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Abstract 

This dissertation presents a complete texture classification system to overcome 

the problem induced by changes in the angle of illumination incident upon a 3D 

surface. The system works on the basis of a surface model, previously formed 

by means of a photometric stereo technique. From this model, the system is 

able to render a 2D image of the surface at any particular illuminant direction, 

thus providing a more appropriate data for training the classifier. 

 Many laboratory experiments are carried out in order to assess the accuracy 

of image prediction as an individual component. The investigation considers a 

large diversity of textures, including challenging situations such as rough, 

specular and anisotropic surfaces. It is concluded that the predicted images, yet 

not being perfectly accurate, are in all cases a much more reliable training data 

than a merely single image from a single illuminant direction.  

 The technique is then evaluated into a supervised statistical classification, 

which combines a bank of Gabor filters for feature extraction with a linear 

Bayes classifier. The classification performance is tested for different composite 

images, consisting of a varying number of disjoint textures and configurations. 

It is shown that our approach significantly reduces the misclassification rate, 

when compared with a naive classification system. Furthermore, in some cases 

it even reaches the level of accuracy that one would obtained with the proviso 

that training and classification were performed under invariant illumination. 
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Chapter 1    

Introduction 

1.1   Motivation 

The motivation of this dissertation stemmed from the necessity to find reliable 

methods of reducing classification errors caused by changes in illuminant 

direction. The effect of varying lighting conditions on supervised texture 

classification was first investigated by [Chantler94]. It was observed that the 

direction of illumination affects the directionality of an image obtained from a 

given surface and indeed modifies its appearance. These changes can induce 

critical misclassification rates, providing that the illumination is altered 

between training and classification. 

 In spite of being a serious problem, nearly all of the classification approaches 

proposed in the literature do not take into account the effect of illumination on 

the imaged scene, or it is simply considered to be constant. Nevertheless, there 

are a wide range of applications in which texture classification may have to be 

performed under varying lighting conditions. For instance, close proximity point 

lighting, often used for inspection purposes, provides illumination at varying 

angles over the scene. Remote sensing systems that provide their own artificial 

lighting such as active sonar or radar are non-stationary, and hence the 

illuminant direction is dependent on the orientation of the survey platform 

itself. Other remote sensing devices using natural illumination are also affected 

by changes in illuminant vector according to the time of day. 
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 In order to illustrate the problematic, let us consider the following example. 

Figure 1.1 shows a composite image consisting of four textures illuminated from 

two different tilt angles and same slant angle1. Note that the pair of textures 

both on top and on bottom resemble each other closely. Observe how a shift in 

the tilt angle is clearly manifested in the perceived image of each surface 

(comparing Figure 1.1.a with Figure 1.1.b): illumination variation attenuates or 

accentuates the directional information of the image texture. It is then not 

surprising that a classifier struggles to recognise the images as belonging to the 

same textured surface. It follows that a classifier, which has been trained using 

the first set of images and performs well under these conditions, is not able to 

accurately classify the second one (see Figure 1.2). As a result, a substantial 

increase in classification error is experimented, leading to grave consequences as 

the classifier is not longer capable of discriminating between both pairs of alike 

textures, and only two regions are identified.  

   

  

(a) (b) 

Figure 1.1 Montage of four textures illuminated from  
(a) tilt angle of 0°, (b) tilt angle of 90°. 

                                      
1 The direction of the illuminant with respect to a texture is commonly defined by two 
polar co-ordinates: tilt and slant. As referred to here, tilt is the angle that the projection of 
the illuminant vector onto the texture reference plane makes with an axis in that plane. Its 
companion, slant angle, is the angle that the illuminant vector makes with a normal to the 
reference plane (see Figure 2.2). 
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(a) (b) 

Figure 1.2 Classification results for montage of Figure 1.1: (a) training and 
classification are carried out under same illuminant direction (tilt of 0°), 

 (b) training at tilt of 0°, whereas classification is performed at tilt of 90°. 

 

 

 It is therefore desirable to find a mode of maintaining classification rates as 

constant as possible regardless of the illumination condition. This text works on 

the basis of a model-based approach suggested by [McGunnigle98], which was 

originally intended to discriminate between rough, textured surfaces. In relation 

to McGunnigle’s proposal, the aims of this dissertation are:  

(i) to present the integration of a photometric model-based approach into a 

complete classification system, 

(ii) to assess the accuracy of this photometric technique with respect to 

surface characteristics and illuminant, 

(iii) to evaluate the model-based classification performance for a wide range of 

real textures under varying lighting conditions, and 

(iv) to investigate a possible relationship between photometric inaccuracy and 

classification error, i.e. between (ii) and (iii). 
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1.2   Scope of the research 

This work is concerned with the application of texture analysis techniques to 

the classification of multitextured images, i.e. those composed of several disjoint 

textures. The texture classification system, as referred to in this research, 

involves three main processes, as illustrated in Figure 1.3. The image 

acquisition is implemented using an imaging devicespecifically a still camera 

and frame storeand directional lighting. The digitised image is then fed into 

an algorithmic classifier which produces a set of numerical descriptors of the 

textures. Finally, decision rules are applied to classify the image into classes.  

 For reasons of brevity not all the restrictions made in this research are 

described here (further details will be given in the appropriate chapter). Among 

other restrictions: 

• The surface is considered to be globally flat, i.e. each of its partial 

derivative fields sums approximately to zero.  

• The illumination is assumed to be unidirectional and of equal intensity 

across the imaged region. 

• The topography of the surface is expected to be small relative to the 

distance between the camera and the physical sample, and the projection 

of the surface onto the camera array is orthographic. 

• The viewer’s position is held constant and fixed vertically above the 

physical texture which lies upon a horizontal plane. 

• The image texture is assumed to contain both topological and albedo 

texture2. 

                                      
2 The term topological texture is used solely to refer to the three-dimensional variation, or 
relief of a physical surface. In contrast the term albedo texture is used to refer only to 
surface markings. Image texture consists of intensity variations in the image plane and can 
be due to either topological or albedo texture or combination of the two.  
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Figure 1.3 Typical processes in texture classification. 

 

1.3   Dissertation organisation 

This dissertation may be divided into two main parts. In the first part, 

comprising chapters 2, 3, and 4, a theoretical background concerning the nature 

of texture classification is presented, drawing special attention to image 

formation from physical surface and how to reverse the process towards image 

prediction. In the second part, comprising chapters 5, 6, and 7, the problem of 

illuminant dependence is explicitly faced, a consistent solution based on revised 

theory is suggested, and a methodical evaluation by simulation of the solution 

is carried out. Figure 1.4 traces the development of the research from theory to 

solution, and the subsequent evaluation and analysis of results.  
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Figure 1.4 Progression of the investigation. Circled numbers  
symbolise the chapter where each topic can be found. 



Introduction  6  

 

Explicitly, Chapter 2 is concerned with the image acquisition process; that is, 

given a scene description consisting of surface, reflectance, light, and imaging 

device, it describes the formation of an image from the surface. It also 

introduces two levels of surface description: single parameter description, and 

histogram representation techniques. Chapter 3 explains the fundamentals of 

classification, and focuses on the selection of a popular feature measure and 

discriminant function. Chapter 4 links the learning of Chapter 2 with the 

purpose of surface recovery, suggests shape from photometric stereo as a good 

alternative, and identifies the rendering process. Chapter 5 integrates a 

photometric technique into a complete model-based classification system, 

detailing the implementation of every component of the system. In Chapter 6 

the accuracy of the model-based rendered images is subject to appraisal, 

evaluating the impact of the assumptions made in previous chapters. Chapter 7 

assesses the performance of photometric classification by comparison with that 

of a naive classifier and best case classification. Finally, in Chapter 8 the work 

is summarised, final conclusions are drawn, and future work is recommended. 

