

surface orientation and light direction matrices.  Whilst these estimates form a possible 

solution, it is not unique and an ambiguity exists.  This is an example of the generic 

bilinear estimation-calibration problem [Koenderink1997].  Hayakawa proposes two 

ways to reduce the ambiguity to an orthogonal transformation.  Other strategies for 

reducing or resolving this ambiguity have subsequently been proposed such as using the 

integrability constraint [Yuille1997, Belhumeur1999], using a calibration object 

[Yuille1999] and estimating light source directions [Spence2003b].  This uncalibrated 

photometric stereo method was extended to specular reflection; this is actually 

advantageous in terms of ambiguity reduction.  Polarisation techniques were utilised to 

this end initially [Drbohlav2001].  Detecting specular highlights and assuming perfect 

specular reflection allowed estimates of the viewpoint to be obtained.  The consistent 

viewpoint constraint was thus devised and used in conjunction with the integrability 

constraint to resolve the ambiguity [Drbohlav2002, Drbohlav2003].  This constraint was 

subsequently utilised with the T-S reflection model to allow its application to a wider 

range of materials [Georghiades2003a/b/c]. 

  Recently another strategy for implementing uncalibrated photometric stereo was 

proposed [Hertzmann2003].  This method proposes the use of a calibration sphere such 

that intensities on the object of interest can be matched with those of the sphere.  This 

orientation consistency means that the surface normal can be determined. 
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2.4.4 Criteria Compliance 
  The ideal relighting technique defined by the six criteria is inexpensive in terms of 

both equipment cost and data requirement and has a compact, compatible representation 

which provides accurate relit images of diffuse surface textures.  Having reviewed both 

image-based and appearance-based techniques, it is apparent that in reality a suitable 

compromise between expense and accuracy will have to be found.  The BRDF, BTF and 

some image-based rendering methods are accurate but prohibitively expensive due to 

the specialist equipment and dense sampling required.  The eigenimage technique is an 

appearance-based approach which is more suited to our needs.  It can be used to 

approximate more complex reflectance such as specular highlights and shadows 

although this would require more basis images.  For diffuse reflectance the basis is three 

eigenimages and is therefore compact; the required interpolation for relighting could 

hence be carried out in hardware i.e. with a graphics card.  However, bump maps 

[Blinn1978] are much more commonly utilised in the field of computer graphics.  The 

implication is that it is preferable to explicitly determine the surface in terms of its 

gradients p and q.  Furthermore, the bump map is often used in conjunction with a 

colour texture map [Woo1999] which corresponds to the albedo image.  This data can 

be provided by the shape from shading model-based techniques.  In particular we 

consider Lambertian three-image photometric stereo to be the most suitable candidate 

for diffuse reflecting surfaces.  We disregard the single SFS and two image methods due 

to the requisite assumptions and accuracy concerns.  Not only does this technique 

provide compact data in the most compatible form, the sampling required is also sparse.  

The disadvantage is that the surface texture reflectance is approximated by the 

Lambertian model but as previously noted, this provides reasonable results for a large 

range of surfaces.  Uncalibrated Lambertian photometric stereo is another potential 

candidate.  In this case the only data input is a minimum of six intensity images; 

significantly the corresponding illumination directions are not required.   
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2.5 Lambertian Photometric Stereo 
 
  In this section we present the mathematical framework for variants of the Lambertian 

photometric stereo method.  To facilitate this, we first introduce the definitions required 

and then discuss the inherent assumptions and limitations of the algorithm.   

 
2.5.1 Definitions 
Co-ordinate System 
As previously mentioned, the photometric stereo method requires that both camera and 

surface texture are static.  Images are captured under different illumination directions.  

The corresponding equipment set-up is depicted in Figure 2.5.  The co-ordinate frame is 

defined so that the optical axis corresponds to the z-axis.  The camera is hence 

positioned on the    z-axis with its line of sight along the axis such that its CCD array is 

parallel to the surface texture.  The texture is globally flat and lies in the x-y plane.  The 

direction of the light which is a single moveable source is defined by two angles.  The 

slant angle ! is the angle between the illumination vector and the z-axis.  The tilt angle " 

is the angle between the x-axis and the projection of the illumination vector onto the x-y 

plane. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.5   Equipment  set-up for photometric stereo image capture. 
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Illumination Vector 
The illumination vector is defined in terms of the slant and tilt angles as follows: 
 

[ ]T!!"!" cos,sinsin,sincos=b     (2.5) 
 
Scaled Illumination Vector 
The scaled illumination vector is defined as follows: 

bl #== T
zyx lll ],,[        (2.6) 

The magnitude of this vector is the light source intensity !: 

  #=l          (2.7) 
 
Surface Normal 
We consider the surface texture to be composed of components called facets each one of 

which corresponds to a unique image pixel.  The orientation of each facet is given by 

the surface normal n which is perpendicular to the facet plane.  It is often written in 

terms of the surface gradients p and q.  If the texture is described by a height function 

z(x,y), the surface gradients are given by: 
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The surface normal is determined by the cross-product of two non-parallel tangents to 

the facet plane which can be written in terms of the surface gradients [Horn1986]. 

 

 
 
  
 
 
 
 
 

Figure 2.6 Geometry of surface facet. 

 

The tangent vectors are written as follows by considering small steps in both the x and y 

directions as illustrated in Figure 2.6. 
TT

x pxpx ],0,1[],0,[ %$$=r      (2.10) 

TT
y qyqy ],1,0[],,0[ %$$=r      (2.11) 

The cross-product of these tangents gives a vector perpendicular to the facet plane : 
T

yx qp ]1,,[ &&=' rr       (2.12) 
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Normalising to obtain a unit vector, the surface normal is hence written as follows: 
 

1
]1,,[

22 ++

!!
=

qp

qp T

n        (2.13) 

 
Scaled Surface Normal 
The scaled surface normal s is defined as the unit surface normal n scaled by the diffuse 

albedo.  ns "== T
zyx sss ],,[        (2.14) 

The magnitude of the this vector is the diffuse albedo: 

"=s          (2.15) 
 
2.5.2 Assumptions & Limitations 
Illumination 
The unit illumination vector b defined by Equation 2.5, which is known if the method is 

calibrated, is taken to be constant over the entire surface texture.  This means that the 

incident light rays are parallel to each other.  The underlying assumption is that the 

surface is illuminated by a point light source at infinity.  If the light source is too close 

for this assumption to hold then illumination vectors corresponding to each facet would 

be required for the per-pixel calculation.  An inverse square law regarding the 

illumination radius would also have to be taken into account.  This is usually ignored for 

the point source at infinity or at least incorporated into the albedo term since the radius 

can be taken as constant across the surface. 

Reflection 
The Lambertian photometric stereo model assumes that every facet is illuminated such 

that the corresponding pixel intensities are positive in every image.  In theory shadows 

therefore do not feature in the analysis.  For real world textures this is unlikely to be the 

case.  The extent to which shadows are encountered depends on the convexity and 

roughness of the surface and the light source position.  Self shadowing occurs when the 

angle between illumination vector and facet surface normal is greater than 90°.  Cast 

shadowing occurs when a relatively high part of the surface occludes the incident light 

ray thus preventing it from reaching a relatively lower part.  Cast shadowing is therefore 

a non-local process because the pixel intensity corresponding to one facet depends on 

other neighbouring facets.  Another non-local process which is disregarded is 

interreflection.  In this case we assume that surface facets do not act as secondary light 

sources.  In reality the light reflected from neighbouring surface facets will increase the 

intensity of a facet to which it is directed.  More significant increases would be observed 

for specular reflection but the surface is assumed to be diffuse in nature. 
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where 

Imaging 
Image irradiance is taken to be proportional to surface texture radiance.  We assume that 

the surface texture is orthographically projected onto the camera sensor such that the 

viewing vector is constant over the surface i.e. for each facet.  The camera sensor is also 

assumed to be linear.  This means that the light which enters the camera lens should 

have a direct linear relationship to the image pixel value.  The overall implication is that 

the image intensity is only a function of surface facet orientation and the albedo. 

 

2.5.3 Mathematical Framework 
Calibrated 3-Image 
Assuming Lambertian reflectance, three images of a surface under different illumination 

conditions are sufficient to uniquely determine both the surface orientation and an 

albedo term [Woodham1980].  For each pixel position (x,y) the following can be written 

using Equation 2.2: 
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Writing the three unit illumination vectors as a 3 ! 3 matrix B and expressing the albedo 

and surface normal terms as the scaled surface normal s,  this becomes: 
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Since the technique is calibrated, the corresponding tilt and slant angles are measured 

and the illumination matrix B is known.  The intensity at the pixel position is also 

known for each illumination condition from the three images of the texture.  The system 

of equations is solved by inverting the illumination matrix B and multiplying by the 

intensity vector i.   

),(),( 1 yxyx iBs #="       (2.18) 
 

Assuming the unknown light source intensity to be constant for each of the three 

illumination vectors, we determine the surface gradients and an albedo term ! as 

follows: 
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It is sufficient to combine the diffuse albedo and the light source intensity into this 

single parameter because their individual values are usually not required [Klette1999]. 

  On a practical note, singular value decomposition (SVD) is one technique which is 

commonly utilised to perform the inversion operation.  Decomposing the matrix B into 

two orthogonal matrices and a diagonal matrix facilitates this.  This is because inverting 

an orthogonal matrix merely involves transposing it whilst inverting a diagonal matrix 

entails the inversion of each diagonal element.   

  

TVUB %=         (2.22) 
 

TUVB 11 !! %=          (2.23) 
  

Simplified Calibrated Scheme 
McGunnigle proposed a simplified Lambertian photometric stereo scheme by using a 

specific configuration of illumination directions [McGunnigle1998].  Its development 

involves expressing Equation 2.2 explicitly in terms of the surface gradients and the 

illumination angles using Equations 2.5 and 2.13: 
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If the surface is illuminated from tilt angles of 0°, 90° and 180° at constant slant angle !, 

the following expressions are obtained from Equation 2.24. 
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If the first and third equations are added, a non-linear function of the surface derivatives 

will be obtained. 

1
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Two linear functions are then obtained by dividing the Equations 2.25 & 2.26 with 

Equation 2.28.  These equations relate the surface gradients to image intensity and are 

independent of the albedo " and the light source intensity !. 
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Once these equations have been re-arranged, expressions for the surface derivatives and 

albedo product can be obtained. 

!tan
21 pi

p
$

=        (2.31) 

!tan
21 qiq

$
=        (2.32) 

!!
"#%

cossin
122

0

+$

++
==

p
qpi      (2.33) 

 
Over-constrained Calibrated Scheme 
If more than three images of the surface texture illuminated from different light source 

directions are available then an over-constrained version of Lambertian photometric 

stereo can be implemented [Woodham1980].  In this case an image intensity matrix I is 

formed each column of which corresponds to a single image illuminated from a unique 

direction.  If there are m pixels in the image and f frames i.e. images with a different 

illumination direction then the matrix is formulated as follows: 
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Lambert’s law as given for a single pixel position by Equation 2.2 can be re-formulated 

in matrix terms as follows: 

SLI =         (2.35) 
 

where  m = no. of pixels 
f = no. of frames 
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In this case S is the scaled surface normal matrix which is m ! 3 in size.  Each row of S 

is the transpose of an individual scaled surface normal.  
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The matrix L is the scaled illumination vector matrix and is 3 ! f  in size.  Each column 

of L corresponds to an individual scaled illumination vector. 
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Since f > 3 in this over-constrained case, L is not a square matrix.  However, SVD can 

be employed to find the pseudo-inverse and hence provide a least-squares solution of 

the photometric stereo scheme for the scaled surface normal matrix. 
1#= ILS         (2.38) 

In reality it is the unit illumination matrix B which is known rather than scaled 

illumination matrix L.  The estimate of the scaled surface normal matrix S will be 

scaled by the light intensity !.  The only implication is that the resulting albedo image 

corresponds to values of the albedo term " as previously discussed. 

 
Uncalibrated Photometric Stereo 
The mathematical framework for uncalibrated photometric stereo is analogous to the 

over-constrained calibrated technique and is given by Equation 2.35.  Only the input 

intensity matrix I is known, however.  In this case the input intensity matrix is 

factorised into a pseudo surface matrix and a pseudo illumination matrix, LS ˆ&ˆ .  These 

represent a possible solution but it is not unique and an ambiguity exists since the 

following holds: 

LAASLSI ˆˆˆˆ $#$==       (2.39) 
 
Even though the initial decomposition to obtain the first estimates is straightforward in 

terms of mathematics, the determination of the ambiguity matrix A such that the 

resulting solutions will be unique is more challenging.  This aspect of the uncalibrated 

technique will be covered in both Chapters 5 & 6.  We note that it is common practice 

in the literature to use the transpose of A in Equation 2.39 [Drbohlav2002, Yuille1999].  

This notation proves to be convenient for the development of the relevant theory. 
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Uncalibrated Photometric Stereo with Outliers 
If the input intensity data corresponds to a diffuse reflecting surface but contains 

outliers corresponding to shadows and highlights then the factorisation in the 

uncalibrated photometric stereo technique can be modified to attenuate the outlying data 

[Georghiades2003a].  This involves setting a lower and upper bounds on the intensity 

value; this can be based on the mean intensity plus or minus a specified number of 

standard deviations.  The original intensity matrix I is analysed in order to generate two 

vectors, vr & vc, which contain the indices of valid rows!and valid columns i.e. those 

which have no intensity values outwith the set range.  A reduced intensity matrix of 

completely valid rows is formed and decomposed with SVD in order to obtain an initial 

estimate of the pseudo illumination matrix:    

LSI ˆˆ VrVr = ! ! ! ! !    (2.40) 
where Vr denotes indices of rows with no invalid intensities.  An estimate of the pseudo 

scaled surface normal matrix Ŝ  is then generated row-wise using L̂ and the original 

intensity matrix I.  This is achieved by taking the ith row of I and removing the invalid 

intensities given by the indices in vc to create a row vector ii
Vc.  The illumination matrix 

is reduced accordingly and its pseudo-inverse determined such that the vector iŝ  can be 

estimated:    

!"!= svdVc
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ii Lis =     (2.41) 

where Vc denotes indices of columns with no invalid intensities and the superscript † 

denotes the pseudo-inverse.  Next an updated estimate of the pseudo illumination matrix 

L̂  is generated column-wise using Ŝ  and the original intensity matrix.  This is achieved 

by taking the jth column of I and removing the invalid intensities given by the indices in 

vr to create a column vector ij
Vr.  The scaled surface normal matrix is reduced 

accordingly and its pseudo-inverse determined such that the illumination vector lj can be 

estimated:!!

!"!= svd
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This forms the basis for an iterative procedure.  It is repeated until the estimates of both 

pseudo matrices converge.   

 
2.5.4 Summary 
  Calibrated Lambertian photometric stereo can be solved with three input images by 

inverting the known illumination matrix.  If the illumination distribution is restricted 
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such that the slant angle is constant and the difference in tilt angle between successive 

directions is 90° then the scheme simplifies such that a combination of the input image 

intensities is merely required.  If the problem is over-constrained, a least squares 

solution is found by finding the pseudo-inverse of the non-square illumination matrix.  

If the illumination direction corresponding to each image is unknown the uncalibrated 

technique may be employed although extra information is required to resolve the 

inherent ambiguity in the solution.  If outlying data is present it is possible to use an 

iterative technique to attenuate it. 

  It is straightforward to utilise the resulting scaled surface normals, which may be 

formulated as p and q maps and albedo image, for relighting using the Lambertian 

model.  For graphics applications it would also be possible to use the same data with the 

Phong model to provide hybrid reflectance if the user specifies the specular parameters. 

 

2.6 Summary & Discussion 
 
  In this chapter we initially considered the processes which take place when light is 

reflected from a surface and the ways in which this can be modelled.  We subsequently 

presented a survey on techniques to determine surface texture representations which 

facilitate relighting under arbitrary illumination conditions.  We selected a group of 

methods based on defined criteria.    Hence we identified Lambertian photometric stereo 

methods as the most appropriate with regard to fulfilling our relighting objective. 

  Photometric stereo methods are inexpensive with regard to equipment since an 

ordinary CCD camera can be utilised for image capture.  Furthermore, they are 

inexpensive with regard to input data since extremely sparse sampling is merely 

required.  The resulting representation for relighting which we required to be of low 

dimension is in terms of the two surface gradients and the albedo.  Although the 

appearance-based eigenimage method also results in a 3-dimensional basis, relighting 

would involve linear combinations of the basis images.  Whilst this procedure is 

certainly compatible with graphics hardware, bump mapping is much more commonly 

utilised in computer graphics applications.  We have therefore opted for the photometric 

stereo class of methods because of the resulting surface-explicit representation.  The 

mathematical framework required to implement several variants of Lambertian 

photometric stereo was presented. 
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Chapter 3  
 
Surface Texture 
 
 
3.1 Introduction 
 
  In the previous chapter we identified several methods which facilitate the relighting of 

surface textures under arbitrary lighting conditions.  In order to assess the various 

techniques, intensity images of an illuminated surface are required as data input.  

Images of a sample surface texture can be captured with a CCD camera.  In addition to 

utilising real world textures it is advantageous to have the ability to evaluate each 

technique under controlled conditions.  Simulations can be performed with synthetic 

texture surfaces.  This entails the use of mathematical models to generate data with 

user-specified surface texture characteristics.  This approach allows favourable 

operating conditions to be determined and potential performance issues with real world 

textures to be predicted.  In this chapter both synthetic and real surface textures are 

introduced.  Their characteristics are described with a view to explaining the reason for 

their inclusion in the database of texture images used for the work presented in this 

thesis. 

 
 
This chapter is organised as follows:   

  A working definition of surface texture is given in Section 3.3.  A number of 

quantitative measures for surface description are given in Section 3.3.  The synthetic 

and real world surface textures utilised as data input in this thesis are presented and 

characterised in Sections 3.4 and 3.5.  A means of algorithm performance assessment 

which is based on a comparison of data set images and corresponding relit images is 

given in Section 3.6.  We summarise the chapter in Section 3.7. 
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3.2 A Definition of Surface Texture 
 
  The term ‘surface texture’ has no precise definition and can be interpreted in a number 

of different ways depending on the application.  It can refer to the two-dimensional 

intensity variation of the surface reflectance.  This variation in albedo could be random 

or regular such that a basic pattern is repeated.  Texture can also refer to the three-

dimensional structural features of a surface which may influence its feel as well as its 

appearance.  In this case it is the topography or surface relief which is relevant.  Smith 

et al note that surface texture therefore constitutes a 2D photometric property, a 3D 

geometric surface property or a combination of both [Smith2000].  The visual 

perception of such phenomena will differ depending on the scale at which the surface is 

observed.  With regard to surface geometry, what appears smooth at one scale will be 

coarse at another.  Koenderink et al defined three surface structure classes to facilitate a 

more informative description: they are the megastructure, mesostructure and 

microstructure [Koenderink1996b].  Megastructure refers to the object’s global shape, 

mesostructure represents topographic texture i.e. local variation in surface height whilst 

microstructure refers to the features visible at relatively high magnification.  We 

consider the term ‘surface texture’ or ‘3D surface texture’ to denote a surface with 

mesostructural features whose megastructure is planar.  Since the albedo may also be 

variable, our data sets hence comprise images of globally flat rough patterned surfaces 

(see Figure 3.1).     

 

 

 

 

 

 

 

Figure 3.1  The two components of the surface texture definition (a) colour albedo and 
(b) surface relief. 

 
 
 
 

 
 

(a) (b) 
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3.3 Surface Description 
 
  A statistical approach is commonly adopted in order to describe the mesostructure of 

rough surface textures.  In this case surface height is regarded as a two-dimensional 

random field.  This means that standard statistics and signal processing techniques can 

be applied to characterise the texture. 

 
Surface roughness 
The most common measure of surface roughness is root mean square roughness zrms.  It 

is the standard deviation of height along a surface profile or over an area.  The surface 

gradients p and q determined by application of photometric stereo can be integrated to 

provide an estimate of surface height in the form of a two-dimensional intensity image 

[Frankot1988, Gullón2002].  In this case surface roughness is given by the following 

equation for a square image:  
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where ),( yxz  is the mean surface height, z(x,y) is the surface height at a point (x,y) in 

the image and m is the number of discrete height estimates which are equally spaced.   

  A less common approach is to use the root mean square slope.  It is calculated in both 

directions as follows for square images of each gradient: 
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It is noted that both values of rms roughness and rms slope are affected by 

characteristics of the surface height image e.g. sampling frequency/resolution, sample 

length.  This is particularly true for the rms slope which depends on both height 

amplitude and spacing. 
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Directionality 
Despite this sensitivity, the rms slope can be used to provide an indication of the 

directionality of the surface texture [Gullón2002].  The directionality is a ratio defined 

as follows: 

          (3.4) 

If the texture is isotropic such that the surface is equally rough in all directions both rms 

slope values should have approximately the same value and d will tend to 0.5.  If the 

texture is directional in either the x or y axis then d will tend towards 0 and 1 

respectively. 

 
Second Order Statistics 
The single value parameters introduced above are unable to quantify the relationship 

between the values of the surface height field and are therefore of limited use.  This is 

also true of the first order probability density function or histogram; if it can be 

described by a Gaussian this is simply equivalent to rms roughness.  Second order 

statistics provide a measure of the correlation between pixels, however.  The 

autocorrelation function (ACF) can be thought of as the overall intensity which results 

from overlaying two transparencies of the height image with one image shifted by a 

distance.  Its Fourier transform equivalent is the power spectral density function (PSD) 

and facilitates frequency-based texture characterisation.  For example, prominent peaks 

in the Fourier spectrum indicate the principal directionality of global texture patterns 

whilst the peak location gives the fundamental spatial period of the patterns.  The PSD 

will be considered further in the following section. 

 

3.4 Synthetic Surfaces 
 
  If the statistical representation of a surface texture or its spectral equivalent is 

sufficiently detailed it can be employed as a model.  The three synthetic surfaces 

utilised in our simulation work are defined in terms of their PSD.  It is noted that in 

order to describe an image completely, both the PSD and the phase spectrum are 

required.  The phase spectrum contains information pertaining to edges i.e. boundaries 

of abrupt intensity change.  We model the phase spectrum as an uncorrelated random 

field with a normal distribution.  This means that the generated surfaces will be 

unstructured and as such they will have the appearance of natural rough surfaces. 
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3.4.1 Surface Models 
  The use of the following three surface models was inspired by research undertaken by 

Linnett and McGunnigle [Linnett1991, McGunnigle1998]. 

 
Fractal 
Fractal Brownian functions provide a good model for describing rough natural surfaces 

[Pentland1988].  An important property of these surfaces is that they are statistically      

self-similar from one segment of the surface to another and at different scales.  The 

fractal dimension D is related to the power roll-off factor ! for the PSD of a fractal 

surface which is given as follows: 

  ( ) !"
" f

f

k
s =         (3.5) 

where ! = 8-2D, " is the frequency and kf  is a constant.  We used a value of 2.5 for the 

fractal dimension to produce a surface which resembles a natural surface.  The power    

roll-off value ! was 3.0.  Surface roughness can be controlled by altering the value of kf 

which is related to the height variance: 
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Mulvaney 
This PSD generates a rough surface which appears to have undergone a degree of 

physical processing.  Mulvaney et al achieved this by employing a cut-off frequency 

[Mulvaney1989].   The PSD is given by: 
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where "c is the cut-off frequency in cycles per image and km is a constant.  When the 

frequency ! is small this corresponds to a white noise spectrum since the PSD tends 

towards the specified constant km.  For higher frequency the spectrum becomes 

equivalent to a fractal with a roll-off value ! of 3.0.   
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Sand ripple 
The fractal model was extended by maintaining the isotropic frequency decay of its 

PSD but shifting the peak from the centre and duplicating it to preserve symmetry 

[Linnett1991].  PSD plots are provided in Figure 3.2 for comparison.  This directional 

fractal model results in a surface which resembles sand ripples on the seabed.  It is 

given by the following equation: 
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!
where u and v are the Cartesian frequency coordinates, uc and vc are cut-off frequencies 

in the x and y direction and ks is a constant.  The values of uc, vc and ! were 64.0, 0.0 

and 3.0 respectively.  

 

 

 
(a)      (b) 

 

 

 

Figure 3.2 PSD plot corresponding to (a) fractal & (b) sand ripple surfaces. 

 

 

An inverse Fourier transform is performed to obtain the height maps for each synthetic 

surface (see Figure 3.3).   

        

(a)  (b)  (c)  

Figure 3.3 Height map images corresponding to  (a) fractal, (b) Mulvaney, (c) sand 
ripple surfaces. 
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(b) ! = 0° (a) ! = 0° (c) ! = 0° 

(b) ! = 90° (a) ! = 90° (c) ! = 90° 

3.4.2 Data Generation 
  The height maps were used to generate images of each synthetic surface under user-

specified illumination conditions and reflectance model.  Sample images produced 

using the Lambertian model are given in Figure 3.4. 

 

 

            
  

           
  

Figure 3.4 Images of the (a) fractal, (b) Mulvaney, (c) sand ripple surfaces illuminated 
from two directions (indicated by arrow) using the Lambertian model. 

 

Every data set consists of 108 images which were generated with a set range of 

illumination directions for each synthetic surface using a selected reflectance model.  

These images correspond to a complete revolution with regard to illumination tilt angle 

with a "! of 10° at a constant slant angle for three slant angles of 30°, 45° and 60°.  To 

expedite the processing of multiple data sets with several versions of the algorithms, an 

image size of 128 ! 128 pixels was used in each case.  An exception to this was when 

specific images were required for display in which case 512 ! 512 pixels was used to 

provide sufficiently high resolution.  

 

 



 38 

3.4.3 Characterisation 
  In this section we consider the character of the synthetic surface textures used to 

generate the data sets with a view to explaining the reason for their inclusion in this 

investigation.  To do so, we examine reflectance characteristics and surface features 

corresponding to mesostructure and megastructure.  Whilst the images have been 

produced under user-specified and hence known conditions in this case, we also 

establish various methods of describing texture character which could be employed on a 

general basis. 

 

 

 

Table 3.1  Measures of surface structure features for the three synthetic surfaces. 

 

Reflectance 
The majority of synthetic texture data sets were produced by relighting the height maps 

with the Lambertian model.  A finite difference method was utilised to produce the p 

and q maps from the height map to facilitate this [Kreyszig1983, Chap.19].  Constant 

diffuse albedo was used in each case.  This allows a visual inspection of the effect of 

any sources of error introduced since a recovered albedo image should ideally be of 

constant intensity.  Negative intensities were not permitted; any encountered were set to 

zero in order to model self shadows.  Data sets were also generated by using alternative 

reflectance models to provide deviation from Lambertian behaviour.  Point lighting and 

Phong models which were discussed in the previous chapter were used for this purpose.  

Noise was also added to images produced by relighting with the Lambertian model to 

create noisy data sets. 

 
Surface Mesostructure 
In this case we used the rudimentary roughness and directionality measures described in 

Section 3.3 to provide a quantitative assessment of surface relief.  The resulting values 

are given in Table 3.1.  The fractal is the roughest of the three surfaces; both the 

Mulvaney and sand ripple textures are not rough surfaces according to this measure, 

however.  Data sets of rougher surface textures were created by generating height maps 

for the three surfaces with increased height variance.  With regard to directionality, the 

values of d indicate that the both the fractal and the Mulvaney surface are isotropic in 

nature.  The value for the sand ripple surface means that it is a directional texture with 

the greatest deviation in surface gradient along the x-axis.  Fourier spectra provide a 

Synthetic Surface p  q  zrms d 
fractal 0.00 0.00 1.80 0.50 
Mulvaney 0.00 0.00 0.62 0.50 
sand ripple 0.00 0.00 0.44 0.84 
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(b) ! = 0° (a) ! = 0° (c) ! = 0° 

(b) ! = 90° (a) ! = 90° (c) ! = 90° 

visual and more informative insight into the directionality of each of the synthetic 

surfaces compared to the value of d.  Spectra corresponding to the illuminated surfaces 

of Figure 3.4 are given in Figure 3.5. 

 

              
 

              

Figure 3.5 Fourier spectra of images of the (a) fractal, (b) Mulvaney, (c) sand ripple 
surfaces illuminated from two directions !=0°, 90°. (indicated by arrow). 

 

The spectra corresponding to images of the illuminated sand ripple surface confirm that 

it is a directional surface (Figure 3.5c)  The peaks are characteristic of a surface with a 

single strong dominant frequency.  The spacing of the peaks provides an indication of 

the period; the further apart they are the higher the frequency.  The prominent peaks do 

not rotate with changing illumination direction although their intensity varies.  This can 

be seen more clearly from the corresponding polar plot in Figure 3.6b.  The polar plot is 

determined from the Fourier spectrum expressed in polar coordinates.   

  The spectra of both the fractal and the Mulvaney illuminated surfaces are typical of 

isotropic surfaces (Figure 3.5a/b).  In contrast to directional surfaces, their spectra rotate 

with the illumination direction.  This can also be seen from the polar plot in Figure 3.6a.  

Whilst the surface gradients are not aligned with any particular direction in this case, the 

images of illuminated isotropic surfaces are directional.  This means that image 

directionality for isotropic surfaces depends on the illumination.  Indeed this effect can 

be faintly detected upon observation of the images corresponding to the fractal and 

Mulvaney textures in Figure 3.4. 



 40 

 (a) 

 

 

 

 

 

 

 (b) 

 

 

 

 

 

 

 

Figure 3.6 Polar plot of (a) an isotropic texture and (b) a directional texture 
illuminated from directions with different tilt angles. 

 
  The fact that the directionality of illuminated isotropic surfaces depends on the light 

source position suggests that given such an image, it would be possible to estimate 

illumination direction.  This has been investigated by several authors [Knill1990, 

Chantler1997, Koenderink2003, Varma2004].  Chantler’s technique operates in the 

frequency domain.  He applies Fourier analysis to determine the tilt angle which 

corresponds to the peak value of the polar plot (see Figure 3.6a).  A number of other 

methods for estimating the illumination direction in scenes have been presented but are 

not applicable in these circumstances due to the underlying assumptions e.g. 

[Pentland1982, Zheng1991, Chojnacki1994]. 

 
Surface Megastructure 
The surface textures are assumed to have a planar megastructure  i.e. globally flat.  This 

can be checked by computing the mean surface gradient in both x and y axis directions.  

If the surface is flat then the value of both means should be zero; this implies that the 

mean surface normal should be [0,0,1]T.  According to the values given in Table 3.1 this 

is the case for all three synthetic surfaces. 
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3.5 Real World Textures 
 
  The synthetic texture surfaces were modelled with uniform albedo to facilitate a visual 

inspection of the effect of sources of error.  Most textures encountered in practice are 

likely to have variable albedo, however.  This might be due to the pattern of a textile but 

in reality even subtle changes in tone will be enough to cause variability in the albedo 

value.  Since we are concerned with relighting applications in areas such as garment 

design with textiles, it is also paramount to consider not just variable albedo but colour.  

The selection of real textures for our experiments reflects the need to investigate these 

characteristics and the issues associated with them. 

 
3.5.1 Data Generation 
  We captured images of sample surface textures using a charge coupled device (CCD) 

camera manufactured by Vosskühler.  The model is a CCD-1300 and has a resolution 

equivalent to 1280 ! 1024 square pixels.  The camera is used in conjunction with a 

framegrabber and generates 12 bit images in various TIFF formats.  These formats 

include separate images corresponding to red (R), green (G) and blue (B), a single RGB 

image or a greyscale image.  Although the camera is based around a single CCD, it 

utilises a three colour mosaic filter such that each pixel position corresponds to either 

red, green or blue.  The filter is arranged in a Bayer pattern [Bayer1976] whereby green 

is sampled at a higher rate than red and blue; this is because it is taken to correspond to 

luminance.  The implication is that the formats which generate colour images have been 

interpolated.  For image processing purposes it is preferable to use only directly 

measured intensities and hence each image was saved in the greyscale format.   

  With regard to equipment set-up, the camera is suspended approximately 0.6m above 

the texture sample which is approximately 0.2m square.  Both camera and texture are 

fixed in position.  The light source is a 7W compact fluorescent light bulb.  The light is 

fixed to a moveable arm which is adjusted manually to provide the required tilt and 

slant angles; the light is approximately at a distance of 0.6m from the centre of the 

texture sample.   

  Every data set consists of 108 images which were captured with a set range of 

illumination directions for each sample texture.  These images correspond to a complete 

revolution with regard to illumination tilt angle with a !" of 10° at a constant slant angle 

for three slant angles of 30°, 45° and 60°.  
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3.5.2 Variable Colour Albedo 
  Although the selected image format is greyscale, each intensity value corresponds to 

one of the three colours in the mosaic filter.  Each greyscale image hence contains 

colour information.  Since the red, green and blue pixels are arranged in a known way 

(the Bayer array in this case: see Figure 3.7), it is straightforward to generate a 

corresponding colour image by using demosaicking methods such as interpolation.  

However, it is both convenient and advantageous in terms of accuracy to retain the 

single greyscale format for image processing purposes.  This not only avoids the need 

for multiple application of an algorithm to each colour channel but ensures that the 

processing is based solely on measured image intensities rather than a mixture of 

measured and estimated values.  Hence unnecessary errors are not introduced by the 

demosaicking process.  Such interpolation algorithms are employed only when display  

of a colour image is required. 

  The demosaicking process basically entails the generation of a high resolution colour 

image which is based on the greyscale original.  At each pixel position in the original, 

the intensity value for one colour is known.  In order to produce a high resolution colour 

image, an intensity value corresponding to each of the other two colours must be 

estimated at the same position over the entire image to give three complete colour 

planes.  This can be carried out with a variety of interpolation methods,  a 

comprehensive overview of which is given by Ramanath et al [Ramanath2002].  

Bearing in mind that we only require colour images for display and that these are not 

used to determine performance figures, we employed a simple but effective algorithm to 

effect the conversion.  Bilinear interpolation involves averaging the intensity values 

available for neighbouring pixels of the colour which is unknown at the pixel location 

being considered.  

 

 

 

 

 

 

 

 

Figure 3.7    Illustration of Bayer array for the top left corner of a camera greyscale 
image format. 

R1 G2 R3 G4 

G7 B6 B8 

R9 G10 R11 G12 

G13 B14 G15 B16 

G5 
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At a pixel of known red or blue intensity, the green value is estimated by taking the 

mean of the four green intensity values of adjacent pixels, e.g. G6 = (G2 + G5 + G7 + 

G10)/4, G11 = (G7 + G10 + G12 + G15)/4.  At a pixel of known green intensity, the red or 

blue value is estimated by taking the mean of the two adjacent red or blue values in the 

same row, e.g. R2 = (R1 + R3 )/2,  B7 = (B6 + B8 )/2.  At a pixel of known red or blue 

intensity, the blue or red intensity is estimated by taking the mean of the four blue or red 

intensity values of adjacent pixels, e.g. R6 = (R1 + R3 + R9 + R11)/4, B11 = (B6 + B8 + 

B14 + B16)/4. 

 

 

 

 

 

 

 

 

 

 

Figure 3.8    Image planes obtained by bilinear interpolation which are smaller in 
height & width due to form of the calculations. 

 
The resulting interpolated colour planes are each two pixels shorter in length for both 

row and column due to the form of the calculations (see Figure 3.8).  A colour sample 

of each of the thirty-one surface textures utilised in this investigation is given in Figure 

3.9.  These have been generated from 512 × 512 pixels images cut from the original 

greyscale images. 
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a   b  c  

d   e  f  

g   h  I  

 j   k  l  

m  n  o  

 p  q  r  
Figure 3.9   One image from each of the real world texture data sets utilised in the 
investigation (illumination direction corresponds to  !=0°, "=45°). 
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Figure 3.9 One image from each of the real world texture data sets utilised in the 
investigation (illumination direction corresponds to  !=0°, "=45°). (continued) 
 
 
 
 
 
 



 46 

 
3.5.3 Characterisation 
  The thirty-one surface textures selected consist of textiles (20), materials which could 

be used in an architectural 3D rendering of a building exterior or interior (7) and 

miscellaneous textures such as Lego™ bricks (4).  In this section we examine their 

character in an analagous way to the approach used for the synthetic surface textures.  In 

this case the three-image Lambertian photometric stereo technique was utilised in 

conjunction with an integration step [Gullón2002] to estimate the requisite data to 

calculate the various measures (see Table 3.2). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2 Measures of surface structure features for the real world surface textures.  
(Bold entries are referred to in the text.) 

 

 

 

Texture p  q  zrms d 
a 0.06 -0.02 8.75 0.61 
b 0.07 -0.04 8.46 0.48 
c 0.03 -0.03 6.90 0.47 
d 0.07 -0.02 7.22 0.47 
e 0.04 -0.02 7.26 0.50 
f 0.03 0.03 8.64 0.52 
g 0.07 -0.05 8.77 0.48 
h 0.11 0.07 11.20 0.48 
i 0.05 -0.02 6.24 0.55 
j 0.06 -0.02 7.01 0.56 
k 0.03 -0.01 8.56 0.46 
l 0.12 -0.06 9.81 0.50 
m 0.05 -0.02 8.14 0.50 
n 0.07 -0.03 7.77 0.58 
o 0.07 -0.01 10.97 0.47 
p 0.12 0.02 13.93 0.41 
q 0.02 -0.03 8.13 0.52 
r 0.08 -0.02 6.94 0.51 
s 0.09 -0.03 8.52 0.46 
t 0.07 -0.03 8.32 0.47 
u 0.06 -0.05 5.70 0.47 
v 0.16 -0.05 7.30 0.50 
w -0.04 -0.04 8.09 0.73 
x 0.15 -0.05 8.80 0.64 
y 0.02 -0.03 8.94 0.54 
z 0.04 0.02 9.95 0.47 

aa 0.07 0.00 10.27 0.17 
ab -0.12 -0.08 15.53 0.66 
ac 0.20 0.02 11.93 0.18 
ad -0.05 -0.04 9.68 0.47 
ae 0.00 0.00 9.49 0.48 
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Reflectance 
The majority of the real world texture sample materials are assumed to exhibit diffuse 

reflection such that the Lambertian model can be utilised to produce relit images for 

comparison.  Unlike the synthetic surface textures, many of these have a variable colour 

albedo and this must be taken into account when generating the relit images.  Deviations 

from ideal Lambertian reflection are likely to be present or even prevalent in each 

image.   The fact that noise is an inherent part of the image capture process, that the 

light source is not at infinity, that interreflections do take place and that shadowing will 

be a feature of such rough surfaces means that the reflectance model is an 

approximation.  Four specularly reflecting textures (h, r, ac & ad) were also deliberately 

included in the data sets to provide examples of outlying behaviour.  The extent to 

which each deviation occurs will determine how good an approximation the Lambertian 

model is.   

 

Surface Mesostructure 
The rms roughness measure is indicative of the extent to which each of the surface 

textures are likely to be prone to shadowing.  The zrms values given in Table 3.2 show 

that all of the selected real world textures are rough.  Textures with relatively high 

values such as ab, p, ac, h & o are likely to deviate significantly from ideal Lambertian 

behaviour. 

  With regard to directionality, the selected textures are either isotropic or directional in 

nature.  The measure d allows the directional textures which have a single dominant 

direction to be identified.  According to the values given in Table 3.2 the textures aa & 

ac are therefore uni-directional with the major variation in surface gradient aligned with 

the   y-axis whilst w, ab and x are uni-directional with regard to the x-axis.  The 

remaining textures are either isotropic or multi-directional.  The measure d cannot be 

used to distinguish between the two, however.  Many of the textures are woven textiles 

where the warp and weft threads are visible and will have two dominant directions 

resulting in a value of d similar to that for isotropic textures.  Directionality can be more 

precisely predicted by examining the corresponding Fourier spectra of the illuminated 

surface texture image.  Examples of these are given in Figure 3.10.  The characteristic 

of the isotropic surface texture i.e. spectra rotating according to illumination direction, 

reveals that textures u, ad & m are isotropic.  The other textures are directional.  The 

uni-directional surfaces result in spectra similar to that presented in Figure 3.10b.  The 

synthetic sand ripple texture is another example of this.  Examples of the spectra of 

multi-directional textures are given in Figure 3.10c. 
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(b) ! = 0° (a) ! = 0° (c) ! = 0° 

(b) ! = 90° (a) ! = 90° (c) ! = 90° 

 
 

             
 

             
 
Figure 3.10 Example images of the Fourier spectra of real world textures which exhibit   
(a) isotropic, (b) uni-directional and (c) multi-directional behaviour.  These correspond 
to textures u, w and f respectively. 

 

 

Planar Megastructure 
Whilst the sample textures have all been arranged such they are globally flat, it is 

recognised that this may not quite be the case for a small sample of their overall image.  

As previously mentioned, if a texture is globally flat then the mean of the surface 

derivatives should be zero.  The mean values of both p and q output images which are 

512 ! 512 pixels in size are reported in Table 3.2.  They demonstrate some deviation 

from the ideal mean surface normal of [0,0,1]T.  This is particularly true for the textures 

ac, v, x, ab & h. 
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3.6 Relighting Assessment 
   
  Subsets of both the generated synthetic data sets and the captured data sets of real 

world textures are used as data input for the various photometric stereo algorithms used 

in this research.  The output from each algorithm application can be used in conjunction 

with an illumination model to generate relit images of the surface texture under arbitrary 

illumination conditions.  In order to assess the algorithm performance in each case, we 

generated relit images with the Lambertian model.  We used a signal to relight error 

ratio SER as a measure of the difference in intensity values between an original image 

and a corresponding relit image.  This is based on the signal to residue ratio metric 

[McGunnigle1998, Gullón2002] and is calculated as follows: 
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where I(!j,"j) is a data set image, Irelight(!j,"j) is the corresponding generated image relit 

under the jth illumination direction defined by the tilt angle !j and slant angle "j and 

var[I] is the variance of the intensity image.   

  We obtained an estimate of the overall relight accuracy for each texture by calculating 

SER values for a series of relit images and taking their mean.  The texture signal to 

relight error ratio TSER is hence given by: 
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for a texture tx where n is the number of original-relit image pairs considered.  In order 

to avoid bias, we note that the relit images used to calculate the TSER should be 

estimates of images in the database which have not been used as input data.  In our 

experiments we frequently used input data corresponding to a common slant angle and 

calculated this metric using database images corresponding to the other two slant angles.  

In this case the TSER value is calculated from images corresponding to seventy-two 

illumination directions.   

  A mean TSER was also calculated by averaging the individual values for each texture 

utilised in the experiments.  For the real textures this was calcuated as follows: 
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  A visual inspection of the relight error was also provided through the use of difference 

images.  These are generated by subtracting the relit image from its corresponding data 

set image and taking the magnitude of the result i.e. | I(!,")-Irelight(!,") |.  This implies 

that relatively accurate regions will be dark and relatively inaccurate regions will be 

light. 

 

3.7 Summary & Discussion 
 
  In this chapter we explicitly defined the term ‘surface texture’ as referring to globally 

flat rough patterned surfaces.  We discussed various approaches used to describe such 

textures such as roughness and directionality measures.  We introduced three synthetic 

surface models based on second order statistics which were employed to generate 

images under a set range of illumination conditions using a number of different 

illumination models.  The synthetic texture data sets thus generated provide a means of 

assessing the various photometric stereo algorithms under a series of controlled 

conditions which are both favourable and adverse.  We introduced the real world 

surface texture data sets which consist of the images of coloured texture samples 

illuminated under identical illumination directions to the synthetic data sets and 

described the equipment used in their capture.  We discussed the issues involved in the 

processing/display of the resulting coloured images and considered the character of the 

corresponding surface textures.  These surface texture data sets provide a means of 

assessing the various photometric stereo algorithms under real conditions.  Finally the 

texture signal to relight error ratio (TSER) was introduced as means of determining a 

single measure of performance to assess the algorithms in a consistent quantitative way. 
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Chapter 4  
 

Optimal Illumination for Three-Image 
Photometric Stereo 
 
 
4.1 Introduction 
 
  In this chapter we focus on the three-image Lambertian photometric stereo technique 

which was introduced in Chapter 2.  In this case not only is intensity data available but 

the corresponding illumination conditions under which each image was captured are 

also known.  This implementation of photometric stereo is hence classed as a calibrated 

technique because the direction of the illumination is known.   

  Illumination direction has a significant bearing on the accuracy of photometric stereo.  

Woodham advocates maximising the illumination slant angle for optimal performance 

[Woodham1980] although he notes that its value is restricted in practice.  This is due to 

the need to minimise the presence of shadows which are detrimental to performance.  

With regard to the relative position of the three light sources Woodham points out that a 

co-planar illumination arrangement should be avoided [Woodham1980].  However, the 

illumination tilt angles which correspond to optimal performance have not been 

reported in the literature.  We devised a means of determining the optimal illumination 

configuration [Spence2003a].  We present its theoretical development, which is based 

on noise minimisation, in this chapter.  An equivalent process based on empirical data is 

also given.  

 

This chapter is organised as follows:  

  The three-image photometric stereo equations originally introduced in Chapter 2 are 

re-stated in Section 4.2 and current guidelines regarding optimal performance are 

reviewed.  In Section 4.3 a sensitivity analysis is performed with a view to deriving 

overall noise expressions.  An equivalent empirical approach is developed in Section 

4.4.  The noise expressions are minimised in Section 4.5 and the optimal operating 

conditions are reported.  A practical assessment of the proposed optimal illumination  

configuration is given in Section 4.6.  Conclusions are drawn in Section 4.7. 
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4.2 Three-Image Photometric Stereo 
 
  As briefly discussed in Chapter 2, Woodham demonstrated that three images of a 

surface under different illumination conditions are sufficient to uniquely determine both 

the surface orientation and an albedo term.   

 

 

 

 

 

 

 

 

 

Figure 4.1 Equipment arrangement for three-image Lambertian photometric stereo. 

 
A system of equations based on the Lambertian model is solved by inverting the 

illumination unit vector matrix.  We re-state Equations 2.17 and 2.18 to illustrate this:  

),(),( yxyx Bsi !=  !    ),(),( 1 yxyx iBs "=!    
 
The surface gradients p & q and the albedo parameter ! can then be determined 

(Equations 2.19-2.21):   

),(
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yxp
z

x"=  
),(
),(
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yxs

yxq
z

y"=    

 
222 ),(),(),(),( yxsyxsyxsyx zyx ++= !#   

   
  Accuracy is an issue which was considered by Woodham in some depth 

[Woodham1980].  Reflectance maps were used to illustrate his main argument.  He 

recommends dense iso-intensity contours for maximum accuracy.  In this case a large 

change in intensity is attained for a small change in the surface gradient values, p & q.  

In other words it is desirable to maximise "i/"p and "i/"q.  Dense iso-intensity contours 

are achieved by increasing the value of the slant angle ! as demonstrated in Figure 4.2.  

In practice the slant angle is limited due to the adverse effect of the increasing presence 

of shadows. 
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Figure 4.2 Reflectance maps for a Lambertian surface with illumination tilt angle of 
0° and varying slant angle. 

  Apart from maximising the slant angle, recommendations for the relative position of 

the three light sources with regard to the tilt angle are not apparent in the literature.  

This issue is referred to indirectly by Woodham when he points out that the scheme 

cannot be solved when the illumination vectors are arranged in a co-planar 

configuration [Woodham1980].  The resulting illumination matrix will be uninvertible 

in this case.  For their two-image photometric stereo algorithm Lee and Kuo argue that 

the gradient direction of the reflectance map for one of the images should correspond to 

the tangential directions of the reflectance map of the other image [Lee1993].  They 

propose to achieve this by employing a difference of 90° between the illumination tilt 

angles.  Gullón shows that the accuracy of her two-image techniques is more sensitive 

to tilt angle difference than the illumination arrangement position relative to a 

unidirectional surface and confirms that !"=90° is optimal [Gullón2002].  With regard 

to using more than two lights with linear photometric stereo Gullón argues that an even 

arrangement is optimal since it maximises the linear term.  The fact that side lighting 

acts as a directional filter of the surface height function suggests that the signal to noise 

ratio could be maximised by distributing the illumination tilt angles equally through 

360° [Chantler1995].  However, this has never been formally investigated with three-

image photometric stereo. 
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(c) # = 60° 
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(d) # = 75° 
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4.3 Noise Expression Derivation 
!
  In the previous section we argued that the recommended operating conditions for 

three-image photometric stereo are not sufficiently precise to guarantee accurate and 

reliable results.  It is apparent that more detail regarding the optimal placement of the 

lights is required [Spence2003a].  In this section we develop the theoretical approach 

which was undertaken to investigate this issue.  This involves deriving expressions for 

noise in the estimates of the scaled surface normals and using them to provide an overall 

figure or merit. 