 With the object of facilitating the reading, we have spared no effort in trying 

not to make reference to material in later chapters or sections, but when this 

has been done an understanding of material in hand does not necessarily 

require an understanding of that which comes later.    

1.4   Original work 

It is believed that this dissertation contains new findings concerning the work 

due to [McGunnigle98], and extends his prior experiments to a larger range of 

textures and conditions. Specifically, this work makes the following main 

contributions to texture classification under varying lighting conditions: 

• In addition to the use of surface derivative fields, the albedo texture is 

also considered in the formation of the surface model. 
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• Detailed implementation of a complete texture classification system which 

integrates a photometric stereo scheme to reduce misclassification due to 

varying illuminantion. 

• Assessment of image prediction and classification not only with respect to 

varying tilt angle but also with respect to varying slant angle. 

• Determination of an empirical expression which approximately model the 

error power in the predicted images as a quadratic function of illuminant 

tilt angle (valid for isotropic surfaces). 

• Having predetermined the tilt angle of the photometric image set, an 

optimal slant angle range, which is averagely better able to predict images 

of surfaces under any novel lighting conditions, is recommended. 

• Development of supporting theory for the evaluation of the model-based 

classification approach. 

• Investigation into the relationship between image prediction inaccuracies 

and classification errors on the model-based classifier.  
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Chapter 2    

Image acquisition and 
illumination 

This chapter is concerned with the first process of the texture classification 

system defined in the introductory chapter. The aim is to identify the 

phenomena underlying the generation of textured image from physical surface in 

the presence of illumination. Firstly, it describes the characterisation of the 

incident image onto the imaging device. Secondly, it overviews the main 

components of the imaging device and the associated degradation of the signal. 

And finally, it surveys methods for describing attributes of a surface such as 

roughness. 

2.1   Introduction 

In the context of this dissertation, the motivation for identifying surface 

properties and understanding how they affect the image space in the presence 

of light is threefold: 

• Firstly, recognizing surface characteristics such as roughness or isotropy 

may help us understand the character of the experimental results and 

their validity. 

• Secondly, extraction of surface geometry and reflectance properties is 

crucial for the success of surface modelling. Chapter 4 will show how 
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these properties can be extracted and used as input data for creating 

virtual images. 

• Thirdly, understanding the mechanism of light reflection is an important 

issue for many computer vision algorithms. In particular, for photometry-

based methods (photometric stereo, shape from shading, etc), which 

extract differential shape parameters from the intensity of reflected light, 

the need for correct interpretation of a pixel brightness is evident. 

 The nature of the process from physical surface to digitised image1 may be 

very well illustrated by Figure 2.1. Such a task is defined as follows: given the 

scene description  (1) the surface texture and its topology, (2) the surface 

reflectance function, and (3) the light source position  determine the incident 

image, that is to say, how the object appears to the viewer. Finally, given the 

imaging device  (4) position and other parameters  determine the data 

image.  

 

 
 

 

Illuminant 

Imaging 
device 

Incident 
image 

Digitised 
image 

Surface  

Figure 2.1 Scenario of image acquisition of an illuminated physical surface. 

                                      
1 The digitised image is the final result of all the acquisition process, thus this image may 
be interpreted as a degraded version of the incident image which has been affected by the 
imaging device. It is important to be aware that this image forms the basis of all 
subsequent processes, and therefore it is often referred to as data image. 
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2.2   Characterisation of incident image 

The aim of this section is to model the transition from physical surface to 

incident image. The light intensity of a point (or pixel) in a 2D projection of a 

physical surface is dependent on: 

• The lighting; this is an obvious observationwe are not surprised when a 

view changes with extra, reduction or modified illumination. 

• The reflectance properties of the surface in view; such mirror-like surfaces 

are called specular and in fact the light that they reflect off depends solely 

on the angle of the incident light. Alternatively, matte surfaces are called 

diffuse and reflect light equally in all directions of an intensity that 

depends on the angle of incident light. 

• Surface orientation; again, it is an obvious observation that inclining a 

surface will usually alter the light reflected towards an observer. 

 Herein, the last of these point will not be considered; surface’s plane is 

therefore assumed to always have the same inclination, and specifically it will 

be held perpendicular to the imaging device (see Figure 2.1).  

2.2.1   The reflectance function 

The central term in the scene description represented by Figure 2.1 is the 

surface reflectance function. Roughly speaking, it describes how an elementary 

surface patch reflects the incident light. It is expressed in terms of the 

bidirectional reflectance distribution function (BRDF), which is constructed 

from ratios of patch radiance to its irradiance. Thus, it is generally a             

4-dimensional function  

 ( , , , )r ri iBRDF  (2.1) 

describing how much light, incident from direction described by spherical angles 

( , )i i , is reflected into the viewer’s direction ( , )r r . The BRDF of a given 



2.2  Characterisation of incident image  11  

 

surface is spectral-dependent, denoted by subscript , but in practice it is often 

approximated by independent BRDFs per colour channel for a RGB image. For 

grey-level images, there is no need to take into account more than one BRDF 

since only one channel is used.  

 The phenomenon of reflection can be produced by one or more different 

physical processes. These underlying processes, which are not of interest here, 

lead to various generic behaviours, depending on how a surface reflects off the 

incident light. It is interesting to mention two particular cases which illustrate 

two extreme behaviours. A perfect mirror, or completely specular material, has 

a reflectance function equal to one in one direction and zero in all others. 

Conversely, a perfectly matte or Lambertian surface reflects equally in all 

directions, with the amount of reflected light depending only on the incident 

light. Many surfaces with less simple behaviours can have their reflectance 

described as having both Lambertian and specular reflectance properties, and 

are commonly known as hybrid surfaces. 

 As it was previously mentioned, the reflectance surface measures the fraction 

of emitted light in the observer’s direction. However, all the facets reflect the 

incident light not only towards the viewer, but in other directions as well, 

including those towards another surface facets. Thus, the light reflected on each 

facet represents possible source of secondary illumination for other facets. The 

effects of illuminating a given surface facet by light reflected on other surface 

facets are called interreflections and correspond to the moment when the tight 

connection of local surface properties with a pixel value disappears; depending 

on entire surface properties interplay, a pixel value contains some contribution 

driven by properties of other surface facets. Fortunately, interreflections have 

usually small contribution to a pixel value, and in almost all applications, it is 

assumed that they do not exist at all. The consequences resulting from this fact 

depend on the technique used and the desired accuracy of the task, but at any 

rate, it always entails errors. 
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2.2.2   Gradient space 

Gradient space is a way of describing surface orientation, and is a concept of 

general use in many analytical problems. We proceed by noting that at nearly 

every point a surface has a unique normal, which may be described by a vector 

( , , ).x y zn n nn  Since only the orientation of the surface is of interest, only the 

direction of this vector need to be considered, which, assuming 0,zn  is given 

by 

, ,1yx

z z

nn
n n

 

or, without any loss of information, 

, ( , )yx

z z

nn
p q

n n
 

The pair (p,q) is the two-dimensional gradient space representation of the 

orientation. Interpreting the image plane as 0z , the origin of gradient space 

corresponds to the vector (0,0,1),  normal to the image, implying a surface 

parallel to the image plane. 