 
Sensitivity Analysis 
Sensitivity analysis is a common approach used to gain an insight into the behaviour of 

a mathematical model such as photometric stereo and forms an important foundation for 

the work presented in this chapter.  It is the study of how the variation in the output of a 

model can be apportioned to different sources of variation [Saltelli2000, Chap.1].  In the 

case of photometric stereo, the output is the estimate of the surface orientation in the 

form of the scaled surface normal.  We propose that ascertaining its response to 

variation in the input, namely the intensity images and their corresponding illumination 

conditions, would be useful in achieving our objective of determining optimal operating 

conditions.  Jiang and Bunke carried out a sensitivity analysis to examine the effect of 

measurement errors in the input data of photometric stereo [Jiang1991].  However, they 

did not consider the corresponding optimal illumination configuration.  Furthermore, we 

employ a different approach to effect the sensitivity analysis [Spence2003a].  

  With regard to practical implementation, sensitivity analysis often takes the form of a 

sampling-based procedure during which the model is executed repeatedly over an 

extensive range of input conditions.  We used this approach in order to produce 

empirical results and it will be discussed later in the chapter.  For a purely theoretical 

treatment, however, we derive expressions for the sensitivity of each scaled surface 

normal element sx, sy, sz with respect to changes in the input image intensities i1, i2, i3. 
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  When the illumination vectors are not constrained to be of common slant angle,  the 

illumination matrix formed from them depends on six parameters.  With tilt angles !i 
and slant angles !i  where i=1, 2, 3, the unit illumination vector matrix B is: 
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The inverse of B is determined: 
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Substituting the inverse into Equation 2.18 provides expressions for each component of 

the scaled surface normals. 
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Differentiating Equations 4.3, 4.4 and 4.5 with respect to each of the three image 

intensities gives nine sensitivity expressions.  These describe how sensitive the error in 

the estimated components of the surface normal (compared to the true surface normal) 

is to error in the intensity measurements.   
!
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As Equation 2.18 is linear, the noise in the scaled surface normal s can be simply 

derived from the sensitivities given by these equations.  We note that the effect of 

inaccuracies in the measurement of the illumination angles is not considered here.  As 

mentioned, this was previously investigated and reported by Jiang et al [Jiang1991].    

 
  See Appendix B for the equivalent but simpler case when the slant angle is common to 

the three illumination directions. 
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Noise in the Scaled Surface Normal 
The variance1 of a parameter x which is a function of two variables u and v can be 

shown to take the following general form (see Appendix C for proof):   
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If the variables are independent then Equation 4.15 simplifies: 
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Equations 4.3, 4.4 and 4.5 demonstrate that each element of the scaled surface normal is 

a function of three variables i.e. the input intensity images.  If we assume that the noise 

in each image is Gaussian and independent then a variation of Equation 4.16 can be 

used to predict the noise in each element of s.  For example, the variance of the noise in 

sx is given by the following: 
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Despite being independent if the magnitude of the noise in each input image has 

approximately the same variance i"  then: 
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In order to allow a completely theoretical analysis the formulas were re-arranged to 

make them independent of input noise.  A noise ratio is now predicted for each of the 

scaled surface normal elements.  These expressions describe the error in the scaled 

surface normal relative to the average error in the input intensity measurements.  
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Substituting Equations 4.6 - 4.14 into 4.19, 4.20 and 4.21 gives the full equation for the 

noise ratio of each element in s. 

                                                 
1 The symbol !2 is used here for variance instead of  "2 to distinguish from illumination slant angle ". 
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Single Figure of Merit 
Given that noise is present in the input intensity images, it is apparent from the noise 

ratio expressions (see Equations 4.19 - 4.21 & 4.6 - 4.14 ) that the resulting level of 

noise in the scaled surface normal estimates depends on the illumination configuration.  

Our objective is to establish operating conditions which minimise the noise in the output 

in order to determine accurate estimates of the surface normal.  The optimal 

illumination configuration can therefore be found by minimising each of the three noise 

ratios.  However, a single objective function is required in order to implement an 

optimisation procedure.  It is possible to formulate such a metric by taking into account 

the intended use of the output data.  We have chosen to consider image-based rendering 

applications.  The intensity of a relit pixel under arbitrary illumination can be expressed 

as follows using Lambert’s law.  

 
!!"!" cos),(sinsin),(sincos),(),( yxsyxsyxsyxi zyxrelight ++=   (4.22) 

 
Since the tilt and slant angles are specified in order to generate a relit image, the 

trigonometric terms in Equation 4.22 reduce to scalars.  Hence the relit intensity is 

simply a weighted sum of the elements of s. 
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We therefore choose our figure of merit to be the variance of the sum of the sx, sy and sz 

noise processes.  We assume that these noise processes are highly correlated, each being 

a function of the three image noise processes.  In this case the overall variance is simply 

given by the sum of the variances of the individual scaled surface normal elements.  See 

Appendix C for standard statistics proof.  Our single figure of merit is hence given by 

the following equation. 
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Substituting Equations 4.19, 4.20 and 4.21 into 4.24 this becomes: 
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It is then straightforward to substitute Equations 4.6 – 4.14 into 4.25 in order to provide 

the final expression.  This is a function of illumination tilt and slant angles.  Its form is 

ideally suited to an optimisation analysis.  It can therefore be used to determine the 

optimal illumination configuration.  It may also be utilised to gauge the potential 

performance of any given illumination arrangement.    

 
Smooth Surface Simplification 
Whilst our approach does not take shadowing into account and is effectively 

independent of the distribution of surface normals, we may make an additional 

simplification for smooth surfaces.  If the surface slopes are low then following Kube 

and Pentland [Kube1988] we can use a MacLaurin’s expansion2 of Lambert’s law and 

ignore the higher order terms.   

( ) !"
#

$%
& ++!!+" ....

!2
11)cossinsin),(sincos),((),( 22 qpyxqyxpyxi ##$#$%&  (4.26) 

This is possible because when the slope angles are less than 15° then the surface 

gradients p, q << 1 and the term (p2+q2) < 0.1.  In this case sz tends to a constant i.e. the 

local albedo and can be ignored for the purposes of a sensitivity analysis. 
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The figure of merit for a smooth surface is therefore: 
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Substituting Equations 4.19 and 4.20 into 4.28 this becomes: 
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!
Substituting Equations 4.6, 4.7, 4.9, 4.10, 4.12 and 4.13 into 4.29 provides an alternative 

figure of merit which specifically applies to smooth surfaces.  This will allow the 

optimal behaviour of both types of surfaces to be compared and contrasted.   

 
4.3.1 Summary 
  In this section we derived noise expressions for three-image Lambertian photometric 

stereo.  We used these expressions to formulate two figures of merit Mrough and Msmooth 

which are applicable to rough and smooth surface textures respectively.  These will be 

                                                 
2 Equivalent to the more general Taylor’s series expansion with parameters set to zero 
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used in an optimisation procedure to determine the optimal illumination configuration 

(see Section 4.5). 

4.4 Empirical Determination of Noise 
 
  It is difficult to calculate the absolute noise in the photometric stereo process.  

However, the temporal noise in the process may be easily estimated for both input and 

output data.  This facilitates an empirical investigation equivalent to the theoretical 

treatment detailed in the previous section (see Figure 4.3). 

 

 

 

 

 

 

 

 

 

Figure 4.3  Flowchart depicting empirical sensitivity analysis. 

 
With regard to data, images of a real isotropic texture (texture m) were acquired over a 

range of 86 illumination directions.  A set of ten images was captured for each 

illumination direction.  This meant that we could apply the photometric stereo algorithm 

ten times for a given illumination configuration.  Temporal noise estimates 

corresponding to this configuration can be determined from the multiple input and 

output images.  This is achieved by estimating the value of statistics parameters i.e. 

mean and variance for each set of ten images in order to calculate the mean standard 

deviation. 
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zyx sssi !!!! ,,,  

Noise in the Input Intensity Images 
Given ten images it(x,y) where t=1-10 of the texture which correspond to a single 

illumination direction, a temporal noise value is estimated as follows: 
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where m is the number of pixels in a square image.   

  Since there are three illumination directions in the input data, three temporal noise 

values are calculated 
3211

,, iii !!! using Equation 4.30.  A mean value of the input noise 

is estimated: 

3
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Noise in the Scaled Surface Normal Element 
Given ten images st(x,y) where t=1-10 of a scaled surface normal element estimate 

which correspond to a given illumination configuration, a mean temporal noise value is 

estimated as follows: 
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where m is the number of pixels in a square image.  Since there are three scaled surface 

normal elements, three temporal noise values are generated 
zyx sss !!! ,, . 

 
Figure of Merit 
Empirical estimates of the figures of merit for rough and smooth surfaces Mrough and 

Msmooth are calculated with Equations 4.24 and 4.28 using the temporal noise estimates

      . 
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4.5 Investigation into Optimal Performance 
 
  The figures of merit enabled us to undertake a thorough investigation into the 

performance of the three-image photometric stereo technique with a view to 

determining the optimal illumination configuration.  We estimated theoretical and 

empirical values for Mrough and Msmooth for a series of illumination configurations.  In 

one type of experiment we varied the illumination tilt angle corresponding to the third 

input image.  In a second type of experiment we varied the illumination slant angle 

common to all three images.  The results are presented graphically in Section 4.5.1 and 

provide a comparison between the theoretical and empirical approaches.  In Section 

4.5.2 we consider the minimisation of the theoretical expressions. 

 

4.5.1 Graphical Representation 
  Here we consider three input images which have corresponding illumination tilt angles 

of !1, !2 , !3 and a common slant angle ".     

 
Tilt Angle !3 Variation!
In these experiments the tilt angles !1 and !2  and the common slant angle "  were held 

constant.  Their values were chosen to correspond to illumination configurations which 

are typically employed in photometric stereo.  In one set of experiments we used !1 = 0°, 

!2 = 90°, " = 45° and in another we used !1 = 0°, !2 = 120°, " = 45°.  Both sets of 

experiments involved altering the illumination configuration by varying the third tilt 

angle !3 (see Figure 4.4).  With regard to the images of the real texture, its value was 

increased by 10° increments over a complete tilt angle rotation (0° < !3 < 360°, !!3 = 

10°) since images corresponding to these illumination directions are contained in the 

database.  With regard to the theoretical approach we used increments of 1° (!!3 = 1°).  

 
(a)      (b)  

!
!
!
!
!
!
!
!
Figure 4.4  Example of range of illumination configurations for two tilt angle 
experiments (Plan view). Increments are "!3 = 1° (theoretical), "!3 = 10° (empirical). 

!2 = 90°  

0° < !3 < 360° 
  

!1 = 0°  

!2 = 120°  

!1 = 0°  

0° < !3 < 360° 
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Figure of merit values were estimated for each configuration.  Typical plots are given in 

Figure 4.5 and Figure 4.6.  Plots for Msmooth have a similar profile to those for Mrough and 

are presented in Appendix D. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 Figure of merit  Mrough versus third tilt angle !3 with !1=0°, !2=120°. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6 Figure of merit  Mrough versus third tilt angle !3 with !1=0°, !2=90°.  

 
 
A noticeable feature common to both graphs is that the noise ratio goes off the scale as 

the third tilt angle coincides with values corresponding to the first and second angles.  

This is the co-planar situation when the inverse of the illumination matrix does not 

exist.  In this instance it is not possible to solve the system of equations for the 

unknowns.  It is also apparent that increases in the value of the figure of merit become 

more significant as this situation is approached. 

  The most interesting feature common to both graphs is that there exists a third tilt 

angle which corresponds to a minimum.  This is approximately 240° when the first and 
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second tilt angles are set to 0° and 120° respectively as highlighted on the plot.  

However, if these angles are changed to 0° and 90°  the optimal third tilt angle is not 

180° but around 225°.  This means that McGunnigle’s photometric scheme 

[McGunnigle1998] is sub-optimal but not significantly so and has the advantage of 

being straightforward to solve. 

     It is noted that the graphs presented in this section correspond to rough surface 

textures.  Those for smooth surfaces exhibit equivalent behaviour and are given in 

Appendix D. 

 
Slant Angle ! Variation!
In these experiments the three tilt angles !1, !2, !3 were held constant.  In the set of 

experiments presented here we used the optimal values !1 = 0°, !2 = 120°, !3 = 240° 

determined for a common illumination slant angle configuration.  The experiments 

involved altering the illumination configuration by varying the value of the common 

slant angle !.  With regard to the images of the real texture, its value was increased in 

increments of 5° for a range of slant angles (20° < ! < 70° with !! = 5°).  With regard 

to the theoretical approach we used increments of 1° (!! = 1°).  Figure of merit values 

were estimated for each configuration.  

 

 

 

 

 

 

Figure 4.7  Illustration of range of illumination slant angles in experiments. Increments 
are "! = 1° (theoretical), "! = 5° (empirical). 

 

 

  In this case it is actually the difference in behaviour between the two kinds of surfaces 

which is interesting.  Plots of the figures of merit for rough and smooth surfaces are 

presented in  Figure 4.8 and Figure 4.9.  Figure 4.8 demonstrates that with regard to 

minimising our figure of merit for a texture of rough surface, a slant angle of about 55° 

is optimal.  However, different behaviour is observed for a smooth surface (Figure 4.9).  

The minimum no longer corresponds to 55° but has increased beyond the range of the 

20°< ! < 70° 
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graph.  Extrapolation appears to suggest that in this case a slant angle of 90° is optimal.  

This observation will later be confirmed by minimisation (see Section 4.5.2).  

 

 

 

 

 
 
 
 
 
 
 
Figure 4.8 Total noise ratio Mrough versus slant angle ! with "1=0°, "2=120°, 
"3=240°. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 Total noise ratio Msmooth versus slant angle ! with "1=0°, "2=120°, 
"3=240°. 

!
The results of another set of slant angle experiments in which we used illumination tilt 

angle values of !1 = 0°, !2 = 90°, !3 = 180° are presented in Appendix D.  Similar 

profiles are apparent with regard to each figure of merit. 
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4.5.2 Minimisation 
  The plot profiles given in the previous section each indicate a minimum noise ratio 

with regard to both tilt and slant angle.  An optimisation procedure was used to 

precisely determine the corresponding parameter values.  The figure of merit formulas 

were minimised by application of the Nelder-Mead algorithm [Press1988, Chap.10].   

The algorithm uses a geometrical figure termed a Simplex.  For an N-dimension 

minimisation problem the Simplex is constructed from N+1 points with interconnecting 

lines.  The function is calculated at each of the points and depending on the resulting 

values, the Simplex is reflected, expanded or contracted with a view to progressing 

towards the minimum in an iterative manner.  This approach facilitated an investigation 

into the existence of a global minimum. 

 
Three Parameter Minimisation 
With a common fixed slant angle the minimum value of the figure of merit was not 

found to correspond to unique values for the three tilt angles (See Table 4.1).  Their 

values were found to depend on the initial conditions specified.  However, it is apparent 

that the minimum does correspond to a unique difference in tilt angle of 120°.  This is 

true for both rough and smooth surfaces.  This agrees with the observation from Figure 

4.5.   

!
!
!
!
!
!

!

 
 
 

Table 4.1 Examples of three parameter minimisation results. 

 

Since our equipment for capturing the images of real textures employs a single 

moveable light source (see Chapter 3), it is convenient to collect data with a common 

slant angle.  This implies that this result is potentially useful on a practical basis.  

 

Mrough (!1, ! 2,! !3)!

"#$! $%&#'(! %)&#'(! &#'(!

"#$! *#*(! $%*#*(! %)*#*(!

"#$! %+#"(! $)+#"(! %,+#"(!



 67 

Four Parameter Minimisation 
In this case the slant angle is common for the three illumination vectors as before but its 

value is not fixed.  The minimisation procedure therefore yields the value of four 

parameters, the three tilt angles and that for the slant (see Table 4.2).  Again it is clear 

that the minimum corresponds to a unique difference in tilt angle values of 120°.  This 

is true for both rough and smooth surfaces.  With regard to the slant angle, a unique 

value of approximately 54.7° is apparent for rough surfaces (see Table 4.2a).  This value 

increases to 90° for smooth surfaces (see Table 4.2b) although this result is not of 

practical value since in reality light from a source in this position would not impinge on 

the surface. 

  (a) 

 

!

 

 

 
 (b) 

 

!

 

 

 
Table 4.2 Examples of four parameter minimisation results for (a) a rough surface,  
(b ) a smooth surface. 

 
  The marked difference in the optimal slant angle for rough and smooth surfaces cannot 

be attributed to shadowing since our approach does not taken it into account.  The 

results can be explained by considering the difference between the two figures of merit 

i.e. the noise ratio for the z-component of the scaled surface normal.  In this simplified 

case of common slant angle, the denominator of the noise ratio of the z-component 

contains cos ! whilst that for the x and y components is sin ! (see Appendix B).  Since 

the z-component is omitted for a smooth surface, a maximum slant results in a minimum 

Msmooth. 

  We note that the angles determined for the rough surface in Table 4.2a mean that the 

corresponding optimal illumination vectors are orthogonal. 

Mrough! ("1,! "2,! "3,! !)!

"#$! $#$%! &'$#$%! '($#$%! )(#*%!

"#$! &*+#(! )+#(%! ',+#(%! )(#*%!

"#$! "'(#(%! -(#(%! '$(#(%! )(#*%!

Msmooth! ("1,! "2,! "3,! !)!

&#+! $#$%! &'$#$%! '($#$%! ,$#$%!

&#+! '*'#&! "'#&%! &)'#&%! ,$#$%!

&#+! +"#-%! "$"#-%! &-"#-%! ,$#$%!
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Orthogonal configuration  
corresponds to minimum 

Six Parameter Minimisation 
Finally the minimisation was performed in a completely unconstrained manner such that 

the slant angles were no longer required to be common to the three illumination 

directions.  The examples given in Table 4.3 demonstrate that the conditions 

corresponding to the minimum noise ratio are not in fact unique but depend on the 

initial conditions specified in every optimisation.  However, in each case the three 

resulting illumination vectors are orthogonal. 

 

 

 

 

 

Table 4.3 Examples of six parameter minimisation results for a rough surface. 

 
To confirm this result the figure of merit Mrough was generated over an extensive range 

of illumination configurations.   We produced a 3D scatter plot by plotting Mrough 

against the dot products between the illumination vectors (see Figure 4.10).  The 

minimum of the data cloud corresponds to a dot product of zero between the first and 

second illumination vectors and a dot product of zero between the second and third 

illumination vectors.  This helps to illustrate the fact that the minimum value for the 

figure of merit and hence optimal performance corresponds to an orthogonal 

illumination configuration.   

 

 

 

 

 

 

 

Figure 4.10 Mrough versus b1.b2 and b2.b3.!

Mrough! (!1,! !2,! !3,! "1,! "2,! "3)!

"#"$! %%&#'$! &()#'$! **#($! *+#%$! ',#&$!

%(#)$! %(*#"$! &**#+$! **#($! *(#($! **#+$!(#"!

-"#*$! %,)#'$! (%*#($! *)#'$! *"#,$! *'#($!
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4.5.3 Summary of Findings 
  With regard to three-image Lambertian photometric stereo we found that the optimal 

illumination configuration cannot be specified in terms of a unique set of values for the 

tilt and slant angles defining illumination direction.  Instead we determined that the 

optimal operating conditions correspond to an orthogonal configuration i.e. when the 

three illumination vectors are at an angle of 90° to each other (Figure 4.11).  This is an 

interesting result which is somewhat intuitive in hindsight.  An orthogonal configuration 

is not just plausible for isotropic textures.  In the case of a unidirectional texture the 

configuration could be oriented such that one illumination vector points along the grain 

and has a large slant angle whilst the other two vectors point across the grain with 

smaller slant angles. 

 
!

Figure 4.11 Representation of orthogonal vectors!
!
The use of an orthogonal configuration may not be practicable unless the illumination 

slant angles are constrained to take a common value.  In this case the use of a 120° 

difference in tilt angle is to be recommended.  This was found to be applicable to both 

rough and smooth surfaces.  When shadowing is not an issue and the surface is rough in 

character, a slant angle of around 55° can be used to attain optimal operating conditions.  

If shadowing is present then this value should be reduced.  If on the other hand the 

surface can be considered to be smooth in nature and not susceptible to shadows then 

this value can be increased.  In this case the term ‘grazing’ can be used to describe the 

resulting illumination conditions.  It is noted that such textures of this nature will 

probably not be of interest in visualisation applications since their appearance will not 

change significantly with different illuminant position although this is dependent on the 

scale with which the surface is viewed. 
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4.6 Practical Assessment 
 
  The recommendations for optimal placement of the lights presented in the previous 

section are effectively theoretical.  Although an equivalent empirical procedure was 

carried out to verify the results, its use of images of a real texture with close to ideal 

reflectance properties meant that the validity of the proposed illumination conditions 

was uncertain for the non-ideal case.  A quantitative assessment of a practical nature 

was therefore undertaken to investigate this issue.  This involved the use of the thirty-

one real textures described in Chapter 3 many of which are prone to non-ideal 

reflectance characteristics such as shadowing and specular highlights.  Images of the 

textures corresponding to a variety of illumination configurations were processed using 

the three-image photometric stereo algorithm.  The Lambertian model (Equation 2.2) 

was then used to relight the generated surface gradient and albedo images.  The relit 

images produced were then compared to the originals.  The comparison was not just 

visual; the difference between them was quantitatively measured in terms of the texture 

signal to relight error ratio TSER (see Equation 3.10).  

 

Tilt Angle Spacing  
Three different tilt angle spacings were utilised in the experiments.  These correspond to 

the theoretical optimal (!!=120°), McGunnigle’s simplified photometric scheme 

(!!=90°) and finally an asymmetric arrangement (!!=50°).  A constant slant angle of 

45° was used in every case.  Following each application of the algorithm relit images 

were generated over a complete revolution in terms of tilt angle (!!=10°) for the two 

other slant angle values present in the image database i.e. "=30° and 60°.  This avoided 

the case when the illumination conditions of a relit image correspond to that of an input 

image when the relight error would tend towards zero.  For each texture the signal to 

relight error ratio SER was estimated for each of the 72 illumination directions using 

Equation 3.9.  A value for the texture signal to relight error ratio TSER which we 

employ as a measure of relighting accuracy was then obtained from Equation 3.10.  This 

was calculated for each of the three tilt angle spacings with every texture.  The results 

are presented in the bar chart in Figure 4.12. 
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Figure 4.12 Practical evaluation of the proposed optimal illumination conditions. 

 

Whilst it is evident that some of the textures are more suited to use with Lambertian 

photometric stereo than others, it is apparent that the proposed optimal illumination 

arrangement has outperformed the other arrangements in all but one case.  The 

exception (texture ac) relates to a specular texture with less than ideal reflection.  The 

tilt angle spacing of 90° performs well but the resulting TSER values are relatively low 

in general compared to the optimal case.  The asymmetric case performs poorly in 

comparison.  This is also apparent from the samples of relit images given in Figure 4.13 

on comparison with the original image.  We highlight this in Figure 4.14 by presenting a 

plot of the intensities taken from a single row of the difference images.  For clarity, we 

use a moving average to identify the underlying trend.  Again it is clear that the optimal 

configuration provides a consistently better approximation to the original intensity 

image. 

  Overall, we have verified the theoretical results presented earlier in the chapter.  We 

conclude that the optimal spacing of the illumination vectors is 120° with regard to tilt 

angle when they are constrained to be of common slant angle and that there is a benefit 

in terms of accuracy when this configuration is utilised on a practical basis. 
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(a) Original image of texture with illumination conditions !=270° and "=45°. 

 
 
 
(b) Optimal conditions – 120° spacing with regard to tilt for constant slant. 

Relit image   Difference image 

   
(c) McGunnigle’s scheme – 90° spacing with regard to tilt for constant slant. 

   
 
(d) Asymmetric arrangement - 50° spacing with regard to tilt for constant slant. 

     

Figure 4.13 Comparison of original image with relights (texture n). 
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(a) Original image of texture with illumination conditions !=270° and "=45°. 

 
 
 
(b) Optimal conditions – 120° spacing with regard to tilt for constant slant. 

Relit image   Difference image 

   
(c) McGunnigle’s scheme – 90° spacing with regard to tilt for constant slant. 

   
 
(d) Asymmetric arrangement - 50° spacing with regard to tilt for constant slant. 

     

Figure 4.13 (Cont’d) Comparison of original image with relights (texture q). 
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Figure 4.14 Moving average (10-pixel) trend for a single row of the difference 
images given in Figure 4.13. 
 

 

Slant Angle Selection 
Experiments concerning the slant angle were also undertaken.  In this case illumination 

configurations using the optimal tilt angle spacing of 120° were used with a range of 

slant angles common to each illumination vector (30°<!<60° with !!=15°).   

Following each application of the algorithm relit images were generated over a 

complete revolution in terms of tilt angle (!"=10°) for the two other slant angle values.  

For example, if the input images illumination slant angle is 30° then seventy-two relit 

images would be generated with slant angles of 45° and 60°.  Whilst this approach is not 

ideal it provides some insight into the issue of slant angle selection which is potentially 

dependent on the surface type according to the theory and is furthermore constrained by 

the need to minimise the presence of shadows.  The results are presented in Figure 4.15. 

 

 

 

 

 

 

 

 

 

 



 75 

0 dB

2 dB

4 dB

6 dB

8 dB

10 dB

12 dB

14 dB

16 dB

18 dB

20 dB

a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae
Texture

TS
ER

30° slant
45° slant
60° slant

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Practical evaluation of effect of slant angle on accuracy based on 
optimal illumination configuration with regard to tilt angle (!"=120°). 

 

Assuming that the comparison is valid it is evident that in general it is preferable to use 

a slant angle of 45° because this intermediate value corresponds to the best performance 

of photometric stereo for the majority of real textures.  This result merely helps to 

confirm that the effect of shadowing is important.  It is not really possible to distinguish 

between our proposed optimal value of around 55° for rough surface texture and 

Woodham’s recommendation of maximising slant angle because of the impact of 

shadowing for larger slant angles.  Shadowing is not taken into consideration in either 

of the theoretical evaluations.  However, based on evidence from these practical results 

for thirty-one textures it is prudent to avoid the use of extreme slant values.  Overall a 

value of  45° appears to be more appropriate for textures of a similar nature to that used 

in the investigation. 
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4.7 Summary & Discussion 
 
  The results of an investigation into the optimal placement of the illumination vectors in 

the three-image Lambertian photometric stereo technique were reported in this chapter.  

The work is based on an overall figure of merit which was derived from noise variance 

expressions.  This metric was developed by considering the image-based rendering of a 

Lambertian surface.  The resulting equation is in terms of the illumination tilt and slant 

angles defining the orientation of the three illumination vectors and it was employed to 

gauge the effect of various illumination configurations.  The optimal configuration was 

determined by its minimisation.  The theoretical results were confirmed through the use 

of an equivalent empirical method. 

  The optimal illumination configuration was determined to correspond to an orthogonal 

arrangement of the three illumination vectors. With regard to a more practical 

implementation of the technique when the slant angle is common for the three vectors, 

we found the optimal difference between successive tilt angles to be 120°.  The 

advantage of using this optimal lighting arrangement was verified by assessing the 

relighting error of thirty-one real textures.  Relative to the other illumination 

arrangements tested a benefit in terms of error reduction is evident in almost every case.   

  Using an illumination configuration of !"=120° and common slant angle, the derived 

figure of merit was used to show that optimal performance corresponds to a maximum 

slant angle of 90° when the texture is smooth.  This is the ideal case.  In reality this 

would not be possible due to shadowing considerations.  This finding is equivalent to 

Woodham’s original observation that accuracy in photometric stereo is improved if a 

large slant angle is used [Woodham1980].  He based his argument on the fact that 

increasing the slant angle increases the density of the corresponding reflectance map.  

This is desirable because a large change in intensity will result from a small change in 

the surface gradients p and q.  In other words Woodham recommends that the sensitivity 

of the intensity with respect to the surface gradients is maximised.  Our approach to this 

problem is similar but ‘inverted’ since we tackle the issue by minimising the sensitivity 

of the scaled surface normal with respect to the intensity.   

  For a rough surface illuminated under this configuration i.e. !"=120° and common 

slant angle we found the optimal slant angle to be 55°.  This agrees with the more 

general case when the illumination vectors are orthogonal.  Although Woodham 

advocates the use of a large slant angle he does qualify this statement by indicating that 

a compromise exists since shadowing should be minimised [Woodham1980].  This 
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would certainly be an issue for a rough surface texture.  However, Woodham does not 

actually differentiate between types of surfaces and we acknowledge the divergence in 

results at this point.  We attribute this to the fact that the scaled surface normal 

sensitivity was minimised in our approach rather than the surface gradients. 

  Whilst the optimal illumination conditions proposed in this chapter are potentially 

useful on a practical basis, it is noted that they have been derived for a texture 

exhibiting ideal diffuse reflection.  The fact that neither shadows, specularities nor 

interreflections have been considered in the development of the theory means that the 

application of such guidelines should really be restricted.  However, the assessment of 

the three-image photometric stereo technique with real textures demonstrated that even 

in the presence of shadows and specularities, using the 120° tilt angle spacing with 

constant slant angle was in fact relatively beneficial.  In the case of specular reflectance 

this may well be because the specular peak is narrow and therefore not frequently 

observed under the three light positions.  For textures which exhibit far from ideal 

reflectance the recommended illumination arrangement can simply be used as a first 

guess of optimal illumination conditions. 

 

4.8 Conclusions 
 

  Overall, we conclude that a difference between successive tilt angles of 120° is to be 

recommended when the illumination configuration is constrained to have a common 

slant angle.  Based on the theoretical and empirical evidence presented we recommend 

the use of a maximum slant angle of 55° for rough surface textures.  These observations 

have potential implications for three-image photometric stereo algorithms which select 

the three ‘best’ pixel values from multiple images [Rushmeier1997, Coleman1982, 

Petrou2001].  Once the shadowed and specular intensities have been discarded, it is 

very possible that the illumination conditions corresponding to the remaining intensities 

may be less than optimal. 
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Chapter 5  
 
Uncalibrated Approach to Photometric Stereo  
 
 
5.1 Introduction 
 
  The ability to implement an uncalibrated technique would be of great value in 

obtaining surface representations of textures.  Lessening the burden of input 

information, which implicitly involves calibration and measurement, would make the 

procedure much more amenable to practical implementation.  Hence it is a goal worth 

pursuing provided that accuracy is not compromised.  In this chapter we consider ways 

of achieving this objective.  We are specifically concerned with the case when image 

intensity is the only input unlike calibrated photometric stereo where illumination 

direction information pertaining to each image is also available.  Having reviewed the 

available techniques and discussed the issues involved with each, the ultimate goal of 

this chapter is then to identify those methods which are most suited to our specific 

application of determining surface representations of textured surfaces.  

 

 

This chapter is organised as follows : 

  The primary step in the uncalibrated photometric stereo method is introduced in 

Section 5.2.  The main issue which concerns this technique is then discussed and the 

various means of tackling it proposed in the literature are described in detail.  In Section 

5.3 a summary of the various techniques is given and we conclude by proposing the 

most suitable for use in our specific case. 

 
 
 
 



 79 

5.2 Uncalibrated Photometric Stereo 
 
  Hayakawa [Hayakawa1994] proposed a photometric stereo method for estimating 

surface representations of objects without prior knowledge of the illumination.  He 

assumes Lambertian behaviour such that the image intensity data matrix I can be 

written as the product of two matrices, S & L.  These represent the true scaled surface 

normals and scaled illumination vectors respectively, neither of which are known in this 

case and are to be determined.  This was originally introduced in Chapter 2 but we      

re-state the equations here for clarity. 

SLI =        (2.35) 

It is possible to factorise the input intensity matrix into a pseudo surface matrix and a 

pseudo illumination matrix, LS ˆ&ˆ .  These represent a possible solution but it is not 

unique and an ambiguity exists since the following holds. 

LAASLSI ˆˆˆˆ !"!==      (2.39)  
 
This is a specific example of the generic bilinear calibration-estimation problem 

described by Koenderink [Koenderink1997].  Even though the initial decomposition to 

obtain the first estimates is straightforward in terms of mathematics, the determination 

of the ambiguity matrix is more challenging. 

 
5.2.1 Ambiguity Reduction/Resolution Survey 
  The ambiguity A is an arbitrary 3 ! 3 matrix.  It describes a general linear 

transformation and is written in group notation as GL(3).  It is noted that its determinant 

cannot be zero because it must be invertible.   

   
!
!
!
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333231
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131211

aaa
aaa
aaa

A

      (5.1) 
 

In effect nine degrees of freedom must be resolved in order to derive a unique solution 

for the surface representation and illumination estimates. 

!= ASS ˆ   LAL ˆ!"=     (5.2, 5.3) 

 
The ambiguity can only be determined through knowledge of surface and illumination 

characteristics.  The approaches detailed in the literature mostly centre on identifying 

ways of satisfying this requirement without involving calibration.  The alternative 

where Raij #  
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sources of information and assumptions proposed will be considered in the following 

subsections and their suitability for our texture-specific application will be assessed.  

Those methods which utilise extra equipment such as calibration objects to provide 

knowledge of the object class [Yuille1999] or polarisers [Drbohlav2001] will not be 

considered. 

   
  We emphasise here that Sections 5.2.1.1-5.2.1.3 are essentially a more detailed 

literature survey of uncalibrated photometric stereo.  In this case the specific 

mathematics involved in the development of each algorithm is presented.  The aim is to 

provide sufficient detail for readers who intend to conduct research in the area.  Other 

readers may wish to proceed directly to the summary in Section 5.3. 

 

5.2.1.1 Vector Magnitude Constraint 
  Hayakawa detailed two constraints which facilitate the determination of the ambiguity 

[Hayakawa1994].  He advocates finding either six pixels in which the albedo is known 

or constant or alternatively, six frames in which the illuminant intensity is known or 

constant.  The treatment for both constraints is equivalent since it basically involves 

analysing six scaled vectors from the pseudo estimates which should be of the same 

length.  The constant albedo constraint will be considered in the following. 

  In this case we focus on the scaled surface normal vectors.  According to Equation  

5.2, a true estimate of a surface normal can be written as the product of its 

corresponding pseudo estimate and the ambiguity matrix. 

 

     

(5.4) 

 
It is noted that the magnitude of the scaled surface normal is the albedo.  

   !== |||ˆ| ssA        (5.5) 

The dot product of the vector with itself therefore results in the following: 

   2ˆˆ !="" sAAs       (5.6) 

For convenience we define a 3 ! 3 matrix C as follows: 

AAC "=        (5.7) 
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C is a symmetric matrix as can be seen if written explicitly in terms of the elements of 

A.   
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     (5.8) 

Inserting this symmetric matrix into Equation 5.6 and expanding, the following is 

obtained. 

 

           (5.9) 
2

6
2
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2
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2 ˆˆˆ2ˆˆˆ2ˆˆ2ˆ "=+++++ cscsscscsscsscs zzyyzxyxx    

 
Since C is symmetric it contains six independent parameters.  If six pseudo scaled 

surface vectors with constant or known albedo can be identified then the following 

system of linear equations (based on Equation 5.9) can be solved by inverting the matrix 

of knowns i.e. pseudo vectors to determine C.  
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  (5.10) 

 

In the case when the albedo value is constant but unknown, it is assigned the value of 

unity.  The implication is that a constant scaling factor is introduced into the solution. 

  truek CC 1=  where  21
1
"

=k      (5.11) 

The resulting symmetric matrix C can then be factorised to obtain an estimate of the 

ambiguity. 
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Residual Ambiguity 
Whilst C is determined uniquely this is not the case for the resulting ambiguity A which 

has been obtained by factorisation and a residual ambiguity R exists.  The form of the 

residual ambiguity is considered in the following. 

( )
RARA

RARAAAC
##

##

=

==
      (5.12) 

For this to hold, the product of the residual ambiguity and its transpose must equate to 

the identity matrix.  This implies that the transpose is equal to the inverse.  The residual 

ambiguity therefore corresponds to an orthogonal transformation.  In group notation this 

is written as O(3) and corresponds to three degrees of freedom.   

1"#

#

=

$

=

RR

IRR d

      (5.13) 

Overall this constant albedo constraint reduces the ambiguity from a general linear 

transformation to an orthogonal one.  The remaining ambiguity is therefore equivalent 

to a rotation and corresponds to 3 degrees of freedom.  If the constant albedo is assumed 

to be unity then there is also an extra scaling factor to consider with regard to fully 

resolving the ambiguity. 

5.2.1.2 Integrability Constraint 
  An integrability constraint is a further option with regard to ambiguity reduction if the 

surface in question can be considered to be smooth and continuous.  This theory was 

originally developed by Belhumeur et al [Belhumeur1999] although the following is 

based on more detailed explanations given in [Drbohlav2003] and [Georghiades2003a].   

  In this case the second partial derivatives of the surface height are equated.  This can 

be written in terms of surface gradients as follows: 

x
q

y
p

!

!
=

!

!

      (5.14) 

 
Given a scaled surface normal s=[sx sy sz]T, Equation 5.14 can be re-stated and then 

expanded as follows. 

  

  

(5.15) 
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If the relationship between a true scaled surface normal and its pseudo counterpart given 

by Equation 5.4 is again considered, Equation 5.15 can be developed in terms of the 

pseudo normals and the ambiguity matrix.  Individual rows of the ambiguity matrix are 

defined as [ ]321 iiii aaa=a  where i=1-3 to facilitate this.  The scaled surface normal is 

now written as [ ]"= sasasas ˆˆˆ 321 .  Inserting its elements into Equation 5.15 the 

following is obtained. 

( ) ( ) ( ) ( )
xyxx #

#
!

#
#

=
#

#
!

#
# sasasasasasasasa 3

2
3

ˆˆˆˆˆˆˆˆ 3
1

13
2     (5.16) 

 
This is re-arranged to provide a single constraint for each surface facet. 

 0
ˆˆˆˆ 21 =
#

#
!

#

#

yx
sHssHs TT        (5.17) 

 
where  32231 aaaaH TT !=   &   31132 aaaaH TT !=  

 

Equation 5.17 is linear in the elements of the matrices H1 & H2 which are skew 

symmetric and contain six independent parameters between them. 
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where 

           (5.20) 

 

 

 

 

 

With regard to solving for the elements of h, it is useful to define the following vector 

for the scaled surface normal s of each facet i. 
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Equation 5.17 can hence be re-stated in the following form : 

0=#hg i        (5.22) 

This provides a total of m constraints since there are a corresponding number of surface 

facets.  These constraints can be written together in matrix form as follows : 

0=Gh        (5.23) 

    where G=[g1
T  g2

T ….. gm
T]T 

 
This over-constrained system of linear equations can be solved for h up to a scale by 

finding the null space of G. 

 
  The effect of applying the integrability constraint can be gauged by considering the 

inverse transpose of the original ambiguity matrix [Drbohlav2003].  It is written here in 

terms of the matrix adjugate divided by the determinant. 
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Since h has been determined, the elements of the top two rows are fixed in value whilst 

the elements in the third row take arbitrary values.  As long as the resulting matrix in 

invertible then the corresponding matrix A which ensures that the transformed scaled 

surface normals are integrable can be determined. 
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Residual Ambiguity 
The ambiguity has not been resolved completely by using the integrability constraint 

due to the requirement of arbitrary values and it is apparent that a residual ambiguity R 

exists.  In terms of the inverse transpose, it transforms A-T into R-TA-T.  Since the 

integrability constraint must continue to hold, the form of R is limited because the top 

two rows of A-T containing the elements of h cannot change.  The only applicable 

transformations are :      
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          (5.25) 

The k4 parameter must be non-zero for the matrix to be invertible.   

  Since the elements of h are only determined up to a scale, the final form of the residual 

ambiguity is a group of generalised bas-relief transformations (GBR) [Belhumeur1999]. 
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     (5.26) 

 

5.2.1.3 Consistent Viewpoint Constraint 
  If surface reflectance is composed of both a diffuse and a specular component then the 

ambiguity can be reduced according to the consistent viewpoint constraint 

[Drbohlav2002].  The presence of highlights in images of the illuminated surface is 

exploited to provide geometrical information about the viewing direction.  Although we 

focus on Lambertian photometric stereo in this thesis, mirror-like specular reflectance is 

assumed by Drbohlav.  This means that specular highlights in the images are sparse and 

can be treated as outliers to the diffuse model.  Lambertian photometric stereo can 

therefore still be utilised and in this case has the advantage of additional information 

provided by this constraint. 
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Figure 5.1  Mirror-like specular reflection from a surface facet such that the highlight 
is visible.!
!
If a highlight is observed in an image of the illuminated surface then the surface normal 

of the corresponding facet bisects the illumination and viewing vectors as depicted in 

Figure 5.1.  The viewing vector can hence be written as follows : 
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"=       (5.27) 

It is important to note that the view vector will be the same for highlights which 

correspond to other pairs of surface normals and illumination vectors, termed  specular 

pairs. 

  Written in terms of the ambiguity and the pseudo scaled surface normals and 

illumination vectors attained from factorisation this becomes : 
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Dividing through by ##! AsAlA 2|ˆ||ˆ| and then making substitutions the following is 

obtained. 

lsCssCsl2wsl ˆ)ˆˆ(ˆ)ˆˆ()ˆ,ˆ( "!"=$     (5.29) 
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} 
OR 9k=     

where )3(O!O  

Equation 5.29 represents a system of non-linear equations if at least four specular pairs 

can be identified; they are selected by hand from regions of highlights in the input 

images which have been segmented by thresholding.  The objective is to solve this in 

order to determine the transformation A which maps the pseudo normals and vectors 

onto those which fulfil the consistent viewpoint constraint.  An algorithm based on 

bundle adjustment is used to achieve this.  The resulting pseudo viewing vector w is 

then rotated to align it with the true viewing vector v = [0, 0, 1]T.  

 

Residual Ambiguity 
For specular pairs which obey the consistent viewpoint constraint and whose viewing 

vector is v, C can only take the form of a scaled identity matrix if Equation 5.29 is to 

hold such that the pseudo viewing vector w = v.  This allows the form of the residual 

ambiguity R to be gauged.  

dk IC 2
9=   

RRC "=          (5.30) 

  

Although R is a scaled orthogonal transformation it is limited further by the fact that the 

true viewing direction has been fixed.  In order to preserve the consistent viewing 

direction constraint the only possible invertible transformations are :  

zk RR
!
!
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"

#
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%

&±
=

100
010
001

9      (5.31) 

 
The residual ambiguity therefore entails a rotation about the z-axis, a reflection about 

the z-y plane which concerns the co-ordinate frame handedness and an unknown scaling 

factor.  None of these transformations affect the direction of the viewing vector.  

Drbohlav resolves these remaining degrees of freedom by employing the integrability 

constraint. 
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  Georghiades recently presented a generalisation of the consistent viewpoint constraint 

by incorporating the Torrance-Sparrow model into uncalibrated photometric stereo 

[Georghiades2003a/b/c].  This physically-based reflectance model consists of a diffuse 

component and a surface scatter component.  The latter enables a specular lobe in the 

forward direction to be modelled; this is a characteristic of specular reflection from 

rough surfaces where the highlight is not simply a mirror reflection of the incoming ray 

of light.  In this case the uncalibrated photometric stereo ambiguity is reduced because 

the specular lobes in the input intensity images must be aligned with those derived from 

the T-S model.   

  Georghiades initially applied the integrability constraint to reduce the ambiguity to a 

GBR residual ambiguity R as defined in Section 5.2.1.2.  The consistent viewpoint 

constraint was then formulated by considering the image intensity for a surface facet 

given by the T-S model simplified by making justifiable assumptions. 
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           (5.32) 

   where ! = surface roughness,  "s =specular albedo 

 

The GBR ambiguity is resolved and the parameters of the T-S model are determined by 

iterative least squares techniques using a cost function based on the difference between 

predicted and actual intensities. 
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5.3 Summary & Discussion 
 
  In this chapter we introduced uncalibrated photometric stereo and reviewed the various 

approaches utilised to reduce and resolve the inherent ambiguity.  A summary is given 

in the following table in order to provide an overview.    

 

 

 
where  GL(3) is a general linear transform, O(3) is an orthogonal transform, 

GBR is generalised bas-relief transform, Rz is a z-axis rotation, 
Id± is a convex/concave transform,  
±Id± is a convex/concave & co-ordinate frame handedness transform. 

 

Table 5.1 Summary of literature review of uncalibrated photometric stereo with 
emphasis on ambiguity reduction/resolution.!
 
 
It is apparent that each of the approaches detailed above has utilised at least one of three 

main types of constraints : integrability, consistent viewpoint & constant vector 

magnitude.  Whilst these are potential candidates for ambiguity resolution, it is evident 

that their application is very much dependent on the characteristics of the surface in 

question.  We have chosen rough surface textures which largely exhibit diffuse 

reflection.  The implication is that it will be impossible to implement the consistent 

viewpoint constraint because there will be no specular highlight or lobe due to the 

Lambertian behaviour.  Furthermore, because rough surfaces are considered, 

Ambiguity Reduction Author Constraints  
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discontinuities in the surface are more likely to be a feature.  This does depend on the 

level of resolution under which the images of the surfaces are captured.  However, in 

this case it is the high frequency nature of the textures which we aim to model and at 

such a resolution it is unlikely that the surface can be considered smooth and consistent.  

This makes the integrability constraint considerably less attractive as a candidate for 

ambiguity resolution.  The only viable constraint is the constant vector constraint 

proposed by Hayakawa.  Although our textures do not have constant albedo, the 

illumination source utilised in the lab is a single moveable light.  Since it illuminates the 

texture in every image we therefore consider the light intensity value to be constant.  

Applying this constraint will facilitate the reduction of the ambiguity but it does not 

resolve it completely.  There is a residual ambiguity which takes the form of a scaled 

orthogonal transformation as noted in the table. 

 

5.4 Conclusion 
 

An uncalibrated photometric stereo technique which utilises the constant light source 

intensity constraint was found to be a promising method with regard to fulfilling our 

objective of determining surface representations of images of rough surface textures 

without knowledge of the illumination.  The technique requires further development to 

allow practical implementation due to the residual ambiguity, a scaled orthogonal 

transform.  The resolution of this will be considered in the next chapter. 
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Chapter 6  
 
Detail of Uncalibrated Photometric Stereo for 
Texture Planes 
 
 
6.1 Introduction 
 
  In the previous chapter the possibility of achieving our overall goal of determining 

surface representations by using only image intensity data was explored.  The relevant 

methods were found to primarily concern uncalibrated photometric stereo techniques 

which attempt to solve the system of equations without information pertaining to the 

illumination direction.  A specific variant of the uncalibrated techniques was identified 

to be a suitable candidate for use with rough surface textures.  However, it was deemed 

to require further development with particular regard to solving the inherent ambiguity 

to the extent that the resulting surface estimate images could be utilised for relighting 

purposes.  This work largely entails adapting the approach to both suit and indeed take 

advantage of its specific application to texture.  This involves identifying alternative 

sources of information to facilitate reduction of the ambiguity with the proviso that they 

are practical to implement.  Detail of the proposed customisation to accomplish this and 

associated issues will be given in this chapter.  A texture-specific uncalibrated 

photometric stereo technique is thereby derived for use on a practical basis. 

 

 

This chapter is organised as follows : 

  Implementation of the uncalibrated photometric stereo technique is reviewed and then 

developed for texture in Section 6.2.  The first stage of the process which concerns the 

decomposition of the intensity matrix is presented in detail.  We then focus on the 

resolution of the ambiguity to the extent that the resulting surface representation 

estimates can be utilised for relighting purposes. 

!
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6.2 Method 
 
  In the previous chapter we identified Hayakawa’s [Hayakawa1994] original 

uncalibrated photometric stereo technique as a potentially viable means of realising our 

goal of determining surface representations of texture using only intensity data.  The 

issues involved in implementing the technique on a practical basis will be considered in 

the following discussion.  In particular we are concerned with customising the process 

for use with images of surface textures.  It is convenient to consider the overall process 

in stages and each is defined in flowchart form for clarity (see Figures 6.1-6.4, 6.7). 

 
6.2.1 Decomposition 
  Our input data consists of a set of f images of a surface texture illuminated from varied 

but unknown positions.  The m pixels of each image are re-arranged into a column.  The 

resulting columns are combined to form a single matrix of intensity values I which is   

m × f in size (See Equation 2.34).  The fundamental step in the process involves 

decomposing the resulting intensity matrix to provide initial estimates of the surface 

representation matrices.  This is done by using singular value decomposition which was 

previously described in Section 2.53.  The resulting orthogonal and diagonal matrices, 

U!VT, are partitioned such that equivalent but smaller matrices are produced which 

correspond to the first three singular values:   
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This has the advantage of discarding the noisy part of the input data.  Indeed the product 

of the reduced matrices is the best approximation to an ideal noiseless image intensity 

matrix which is of rank three and corresponds to an illuminated Lambertian surface (see 

Equation 6.1). 