2.2.3   The Lambertian image 

The reflection model which is most often used for its simplicity and linearity is 

the Lambertian model. In intuitive terms, it states that the radiance in a point 

on a surface falls with the cosine between the surface normal and the viewer 

direction. Consequently, the camera pixel brightness value is viewpoint 

invariant due to foreshortening, and is dependent only on the relative relation 

between surface normal n  and light source .l  

 Kube and Pentland’s model [Kube88] of an illuminated fractal surface 

provides an analytical expression for the statement mentioned above. If we drop 

the assumption that the surface is fractal, we may extend their model to any 

band limited surface with height map ( , ).s x y  

 Let ( , )x yd  be the derivative field vector of the band limited scalar field 
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( , )s x y  such that 

 ( , ) ( , ) z z zx y s x y
x y z

d  (2.2) 

If illumination is produced by a point source located an infinite distance from 

the scene, the magnitude and direction of the vectors will be uniform 

throughout the scene, hence the illumination vector field is given by 

 ( , ) cos sin sin sin cosx yl  (2.3) 

Assume that the surface has a Lambertian reflectance function which is 

homogeneous over the surface. Furthermore, assume that the surface is no 

significant affected by cast or self shadowing2. Adopting all these restrictions, 

Kube’s model state that the image field is the normalised scalar product of the 

surface derivative field and the illumination vector field, that is 

 
( , ) ( , )

( , )
( , ) ( , )
x y x yi x y
x y x y
l d
l d

 (2.4) 

Thus, the normalised intensity image ( , )i x y  is given by 

 2 2 1/2

( , )cos sin ( , )sin sin cos( , )
( ( , ) ( , ) 1)

p x y q x yi x y
p x y q x y

 (2.5) 

where  and  are the illuminant vector’s tilt and slant angles as defined in 

Figure 2.2, and   

( , ) ( , )p x y s x y
x

 

( , ) ( , )q x y s x y
y

 

are the surface partial derivatives with respect to x and y respectively. 

                                      
2 A cast shadow occurs where one part of the surface prevents another from being 
illuminated, by blocking the direct path between light source and shadowed area. Self 
shadowing occurs when a facet is oriented such that it does not present any area on which 
light is incident. 



Image acquisition and illumination  14  

 

 

x/y 

l 

y 

z 
y 

x 

l 

z 

l 

x 
 

Figure 2.2 Definition of axis and illumination angles: (a) Perspective view, 
 (b) height-map (plan), (c) height-map (elevation). 

2.3   The imaging process 

Section 2.2 has considered the interaction between rough surface and light to 

form a textured image. However, strictly, texture analysis algorithms do no 

operate on incident image but on a data set, which is altered by the so-called 

imaging process. Although it is not our intention to investigate the effects of 

this process, which was largely evaluated by [McGunnigle98], we must take into 

consideration the experimental findings if we are to draw more honest 

conclusions.    

2.3.1   Overview 

Three are the principal mechanisms which form components in the transition 

from incident image to data set: system optics, the CCD3 array, and the frame 

store (see Figure 2.3). Each of these mechanisms has associated problems of 

different nature which may degrade the quality of the final data image. 

 The case of sub-optimal focusing is the predominant problem of the optical 

system discussed in the literature. It is common to use the term Point Spread 

Function (PSF) to represent the image resulting from a single point source 

imaged by the camera. Normally, the PSF is modelled as a two-dimensional 

                                      
3 Charge-coupled device, a high-speed semiconductor used frequently in image detection. 
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Gaussian function ( , )b x y  [Nayar94] given by 

 
2 2

2 2

1( , ) exp
2 2b b

x yb x y  (2.6) 

where 2
b  is a spatial constant proportional to the diameter of the blur circle. 

 Like with any silicon device at ambient temperature, the CCD array is 

subject to dark current noise which is considered to be stochastic as the 

generation of an electron is a random event. This effect contribute to both 

temporal and fixed pattern noise, and is highly dependent on changes in 

temperature (each 6.7° C rise in temperature doubles the dark current). 

Another fundamental limitation of all imaging devices is the quantum nature of 

light which may be described as shot noise. Shot noise is considered as being 

temporal, conforming to a Poisson process which tends towards a Gaussian 

distribution (with variance equal to its mean) as the irradiance of electrons 

increases. 

 The frame store is concerned with the transfer of discrete image intensity to 

numerical representation. The process involves a serial read-out of the rows, 

with low pass filtering of the pulse train and addition of synchronisation signal. 

Afterwards, the signal is stripped of synchronisation information, resampled 

and quantised before being stored in memory. The following three problems are 

typically associated with this process: 

• Serial filtering affects the transfer function, but the effect may be 

neglected if optical blur prevails in the system. 
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Figure 2.3 Mechanisms under the imaging process. 

• If the rows are not perfectly synchronised, sampling points will be out of 

alignment with those of adjacent rows (the error is reported to be within 

the bounds 0.4 pixels) [Wang96]. 

•  For a 8-bit video analogue to digital converter (ADC), a random error is 

uniformly distributed between 1/512 of the full scale deflection. The 

quantisation noise is normally treated as a white noise process with 

variance 20.5 /12  [Healey94]. 

2.3.2   Implications for texture classification 

Regarding the evaluation carried out by [McGunnigle98], blurring was found to 

be the dominant artefact, and a Gaussian model of the imaging system transfer 

function was adopted. He also noted that the common assumption of white 

noise is not completely justified, at least without down-sampling. 

 In any case, the observed effects of blur and white noise discourage the use 

of high frequencies as consistent sources of discriminatory information. While 

the blur function reduces the feature mean and variance, particularly at high 

frequencies, the additive white noise increases the texture’s variance in the 

feature space. The magnitude of degradation in classification will depend on the 

proximity of the textures’ statistics in the feature space as well as the level of 

noise itself. 

 It is also worthwhile to notice that while the absolute power of noise seems 

to be similar in all images, the power relative to the texture’s variance may be 

significant depending on which texture is used. Consequently, it is not 

recommended to apply any technique of spectral subtraction such as Wiener 

filtering prior to classification. 
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2.4   Surface description 

A description of a surface can be made on several levels. A single parameter 

may be sufficient to characterise a surface for some purposes, whereas in other 

cases a much greater degree of description is required. The descriptors 

introduced here will form the basis for modelling all the surface textures used 

throughout this dissertation. A first level of description seeks to estimate some 

property of the surface, e.g. height or gradient, with a single parameter. On a 

second level, a statistical model such as the histogram, is applied to the 

variation of height or gradient, which provides a more visual comprehension of 

the surface’s characteristics. At a third level, there are those techniques which 

incorporate spatial interaction such as the Power Spectral Density (PSD) or the 

Autocorrelation Function (ACF). This third level of representation will not be 

considered here. 

2.4.1   First order statistics 

The most basic form of profile description requires the use of only one 

parameter. Two of the most common measures of roughness are the root mean 

square roughness s  and the centre line average or average roughness .claR  

Both of them are defined with respect to surface profile (see Figure 2.4) in 

either x or y axis; considering, for instance, the former 
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where ( )s x  represents the height of the surface at a point x along the profile, 

and n is the number of columns of the surface height map. 