IVU ˆ''' =" T
! ! !     (6.1) 
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The decomposition components present in this equation are used to give expressions for 

the pseudo surface and illumination matrices which provide initial estimates for the 

scaled surface normal and illumination vectors (see Equations 6.2, 6.3).  This first stage 

in the uncalibrated photometric stereo algorithm is illustrated in Figure 6.1.  

!

( )''ˆ !±= US ! ! ( ) ''ˆ V!L ±= !   (6.2, 6.3)!

 
The sign ambiguity in these pseudo matrices means that there are two valid solutions.  

These correspond to either left-handed or right-handed co-ordinate systems.  Hayakawa 

advocates selecting the latter in order to satisfy the convention that the z-component of 

the scaled surface normals is positive.  This orientation is determined by extracting three 

scaled surface normals from the two versions of the pseudo surface matrix and using 

them to form two equivalent matrices.  The resulting 3 ! 3 matrix which has a positive 

determinant is consistent with the right-handed system and allows the appropriate 

pseudo surface matrix to be identified.  It follows that its complementary pseudo 

illumination matrix is the corresponding choice since Equation 6.1 must be satisfied. 

 

 

 

 

!
 

 

 

 

 

 

 

 

 

 

 

Figure 6.1  Flowchart of uncalibrated photometric stereo first stage which entails 
formulation of the intensity matrix & its decomposition into pseudo surface & 
illumination matrices. 
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6.2.2 Ambiguity Reduction & Resolution 
  Hayakawa’s general approach has been adopted and adapted in related work published 

subsequently by a number of other authors as is readily apparent from the literature 

survey a summary of which is given in Table 5.1.  The main thrust of this research 

actually centres on the secondary part of the process which concerns the reduction or 

resolution of the inherent ambiguity.  As previously intimated, the pseudo matrices 

output from the decomposition stage are one potential solution for the photometric 

stereo scheme but further information is required to determine the solution uniquely.  

We need to determine the ambiguity matrix A in Equations 6.4 and 6.5 by implementing 

the procedure outlined in Figure 6.2.  This involves acquiring a sufficient amount of 

appropriate data by some means to enable the ambiguity matrix to be estimated.  The 

pseudo estimates of the surface and illumination matrices are subsequently multiplied 

by this ambiguity matrix to determine the true estimates:  

ASS ˆ=   LAL 1 ˆ!=     (6.4,  6.5) 

Ideally this should be achieved without compromising the uncalibrated nature of the 

algorithm by using alternative sources of information or employing assumptions which 

can be considered valid in the circumstances.  However, the exact nature of the resulting 

procedure really depends on the application.  For example, we are precluded from 

implementing any of the techniques which are based on specular reflection because we 

assume that the majority of our textures are largely diffuse in nature.   
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Figure 6.2   Flowchart of uncalibrated photometric stereo second stage in which the 
ambiguity is determined in order to transform the pseudo surface & illumination 
matrices into actual estimates. 
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Several means of reducing and resolving the ambiguity are discussed in the following: 

Constant Light Intensity Assumption 
The fact that we utilise a single light source in the capture of the images of real textures 

for our database means that the constant intensity assumption proposed by Hayakawa is 

a reasonable approach for our specific application.  The theory relevant to this was 

presented in the previous chapter although it focused on the equivalent constant albedo 

assumption.  The treatment is equivalent in this case since it is merely a matter of 

considering the size of illumination vectors rather than surface normals. 

  In practice the value of the intensity parameter will not be known unless it is measured 

and since this would entail complicating the overall procedure, we opt instead to set it to 

unity.  As noted in the theoretical development, this introduces an unknown constant 

scaling factor into the solution.  However, this is not considered to be an issue as it will 

actually be taken into account in later stages of ambiguity reduction.  Re-arranging the 

matrix formulation given in the previous chapter to solve for the elements of C, the 

following is obtained. 
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   (6.6) 

 
Having determined the elements of the matrix C, it can then be decomposed to provide 

an estimate of the ambiguity matrix A.  Singular value decomposition is utilised for this 

purpose once again.  It is noted that in this case the resulting orthogonal matrices are the 

same because C is symmetric. 

TWWC "= ! ! "= WA !! ! ! (6.7, 6.8)!

 

The initial estimates of the pseudo surface and illumination matrices are multiplied by 

the resulting ambiguity matrix and its inverse, respectively thus providing secondary 

estimates (see Figure 6.3).  Again, these form a valid solution for the photometric stereo 

scheme but the solution is still not unique.  This is because the number of degrees of 

freedom have only been reduced (from 9 to 3).  A residual ambiguity still exists and 

further information is required to fully resolve it.    

 

!
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Figure 6.3   Flowchart of initial ambiguity reduction in texture-specific photometric 
stereo. 

 
Absolute Orientation 
The remaining three degrees of freedom amount to an orthogonal transformation as was 

deduced analytically in the previous chapter.  The implication is that the derived pseudo 

matrices containing estimates of the surface normals and illumination vectors are in an 

arbitrary co-ordinate system and require alignment to the true co-ordinate system.  Horn 

[Horn1987] presents a number of methods for solving this absolute orientation problem 

each of which necessitates the knowledge of a number of data points in both co-ordinate 

systems.  Such an approach is neither ideal nor practical for an uncalibrated algorithm 

since it is likely that this data would have to be obtained by measurement.  However, an 

implementation of this step provides a valuable insight into what is involved with regard 

to complete resolution of the ambiguity.  The least expensive in terms of this 

requirement for further information will be considered in this section.  It requires three 

data points to be known in each system.  Since we are actually concerned with vectors it 

was initially ventured that one of the three points could be assigned to the origin thus 

effectively reducing the requisite data burden.  However, this was found to be 

counterproductive with regard to accuracy.  We therefore consider the end point of three 

vectors in this procedure.   

  For convenience we consider illumination direction in the following and assume that 

l1, l2 & l3 have been measured or estimated by some means; we briefly consider ways of 

achieving this without resorting to calibration later in this section.  The vector triad is 

manipulated to form a local co-ordinate frame in this, the viewer-oriented co-ordinate 

system which is denoted by the suffix v.  The vectors defining the resulting axes of the 

frame are utilised to form a matrix by arranging them columnwise as shown.  
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The corresponding three vectors taken from the derived pseudo matrices 321
ˆ&ˆ,ˆ lll   are 

manipulated in an identical way to generate a matrix Ma where the suffix a denotes the 

arbitrary co-ordinate system.  

aaaa zyxM = ! ! ! !  (6.13) 

If al̂  is a vector from the pseudo illumination matrix, its components along the axes of 

the local co-ordinate frame are a
T l̂M a .  These are mapped into the viewer-oriented      

co-ordinate system by multiplying by Mv. 

aavv lMMl ˆT= ! ! ! ! ! ! (6.14) 

The rotation matrix R which resolves the residual ambiguity is therefore written as 

follows:          (6.15) 

 

This constitutes an orthogonal transformation since each matrix is constructed from the 

co-ordinate frame axes which are themselves orthonormal.  The pseudo surface and 

illumination matrices are multiplied by R and its inverse, respectively to generate a 

unique solution (see Figure 6.4). 

 

 

 

 

 

 

 

 

 

Figure 6.4   Flowchart of ideal residual ambiguity resolution in texture-specific 
photometric stereo. 
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  The significant drawback of this approach to ambiguity resolution is that several 

viewer-oriented vectors must be known.  In terms used to define them, we are obliged to 

determine three tilt angles and three slant angles.  To do so with sufficient accuracy is 

likely to involve some form of calibration step.  Unfortunately this would mean 

foregoing the very advantage of this photometric stereo technique i.e. its uncalibrated 

nature.  It is possible to estimate the illumination tilt angle in the image by performing a 

Fourier analysis of the polar plot as proposed by Chantler [Chantler1997] but this is 

limited to isotropic textures and cannot be applied generally.  In any case Horn 

[Horn1987] highlights a deficiency in this cheap absolute orientation method : it uses 

the information from the three points selectively such that a different rotation matrix 

will be obtained if the points (or vectors in this case) are re-ordered.  This is not 

conducive to attaining an accurate solution.  Instead Horn recommends tackling the 

problem in a least squares sense but this would involve knowing an even greater number 

of viewer-oriented vectors.  In summary, it would seem that whilst this method provides 

a means of resolving the ambiguity, it is not really of practical use in this case due to the 

data requirement which is unrealistic if the algorithm is to remain a truly uncalibrated 

one.  However, it could still be utilised to test the viability of uncalibrated photometric 

stereo under ideal conditions.  In Chapters 7 & 8 we use this technique (referred to as 

UPS) as a benchmark for uncalibrated photometric stereo.   

 
Stepwise Orientation 
A more practical approach to resolving the residual ambiguity was devised by 

addressing each of the remaining degrees of freedom individually.  In this treatment we 

consider the overall orthogonal transformation required in three separate stages.  This is 

advantageous since it allows the exact information required for each step to be clearly 

identified. 

 z-Axis Alignment 
Although the textures described in Chapter 3 have rough surfaces their megastructure is 

planar.  The implication is that given a large enough sample, the mean surface normal of 

the texture will point directly towards the camera used to capture its image.  In terms of 

the viewer-oriented co-ordinate system we previously defined this means that the mean 

surface vector points along the z-axis and is hence written as [0,0,1]T.  This serves to 

provide further information which can be utilised for orientation at no actual expense in 

terms of calibration requirement. 
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Following the ambiguity reduction achieved through the use of the constant intensity 

assumption, the mean pseudo surface normal is calculated as follows. 
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[ ]Tn 100ideal = ! ! ! ! ! !   (6.17)!

Taking the dot product of the two vectors enables the angle between them to be 

determined.  This is a measure of the angle of rotation required to orient the pseudo 

surface vectors such that their mean, a representation of the z-axis of the arbitrary       

co-ordinate system, is aligned with the viewer-oriented z-axis.  The cross-product yields 

the corresponding axis of rotation required to perform this operation.  
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Inserting these into the general formula for a rotation matrix [Woo1999] allows the 

required transform to be determined. 
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The resulting rotation matrix is used to update the estimates for both pseudo surface 

normal and pseudo illumination matrices accordingly. 

123
ˆˆ RSS =   2

1
13

ˆˆ LRL !=     (6.21, 6.22) 

 
The effect of this operation is readily perceived from the surface normal distribution 

graphs presented in Figure 6.5.  

  Having aligned the z-axis of the arbitrary co-ordinate system with that of the viewer-

oriented system, there remain two degrees of freedom regarding the residual ambiguity.  

One of these concerns the orientation of the x-y plane and will be considered in the 

following subsection. 
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!
Figure 6.5   Surface normal distribution for synthetic fractal texture corresponding to 
pseudo matrix estimate (a) before & (b) after z-axis alignment.    

!
 Rotation about z-Axis 
With regard to the orientation of the x-y plane, the objective is to transform the pseudo 

vectors such that the x-axis of their local co-ordinate system (and therefore the y-axis 

too) corresponds to that of the viewer-oriented system without perturbing the mean 

surface vector direction which has been aligned.  This is achieved by performing a 

rotation about the z-axis itself.  Since the axis of rotation is known, it is matter of 

determining the angle of rotation to generate the required matrix.  We note that an 

image registration step would not be applicable with regard to finding a solution in this 

case.  This is because the rotation concerns the individual vectors and normals rather 

than their spatial positioning.  The tilt angle corresponding to a single viewer-oriented 

vector must be known.  If the texture is isotropic then Chantler’s method [Chantler1997] 

can be utilised to estimate a value for the tilt angle of an illumination vector from one of 

the input images.  However, in the more general case it will be necessary to supply a tilt 

angle which has been measured or is known.  The unfortunate consequence of this is 

that although the information burden is extremely low, it does mean that we are forced 

to renege on our ideal of a truly uncalibrated photometric stereo algorithm.  However, 

we believe that setting up the equipment such that the initial placement of the light 

corresponds to a tilt angle of 0° is not unreasonable and could easily be implemented on 

a practical basis.  We feel that this approach is preferable in order to retain the general 

applicability of the algorithm rather than limit it to specific textures such as those with 

smooth surfaces or exhibiting specular reflection.  It may actually be sufficient to assign 

one image as a reference and hence designate its corresponding illumination tilt angle as 

0°.  The implication is that the illumination direction corresponding to a relit image 

would be relative to the allocated co-ordinate system.  This may be acceptable for some 

applications. 
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Figure 6.6   Pseudo illumination vector corresponding to  known vector requires 
rotation of !2 to orient x-y plane with viewer-oriented co-ordinate system. 

 

The tilt angle corresponding to the first vector in the pseudo illumination matrix is given 

by the following equation:   
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Since the corresponding known tilt is 0°, the required angle of rotation is 

straightforward to deduce (see Figure 6.6).!

! ! pseudopseudoknown !!!" #=#=2       (6.24) 

This angle is substituted into the generic z-axis rotation formula [Woo1999] to give the 

required rotation matrix.  It is noted that the inverse is specified here since we are 

considering illumination vectors and our convention has been to specify the ambiguity 

matrix corresponding to the pseudo surface normal matrix as R.    
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The resulting rotation matrix is used to update the estimates for both pseudo surface 

normal and pseudo illumination matrices accordingly. 

234
ˆˆ RSS =   3

1
24

ˆˆ LRL #=     (6.26, 6.27) 

The co-ordinate system corresponding to the resulting pseudo matrix estimates is now 

aligned with that of the viewer-oriented system.  The remaining degree of freedom 

concerns the overall scaling of the vector field.  In practical terms further processing 

could therefore be considered to be unnecessary with regard to the focus of this work, 

visualisation applications.  This is because the designer utilising the resulting bump map 

to boost photorealism is likely to dictate the exact scale required for the 3D virtual 
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scene.  With regard to the quantitative assessment of the technique, however, we are 

obliged to consider this issue in order to allow comparison with the ground-truth data 

set i.e. the input images.  This will be considered in the next subsection. 

 

Overall Scaling 
In order to resolve the ambiguity completely and hence facilitate quantitative 

assessment, it is necessary to transform the co-ordinate system of the pseudo estimates 

whose axes are now aligned with the viewer-oriented system such that the axes are of 

equivalent magnitude.  The scaling factors involved must therefore be determined to 

resolve this final degree of freedom.  To do so, a single slant angle corresponding to a 

vector in the viewer-oriented system must be known.  For convenience, we assume that 

once again this corresponds to the first illumination vector. 

   The slant angle corresponding to the first vector in the pseudo illumination matrix is 

given by the following equation.   

( )zpseudo l ),1(4
-1 ˆcos=!        (6.28) 

The resulting scaling factors corresponding to each axis are therefore given by the 

following ratios. 
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These factors are used to form the required transformations which take the form of 

diagonal matrices. 
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The actual estimates of the surface normal matrix and the illumination matrix can 

finally be determined. 

34
ˆ RSS =   4

1
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A flowchart of the proposed process to resolve the residual ambiguity is given in Figure 

6.7. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7   Flowchart of practical residual ambiguity resolution in texture-specific 
photometric stereo. 

 

 The scaled surface normal matrix S is used to produce surface gradient and albedo 

images which can be utilised for relighting such that colour images of the texture are 

generated under user-specified illumination conditions.  The resulting images can hence 

be compared with the original images of the texture captured by digital camera to 

facilitate a quantitative assessment of the proposed algorithm. 
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6.3 Summary & Discussion 
 

  In this chapter we have developed an algorithm which is based on Hayakawa’s original 

method of uncalibrated photometric stereo for specific use with the images of 

illuminated rough surface textures.  The main issue was noted to be the inherent 

ambiguity which corresponds to nine degrees of freedom.  Appropriate methods were 

presented to reduce and subsequently resolve these in order to work towards obtaining a 

unique solution for both surface and illumination matrices.  The associated issues with 

the various approaches were discussed.  Initially we proposed to reduce the ambiguity 

from nine to three degrees of freedom through the use of the constant light source 

assumption advocated by Hayakawa.  This was deemed to be reasonable because a 

single moveable light source was utilised in the capture of the database of images of 

illuminated real textures.  In order to resolve the remaining three degrees of freedom we 

initially considered Horn’s simplest absolute orientation method.  Whilst this allows our 

objective of ambiguity resolution to be achieved, the information burden in terms of 

viewer-oriented vectors was deemed to be too high to justify its use in an uncalibrated 

algorithm.  Instead, the fact that the remaining degrees of freedom constitute an 

orthogonal transformation led us to consider the orientation in separate rotation and 

scaling steps.  The first stage involves orienting the z-axis of the arbitrary co-ordinate 

system estimated by the mean pseudo surface vector with that of the viewer-oriented 

system.  The next stage entails the orientation of the x-y plane.  This necessitates the 

knowledge of a single tilt angle of an actual illumination or surface vector.  With regard 

to the former, the use of Chantler’s tilt estimation technique was suggested as a way of 

determining a value for this but was noted to be applicable to isotropic textures only.  In 

the more general case e.g. when textures are directional, we advocated setting up the 

image capture equipment such that the first illumination vector tilt angle is known.  We 

acknowledged the fact that this forces us to relinquish the uncalibrated status of the 

algorithm.  However, in practice it may well be reasonable to simply assign a tilt angle 

of 0° to the first image and hence avoid the need for calibration.  In doing so the 

resulting surface representation would be relative to the chosen co-ordinate system but 

this may be acceptable for relighting applications.  The third stage is a scaling step.  

Whilst this requires the value of a slant angle corresponding to an actual illumination or 

surface vector to be known, it was noted that it is only necessary to perform this 

operation for quantitative assessment of the algorithm.  
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  Overall, we have described a plausible implementation of an algorithm which is based 

on Hayakawa’s uncalibrated photometric stereo.  This texture-specific method simply 

requires the input of intensity data corresponding to a series of images of a texture 

illuminated from different directions with a common light source and a single 

illumination vector in order to generate estimates of the scaled surface normal and 

illumination matrices.  We feel that the approach we have adopted for ambiguity 

reduction/resolution is preferable to the alternative of making further assumptions which 

restrict the general applicability of the algorithm. 
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Chapter 7  
 
Assessment of Uncalibrated Photometric Stereo 
with Texture – Simulation 
 
 
7.1 Introduction 
 
  In the previous chapter a scheme based on uncalibrated photometric stereo was 

developed for use with surface texture.  In this chapter the proposed technique is 

examined with regard to performance under various simulated conditions.  We gauge 

the robustness of the algorithm for non-ideal reflectance and in the presence of noise.  

The effect of both number and position of illuminants is also evaluated with a view to 

recommending operating conditions which provide high accuracy.  An identical analysis 

is carried out for variants of the photometric stereo technique to allow comparison and 

hence provide an assessment of relative performance. 

 

 

This chapter is organised as follows: 

  Variants of the photometric stereo algorithm which were utilised in the simulation 

investigation are reviewed in Section 7.2.  Experimental results are then reported in 

Section 7.3.  The findings are summarised and conclusions are drawn in Section 7.5.  
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7.2 Experimental Technique Variations 
 
  To facilitate an assessment of the results for the texture-specific algorithm, we 

conducted parallel experiments with up to four other variants of the Lambertian 

photometric stereo algorithm for comparison.  Each of the algorithms utilised is 

described in brief in the following. 

 

PS-3 
This is the three-image version of photometric stereo [Woodham1980] which is 

described in Section 2.5.3.  It is a calibrated technique and involves determining the 

inverse of the illumination matrix. 

PS 
This is the over-constrained version of photometric stereo [Woodham1980] which is 

described in Section 2.5.3.  It is a calibrated technique and involves determining the 

pseudo-inverse of the illumination matrix in order to find the least squares solution. 

UPS 
This is the uncalibrated photometric stereo technique originally proposed by Hayakawa 

which is described in Section 6.2 [Hayakawa1994].  It uses SVD to decompose the 

intensity matrix.  It reduces the ambiguity by assuming constant light source intensity 

such that the illumination vectors are constrained to be of constant magnitude.  It 

resolves the residual orthogonal ambiguity by using an absolute orientation method 

[Horn1987].  In this case the technique strictly loses its uncalibrated status because 

absolute orientation demands the knowledge of three illumination vectors.  However, its 

use provides us with a baseline against which the texture-specific algorithm may be 

compared. 

UPS-tx 
This is the texture-specific uncalibrated technique which we developed in the previous 

chapter.  It is described in Section 6.2.  Similar to the UPS method, it uses SVD to 

decompose the intensity matrix and it reduces the ambiguity by assuming constant light 

source intensity.  It resolves the residual ambiguity by using a stepwise approach rather 

than absolute orientation, however.  First of all, the mean surface normal of the pseudo 

matrix is aligned with that known from the fact that the textures are constrained to have 

a planar megastructure.  The tilt and slant angle of one illumination direction must be 

known to facilitate a further rotation and scaling of the pseudo matrix vectors. 
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UPS-it 
In this case we modified the UPS-tx method by supplementing it with a pre-processing 

step in which outlying intensity data is discarded.  This is based on a method by 

Georghiades which attempts to address issues such as the presence of shadows and 

highlights in the intensity matrix [Georghiades2003a].  This was introduced in Section 

2.5.3.  In this case we focus on shadowing and set a lower bound for intensity value for 

the iterative procedure. 

Despite their requirement for a number of illumination vectors to be known, we feel that 

it is reasonable to label UPS, UPS-tx and UPS-it techniques as ‘uncalibrated’.  A term 

such as ‘pseudo-uncalibrated’ or ‘semi-uncalibrated’ may be more accurate in this case.  

However, the general approach of intensity matrix decomposition followed by 

ambiguity reduction and resolution is usually referred to as ‘uncalibrated’ in the 

literature [Drbohlav2002, Drbohlav2003, Georghiades2003c]. 

 
7.3 Technique Performance 
!
  The Lambertian photometric stereo algorithms (PS-3, PS, UPS, UPS-tx & UPS-it) are 

based on an assumption of perfectly diffuse reflection from a surface illuminated by a 

point light source at infinity.  We decided to explore the behaviour of the proposed 

technique (UPS-tx) under reflectance conditions which challenge this assumption and 

compare its performance with those of the other algorithms.  Such conditions include 

the presence of shadows and specular highlights in addition to the case when the point 

light source is nearby.  These issues are considered in Sections 7.3.1, 7.3.2 and 7.3.3 

respectively.  We investigate the effect of the presence of noise (Section 7.3.4) because 

this will be an inherent feature in the images of real textures captured by camera.  In 

Chapter 4 we determined that the configuration of the illumination vectors affects the 

performance of the three-image photometric stereo algorithm (PS-3).  We examine the 

effect of illuminant number and relative position on the proposed uncalibrated technique 

in Section 7.3.5.  Finally we evaluate the sensitivity of the algorithm with regard to its 

mean surface vector assumption.  With regard to all of the aforementioned experiments, 

we use the same data set as input for the five algorithms in each case to facilitate an 

accurate comparison of the uncalibrated and calibrated techniques.  A randomly 

illuminated series of texture images would be the likely data input for the uncalibrated 

techniques in practice.  However, we decided that this was not appropriate for 

simulation considering our objective of gauging relative performance accurately. 
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7.3.1 Shadowing 
Motivation 
Our proposed technique (UPS-tx) is based on ideal diffuse reflection and hence assumes 

that every pixel in each of the input images is illuminated.  In reality this will not be the 

case for many real textures whose mesostructure is three-dimensional.  Shadows occur 

when the incoming ray of light is occluded and this is more likely for surfaces with 

greater variation in height.  It is important to establish the performance of the algorithm 

under these conditions since shadows will be encountered in practice. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1  Visual explanation of both self and cast shadowing. 

 
Data Generation 
For simulation purposes, a means of modelling shadows is required.  Two different 

processes are commonly considered to account for the occlusion of the incident light 

beam which results in the presence of shadows.  These are cast shadowing and self 

shadowing [Schlüns1997].  The former refers to surface facets which lie in the shadow 

projected by a relatively high neighbouring facet which obscures the light source.  The 

latter refers to the situation when the angle between the surface facet normal and the 

illumination direction is greater than 90° i.e. when the light source is below the facet 

horizon.  See Figure 7.1 for an illustration.  Modelling self shadowing merely involves 

setting the intensity value to zero when the value of the dot product between the surface 

facet normal and the illumination vector is negative:  

  

         (7.1) 
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Cast shadowing is more demanding to implement and has been ignored for the purposes 

of this investigation.  In this section we present results which are based solely on the 

presence of self shadows. 

 

 

 

 

 

 

 

 

 

Figure 7.2  Sample height map profile for fractal surface.   

 
  For our experiments we created a series of data sets for each of the three synthetic 

surface textures detailed in Section 3.4.  Although self shadowing depends on the 

relative orientation of the surface normal and the illumination vector, we opted for 

consistent illumination directions as specified in Section 3.4.2 and controlled the extent 

of shadowing by altering the surface roughness.  This was achieved by multiplying the 

height map corresponding to each synthetic surface by a factor greater than unity and 

differentiating the resulting image to obtain the new surface gradient maps of an 

equivalent but rougher surface (see Figure 7.2).  The degree of surface roughness was 

estimated for each surface by calculating the rms roughness zrms parameter which is 

defined in Section 3.3.  Five values of rms roughness (0< zrms<20) were employed for 

each synthetic texture. 

  Equation 7.1 was used to generate images of each surface under the range of 

illumination directions corresponding to: 0°<!<360°, !!=10°, 30°<"<60°, !"=15°.  

Each data set therefore contained 108 images.  See Figure 7.3 for examples.  These 

images provide a visual demonstration that an increase in height variation results in a 

higher occurrence of shadows since the rougher textures are relatively dark.  Equivalent 

data sets were also generated with Equation 2.2 for comparison.   In this case negative 

intensity values are permitted. 
 
 
 
 

Pixel Position 
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(a)    (b)    (c) 

! ! !
Figure 7.3  Sand ripple surface of increasing surface roughness illuminated under 
identical conditions.  Image (c) is  the roughest. 

 
Method 
Thirty-six images corresponding to a constant illumination slant angle ! of 45° were 

selected from each data set for use as input data.  These were processed with the five 

Lambertian photometric stereo techniques described in Section 7.2.  The resulting p and 

q maps and albedo image were used in conjunction with the Lambertian model to 

produce seventy-two relit images with illumination directions not present in the input 

data i.e. 0°<"<360°, !"=10°, !=30°/60°.  A signal to relight error ratio (SER) value was 

calculated for each relit image using Equation 3.9.  A texture signal to relight error ratio 

(TSER) was subsequently calculated for each data set of each synthetic texture using 

Equation 3.10.  Finally, a mean TSER value for the three synthetic textures was 

calculated for each data set. 

 
Results 
With regard to the UPS-tx algorithm, Figure 7.4 demonstrates that when negative 

intensity values are permitted the performance is comparatively unaffected by surface 

roughness.  This is not surprising because the data is effectively perfect.  If self shadows 

are modelled, however, the accuracy in terms of the mean TSER value decreases as the 

rms roughness increases.  This can be attributed to the increasing presence of shadows 

which are a source of error for the algorithm.  Their effect can be observed from a visual 

inspection of the albedo image which should be of constant intensity (see Figure 7.5).  

  A comparison of the relight accuracy for the five techniques described in Section 7.2 is 

presented in graphical form in Figure 7.6.  The fact that the plots have a similar profile 

to each other implies that the increasing presence of shadows has a negative impact on 

the performance of Lambertian photometric stereo in general.  We observe that the 

UPS-tx algorithm is practically as robust to surface roughness as the technique with the 

best performance, PS.   
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Figure 7.4  Mean TSER for three synthetic textures versus rms roughness for the UPS-tx 
algorithm. 
 
 
(a) p map   (b) q map   (c) albedo 

! ! !
Figure 7.5  Sample output images for sand ripple surface (rms roughness=5). 
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Figure 7.6  Mean TSER for three synthetic textures versus rms roughness for five 
Lambertian  photometric stereo algorithms. 
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 (a) (b) (c)  

7.3.2 Specularities 
Motivation 
When reflection from a surface is specular in nature, highlights are observed.  These 

correspond to large spikes in image intensity value.  The Lambertian model is unable to 

accurately represent specular reflection.  This is illustrated in Figure 7.7.  As a result, 

textures which exhibit specular reflectance are not ideal candidates for use with 

Lambertian photometric stereo techniques.  However, it is important to establish the 

performance of the algorithm when presented with images of such textures since they 

may well be encountered in practice. 

 

 

 

 

 
Figure 7.7  Reflection from a surface facet (a) diffuse reflection modelled by 
Lambert’s law, (b) specular reflection modelled by the Phong model with an exponent 
of 10 and (c) specular reflection modelled by the Phong model with an exponent of 100.  

 
Data Generation 
For our experiments we created a series of data sets for each of the three synthetic 

surfaces detailed in Section 3.4.  The simplest reflection model describing specular 

reflectance is the equation proposed by Phong [Phong1975].  It was introduced in 

Chapter 1 and is given by Equation 1.3.  The equation was used to generate images of 

each surface under the range of illumination directions corresponding to: 0°<!<360°, 

!!=10°, 30°<"<60°, !"=15°.  The data sets encompass a range of values for specular 

reflection proportion (0-100%) and also a range of the Phong exponent (0-100). 

Method 
Thirty-six images corresponding to a constant illumination slant angle " of 45° were 

selected from each data set for use as input data.  These were processed with the five 

Lambertian photometric stereo techniques described in Section 7.2.  The resulting p and 

q maps and albedo image were used in conjunction with Equation 7.1 to produce 

seventy-two relit images with illumination directions not present in the input data i.e. 

0°<!<360°, !!=10°, "=30°/60°.  A signal to relight error ratio (SER) value was 

calculated for each relit image using Equation 3.9.  A texture signal to relight error ratio 

(TSER) was subsequently calculated for each data set of each synthetic texture using 

Equation 3.10.  Finally, a mean TSER value for the three synthetic textures was 

calculated for each data set. 
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Results 
With regard to the UPS-tx algorithm, the plot in Figure 7.8 shows that in general its 

performance deteriorates as the proportion of specular reflection increases.  However, it 

is also apparent that the algorithm is relatively robust for low levels of specular 

reflection.  The effect of the Phong exponent on performance is more readily discerned 

by re-plotting the data (see Figure 7.9). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8  Mean TSER for three synthetic textures versus proportion of specular 
reflection over a range of Phong exponent values for the UPS-tx algorithm.  
 
 
 
 

  

 

 

 

 

 

 

 

 

 

Figure 7.9  Mean TSER for three synthetic textures versus Phong exponent over a range 
of specular reflection proportions for the UPS-tx algorithm. 



 115 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

-90.0° -60.0° -30.0° 0.0° 30.0° 60.0° 90.0°

Lighting Angle ! 

In
te

ns
ity

diffuse
specular
sum

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

-90.0° -60.0° -30.0° 0.0° 30.0° 60.0° 90.0°

Lighting Angle ! 

In
te

ns
ity

diffuse
specular
sum

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

-90.0° -60.0° -30.0° 0.0° 30.0° 60.0° 90.0°

Lighting Angle ! 

In
te

ns
ity

diffuse
specular
sum

For lower proportions of specular reflection (< 0.6) we observe that as the value of the 

exponent increases the accuracy initially falls but then rebounds to even higher levels.  

This can be explained by considering the exposure of the viewer in the scene to the 

spike in intensity value which is characteristic of specular reflection (see Figure 7.10). 
(a) 

 
 
 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 
 
 
 
 

(c)  
 
 

 

 

 

 

 

Figure 7.10  Phong reflection with exponent of (a) 2, (b) 10 and (c) 100.  Graphs 
generated from spreadsheet created by Dr. M. J. Chantler. 

 
For high values of the exponent, the specular component will correspond to a narrow 

intensity peak (see Figure 7.10c).  This means that the highlight will only be observed 

by the viewer for an extremely limited range of illumination angles.  In this case diffuse 

reflection will be dominant.  For low values of the exponent the peak is extremely broad 

(see Figure 7.10a).  The fact that it will be observed over a large range of illumination 

angles actually serves to dilute the effect.  The specular component tends towards 

sinusoidal behaviour as the exponent is reduced to unity.  In this case the overall 
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 (a)    (b)    (c) 

! ! !
Figure 7.11  Scaled images of a Mulvaney surface exhibiting (a) diffuse reflection,   
(b) specular reflection (Phong exponent = 10) and  (c) specular reflection (Phong 
exponent = 100).  

 
reflection behaviour approximates to that of the Lambertian model although this 

corresponds to a pseudo surface and not the true surface.  Intermediate values of the 

exponent result in a peak of medium breadth which may be observed over a reasonable 

range of illumination angles (see Figure 7.10b).  In this case the effect of specular 

reflection is much more likely to be discerned by the viewer.  This behaviour can also 

be observed from a visual comparison of illuminated surface images (see Figure 7.11).  

It is evident that the central image (Figure 7.11b) which corresponds to an intermediate 

exponent value is relatively brighter than the two other images.  This signifies the 

presence of more visible highlights.  The image corresponding to the highest exponent 

value (Figure 7.11c) resembles the image of the diffuse surface (Figure 7.11a).  This 

would clearly be beneficial with regard to the performance of the UPS-tx algorithm 

since it assumes Lambertian reflectance. 

  Examples of output images for the data set corresponding to Figure 7.11b are given in 

Figure 7.12.  Since the albedo used in the generation of the data set images is constant 

the fact that its estimate is not uniform emphasises that the presence of highlights 

provides a source of inaccuracy. 

 
(a) p map   (b) q map   (c) albedo image  

! ! !
Figure 7.12  Sample output images for specularly reflecting Mulvaney surface data set 
corresponding to a Phong exponent of 10 and a specular reflection proportion of 50%. 
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    With regard to comparative performance of the five techniques, the PS algorithm 

attains the best performance for specular reflectance relative to the UPS-tx, UPS and 

PS-3 algorithms (see Figure 7.13 and Figure 7.14).  It is evident that the UPS-tx 

algorithm is almost as robust to these conditions since its performance profile is similar 

to that for the PS algorithm.  The UPS-it algorithm was tested on the same range of data 

sets for these specular reflection experiments.  However, in many instances convergence 

of the iteration was problematic and as such it became impractical to implement.  We 

found that input data which diverges significantly from diffuse reflection is unsuitable 

for this algorithm.  This is not surprising because the algorithm has been designed to 

provide the best-fit solution to a Lambertian model. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.13  Mean TSER for three synthetic textures versus proportion of specular 
reflection for four Lambertian photometric stereo techniques (Phong exponent=40). 

 
 
 
 

 

 

 

 

 

 

Figure 7.14  Mean TSER for three synthetic textures versus Phong exponent for four 
Lambertian photometric stereo techniques (specular reflection proportion=0.4). 
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7.3.3 Point Illumination 
Motivation 
The Lambertian photometric stereo techniques assume that the surface is lit by a point 

light source at infinity.  The implication is that the resulting rays of light are parallel 

with each other when they impinge on the surface and it is hence possible to treat the 

illumination vector as constant.  The distance from the light source to the surface is 

finite in practice, however.  In this case the illumination vector varies over the surface 

(see Figure 7.15).  The degree to which this happens depends on the physical 

dimensions of the experimental set-up.  It is important to investigate this to determine 

the effect of nearby point illumination on the performance of the UPS-tx algorithm. 

 

 

 

 

 

 

 

Figure 7.15  Point illumination diagram illustrating difference in illumination vectors 
with regard to both magnitude and direction. 

 
Data Generation 
Simulating nearby point light source illumination involves using a version of the 

Lambertian model which is explicit in terms of the illumination radius rb (see Equation 

7.2).  Image intensity is inversely proportional to the square of this distance; when the 

source is at infinity rb can be taken as constant and is incorporated into the albedo term. 

         (7.2) 

 

 
The intensity also depends on the dot product of the surface normal and the illumination 

vector.  Since the direction and magnitude of the illumination vector vary over the 

surface in this case, they must be computed for each facet in order to implement point 

illumination (see Figure 7.16).  This requires the position of the light source to be 

known relative to the surface.  To establish this, we specified the dimensions of the 

surface i.e. physical distance and in number of pixels.  We also specified the length of 

the light beam impinging on the centre of the surface which corresponds to the principal 

illumination direction (see Figure 7.16a).  This approach was used to generate images of 

l1  l2  l3 
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each synthetic surface under point illumination for the range of illumination directions 

specified in Section 3.4.2.  In this case we consider these directions to refer to the 

principal illumination vector.  The data sets encompass a range of illumination radii                      

and surface areas ( rb (xP,yP) = 0.5m-2.0m; stx = 0.1m & 0.4m). 
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Figure 7.16  Point illumination calculations (a) light source co-ordinate,                     
(b) illumination angles and radius for a facet. 

 
Method 
Thirty-six images corresponding to a constant illumination slant angle " of 45° were 

selected from each data set for use as input data.  These were processed with the five 

Lambertian photometric stereo techniques described in Section 7.2.  The resulting p and 

q maps and albedo image were used in conjunction with Equation 7.1 to produce 

seventy-two relit images with illumination directions not present in the input data i.e. 

0°<!<360°, !!=10°, "=30°/60°.  A mean TSER value for the three synthetic textures 

was calculated for each data set using Equations 3.9-3.11. 
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Results 
With regard to the plots in Figure 7.17, it is clear that performance of the UPS-tx 

algorithm gradually deteriorates as the illumination radius is shortened.  Furthermore, 

the relight error is relatively higher for physically larger surfaces.  These findings can be 

explained by considering the deviation from the reflectance model which is assumed by 

the technique.  The key factor is the variablity in the illumination gradient over the 

surface of the texture.  The unscaled images in Figure 7.18a provide a visual 

demonstration that a greater illumination gradient occurs when the light source is 

relatively close to the texture surface.  This has a negative impact on performance.  

With regard to surface size, it is clear that the illumination gradient will be reduced if a 

smaller sample of the surface is considered.  Performance could be improved in this 

way. 

  

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.17  Mean TSER for three synthetic textures versus illumination radius for 
square sample of side (a) 0.4m & (b) 0.1m for five  photometric stereo algorithms. 
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Figure 7.18  Images of fractal surfaces illuminated by a nearby point light source with 
illumination radius between 0.5m and 2.0m (a) images not scaled with each other to 
facilitate illumination gradient evaluation (b) images scaled with each other. 
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(a) p map   (b) q map   (c) albedo!

! ! !
!

Figure 7.19  Sample output images for data set corresponding to square fractal surface 
of side 0.4m under point illumination of radius 0.5m. 

 

  Examples of output images for the data set corresponding to the image with a 0.5m 

illumination radius in Figure 7.18 are given in Figure 7.19.  Since the albedo used in the 

generation of the data set images is constant the fact that its estimate is not uniform 

emphasises the adverse effect of the illumination gradient.  This is also noticeable in the 

p and q map images. 

  With regard to comparative performance (see Figure 7.17), it is evident that the     

UPS-tx algorithm is as robust to the effect of nearby point illumination as the calibrated 

Lambertian photometric stereo techniques PS and PS-3.  It is also apparent that UPS-tx 

outperforms the standard uncalibrated technique, UPS.  This is particularly noticeable in 

Figure 7.17b.  However, this behaviour is not merely a feature of these point 

illumination experiments since it may also be observed in the previous sections on 

closer inspection (see Figures 7.6, 7.13, 7.14).  We attribute the relatively poor 

performance of the UPS algorithm to its use of absolute orientation with three data 

points [Horn1987] for ambiguity resolution.  Accuracy concerns regarding this 

rudimentary technique were highlighted in Chapter 6 and it is therefore likely to be the 

main factor with regard to the poorer performance.  The iterative technique UPS-it was 

found to have the poorest performance overall.  We attribute this to the fact that the 

input images are increasingly darker as the illumination radius is increased (see Figure 

7.18b).  This means that a higher percentage of intensity data will be considered as 

outlying and initially discarded.  It is evident that the algorithm is sensitive to a lack of 

valid intensity values.  In practice this problem would be resolved by opening up the 

aperture of the camera in order to obtain a suitable range of intensities.   
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7.3.4 Presence of Noise 
Motivation 
Noise is an inherent feature in the images of real textures.  It can be generated by a 

number of mechanisms which take place during the imaging process 

[McGunnigle1998].  The use of a CCD camera to produce images means that sensor 

noise is likely to be a contributory factor in this regard.  These cameras employ a 

semiconductor sensor to measure irradiance; we assume that the intensity values in the 

resulting images have a direct linear relationship to the irradiance.  However, if the light 

falling on the sensor exceeds certain levels then processes such as signal attenuation, 

clipping and blooming are likely to occur [Klette1999].  These processes result in a  

non-linear response.  The fact that CCD chips generate charge when no light is falling 

on them is a further source of error.  This means that in the absence of light, an intensity 

value known as the black level will register in the image.  The consequence of sensor 

noise is that the image intensity values output from the camera deviate from those 

actually observed.  This has implications for the Lambertian photometric stereo 

algorithms because they assume that the intensity data results from ideal diffuse 

reflection.  It is important to determine how robust the UPS-tx algorithm is to noisy 

input data. 

Data Generation 
McGunnigle determined that the temporal noise associated with the images of textures 

could be approximated by a white noise process [McGunnigle1998].  Noise can be 

modelled by using a power spectral density which is inversely proportional to the 

frequency raised to a power !.  This is analogous to the fractal given by Equation 3.5 in 

Section 3.4.1.  For white noise the roll-off factor ! is set to zero.  We generated a series 

of white noise images which are Gaussian with zero mean.  These were added to the 

images generated by relighting each synthetic surface using Equation 7.1 under the 

range of illumination directions specified in Section 3.4.2.  The resulting data sets 

encompass a range of input signal to noise levels (0 - 25dB).  See Figure 7.20 for 

examples. 
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  (a) noise   (b) signal   (c) noisy signal 

   

Figure 7.20 Images of (a) white noise, (b) illuminated fractal surface and (c) image 
resulting from the addition of (a) and (b).  Signal to noise ratio is ~10dB. 

 
Method 
Thirty-six images corresponding to a constant illumination slant angle ! of 45° were 

selected from each data set for use as input data.  These were processed with four 

Lambertian photometric stereo techniques (PS-3, PS, UPS, UPS-tx); we decided to 

discontinue the use of the UPS-it technique at this juncture due to its record of poor 

performance.  The resulting p and q maps and albedo image were used in conjunction 

with Equation 7.1 to produce seventy-two relit images with illumination directions not 

present in the input data i.e. 0°<"<360°, !"=10°, !=30°/60°.  TSER values were 

calculated for each data set of each synthetic texture using Equations 3.9-3.10. 

Results 
In this section we present results for the fractal surface only.  The general profile is 

similar for the three surfaces, however.  With regard to Figure 7.21, it is clear that 

increasing levels of noise in the input data have a detrimental effect on the performance 

of Lambertian photometric stereo in general.  The UPS-tx algorithm attains comparable 

levels of accuracy to the other methods although the PS algorithm is superior.  

Examples of output images for a noisy fractal data set are given in Figure 7.22.  Since 

the albedo used in the generation of the images is constant the fact that the estimated 

albedo image is not uniform emphasises the adverse impact of noise. 
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Figure 7.21  TSER versus input signal to noise ratio for an illuminated fractal surface 
for four Lambertian photometric stereo techniques. 

 
   
 
(a) p map   (b) q map   (c) albedo image 

! ! !
!
Figure 7.22 Sample output images for the  fractal data set corresponding to an input 
signal to noise ratio of 10dB. 
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7.3.5 Illuminant Number & Positioning 
Motivation 
Multiple images of a surface texture each illuminated from a different direction are 

required as input for the UPS-tx algorithm.  Whilst a minimum of six images must be 

used due to the orientation requirements, there is no upper limit on their number.  The 

exact number of images and therefore illumination directions utilised may influence the 

performance of the algorithm.  The existence of an optimal illumination configuration 

for the three image technique (PS-3) suggests that this could also be an important factor 

in this case.  Although the UPS-tx algorithm is uncalibrated and illumination directions 

are unknown, it would still be valuable to ascertain general operating conditions which 

are beneficial in terms of performance.  

Data Generation 
We created a data set for each of the three synthetic surface textures detailed in Section 

3.4 by using Equation 7.1 to generate images of each surface under the range of 

illumination directions corresponding to: 0°<!<360°, !!=10°, 30°<"<60°, !"=15°.  

Each data set therefore contained 108 images.   

Method 
We adopted two approaches with regard to the experiments in this case.  One involved 

varying the number of input images such that the corresponding illumination 

configuration was always symmetric.  The second involved varying the number of input 

images such that the configuration became asymmetric.  In this case only the PS, UPS 

and UPS-tx techniques were utilised; the PS-3 technique only uses three input images 

and therefore cannot be employed for the purpose of these experiments. 

  With regard to the asymmetric investigation thirty-six images corresponding to a 

constant illumination slant angle " of 45° were selected from each data set for use as the 

initial input data.  The first application of the three algorithms in this case therefore 

actually involved data with a symmetric configuration.  Subsequent applications of each 

algorithm involved monotonically reducing the number of input images such that the tilt 

angle range decreased by 30° each time (0° < ! < 360°-k30° for k=1-8, !!=10°).  For the 

symmetric investigation thirty-six images corresponding to a constant illumination slant 

angle " of 45° were again selected from each data set for use as the initial input data.  

Subsequent applications of each algorithm involved monotonically reducing the number 

of input images such that the illuminant configuration was maintained in a symmetric 

pattern.  In each case the resulting p and q maps and albedo image were used in 

conjunction with Equation 7.1 to produce seventy-two relit images with illumination 

directions corresponding to: 0°<!<360°, !!=10°, "=30°/60°.  A mean TSER value for 
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the three synthetic textures was calculated for each configuration using Equations 3.9-

3.11.  

 

 

  

 

 

 

 

 
Figure 7.23  Mean TSER for three synthetic surfaces versus number of images input to 
three photometric stereo techniques.  Illuminant configurations largely asymmetric. 
 
Results 
With regard to the asymmetric investigation, it is evident that using fewer images is 

detrimental to the performance of the three algorithms tested (see Figure 7.23).  The 

UPS-tx algorithm is the most sensitive in this case.  The calibrated technique PS is the 

most robust to these conditions.  Its performance is relatively unaffected by reducing the 

number of input images from 36 to 28.  A very different performance profile is 

generated when the number of input images is decreased but the corresponding 

illumination configuration is symmetric (see Figure 7.24).  The performance of both the 

PS and UPS-tx techniques is essentially unaffected by the number of input images used.  

From the literature there is a suggestion that illuminant symmetry has a beneficial 

influence on performance but this was not elaborated upon [Yuille1999].  The 

sensitivity of the UPS algorithm is likely to stem from the absolute orientation step. 

!
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!
!
!
!
!
 

Figure 7.24  Mean TSER for three synthetic textures versus number of images input to 
three photometric stereo techniques.  Illuminant configurations symmetric. 
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7.3.6 Mean Surface Normal Deviation 
Motivation 
The UPS-tx algorithm assumes that the surface texture has a planar megastructure.  This 

facilitates the reduction of the ambiguity because the mean surface normal is aligned 

with the z-axis as discussed in Chapter 6.  If this was not the case, errors would be likely 

to be introduced into the orientation stage.  It is important to evaluate the performance 

of the algorithm when the mean surface normal cannot be taken as [0,0,1]T. 

Data Generation 
We created a data set for each of the three synthetic surface textures detailed in Section 

3.4 by using Equation 7.1 to generate images of each surface under the range of 

illumination directions corresponding to: 0°<!<360°, !!=10°, 30°<"<60°, !"=15°.  

Each data set therefore contained 108 images.   

Method 
Thirty-six images corresponding to a constant illumination slant angle " of 45° were 

selected from each data set for use as the input data for the UPS-tx algorithm.  Upon 

each application of the algorithm, an offset was added to the calculated angle between 

the pseudo mean surface normal and the z-axis.  We used offset angles of 1°, 2°, 5°, 10° 

and 15°.  The resulting p and q maps and albedo image were used in conjunction with 

Equation 7.1 to produce seventy-two relit images with illumination directions 

corresponding to: 0°<!<360°, !!=10°, "=30°/60°.  A mean TSER value for the three 

synthetic textures was calculated for each configuration using Equations 3.9-3.11. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.25  Mean TSER for three synthetic textures versus mean surface normal offset 
angle for the UPS-tx algorithm. 
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Results 
It is evident that the performance of the UPS-tx algorithm is adversely affected when 

the mean surface normal is increasingly offset from the z-axis (see Figure 7.25).  This is 

not surprising because this assumption is fundamental to the orientation stage of the 

algorithm.  The implication is that if the UPS-tx algorithm is to produce accurate results, 

the extent of any offset should be minimised.  At the very least this entails ensuring that 

the texture plane is parallel to the camera sensor during image capture.  Setting up the 

equipment properly is vital in this regard.  Unfortunately doing so does not guarantee a 

mean surface normal of [0,0,1]T, however.  This is because the texture mesostructure 

may also have an influence.  The extent to which this is the case depends on the 

roughness of the surface texture and the chosen sample size.  Although this issue has not 

been addressed by experiment, we may deduce that the mean surface normal of a small 

section of rough texture is less likely to be aligned with the z-axis due to local variation 

in surface relief.  A sufficiently large sample size is therefore required to avoid this 

problem in order to generate an accurate surface representation of a rough texture using 

the UPS-tx algorithm. 