 However, this work concentrates on real surfaces and implicit in the 

definition is the necessity of knowing or experimentally calculating ( , ),s x y  the 

surface height map. This is a complicated task with some associated problems, 
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as the measures of these parameters depend on the instrument and the 

separation of sampling points [Bennet89]. 

 More suitable in the context of this dissertation is the use of parameters that 

concentrates on the slope of the facets rather than its height. Of particular 

interest is one parameter known as absolute average slope ratio (AASR), which 

provides an easy way to evaluate the level of irregularities of a certain surface. 

Understanding that we own a method to estimate the derivative fields of the 

surface, AASR may be calculated as 

 
1 � �( , ) ( , )
2 x y

AASR p x y q x y
n

 (2.9) 

where n is the number of samples contained in each partial derivative. This 

parameter will be used in Chapter 6 to characterise the degree of roughness of a 

given surface texture.  
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Figure 2.4  (a) Surface height map of a rough surface; 
 (b) corresponding profile of a vertical cross section. 
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2.4.2   Histograms 

The histogram description can be thought as an extension of the single 

parameter descriptor; while the parameters in Section 2.4.1 concentrate in 

estimating only the standard deviation or mean of the heights of the surface, 

the histogram represents a statistical model of height distribution. In some 

ways the use of histogram description not only implies a new degree of visual 

discrimination between surfaces but also a certain degree of modelling. 

 The histogram does give an insight into the nature and history of a surface. 

For example, surfaces which are the result of a large number of random events 

tend to approximate to Gaussian distributions. Natural phenomena such as 

abrasion, erosion, and friction, have the tendency to wear down and deform 

summits leaving valleys largely unaffected, which is reflected in a histogram 

taking on a negative skew [Bennett89]. Some milling operations and the 

presence of relatively large particulate matter on an otherwise smooth surface 

result in a histogram taking on a positive skew. However, as we work on the 

basis of photographic images, the presence of non-symmetrical statistical 

distributions is generally attributable to artefacts in the sampling process. 
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Chapter 3    

The classification process 

It has been already mentioned that texture classification, as proposed in this 

dissertation, normally involves three processes: image acquisition, feature 

generation, and discrimination. Chapter 2 examined the first of them, where the 

texture under consideration is illuminated and its image captured. This chapter 

concentrates on the other two processes, which constitute the classification 

process proper. In a sense, the nature of classification is concerned with the 

selection of suitable features which will allow different classes to be separated, 

gathering statistics from these features, and finally assigning probabilities and 

thus classifying each area.  

3.1   Introduction 

Classification is such a broad ranging field that a description of all the 

algorithms could fill several volumes of text. The theory of classification, and 

pattern recognition in general, is fully discussed in several references such as 

[Devijver86, Pavel89, Fukunaga90]; here only fundamental ideas will be given. 

 No recognition is possible without knowledge. Decisions about groups into 

which recognized objects are classified are based on such knowledge. Experience 

shows that a good knowledge representation design is the most important part 

of solving the classification problem. Normally, a certain description can be 

used for representing knowledge as a part of a more complex representation 

structure. Descriptions usually depict some properties of objects and are called 
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features. Typically, a single description is insufficient, therefore the descriptions 

are combined into feature vectors which are inputs for statistical classification 

techniques. 

 In the context of texture classification, the objects are textured images 

which can be divided into disjoint subsets that, from the classification point of 

view, have some common features and are called classes. The definition of how 

the images are divided into classes is ambiguous and depends on the 

classification goal. The number of classes is usually known beforehand, and 

typically can be derived from the problem itself. Nevertheless, there are also 

approaches, called cluster analysis, in which the number of classes is unknown.  

 The combination of algorithms which assign classes to textures is called the 

classifier; as refer to in this dissertation, the classifier consist of  

1. a means of extracting the relevant image components, 

2. a mechanism to process these components, and  

3. a discriminatory method to classify on the basis of this information.  

Even though (1) is particularly refer to as texture measure and (2) is refer to as 

post-processing, in many occasions both of them are indistinctly gathered 

within the feature generation system. This feature generation process is 

discussed in Section 3.3, while fundamentals concerning (3) are examined in 

Section 3.4. First, next section introduces a brief theoretical background of 

texture classification drawing special attention to terminology and functionality. 

3.2   Texture classification 

3.2.1   Brief description 

In its simplest form, classification is the process of assigning similar regions of 

an image together. Texture classification includes a wide range of decision-

theoretic approaches to the identification of images (or parts thereof). All 
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classification algorithms are based on the assumption that the image in 

question depicts one or more features (e.g. geometric parts in the case of a 

manufacturing classification system, or spectral regions in the case of remote 

sensing). Each of these features should belong to one of several distinct and 

exclusive classes. 

 There are two types of classification, namely supervised and unsupervised. In 

the former, classes are specified a priori by an analyst; in the latter, classes are 

automatically clustered into sets of prototype classeswhere the user merely 

specifies the number of desired categories. In the following text, all the texture 

classification tests reported are of the supervised type and this process will be 

referred to simply as classification. 

3.2.2   How it works 

Texture classification analyses the numerical properties of various texture 

features and organises the data into categories. Classification algorithms 

typically employ two phases of processing: training and testing. In the initial 

training stage, characteristic properties of typical texture features are isolated 

and, based on these, a unique description of each classification category, i.e. 

training class, is created. In the subsequent testing stage, these feature-space 

partitions are used to classify texture features. 

 The description of training classes is an extremely important component of 

the classification process. In supervised classification, statistical processes1 or 

distribution-free processes can be used to extract class descriptors. 

Unsupervised classification relies on clustering algorithms to automatically 

segment the training data into prototype classes. In general, unsupervised 

clustering techniques are used less frequently, as the computation time required 

for the algorithm to learn a set of training classes is usually prohibitive. 

However, in applications where the features or/and relationships between them 
                                      
1 Unlike distribution-free processes, statistical processes are based on a priori knowledge of 
probability distribution functions. They are commonly refer to as parametric methods 
whereas distribution-free processes are also known as non-parametric methods. 



3.2  Texture classification  23  

 

are not well understood, clustering algorithms can provide a viable means for 

partitioning a sample space. In either case, the motivation criteria for 

constructing training classes is that they are: 

• independenta change in the description of one training class  should not 

change the value of another, 

• discriminatorydifferent texture features should have significantly 

different descriptions, and 

• reliableall texture feature within a training group should share the 

common definite descriptions of that group. 

 A convenient way of building a parametric description is via a feature vector, 

1 2( ,  , ,  )nf f ff  where n  is the number of attributes which describe each 

texture feature and training class. This representation allow us to consider each 

texture feature as occupying a point, and each training class as occupying a 

subspace within the n-dimensional space. Viewed as such, the classification 

problem is that of determining which subspace each feature vector belongs to. 
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Figure 3.1 2-D feature space representation of hypothetical data. Each 
training class forms clusters, i.e. a representative point (or mean) surrounded 

by some spread (or deviation).  
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  For example, consider an application where we must distinguish among three 

different types of textures based upon a set of two attribute classes. If we 

assume that we have a vision system capable of extracting these two features 

from the set of training images, we can plot the result in the 2-D feature space 

shown in Figure 3.1. 