 
7.4 Summary & Discussion 
 
  In this chapter we evaluated the performance of the UPS-tx algorithm in simulation by 

using the synthetic textures introduced in Section 3.4.  We investigated the effect of 

shadowing, specular reflection, nearby point illumination and the presence of noise in 

the input data.  We assessed the impact of varying the number of input images and the 

corresponding illumination configuration.  We also evaluated the sensitivity of the 

algorithm to offsets in the mean surface normal because this is a key assumption in the 

orientation stage.  We tested several other variants of the Lambertian photometric stereo 

algorithm under identical conditions for comparison.   

  For Lambertian textures the relight accuracy was found to decrease with increasing 

surface roughness.  This is due to the presence of shadows.  A deficiency in the 

investigation is that only self shadows are considered.  Cast shadows were not modelled 

because accurate rendering was only possible for a limited range of illumination 

directions.  The results presented therefore provide a best case scenario for the presence 

of shadows in the input data.  Nonetheless we may conclude that it is advisable to 

minimise their presence.  This can be done by compensating with favourable lighting 

positions for extremely rough surfaces by reducing the slant angle.  However, the reality 

is that the method is not well suited to such textures.  
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  For textures which we generated with the Phong model but which were relit with the 

Lambertian model, relight accuracy was found to decrease for increasing levels of 

specular reflection.  We found that the UPS-tx algorithm is robust for textures with 

moderate levels of specular reflection.  We observed that the breadth of the specular 

peak is a secondary factor with regard to performance.  A narrow peak implies that the 

resulting highlight is less likely to be observed; a broad peak means that the resulting 

highlight is effectively diluted.  In both cases the resulting reflection behaviour tends 

towards Lambertian rather than specular and is thus favourable with regard to the 

accuracy of the UPS-tx technique. 

  For Lambertian textures we generated with a nearby point source but which were relit 

assuming a point source at infinity, the accuracy was found to be greater for increased 

illumination radius.  Furthermore, the accuracy was greater for a smaller sample of the 

texture in question.  These findings are reasonable because the effect of nearby point 

lighting is less pronounced in both cases.  In practice, the light source should be 

positioned as far from the texture as possible.  If this is impractical, it may be advisable 

to implement the algorithm over a series of small sections of a larger surface texture and 

collate the results.  This kind of approach has been used by Rushmeier to determine the 

bump map of a curved object’s surface [Rushmeier1999].  Another approach to this 

issue is to take a registration image for each illumination direction to adjust the 

corresponding texture images.  However, this is a less practical solution and was not 

utilised in our experiments. 

  For Lambertian textures whose images were generated with added noise, accuracy 

levels were found to steadily decay as the input signal to noise ratio was reduced.  An 

abrupt breakdown in performance was not observed over the range of input noise used.  

We found that the UPS-tx algorithm is as robust to noise as the other algorithms tested.   

  The number of input images was found to affect the accuracy of the UPS-tx algorithm 

but only if the input images were lit in an asymmetric pattern.  In the asymmetrical case, 

more images proved to be beneficial with respect to accuracy.  For practical 

implementation, collecting images of the texture illuminated over a large tilt angle range 

is to be recommended for favourable performance of this uncalibrated algorithm. 

  We found that performance is adversely affected when the actual mean surface normal 

is not aligned with z-axis.  In order to utilise this algorithm in practice it will therefore 

be crucial to ensure that the surface texture has a planar megastructure.  The sample 

should be arranged on a level surface and the height variation with regard to the 

mesostructure of the texture should be relatively small compared to the sample size. 
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Chapter 8  
 
Assessment of Uncalibrated Photometric Stereo 
with Texture – Real Data 
 
 
8.1 Introduction 
 
  In the previous chapter we established that the texture-specific algorithm UPS-tx is a 

viable variant of uncalibrated photometric stereo.  In simulation we tested the algorithm 

under conditions which challenge its assumptions regarding the underlying reflectance 

model.  Images of illuminated synthetic textures were generated to facilitate an 

assessment of various effects on the algorithm performance.  In separate experiments 

we examined the presence of shadows, specular highlights, nearby point lighting and 

noise in a controlled manner.  With regard to real textures a similar approach would be 

desirable.  However, these effects are influenced rather than precisely controlled by the 

individual character of each real texture as well as the equipment selection and set-up.  

Furthermore, it is difficult to consider these deviations in isolation.  We decided to 

centre our analysis of real surface textures on parameters which could be controlled.  

Our primary investigation therefore examines the effect of illuminant number and 

configuration on relighting accuracy.  We also evaluate the relative performance for the 

thirty-one real textures and discuss both exceptional and poor performance in terms of 

the corresponding character of the texture 

 
 
This chapter is organised as follows: 

  The techniques utilised in the real texture experiments are described in Section 8.2.  In 

Section 8.3 the performance of the texture-specific technique UPS-tx is assessed.  We 

consider the effect of the number of input images and the corresponding illuminant 

configuration.  The impact of the reflection characteristics of specific textures is then 

discussed with a view to explaining the observed performance.  The findings are 

summarised and conclusions are drawn in Section 8.4. 
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8.2 Experimental Technique Variations 
 
  In Chapter 7 we utilised five variants of Lambertian photometric stereo (PS-3, PS, 

UPS, UPS-tx, UPS-it) for the simulation experiments.  Despite the extra expense in 

terms of run time, the iterative technique UPS-it was not found to produce an 

improvement in relighting accuracy and is not considered further in this thesis.  The 

three-image calibrated technique PS-3 was investigated with real textures in Chapter 4.  

The results, which are presented in Section 4.6, are not included in this chapter.  We 

decided to focus on a comparison of the algorithms which use the equivalent amount of 

input data i.e. the PS, UPS and UPS-tx algorithms. 

 
PS  
This is the over-constrained version of photometric stereo [Woodham1980] which was 

described in Section 2.5.3.  With regard to relighting accuracy this calibrated technique 

was consistently found to correspond to the best performance in simulation.   

UPS  
This is the technique originally proposed by Hayakawa [Hayakawa1994] which is 

described in Section 6.2.  In general UPS was found to correspond to the poorest 

performance in the simulation experiments.   

UPS-tx 
This is the texture-specific uncalibrated technique which we developed in Chapter 6.  Its 

performance in simulation was comparable to that for the calibrated technique PS. 
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8.3 Assessment of Technique Performance 
 
Our goal is to evaluate the UPS-tx algorithm with real texture data and compare its 

performance to that of the calibrated technique PS and the published uncalibrated 

technique UPS using relight accuracy as a gauge of performance.  With regard to real 

texture data, the parameters which are readily controlled and hence lend themselves to 

the design of experiments are illuminant number and configuration.  The effect of these 

factors on relighting accuracy is considered in Section 8.3.1.  In Section 8.3.2 we 

examine performance results in terms of individual textures as opposed to a mean 

performance over the thirty-one textures.  The objective is to facilitate an evaluation of 

algorithm performance in terms of texture character.  In this case we are mainly 

concerned with shadows and specular highlights whose presence is influenced by the 

choice of real texture.  In Section 8.3.3 we discuss the impact of equipment selection 

and set-up on algorithm performance since this influences the extent of nearby point 

lighting effects, noise and mean surface vector deviation.  We re-assess results from 

Sections 8.3.1 & 8.3.2 and compare the effect of different sizes of texture sample with a 

view to establishing the effect of point lighting. 

 

8.3.1 Illuminant Number & Positioning 
 
Motivation 
It is evident from the simulation experiments in Chapter 7 that the relative position of 

the illumination directions is a potentially significant factor with regard to relight 

accuracy for the UPS-tx algorithm.  We found that the algorithm performance does not 

actually deteriorate if the corresponding illumination configuration is symmetrical even 

with a relatively small number of input images.  In the case of an asymmetrical 

configuration, however, we determined that relighting accuracy depends on the number 

of images input.  The UPS-tx algorithm was found to be the most sensitive in this regard 

compared to the other techniques tested i.e. UPS and PS.  It is desirable to repeat these 

experiments with real surface textures to verify these results. 
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Data Generation 
Colour images of thirty-one real textures were captured using a CCD camera as 

described in Section 2.5.  The data set for each texture consists of 108 images under the 

range of illumination directions specified in Section 3.4.2.  In terms of illumination 

angles the images correspond to: 0°<!<360° with !!=10° and 30°<"<60° with !"=15°.  

The images which are 1280 × 1024 pixels in size were cut to 128 × 128 pixels to 

provide input data for the initial experiments in this section.   

Method 
As in simulation thirty-six images corresponding to a constant illumination slant angle " 

of 45° were selected from each data set for use as the initial input data for the 

asymmetric investigation.  Subsequent applications of each algorithm (PS, UPS, UPS-

tx) involved monotonically reducing the number of input images such that the tilt angle 

range decreased by 30° each time (0° < ! < 360°-k30° for k=1-8, !!=10°).  For the 

symmetric investigation thirty-six images corresponding to a constant illumination slant 

angle " of 45° were again selected from each data set for use as the initial input data.  

Subsequent applications of each algorithm involved monotonically reducing the number 

of input images such that the illuminant configuration was maintained in a symmetric 

pattern.  In each case the resulting p and q maps and albedo image were used in 

conjunction with Equation 7.1 to produce seventy-two relit images with illumination 

directions corresponding to: 0°<!<360°, !!=10°, "=30°/60°.  A mean texture signal to 

relight error ratio (TSER) value for the thirty-one real textures was calculated for each 

configuration using Equations 3.9-3.11.  

 

 
!
!
!
!
!
!
!
!
!
!
!
!

 

 
Figure 8.1  Mean TSER versus number of images input to three photometric stereo 
techniques.  Mean TSER averaged over 31 real textures.  Illuminant configurations 
largely asymmetric. 
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Results 
It is apparent that reducing the number of input images such that the corresponding  

illumination configuration is increasingly asymmetric is detrimental to the performance 

of the three algorithms for the thirty-one real textures tested (see Figure 8.1).  Overall 

the calibrated over-constrained algorithm PS outperforms the uncalibrated techniques in 

terms of relight accuracy whilst the UPS-tx algorithm attains consistently better 

performance than the UPS algorithm.  In this case UPS-tx is less sensitive to the number 

of input images compared to the results reported in simulation in which it was 

outperformed by the UPS algorithm for lower numbers of input images.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2  Mean TSER versus number of images input to three photometric stereo 
techniques.  Mean TSER averaged over 31 real textures.  Illuminant configurations 
symmetric. 

 

  With regard to the symmetric experiments, the performance of the three algorithms is 

essentially unaffected by a reduction in the number of input images if the corresponding 

illumination configuration is symmetric (see Figure 8.2).  This behaviour was also 

observed in the simulation experiments.  The implication is that even if the illumination 

directions are unknown, it is advisable to use an even sampling of the illumination 

hemisphere in order to achieve reasonable levels of accuracy with these algorithms.  

Unfortunately it is therefore unlikely that the idea of simply “waving a torch randomly 

to reveal the Euclidean structure” of a surface texture, to paraphrase Drbohlav 

[Drbohlav2002], will result in sufficient accuracy with the uncalibrated techniques. 
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8.3.2 Texture Character  
Motivation 

A notable feature of the results presented in the previous section is that the values 

observed for our overall measure of accuracy, the mean TSER, are significantly lower 

compared to those in the simulation experiments (compare Figures 7.22, 7.23 with 8.1, 

8.2).  We attribute this to the fact that Lambert’s law was used to relight the synthetic 

textures for the simulation experiments.  Since the three photometric stereo algorithms 

assume Lambertian behaviour, relatively poor performance is more likely to be 

observed for real surface textures whose reflectance deviates significantly from the 

ideal.  In simulation we found this to be the case for synthetic surface textures with high 

rms roughness and for those exhibiting a high proportion of specular reflection.  It 

would be useful to determine if easily discernable texture characteristics such as the 

presence of shadows and specular highlights correlate with the performance of the 

Lambertian photometric stereo algorithms for real texture data. 

 
Data Generation 
Images of the thirty-one real textures which are 1280 × 1024 pixels in size were cut to 

512 × 512 pixels to provide data for the experiments in this section.  These larger 

images were generated since the emphasis is on relighting performance with respect to 

individual textures.  As before the data set for each texture consisted of 108 images 

under the range of illumination directions specified in Section 3.4.2.   

 
Method 
We generated two input data sets for each of the thirty-one textures.  One contained 

eighteen symmetrically lit images such that 0°<!<360° with !!=20°; the other contained 

eighteen asymmetrically lit images such that 0°<!<180° with !!=10°.  A constant slant 

angle of 45° was used in each case.  Each data set was processed with each of the three 

algorithms (PS, UPS, UPS-tx).  The resulting p and q maps and albedo image were used 

in conjunction with Equation 7.1 to produce seventy-two relit images with illumination 

directions corresponding to: 0°<!<360°, !!=10°, "=30°/60°.  A texture signal to relight 

error ratio (TSER) value was calculated for both configurations for each of the thirty-

one real textures using Equations 3.9-3.10. 
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Results 
The results are presented in bar chart form since the individual TSER values rather than 

the mean are of interest in this case (see Figures 8.3 & 8.4).  A comparison of the two 

charts re-emphasises the benefit of using symmetrically-lit input data since relight 

accuracy is generally greater for this configuration.  The significant variation in 

performance from texture to texture in each chart is of particular note in this case.   

(a) 
 

 

 

 

 

 

 

 

 

 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.3  TSER (texture signal to relight error ratio) for real textures with input 
images which are (a) symmetrically lit and (b) asymmetrically lit. 
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  Organising the TSER data used to generate Figure 8.3a,b in descending order allows 

the relative performance ranking of the thirty-one real textures to be evaluated more 

readily (see Table 8.1).  Although the rankings are not identical in each case, it is 

apparent that in general some textures correspond to better performance than others.  

An example of this is texture g.  Although its ranking drops for the UPS technique it 

corresponds to the best performance for the PS and UPS-tx  algorithms with both 

illumination configurations.  The textures i, l, and t appear in the first quartile in each 

case except for one when they are in the second quartile.  At the lower end of the 

rankings, texture h corresponds to one of the worst performances whilst the textures c, v 

and z mostly feature in the fourth quartile. 

  Having observed that the choice of texture has a definite bearing on relighting 

accuracy for the algorithms, it is important to establish a reason for the dependency.  

We initially attempted to pursue this in an analogous manner to the simulation 

experiments by, for example, plotting TSER values against the corresponding rms height 

values for each real texture presented in Chapter 3.  This did not provide meaningful 

results, however.  Opting for an alternative approach which does not rely on 

approximate estimates of relevant parameters, we instead arranged images of the    

thirty-one real textures according to their ranking (see Figure 8.4); here we focus on the 

results for the UPS-tx algorithm because it is this technique which has been developed 

in this thesis.  With regard to the images in Figure 8.4, it is difficult to characterise the 

textures ranked in the second and third quartiles since common features are not 

apparent.  A comparison between the first and fourth quartiles is more enlightening, 

however.  In general the textures of the first quartile appear to have less significant 

height variation with regard to their mesostructure and are therefore less prone to 

shadowing than the textures in the fourth quartile.  As a result the textures of the fourth 

quartile are relatively dark in comparison although this is also accounted for in some 

instances by relatively low albedo (see textures v, c).  Textures ac and h are also 

relatively dark but in addition their images indicate the presence of specular highlights.  

Specular reflection is not evident in the images of the textures in the first quartile.   

  Overall, the implication is that deviation from Lambertian behaviour due to the 

character of the texture is a likely candidate with regard to providing an explanation for 

the variation in performance.  We investigate this further by examining four textures in 

greater detail.  Textures g, ac, ae and h correspond to the maximum, the median, the 

lowest third quartile ranking and the minimum, respectively.  Surface representations  
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(p, q, albedo) and sample relit images for all thirty-one real textures are provided in 

Appendix A. 
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Table 8.1  Relative performance ranking of the real textures for the photometric stereo 
algorithms PS, UPS-tx and UPS  with either symmetric or asymmetric illumination 
configuration.  Grey background signifies TSER < 10dB.   
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Figure 8.4  Relative performance ranking of the real textures for the UPS-tx algorithm  
corresponding to a symmetric illumination configuration.   
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Figure 8.5  Surface representations of texture g generated by the UPS-tx algorithm.    
 

  The texture which was found to correspond to the best performance for the 

photometric stereo algorithm UPS-tx is texture g.  It is a finely woven textile with a 

checked pattern (see albedo estimation in Figure 8.5) which at the given scale, does not 

feature dramatic changes in surface relief except for the raised outline of a few 

embroidered flowers and some wrinkles in the fabric (see p and q maps in Figure 8.5).  

Neither specular highlights nor shadows were evident in the images captured over the 

comprehensive range of illumination conditions used in their capture.  These factors are 

conducive to good performance and this finding is therefore not unexpected. 
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Figure 8.6   Intensity profile for a specific pixel position (number 1000) in a series of 36 
16-bit images of texture g corresponding to changing illumination direction of 
monotonically increasing tilt angle and constant slant angle. Diffuse fit determined 
using Saito’s method [Saito1996]. 

 

A typical intensity profile for a single pixel position for texture g is given in Figure 8.6.  

This demonstrates that the diffuse reflection approximation is appropriate for this 

texture.  We confirmed this observation by fitting a sinusoid using a method detailed by 
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Saito [Saito1996].  This involves using the surface normal n=[nx, ny, nz]Tand albedo ! 

estimates for the pixel position in the calculation of the parameters !, " and # in the 

following equation:  

( ) !"#$ ++= sin),( yxi        (8.1) 

( ) 22sin yx nnwhere += %&$ , 
22
yx

x

nn
n
+

="  ,  ( ) zn%&! cos=  

The parameterised Equation 8.1 was used to generate the diffuse fit estimate presented 

in Figure 8.6.   

 

Median Ranking Texture 
(a) "=20° #=30°   (b) "=120° #=60° 

   
 
Figure 8.7  Intensity images of texture ac with specular highlights (a) not visible      
and (b) visible. 
 

  Specular highlights were observed for texture ac during the image capture process at 

various illumination directions (see Figure 8.5).  This texture which was formed with 

plastic toy bricks was therefore expected to result in a relatively poor performance.  

This is true of the UPS-tx algorithm when the illumination configuration is asymmetric 

but its performance corresponds to the median for a symmetric configuration which is 

considered here (see Table 8.1).  A typical profile for a pixel position in an image of this 

texture helps to explain the reason for this (see Figure 8.8).     

  It is apparent that this intensity profile is one that can be approximated by the Phong 

model which was described in Chapter 2 [Phong1975].  Saito’s method was applied in 

order to determine the parameters of the model [Saito1996].  In this case outlying 

intensity values are initially discarded such that the remaining data largely correspond to 

diffuse reflection.  A sinusoid is fitted to this data by parameterising Equation 8.1 as 

previously described.  The estimated diffuse profile is then subtracted from the observed 

intensity profile to leave intensity data which relates to the specular peak only.  If the 

logarithm of this specular intensity data is plotted against the logarithm of the dot 
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product of the view and illumination vectors, a linear relationship will be observed if the 

Phong model holds (Equation 2.3).  This stems from its specular component which can 

be written as follows:    

( )lv •+= logloglog ni sspecular !       (8.2) 

Using a least squares method it is straightforward to determine both the gradient and the 

y-axis intercept which correspond to the Phong exponent n and the log of the specular 

coefficient !s respectively.  The parameters determined in this way for texture ac for this 

pixel position are !s = 0.4 and n = 30.  According to the simulation results reported in 

Chapter 7, these Phong parameter values correspond to reasonable performance for the 

UPS-tx algorithm with a symmetric illumination configuration (see Figure 7.10) and 

this has been found in practice.  The implication is that although texture ac exhibits 

specular reflection, the size of its characteristic peak is such that intensity spikes may 

not always be observed.  The apparent deviation from ideal diffuse reflectance for this 

texture depends on the illumination directions used in the input data and also those used 

for relighting to determine the accuracy.        
!
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Figure 8.8   Intensity profile for a specific pixel position (number 1000) in a series of 36 
16-bit images of texture ac under changing illumination direction of monotonically 
increasing  tilt angle and constant slant angle.  Diffuse fit and Phong fit determined 
using Saito’s method [Saito1996]. 
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Lowest 3rd Quartile Ranking Texture 
 

Original image  Relit image   Difference image 

! ! !
! ! !! ! !

Figure 8.9 Original image of texture ae (!=90°, "=60°), a relit image (!=90°, 
"=60°) generated by using surface representations estimated by UPS-tx with a 
symmetric illumination configuration & their difference image. 
 

Texture ae consists of two house bricks which have been cemented together (see Figure 

8.9).  Its lowly ranking for the UPS-tx algorithm can be explained by a closer 

examination of the surface.  It is evident that the cement section of the texture is 

relatively low compared to the surface of the bricks.  This difference in height will mean 

that the texture is prone to cast shadows under illumination directions which correspond 

to large slant angles.  To examine this in more detail we do not consider a typical profile 

for the texture since this would correspond to the brick section of the images.  We opt 

instead to plot the intensity profile for a pixel position which corresponds to the cement 

section (see Figure 8.10).  In this case it is apparent that the pixel is illuminated in 

general when the light is positioned such that its beam points along the cement section.  

As the light is rotated at constant slant angle, however, the relatively higher brick 

surface serves to occlude the beam and causes cast shadow such that the pixel intensity 

value deviates from that predicted by the Lambertian model.  Not only will this cause 

the prediction of the surface representation to be less accurate but the fact that the 

relighting process only takes self shadow into account compounds the problem.  The 

difference image highlights this problem since the maximum error lies along the cement 

section (see Figure 8.9).   
!
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Figure 8.10   Intensity profile for a pixel position (corresponding to the cement section) 
in a series of 36 16-bit images of texture ae under changing illumination direction of 
monotonically increasing  tilt angle and constant slant angle. 
 
Minimum Ranked Texture 

Texture h correponds to the worst performance for the UPS-tx algorithm among the 

thirty-one real textures.  It is a coarse woven fabric incorporating specularly reflecting 

threads (see Figure 8.11).  Highlights feature heavily in many of its images collected 

under a wide range of illumination conditions and provide a significant deviation from 

the ideal diffuse reflection assumed by UPS-tx. 

   
Original image  Relit image   Difference image 

! !  
Figure 8.11   Original image of texture h (!=230°, "=45°), a relit image (!=230°, 
"=45°) generated by using surface representations estimated by UPS-tx with a 
symmetric illumination configuration & their difference image. 
 
A sample intensity profile for a pixel position is given in Figure 8.12.  It is apparent that 

in this case, the reflectance behaviour is more complex since two specular peaks are 

apparent.  Whilst such behaviour was not prevalent for the majority of pixels and solely 

diffuse and normal specular reflection were also observed, its presence marks a 

significant deviation from ideal reflection and helps to explain the poor performance.  

This split off-specular reflection has previously been reported [Pont2003] and is 
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attributed to the structure of man-made materials such as shiny woven fabrics like 

texture h.  The poor performance can be further explained by the fact that the 

Lambertian model is used to relight the textures.  The implication is that highlights 

visible in an original image will not be present in the corresponding relit image (see 

Figure 8.11). 
 !
!
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!
!
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!
!

Figure 8.12   Intensity profile for a pixel position (corresponding to non-Lambertian 
reflection) in a series of 36 16-bit images of texture h under changing illumination 
direction of monotonically increasing  tilt angle and constant slant angle.  Diffuse fit 
determined using Saito’s method [Saito1996]. 