 At this point, we must decide how to numerically partition the feature space 

so that if we are given the feature vector of a test image, we can determine, 

quantitatively, to which class belongs. To achieve this, a set of discrimination 

rules should be applied to the probability density functions of the dataset. 

3.2.3   Differences between classification and segmentation 

As classification and segmentation are sometimes misunderstood, it is helpful to 

clarify what these terms, as used in this text, refer to. Classification and 

segmentation have in fact closely related objectives as the former is another 

form of component labelling that can result in segmentation of various features 

in a scene. Precisely, texture segmentation is used to refer to the process of 

dividing an image up into homogeneous regions according to some homogeneity 

criterion. It is therefore intimately concerned with establishing the boundaries 

between these regions without regard to the type of class. On the other hand, 

texture classification refers to the process of grouping test samples of texture 

into classes, where each resulting class contains similar patterns according to 

some similarity criterion.  

 Note that classification tests may be performed on separate samples of 

textures, in which case segmentation is not required. Alternatively, a single 

image containing multiple textures may be presented, requiring segmentation 

prior to classification2.  In this text, we define the final purpose of our system to 

be classification on multi-textured images. Hence, segmentation is considered to 

be the global effect of the classification process occurring at pixel level. 

                                      
2 If classification is performed on a pixel by pixel basis within a single multi-textured image 
then, as a by-product, segmentation also occurs. 



3.3  Feature extraction  25  

 

3.3   Feature extraction 

Before either classification or segmentation can take place, some homogeneity 

or similarity criterion must be defined. These criteria are normally specified in 

terms of a set of features measures3, which each provides a quantitative measure 

or quality of a certain texture characteristic. In a multiclass problem it is 

habitual to use more than just one feature; groups of features associated with 

each pixel are treated as being orthogonal and assembled together as a feature 

vector ( , ).x yf  

 Feature extraction is concerned with the detection and localization of 

particular image patterns which represent significant features of the image. 

These important features are dependent on the application and they are 

generally of two different origin: a global image property or a region of the 

image with a relevant measurable property.  

 There are many researchers in image processing and computer vision areas 

who have considered the concept of feature measure to cope with texture 

classification and segmentation problems. In the area of database retrieval, for 

instance, texture features are often used to search an image database to find 

similar images to the image submitted by the user [Ashley95][Pentland96]. In 

remote sensing and radar applications, texture features have been used to 

identify forest regions and their boundaries, and to identity and analyse various 

crops [Fukuda99][Wu99]. The use of feature textures have been even reported in 

analysing seismic signals [Randen98]. 

3.3.1   Overview of feature measures 

Many types of representations and features have been proposed in the past few 

decades, attempting to maximise the classification task with a minimal set of 

compact discriminates.  Classically, two major categories of texture measure 

methods has been identified: structural and statistical [VanGool85][Wechsler80].  
                                      
3 These feature measures are alternatively referred to in this document as texture measure 
or just simply features.  
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Figure 3.2 Major categories of features for texture identification. 

 

Structural techniques use primitives to describe both texture elements and 

placement rules between them. This approach is therefore better suited to 

textures that exhibit a regular macrostructure, i.e. composite textures where 

primitives placed at various locations can be recognized. On the contrary, 

statistical techniques are more appropriate for micro textures in which there is 

no obvious primitive pattern. That is the case of the kind of textures used in 

this research, thus structural approaches will not be considered further. 

 Figure 3.2 shows an incomplete taxonomy of texture measure methods 

drawing special attention to statistical approaches. We distinguish between 

model-based features, which are based upon parameter estimation techniques, 

and non-model based features. In the former, a number of random field 

processes are used for modelling and synthesis of texture. If this model is shown 

to be capable of representing a range of textures, then its parameters may 

provide a suitable feature set for classification or/and segmentation of the 

textures. Popular model-based approaches are Markov random fields, 

autoregressive models (e.g. AR, SAR, MA, ARMA, fractional difference), and 

fractals. Non-model based techniques comprise a wider range of features of 

different nature; they include frequency domain analysis (e.g. FFT, Wigner-

Ville), signal processing approaches (Laws’ masks, Gabor functions, wavelets), 
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and pure statistical methods (e.g. grey-level co-occurrence matrices, grey-level 

differences). 

 The criteria used for the selection of features are: (i) sensitiveness to changes 

in illuminant slant and tilt, and (ii) popularity in the literature.  In the last few 

years, signal processing approaches have been one of the most common and 

productive areas of research in the context of classification. They normally 

employ directional FIR filters designed exclusively for the purposes of 

discriminating between textures, and indeed are affected by changes in lighting 

conditions. It is our impression that they are suitable for the framework of this 

investigation and therefore considered in next section. 

3.3.2   Filtering for texture measure 

A common denominator for most signal processing approaches is that the 

textured image is submitted to a linear transform, filter, or filter bank, followed 

by some energy measure [Randen99] (Figure 3.3). Due to the inherent 

similarities between these approaches, they will be referred to as filtering 

approaches. 

 The objective of the energy function is to estimate the energy of the filtered 

image in a local region. Unfortunately, as [Gabor46] formally proved for 1D 

signals and [Daugman85] extended to the 2D case, a signal’s specificity 

simultaneously in both spatial and frequency is limited by a lower bound on the 

product of its frequency bandwidth and spatial extent. Therefore, accurate edge 

preservation and energy estimation are conflicting goals. For edge localization, 

high spatial resolution is desired, whereas for energy estimation, high spatial 

frequency resolution is desired. This trade-off need to be balanced in the 

smoothing filter. The design of the smoothing filter as well as the non-linearity 

will be discussed later in Chapter 5.     

 Regarding the second non-linearity in Figure 3.3, [Unser90] studied several 

combination of the first and second non-linearities. He concluded that squaring 

together with a logarithmic normalising non-linearity was the best combination.  
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Figure 3.3 Typical block diagram of filtering approaches for 
 feature extraction. 

 

Nevertheless, this second non-linearity is hardly ever used, and hence it will be 

not considered. 

 In the literature, many different choices for all the components of Figure 3.3 

have been reported. In any case, it is always desirable to achieve the best 

possible performance with the smallest possible number of features in order to 

keep low computational and storage requirements. This issue is directly linked 

with the design of the filtering stage, and specially the filter bank in a 

multichannel approach. Therefore, we are of the belief that filtering is certainly 

the most important element.  

 One of the pioneering filtering techniques was the approach by Laws 

[Laws79], where a bank of band pass filters was applied. Despite their simplicity 

and lack of theoretical background, they sometimes form a highly effective 

approach, which in few cases have a classification performance comparable with 

modern techniques. Their ease of implementation and very modest 

computational expense have make them a popular choice for many researchers 

as a test bed for novel classification systems and practical applications. 

 Subsequent works have focused on different filter bank families, different 

subband decompositions, and optimisation of the filter for texture feature 

separation. One family of functions, the 2D Gabor family, has particularly 

become an important and popular area of research within texture analysis 

thanks to two important properties:  
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• the space/frequency characteristic of the filter, and 

•  the similarity to the operation of the early human visual system. 

The complex form of Gabor filters achieved the lower limit for the joint 

entropy, or uncertainty, of the resolution for orientation, spatial frequency and 

2D spatial position. They are therefore of interest to analysts attempting to 

localise textures in the spatial domain using their spectral characteristics. 

Furthermore, [Daugman85] presented evidence that the 2D receptive-field 

profiles of simple cells in mammalian visual cortex are well described by 

member of this optimal 2D filter family. 

 In conclusion, it is believed that Gabor filters can be easily integrated into 

our system and provide the following advantages: 

• they can be used to extract and resolve magnitude and phase components 

of the image, thus making explicit the use of magnitude or power at the 

expense of phase; 

• they can be well defined both in the spatial and the polar frequency 

domain, so they may be implemented in the frequency domain in order to 

avoid costly convolutions; and 

• because of their popularity, by establishing the tilt and slant dependency 

of the Gabor-based classifier, the results of this work will be relevant to a 

wide area of texture research.  

3.3.3   Gabor functions 

The Gabor elementary functions (GEF’s) were first defined by Dennis Gabor in 

his classic monograph on the “Theory of Communication” [Gabor46]. Daugman 

was the first to extend the definition to the two-dimensional space 

[Daugman85]. The family of 2D Gabor functions is given by Equation Section 3 

 0 0( , ) ( , ) exp 2 ( )g x y e x y j u x v y  (3.1) 
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where ( , ) ( cos sin , sin cos )x y x y x y  represent rotated spatial-

domain rectilinear coordinates. Letting ( , )u v  denote frequency-domain 

rectilinear coordinates, 0 0( , )u v  represents a particular 2D frequency. The 

function ( , )e x y  is a 2D Gaussian envelope 

 
2 2

2 2

1 1( , ) exp
2 2x y x y

x ye x y  (3.2) 

where x  and y  characterize the spatial extent and bandwidth of the filter. 

Therefore, the GEF is an elliptical Gaussian with aspect ratio ( / )x y  

multiplied by a complex exponential representing harmonic modulation with 

radial centre frequency 2 2 1/2
0 0 0( )u v  and orientation 1

0 0 0tan ( / ).v u

 In most cases, letting x y  is a reasonable design choice; then  need 

not to be specified since ( , )e x y  is circularly symmetric. However, Dunn et al. 

have found that when a texture contains texture not arrange in a square lattice, 

asymmetric filters are useful [Dunn95]. In this dissertation, we assume 

asymmetric filters ( )x y ; however, we do not consider the rotation of the 

coordinates ( 0)  because it simplifies the implementation and its 

application is not clearly defined. Hence, the GEF simplifies to 

 
2 2

2 2 0 0

1 1( , ) exp exp 2 ( )
2 2x y x y

x yg x y j u x v y  (3.3) 

 It can be shown that the Fourier domain representation of Eq.(3.3) is given 

by 

 
2 2

0 0
2 2

( ) ( )1( , ) exp
2 u v

u u v v
G u v  (3.4) 

where 1/(2 )u x  and 1/(2 ).v y  The Fourier transform specifies the 

amount by which the filter modifies or modulates each component of the input 

image. Such representations are therefore referred to as modulation transfer 
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functions (MTF).  

 It is common in texture analysis to use pairs of Gabor filter with quadrature 

phase relationships (cosine and sine parts). [Daugman85] gives some 

justification to that fact, arguing that actual filter impulse-response functions 

and neural receptive-field profiles are real functions, which can be regarded as 

containing in quadrature both the even- and the odd-symmetric versions. If 

( , )g x y  is in pure cosine phase, then its transform can be obtain as 

1
2 [ ( , ) ( , )];G u v G u v  whereas, if ( , )g x y  is in pure sine phase, then its 

transform is determined by 1
2 [ ( , ) ( , )].jG u v jG u v  Intermediate phases 

represented by the appropriate mixture of these cases would generate filter 

profiles with neither symmetry nor anti-symmetry.  

 A plot of a representative even-symmetric member of the 2D Gabor family is 

shown in Figure 3.4. Referring to the parameters in Eq.(3.3), this particular 

filter has 2 2
01/8,  2,x y u  and 0 0v  cycles/image-width. Observe 

that the number of significant sidelobes in the spatial filter profile inversely 

determines the filter’s spatial-frequency bandwidth and orientation bandwidth; 

the spatial periodicity and orientation of the lobes specifies the filter’s preferred 

spatial frequency and orientation.  

 

  

(a) (b) 

 

Figure 3.4 (a) An even-symmetric Gabor filter with unity aspect ratio and 
centroid located at (0,0), (b) corresponding MFT. 
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3.4   The discriminant function 

3.4.1   Theoretical framework 

In statistical terms, the discriminant function is that of several variates used to 

assign items into one of two or more groups. The function for a particular set of 

items is obtained from measurements of the variates of items which belong to a 

known group. 

 If a discrimination curve (or hypersurface in a multidimensional feature 

space) exists which separates the feature space such that only objects from one 

class are in each separated region, the problem is called a classification task 

with separable classes. If the discrimination hypersurfaces are hyperplanes, then 

it is called a linearly separable task. Intuitively, we may expect that separable 

classes can be identified without errors. However, the majority of texture 

classification problems do not have separable classes in which case the locations 

of the discrimination hypersurfaces in the feature space can never separate the 

classes correctly, thus some areas will always be misclassified. 

 One of the most simple (although not the most computationally efficient) 

method is to employ a supervised, distribution-free approach known as the 

minimum mean distance classifier. This classifier works well when the distance 

between means is large compared to the spread of each class with respect to its 

mean. It is simple to implement and is guaranteed to give and error rate within 

a factor of two of the ideal error rateobtainable with the statistical, 

supervised Bayes classifier. The Bayes classifier is a more informed algorithm 

as the frequencies of occurrence of the features of interest are used to aid the 

classification process. Without this information the minimum mean distance 

classifier can yield biased classifications, thus a Bayes classifier will be adopted. 

3.4.2   A Bayes classifier 

 Before dealing with the Bayes classifier principles, some nomenclature used 

in this section is introduced. A statistical classifier is a device with n  inputs 
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and 1 output. Each input is used to enter the information about one of 

n features 1 2, , , nf f f  that are measured from a classified object. An R  class 

classifier will generate one of R  groups or class identifiers 1 2, , , RG G G  as an 

output, which may be interpreted as a decision about the class of the processed 

object. The function ( ) ,rd Gf   known as decision rule, divides the feature 

space into R  disjoint subsets ,  1, ,rK r R  each of which includes all the 

feature representation vectors .f    

 The Bayes classifier is a simple statistical classifier, relatively straightforward 

to implement, and offers reasonable performance [Linnett91][Clarke92]. Bayes 

rule provides the basis for probabilistic classifiers that seek to minimise the 

Total Error of Classification (TEC) [James85][Tou74]. The goal of this rule may 

be expressed as follows: 

 Assign the pixel with feature vector f  to group rG  for which 

 ( ) ( )   r sP G P G s rf f  (3.5) 

where ( )rP G f  is the conditional probability that the pixel with feature vector 

f  belongs to group .rG  Unfortunately these conditional probabilities are 

difficult to obtain. A posteriori probability may be expressed by means of a 

priori probability using the Bayes theorem 

 
( ) ( )( )

( )
r r

r
P G P GP G
P
ff
f

 (3.6) 