 
8.3.3 Equipment Set-up 
Motivation 

In the previous section we argued that the variation in performance of the three 

photometric stereo algorithms among the thirty-one real textures could be largely 

attributed to the character of the texture.  We demonstrated that deviations from ideal 

reflectance such as the presence of shadowing and specular highlights correspond to 

relatively low performance in terms of relighting accuracy.  In the simulation 

experiments detailed in Chapter 7 we determined that other sources of error such as 

noise and the effect of point lighting have an adverse effect on accuracy.  With regard to 

the UPS-tx algorithm this is also true for a deviation in the mean surface vector.  Whilst 

these equipment-based issues could well contribute to the overall deviation from ideal 

diffuse reflectance, so far in this chapter we have assumed that their influence is small 

relative to the effect of texture character.  In a well set-up laboratory for image capture 

this should be the case.  However, we endeavour to check the validity of this 

assumption in this section.   
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Noise Level Assessment 
Using the equipment set-up described in Chapter 3, we captured fifty images of a white 

sheet of paper.  The images were analysed to determine the mean and variance.  This 

allowed us to calculate an approximate value for the input signal to noise ratio.  It was 

found to be 25dB.  With reference to the results of the noise experiments in Chapter 7, 

this level of noise is unlikely to have a large impact on the performance of the 

algorithms using input data captured by our laboratory system. 

Point Lighting Assessment 
The algorithms we have assessed in this chapter each assume the use of a point light 

source at infinity.  In reality our light source is at a distance of approximately 0.6m from 

the centre of the texture.  From the simulation experiments we determined that for a 

given illumination radius, the effect of point lighting was reduced by using a smaller 

sample of texture due to the fact that this serves to limit the range of illumination 

directions.  Since the real texture images in the database were captured at a constant 

illumination radius, we decided that comparing the performance of different sample 

sizes would provide a means of investigating whether point lighting has detrimental 

effect on performance in this case.  To do so we examine the values of the mean TSER 

values from Section 8.3.1 with those of Section 8.3.2.   These correspond to a square 

sample of side which measures less than two centimetres (128 × 128 pixels) and 

approximately seven centimetres (512 × 512 pixels) respectively.  See Table 8.2.  

 
Table 8.2  Mean TSER (texture signal to relight error ratio) averaged over thirty-one 
real textures for different sizes of texture sample.  

Despite a significant difference in physical sample size, the results do not indicate that 

the use of a smaller sample size is beneficial.  We conclude that nearby point lighting 

does not have an adverse impact on performance in this case.  

Mean Surface Normal Deviation 
A key assumption in the UPS-tx concerns the mean surface normal.  If it is not aligned 

with the z-axis then errors will be introduced into the output data.  We measured the 

angle between the camera line of sight and the texture mounting plate.  It was found to 

be less than 2°.  Whilst this small deviation will adversely affect the relighting accuracy 

obtained for this algorithm we conclude that taking the simulation results into account, 

it is not significant in comparison to the effect of texture character. 

meanTSER for PS mean TSER for UPS mean TSER for UPS-tx   Image size 
(pixel) symmetric asymmetric symmetric asymmetric symmetric asymmetric 

128 ! 128 12.4 dB 8.8 dB 6.3 dB 6.1 dB 9.5 dB 6.9 dB 
512 ! 512 11.9 dB 8.8 dB 7.0 dB 5.9 dB 10.7 dB 6.9 dB 
Difference 0.5 dB 0.1 dB 0.7 dB 0.1 dB 1.2 dB 0.0 dB 
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8.4 Summary & Discussion 
 
  In this chapter we evaluated the performance of the UPS-tx algorithm with images of 

the real textures introduced in Chapter 2.  We investigated the effect of altering the 

number of input images and the corresponding illumination configuration.  We 

compared the performance of the UPS-tx uncalibrated algorithm with the equivalent 

calibrated algorithm PS and a published uncalibrated algorithm UPS.  We examined the 

results of these experiments with a view to explaining the relative performance observed 

among the textures.   

  We found that reducing the number of input images such that the illumination 

configuration becomes increasingly asymmetric is detrimental to the performance of the 

UPS-tx algorithm with real textures.  The PS algorithm was also found to be dependent 

on the number of input images but outperformed the UPS-tx algorithm.  The UPS 

algorithm was found to have the worst performance of the three.  A symmetrical 

illumination configuration was found to be beneficial to the performance of all three 

algorithms.  Whilst this is impractical to implement for an uncalibrated photometric 

stereo algorithm, these results suggest that images of the illuminated texture should be 

captured over a complete range of illumination tilt angles. 

  The most significant effect on the UPS-tx algorithm performance concerns the 

character of the texture.  We attribute the range of performance observed for the thirty-

one real textures to deviation from the ideal reflectance model assumed by the 

algorithm.  We demonstrated that this deviation largely stems from the character of the 

texture and that equipment-based issues have less influence in comparison.  We noted 

that the effect of such deviations is amplified by our performance measure which 

compares original texture images against corresponding relit images generated with the 

Lambertian model.  The fact that neither cast shadows nor specular highlights are 

rendered compounds the problem.  We conclude that the method is not suitable for use 

with textures which exhibit specular reflection and those with significant surface relief. 
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Chapter 9  
 
Summary and Conclusion 
 
 
9.1 Summary 
 
  In this thesis we investigated the relighting of real world surface textures under 

arbitrary illumination conditions.  This work was motivated by the desire to enable the 

photorealism of 3D virtual scenes to be enhanced.  We proposed to realise this by 

facilitating the acquisition of the requisite data to model surface texture.  Our objective 

was to develop an inexpensive yet effective method which would be practical to 

implement with a view to making the technique accessible to a wider range of users.     

 
Chapter 2 
Since we are concerned with the appearance of illuminated surfaces, we initially 

considered the reflection of light in Chapter 2.  We discussed the various approaches 

commonly utilised to model reflectance.  Of particular note are Lambert’s law for 

diffuse reflection and the Phong model for specular reflection both of which feature in 

this work.  With regard to relighting, techniques based on reflectance models were 

extensively reviewed.  We also considered image-based techniques.  Using the defined 

criteria to facilitate selection we identified the Lambertian photometric stereo algorithm 

as the most suitable approach for this work.  This model-based technique uses 

inexpensive equipment, requires few input images and minimal calibration.  In this 

thesis we investigated both the calibrated and uncalibrated versions of the technique.  

The latter seemed particularly attractive since it only requires intensity images as input; 

knowledge of the illumination direction corresponding to each input image is not 

needed.  With regard to the algorithm output, the resulting surface-explicit 

representation is compact.  It consists of a bump map which encodes surface gradient 

data and the corresponding colour albedo image which defines the diffuse reflectance.  

Significantly this is highly compatible with computer graphics hardware and software. 

 
Chapter 3 
In Chapter 3 we defined the term surface texture as referring to globally flat rough 

patterned surfaces for the purposes of this thesis.  The data sets used to assess the 

performance of the photometric stereo algorithms were then described.  They consist of 
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images of either synthetic or real surface textures illuminated under a set range of 

directions.  The three synthetic surface models used to generate the former are detailed.  

The equipment utilised to capture images of the thirty-one real textures is also described.  

We discussed the characteristics of the utilised textures.  The texture signal to relight 

error ratio was defined as a performance measure. 

 
Chapter 4 
In Chapter 4 we detailed our investigation into the optimal placement of the 

illumination vectors in three-image Lambertian photometric stereo.  The optimal 

performance of this calibrated algorithm had only previously been considered in terms 

of the illumination slant angle [Woodham1980].  Apart from the need to avoid co-planar 

illumination arrangements, no guidelines with respect to illumination tilt angle are 

apparent in the literature.  We derived an overall figure of merit based on noise variance 

and used it to investigate this issue.  By minimising it we found that the optimal 

arrangement corresponds to the case when the three illumination vectors are orthogonal 

to each other.  For illumination arrangements of constant slant angle, we found that the 

optimal difference between successive tilt angles is 120°.  This was verified 

experimentally by assessing the relight error for the thirty-one real textures.  With 

regard to slant angle, we found that for a smooth surface, the slant angle should be 

maximised for optimal performance.  For rough surfaces the optimal slant angle is 

approximately 55°.  This theoretical treatment ignores the effect of shadowing, however.  

In reality the optimal slant angle will depend on the roughness of the surface.  We also 

noted that the figure of merit which was developed to facilitate this work can be used to 

determine whether a given illumination configuration is favourable.  We found that 

McGunnigle’s scheme with a difference of 90° in tilt angle was sub-optimal but not 

significantly so [McGunnigle1998]. 

 
Chapter 5 
We introduced the uncalibrated photometric stereo algorithm in detail in Chapter 5.  We 

reviewed and summarised the various approaches utilised to reduce and resolve the 

inherent ambiguity.  We highlighted the three key assumptions commonly utilised to 

constrain the solution.  We rejected the use of both the integrability and the consistent 

viewpoint constraints for this work due to the fact that our textures have rough 

discontinuous surfaces and are diffusely reflecting materials, respectively.  We 

concluded that the constant light intensity assumption which constrains the illumination 

vectors to be of equal magnitude could potentially be employed, however. 
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Chapter 6 
In Chapter 6 we developed a texture-specific version of the uncalibrated photometric 

stereo algorithm.  We outlined the mathematical framework to implement the constant 

light source intensity constraint in order to reduce the ambiguity in the solution.  The 

resulting residual ambiguity was shown to be an orthogonal transformation and we 

proposed a practical procedure to resolve it.  The initial step, which exploits the globally 

flat nature of the surface textures, involves aligning the mean of the surface normal 

estimates with the z-axis.  The second step is a rotation about the z-axis and requires a 

single illumination tilt angle to be known.  The third step involves an overall scaling and 

requires a single illumination slant angle to be known.  We indicated that the scaling 

step is not actually required for relighting purposes but that it was utilised in our 

experiments to enable the performance of the overall algorithm to be evaluated.  It is 

necessary to determine a unique solution in this case to facilitate a valid comparison 

with other methods. 

 
Chapter 7 
We presented the results of the simulation experiments in Chapter 7 with a view to 

evaluating the performance of the proposed uncalibrated technique.  We examined the 

robustness of the method to deviations from ideal Lambertian reflectance since this is a 

fundamental assumption of the algorithm.  We considered the effect of noise because 

this will be an inherent feature in the images of real textures captured by camera.  We 

also assessed the effect of input image number and position.  The multiple image (>3) 

calibrated technique was found to be the most accurate of the algorithms tested.  The 

proposed texture-specific uncalibrated method attained a comparable performance in 

general.  One exception to this is in regard to the number of input images.  In this case 

its relight accuracy was considerably more sensitive but only for asymmetric 

illumination arrangements.  We concluded that although this technique is uncalibrated, 

the illumination direction should be sampled over the full tilt angle range.  Relight 

accuracy was found to decrease for higher values of rms roughness.  This is due to the 

increasing number of shadows in the input images.  Hence we concluded that it is 

advisable to minimise the presence of shadows by using smaller slant angles for very 

rough surface textures.  Relight accuracy was found to decrease as the proportion of 

specular reflection increases.  These experiments allowed us to conclude that the 

algorithm can be utilised with moderately glossy surface textures.  With point lighting 

where illumination direction varies over the surface we found that both a smaller 

surface area and a larger illumination radius resulted in greater relight accuracy.  We 



 152 

concluded that in practice we should position the light as far from the texture sample as 

possible and avoid processing images corresponding to large areas of surface texture.  

Relight accuracy was found to decrease as the presence of noise increased.  These 

experiments allowed us to conclude that the level of noise observed in our image 

capture system was acceptable.  

 
Chapter 8 
We assessed the results of the texture-specific algorithm with real data in Chapter 8.  Its 

performance was found to compare favourably with its calibrated equivalent although as 

in simulation, the latter is more accurate in general.  Performance was found to improve 

with larger numbers of input images.  A symmetric arrangement was also found to be 

beneficial although we recognised that this is impractical to implement if the method is 

truly uncalibrated.  We reviewed the relative performance for the thirty-one real textures 

and discussed extremes of performance in terms of texture character. 

 

9.2 Conclusion 
 
  With regard to the calibrated three-image Lambertian photometric stereo technique we 

determined that the optimal placement of the illumination vectors corresponds to an 

orthogonal arrangement.  If the illumination slant angle is constrained to be constant we 

proved that the optimal configuration corresponds to a difference between tilt angles of 

successive illumination vectors of l20°.  This theoretical result was verified by 

experiment.  It is noted that these findings had not previously been reported in the 

literature and are original.  Ignoring shadowing, the optimal slant angle was found to be 

maximum for smooth surfaces and approximately 55° for rough surfaces.  The former 

finding agrees with Woodham’s observation which is based on reflectance maps but he 

does not differentiate between types of surface.  Due to the effect of the presence of 

shadows it is not possible to verify the latter result. 

  We developed a technique based on uncalibrated photometric stereo which is practical 

to implement for rough surface textures with a planar megastructure.  For relighting 

purposes, a single illumination tilt angle corresponding to the illumination direction in 

one of the input images is simply required thus minimising the requisite calibration of 

equipment.  This technique was found to be as robust to adverse reflectance conditions 

as the equivalent calibrated technique.  We found that the accuracy of these Lambertian 

methods are dependent on how well the Lambertian model approximates the reflectance 

of the surface texture. 
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9.3 Contribution Recap 
 
This thesis makes the following contributions with regard to the three-image 

Lambertian photometric stereo technique: 

• The optimal illumination configuration is an orthogonal arrangement. 

• If the illuminations vectors are of common slant angle, the optimal illumination 

configuration corresponds to a tilt angle separation of 120°. 

• McGunnigle’s scheme [McGunnigle1998] was shown to be sub-optimal but not 

significantly so. 

With regard to the uncalibrated photometric stereo technique: 

• A practical implementation is proposed and tested for specific use with rough 

surface textures. 

• Accuracy levels are comparable to the equivalent calibrated technique. 

 
We note that both of these techniques satisfy the criteria specified in Section 1.3 to a 

large degree.  They are suitable for globally flat diffuse surfaces, images of which can 

be captured and processed with consumer-level equipment.  The capture of input data is 

practical since a small number of images is required in each case.  Furthermore, the 

procedure for the calibrated technique is now explicit with regard to illumination 

configuration.  The technique based on uncalibrated photometric stereo only requires 

knowledge of one illumination tilt angle and hence reduces the input data burden 

significantly.  Both algorithms avoid the use of iteration and can be regarded as 

computationally efficient.  Finally, we note that the resulting surface representation (the 

bump map & albedo colour map) is of low dimension and compatible with 

programmable graphics cards which facilitate real-time per-pixel relighting. 
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9.4 Future Work 
 

  With regard to calibrated photometric stereo, the optimal illumination configuration 

was determined through the use of a sensitivity analysis.  Ideally we would like to 

develop a mathematical proof for the orthogonal configuration from first principles in 

order to confirm this intuitive result.  We are also keen to extend this work to examine 

the case when more than three images corresponding to different illumination vectors 

are used as input.  We observed from experiments with both synthetic and real world 

textures that a symmetric configuration was beneficial in terms of accuracy compared to 

an asymmetric arrangement (see Sections 7.3.5 & 8.3.1).  However, this is merely an 

observation and requires further investigation to formally identify the optimal 

conditions.  Another opportunity for future work stems from the fact that our sensitivity 

analysis does not take the distribution of surface normals into account.  We briefly 

considered this point in Section 4.5.3 by speculating that the optimal orthogonal 

configuration could be oriented to compensate for certain types of surface with a view 

to minimising the presence of shadows.  It would be valuable to develop our approach 

to incorporate surface normal distribution and shadowing in order to gauge the effect on 

the optimal configuration. 

  Whilst we have proposed and tested an algorithm based on uncalibrated photometric 

stereo, we noted that in reality the algorithm is only pseudo-uncalibrated because a 

single illumination tilt angle must be provided.  We propose to investigate this 

technique further with a view to identifying a novel means of resolving the ambiguity 

without resorting to assumptions such as integrablity or the presence of specular 

highlights.  Further work is also required to investigate the effect of mean surface 

normal deviation from the z-axis.  We considered this in Section 7.3.6 to a limited 

extent but it would be interesting to examine the case when the roughness of the surface 

is such that the mean vector is not [0 0 1]T despite a planar megastructure which is 

parallel to the camera sensor. 

  Ultimately we seek to develop methods which would enable a simple desktop PC 

implementation of photometric stereo.  In doing so, we aim to facilitate the generation 

of bump maps and albedo texture maps of real world textures to enhance photorealistic 

rendering in mixed reality applications.  
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Appendix A  
 
Texture-specific Uncalibrated Algorithm (UPS-tx) Results  
Texture  a 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 
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Texture  b 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 
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Original    Symmetric    Asymmetric 
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Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 160 

 
Texture  f 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 161 

 
Texture  g 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  
 



 162 

 
Texture  h 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

   



 

 163 

 
Texture  i 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 

 164 

 
Texture  j 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 

 165 

 
Texture  k 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°   

Original    Symmetric    Asymmetric 

  



 

 166 

 
Texture  l 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

    
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

   
 
 
 
 



 167 

 
Texture  m 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 168 

 
Texture  n 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 169 

 
Texture  o 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 170 

 
Texture  p 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

   
 



 171 

 
Texture  q 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  
 



 172 

 
Texture  r 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 173 

 
Texture  s 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 174 

 
Texture  t 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

   



 175 

 
Texture  u 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 176 

 
Texture  v 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 177 

 
Texture  w 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 178 

 
Texture  x 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

   
 



 179 

 
Texture  y 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

   



 180 

 
Texture  z 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 181 

 
Texture  aa 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 182 

 
Texture  ab 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

   



 183 

 
Texture  ac 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 184 

 
Texture  ad 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original   Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

  



 185 

 
Texture  ae 
Surface Representations. 

1. Symmetric illumination configuration 
p map    q map     albedo image 

   
2. Asymmetric illumination configuration 

p map    q map     albedo image 

   
 
Relight comparison. 

1. !=20° "=30°  
Original    Symmetric    Asymmetric 

   
2. !=120° "=60°  

Original    Symmetric    Asymmetric 

   



 186 

Appendix B  
 
Sensitivity Expressions for Common Slant Angle 
 
The derivation of the sensitivity expressions presented in Chapter 4 simplifies if the 

slant angle is common to each of the illumination vectors.  In this case the illumination 

matrix equivalent to Equation 4.1 is given by: 
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Taking the inverse of L provides expressions for the scaled surface normal equivalent to 

Equations 4.2, 4.3 & 4.4: 
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The nine sensitivity expressions equivalent to 4.5 – 4.13 are:  
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We note that the slant angle ! features only in the denominator of scaled surface normal 

and intensity expressions.  Since the x and y components take sin ! whilst z takes cos !.  

This facilitates an understanding of the different behaviour observed between rough and 

smooth surfaces.  With regard to the latter when the z element is omitted, increasing the 

slant angle increases the denominator for the six sensitivities hence reducing the overall 

noise.  For a rough surface when we include the z component increasing the slant angle 

decreases its denominator and offsets the decrease in overall noise for the x and y 

components. 
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Appendix C  
 
Statistics Proofs 
 

The following proofs may be found in many statistics textbooks e.g. [Davis1986] but 

are given here for completeness.  

 

To determine an expression for noise in the scaled surface normal vector s we 

considered the variance of a parameter x which is the function of two variables u & v. 
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The general equation (Equation 4.14) for the variance of x which is a function of two 

variables u & v is :  
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Independent Parameters 

If the input parameters are independent the general expression simplifies to Equation 

4.15:  
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Highly Correlated Parameters 

To derive the overall figure of merits we assumed that the noise processes 

corresponding to each component of the scaled surface normal are highly correlated 

since each are a function of the three image noise processes.  To illustrate this case we 

use the following example: 
!
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The variance equations for each of the variables u & v are written as follows: 
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It is apparent that the following expressions are true: 
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Using the general formula, the following can then be deduced: 
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This result allowed us to derive the figures of merit given by Equations 4.23 & 4.27. 
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Appendix D  
 
Optimal Performance 
 
In Chapter 4 we presented four plots which were relevant to the discusssion.  Here we 

present further plots for the sake of completeness. 

 

Tilt Angle !3 Variation!
Here we present the plots for the smooth surface figure of merit Msmooth in addition to 

those for Mrough (Figures 4.4 & 4.5) for comparison. 

 

• Figure of merit versus third tilt angle !3 with !1=0°, !2=120°. 
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• Figure of merit versus third tilt angle !3 with !1=0°, !2=90°. 
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We draw the same conclusions from the Msmooth plots as from those of Mrough.  A 

minimum value for the figure of merit is apparent in each case.  This corresponds to 

!3=240° when !1=0°, !2=120°.  When !1=0°, !2=90° it is apparent that McGunnigle’s 

simplified photometric scheme [McGunnigle1998] is sub-optimal but not significantly 

so. 
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Slant Angle ! Variation!
Here we present the plots for McGunnigle’s scheme (!!=90°, common slant angle) for 

comparison with the those corresponding to the optimal configuration (!!=120°, 

common slant angle) which are Figures 4.7 & 4.8. 

• Rough Surface 
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• Smooth Surface 
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Again, we draw the same conclusions with the results for !!=90°.  A minimum figure of 

merit value is apparent for the rough surface and corresponds to a slant angle of ~55°.  

When the surface is smooth the slant angle corresponding to the minimum tends 

towards 90°. 
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Appendix E  
 
List of Publications by the Author 
 
 

Optimal illumination for three-image photometric stereo acquisition  
of surface texture. 

A. D. Spence and M.J. Chantler 

 

Abstract 

The optimal placement of the illumination for three-image photometric stereo 

acquisition of smooth and rough surface textures is derived and verified experimentally.  

The sensitivities of the scaled surface normal elements are derived and used to provide 

expressions for the noise variances.  An overall figure of merit is developed by 

considering image-based rendering (i.e. relighting) of Lambertian surfaces.  This metric 

is optimised with respect to the illumination angles.  The optimal separation between the 

tilt angles of successive illumination vectors was found to be 120°. The optimal slant 

angle was found to be 90° for smooth surface textures and 55° for rough surface 

textures. 

 

 

Refereed paper published in the Proceedings of the 3rd International Workshop on 

Texture Analysis and Synthesis, pp. 89-94, October 2003. 
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On capturing 3D isotropic surface texture using uncalibrated photometric stereo. 
A. D. Spence and M.J. Chantler 

 

Abstract 

We propose an uncalibrated method for acquiring the normal and albedo fields of an 

isotropic 3D surface texture illuminated at a constant slant angle. The method is 

'uncalibrated' in that the illumination vectors are not known a priori. We assume single 

point lighting of a rough Lambertian surface lying in the x-y plane. We use Hayakawa's 

uncalibrated photometric stereo algorithm to simultaneously estimate the scaled surface 

normals and the illumination vectors in an arbitrary co-ordinate system. The use of 

constant illumination slant intensity data means that the required orientation to a viewer 

co-ordinate system simply involves a z-axis rotation.  Orientation in the x-y plane is 

determined by applying a frequency domain method for estimating illumination tilt 

angles. Preliminary results from simulations and real data are provided. 

 

 

Refereed paper published in the Proceedings of the 3rd International Workshop on 

Texture Analysis and Synthesis, pp. 83-87, October 2003. 
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Real-time per-pixel rendering of textiles for virtual textile catalogues. 

A. Spence, M. Robb, M. Timmins and M.J. Chantler. 

 

Abstract 

  We present recent results from an EPSRC funded project VirTex (Virtual Textile 

Catalogues). The goal of this project is to develop graphics and image-processing 

software for the capture, storage, search, retrieval and visualisation of 3D textile 

samples.  The ultimate objective is to develop a web-based application that allows the 

user to search a database for suitable textiles and to visualize selected samples using 

real-time photorealistic 3D animation. 

  The main novelty of this work is in the combined use of photometric stereo and real-

time per-pixel-rendering for the capture and visualisation of textile samples.  

Photometric stereo is a simple method that allows both the bump map and the colour 

map of a surface texture to be captured digitally. It uses a single fixed camera to obtain 

three images under three different illumination conditions. The colour map is the image 

that would be obtained under diffuse lighting. The bump map describes the small 

undulations of the surface relief. When imported into a standard graphics program these 

images can be used to texture 3D models.  The appearance is particularly photorealistic, 

especially under changing illumination and viewpoints. The viewer can manipulate both 

viewpoint and lighting to gain a deeper perception of the properties of the textile 

sample.  In addition, these images can be used with 3D models of products to provide 

extremely accurate visualisations for the customer.  

  Until recently these images could only be rendered using ray-tracing software.  

However, recent consumer-level graphics cards from companies such as Nvidia, ATI 

and 3Dlabs now provide real-time per-pixel shading. We have developed software that 

takes advantage of the advanced rendering features of these cards to render images in 

real-time. It uses photometrically acquired bump and colour maps of textiles to provide 

real-time visualisation of a textile sample, under user-controlled illumination, pose and 

flex. 

 

Published in the International Journal of Clothing Science and Technology, 16(1),  

51-62, 2004. 
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