Thus the maximum likelihood classification rule is defined in terms of 

conditional probabilities, where ( )rP Gf  is the probability of a pixel from 

group rG  having a feature vector of ,f  and ( )rP G  is the a priori probability of 

a pixel belonging to group .rG   

 We now require a suitable representation for the class conditional probability 

( ).rP Gf  One of the ways to achieve this representation is to assume that 

( )rP Gf  has a parametric form. The most common model is the multivariate 

Gaussian distribution, which may be expressed as 
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 1
1/2/2

1 1( ) exp ( ) ( )
2

T
r r r rn

r

P Gf f m C f m
C

 (3.7) 

where 

 n   is the number of feature measures, 

 f   is the 1n  feature vector of sample to be classified, 

 rC   is the n n  covariance matrix of group ,rG  and 

 rm  is the 1n  vector of feature measure mean for group .rG   

 

 

 Substituting Eq.(3.6) and Eq.(3.7) into Eq.(3.5), and taking natural 

logarithms gives the following rule: 

 
1

1

ln ( ) ( ) 2 ln( ( ))

ln ( ) ( ) 2 ln( ( ))    

T
r r r r r

T
s s s s s

P G

P G s r

C f m C f m

C f m C f m
 (3.8) 

The terms in the left-hand side of Eq.(3.8), with the exception of the a priori 

group probability4, are often collected together in one function ( )rd f  called the 

discriminant function. Hence, 

 11 1( ) ln ( ) ( )
2 2

T
r r r r rd f C f m C f m  (3.9) 

Expanding Eq.(3.9) gives 

 1 1 11 1 1( ) ln
2 2 2

T T T
r r r r r r r rd f C f C f f C m m C m  (3.10) 

which is known as the quadratic discriminant function (due to the 1T
rf C f  

term). If the covariance matrices of all classes are identical then the quadratic 

and natural logarithm terms may be eliminated to give a linear discriminant 

 1 11( )
2

TT
r r r r r rd f m C m f C m  (3.11) 

 The value of a discriminant function for a sample f  is known as 

                                      
4 In practice the group probabilities are unknown, so they are considered equal and may be 
ignored. 
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discriminant score, and is a univariate number which represents the likelihood 

of membership of the sample to that class. Note that this value is not a 

probability, due to the cancelling of common terms and the taking of 

logarithms from the original expression. 

 In sum, assuming equal a priori probabilities, the classification rule may be 

stated as follows: assign the pixel with feature vector f  to the group rG  with 

the highest discrimination score ( ).rd f  Therefore, the design of the decision rule 

must satisfy the following formula for all rKf  and for any [1, ],  s R s r  

 ( ) ( )r sd df f  (3.12) 

This analysis effectively partitions the feature space into different regions of 

class membership (see Figure 3.5). The discrimination hypersurface between 

class regions, e.g. iK  and ,jK  is defined by 

 ( ) ( ) 0r sd df f  (3.13) 
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Figure 3.5 Decision surface between two class regions ( 2)R  in 
 a two-dimensional feature space ( 2)n : (a) Quadratic Bayes classifier 

(different covariance matrices), (b) Linear Bayes classifier 
 (both groups have the same pooled covariance ).pC  
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The simpler linear discriminant function will be used herein as it is 

straightforward to implement and because of its reported robustness and 

performance [James85]. It assumes a multivariate normal distribution defined 

by Eq.(3.7) and identical covariance matrices .rC  However, these covariance 

matrices are normally slightly different and therefore they are often replaced by 

the so-called pooled covariance matrix pC , in which each element is the average 

of the corresponding elements of the individual group covariance matrices .rC  

3.4.3   Practical considerations 

In practice, the population parameters of ( )rP Gf  will be unknown, and 

sample estimates from the training set need to be obtained. The maximum 

likelihood estimates for the mean and covariance matrix of a multivariate 

normal are given respectively as 

 
1

1�
N

j ij
i

m x
N

 (3.14) 

 
1

1� � �( )( )
1

N

ij jjk ik k
i

C x m x m
N

 (3.15) 

where 

 N  is the number of samples (of a training set for a particular feature), 

 ijx  is the ith sample of jth feature, 

 � jm  is the estimate of the mean for jth feature, and 

 �
jk
C  is the estimate of the covariance between the jth and kth features. 

 

 

 

 Discriminant functions based upon sample estimates are known as plug-in 

estimators. Since the sample estimates of the parametric model are themselves 

random variables, they are not guaranteed to satisfy Bayes rule, and hence they 

will not necessarily yield minimum error. However, such discriminant functions 

are still useful, and the linear discriminant function is particularly robust in 

operation when the data is not ideally normal [Linnet91]. 
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Chapter 4    

Surface recovery and 
rendering 

The main components of a standard classification system has been presented 

thus far. This system, just as it is, will suffer misclassification due to changes in 

illuminant direction. Having observed the effect in Chapter 1, the idea is to 

incorporate into the system surface modelling and rendering techniques to 

overcome such errors. This chapter overviews techniques used in computer 

vision to extract surface shape and optical parameters. It focuses on shape from 

photometric stereo, model-based rendering, and how to combine both methods 

to produce images of a surface under novel lighting conditions. 

4.1   Introduction 

The recovery of shape and material information from images is extremely 

challenging and is far from being solved in complete generality. A number of 

approaches that promise to be useful, albeit not completely general, have been 

pursued over a long time. The primary focus of computer vision has been to 

develop lighting models and rendering procedures to produce synthetic images, 

which are visually and measurably indistinguishable from real-world images. 

Computer models of architectural scenes have been especially popular subjects, 

and have proven to be entertaining virtual environments as well as valuable 

visualization tools. 
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Figure 4.1 Block diagram of a model-based rendering system. 
 

 

 

 While computer vision usually aims to derive a 3D scene description from its 

2D images, it is important to clarify that our approach is not in that direction. 

Certainly, it is aimed to reverse the process of surface recovery towards image 

prediction, i.e. use a surface model to render textured images of that surface 

under novel lighting conditions; afterwards, these images will become the input 

data for the classifier training stage and, if accurate enough, will provide more 

reliable decision rules, and therefore better classification results. 

 Figure 4.1 shows a schematic of how our approach combines modelling and 

rendering in order to produce images of a surface under a desired illuminant 

direction. The first part of the system seeks light reflection phenomena and 

reflectance models that could better capture the relation intensity-shape. The 

second part uses that model to render the appearance of the surface for a given 

illumination direction. 

 Chapter 2 analysed the physical processes of image formation in order to 

understand how intrinsic surface properties propagate into visual appearance of 

the surface. We learnt that the interaction between surface and light is 

completely determined by the surface properties, namely surface geometry and 

surface optical parameters. The goal of next section is to find how such 

properties can be determined by processing of the captured images. We 

anticipate that the extraction of surface properties is highly non-trivial. The 

visual appearance of a surface varies with both the viewpoint and the light-

point position. In addition, the task is complicated by interreflections. 
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4.2   Surface recovery 

4.2.1   Shape from X 

Different methods to extract important information in images have been largely 

studied for surface recovery purposes during the last three decades. Such 

techniques are commonly known as ‘Shape from X’, where X is one of a 

number of options. This family of techniques includes methods such as shape 

from motion, shape from stereo, shape from focus, shape from contour, and 

shape from intensity1. The last of these is particularly appealing since it does 

not require additional hardware beyond that used for classification. Shape from 

intensity extracts shape information from a series of intensity images, assuming 

each is generated by a single light source. It can be further divided into three 

subcategories, namely shape from shading, shape from photometric stereo, and 

shape from photometric sampling. Basically, the differences between them are 

in the number of images and arrangement of light sources. 

 Shape from shading uses a single light source, i.e. one image as input, to 

recover the shape information [Healey88, Pentland84, Horn75]. It has the 

advantage that requires the least amount of input, however it also introduces 

evident disadvantages. Since it has less image information available, it is less 

accurate: at each pixel, intensity provides only one constraint, whereas the 

description of surface ‘shape’ (surface gradient or surface normal) requires at 

least two parameters. Therefore, many shape from shading techniques introduce 

limitations, such as smoothness of the surface, and use optimization methods to 

estimate shape. Shape from shading is often not as reliable as other ‘Shape 

from’ techniques since it is so easy to confuse with reflections, or for it to fail 

through poorly modelled reflectance functions. 

 To overcome some of these problems, shape from photometric stereo was 

introduced [Clark92, Lee92, Tagare90, Coleman82, Ikeuchi81, Woodham80]. 

                                      
1 The reader should be aware that many others exist, which we do not mention, especially 
considering the important spread of such technologies in the last few years. 
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The main idea behind photometric stereo is to take multiple images of a scene 

with different light source directions for each image, while keeping viewing 

point constant. Each image of the scene provides one constraint on the surface 

shape. Hence, multiple images of the same scene create an overconstraint 

system, which is solved for the surface shape in order to minimize total cost. 

 Another technique, which is similar to photometric stereo, is shape from 

photometric sampling [Ikeuchi90, Sanderson88]. It usually uses many light 

sources, instead of a few, and a sequence of images corresponding to the light 

sources. The use of extra light sources eliminates the inaccurate results caused 

by improper choices of light position in classical photometric stereo. However, it 

shares so many similarities with photometric stereo that they are commonly 

considered the same in the literature, and so do we here.  

4.2.2   Photometric techniques  

The technique of photometric stereo allows us to form surface description from 

several images of the same surface imaged under various illumination directions. 

Therefore, it seems ideally suited to our purposes since our problem is itself 

caused by variations in illuminant direction. Each illumination condition will 

have its own unique reflectance map, and a given point’s intensity will vary 

accordingly. Therefore, each image defines a unique set of possible orientations. 

If three or more images are used then their intersection will solve the problem 

giving only one possible orientation.  

 In order to exemplify the idea, consider a Lambertian surface illuminated 

from a given illumination direction, which defines one reflectance map ( , ).r p q  

If we are given a facet’s intensity under these conditions, we may only conclude 

that its surface derivatives lie on a particular contour within the p/q plane. 

This is essentially the fundamental problem of shape from shading; single image 

techniques need to impose constraints in the spatial domain to resolve this 

ambiguity. On the other hand, photometric techniques use several images, 

imaged under different illumination conditions, with their own specific 
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reflectance map (see Figure 4.2). The facet’s derivatives, which are invariant, 

will lie at the intersection of this set of contours. Since two contours may 

overlap at more than one point, three images are required to resolve 

ambiguities in all cases. Mathematically, this may be expressed as follows: 

consider Lambertian reflectance  

 i n l  (4.1) 

where i  is the grey level intensity, n  is the unit surface normal, and l  is the 

unit light source direction. Now, consider the same facet illuminated three 

times with different illuminant directions, and express the surface normal in 

terms of surface gradient.  

 
11 12 131

2 21 22 23

3 31 32 33 1

l l li p
i l l l q

i l l l

 (4.2) 

Invert Eq.(4.2) in order to isolate the partial derivatives 

 

1

11 12 13 1

21 22 23 2

331 32 33 1

l l l i p
l l l i q

il l l

 (4.3) 

      

Figure 4.2 Reflectance maps of a matte material at 
 two different illuminant directions; tilt angle rotated 90°. 
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4.2.3   Related work in photometric stereo  

Shape from photometric stereo was first introduced by Woodham in the early 

eighties [Woodham80]. Woodham proposed that the surface gradient could be 

solve by using two input images, if the albedo at each surface point is known. 

In case the albedo were not known, both gradient and reflectance factors could 

be solved by using an additional image. The method was simple, sensitive to 

noise, and efficient only for Lambertian surfaces. 

 Ikeuchi [Ikeuchi81] was the first to obtain the shape of a specular surface 

employing a photometric stereo technique. In his research, he used a distributed 

light source obtained by uneven illumination of a diffusely reflecting planar 

surface and three input images. His solution involved solving a set of non-linear 

equations; a look-up table, made from the reflectance map, was used to perform 

the numerical inversion of the three reflectance maps. This method assumed a 

known object position, and required accurate measurements of reflected 

brightness. 

 Tagare and de Figueirdo [Tagare90] estimated the shape of hybrid surfaces. 

An energy function was minimized with respect to the surface normal and the 

weights of the Lambertian and specular components. They proved that ten 

light sources were needed to get a unique solution. This method was based on 

the assumption that the Lambertian and specular components could be pre-

separated.  

 Coleman and Jain [Coleman82] solved the shape from hybrid surfaces using 

four light sources. It was based on the assumption that only one of the light 

sources caused specular reflection; they used relative deviation to determine the 

specular source. 

 Solomon and Ikeuchi [Solomon92] extended Coleman’s solution by dividing 

the surface into different areas, depending on the number of light sources 

illuminating them. The areas illuminated by four sources were solved by 

Coleman’s methods; three sources areas were solved by adding the constraint 

that the surface normal was a unit vector. Two sources areas could only be 
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solved if any light source caused specular reflection. 

 Lee and Kuo [Lee92] introduced the concepts of parallel and cascade 

photometric stereo. In their paper, they showed that the accuracy of shape 

from shading algorithms was related to the slope of the reflectance map defined 

on the gradient space. They suggested two different photometric approaches: 

first, parallel photometric stereo would take all the images together to produce 

the best estimation of the surface; second, cascade photometric stereo would 

take the images one after the other, and the estimated shape from the previous 

imagecomputed using triangular element surface approximationwas used as 

input for the initial estimate of next image. They used a two source 

photometric stereo, and concluded that the best results could be obtained for 

orthogonal light sources. 

 Clark [Clark92] proposed an active photometric stereo approach, which 

modelled the motion of light source in infinitesimal steps. He was the first to 

use perspective, instead of orthographic projection, thus removing the necessity 

to assume the light coming from infinity. The computation was local, non-

iterative, and directly solved depth in a closed form equation. In order to 

measure the infinitesimal image gradient with respect to change in lighting, 

seven images were required to provide an acceptable discrete approximation.  

 It is a common practice to avoid interreflections, i.e. the mutual illumination 

between surface facets, and indeed none of the above methods dealt with them. 

Nayar et al [Nayar90] challenged the interreflection problem applying 

photometric stereo to Lambertian surfaces. They observed that erroneous shape 

in the presence of interreflections was a little bit shallower than the real shape, 

and therefore it could be iteratively refined.  
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4.3   Rendering 

Traditionally, rendering is the processing of a scene’s image using colour and 

shading to make it appear solid and three-dimensional. However, it must be 

clarified that the rendering process is here understand in a simpler, different 

manner. Precisely, here rendering only consists of a relighting algorithm whose 

input is the surface model and the desired illumination direction and whose 

output is the simulated image (see Figure 4.1). With that respect, it can be 

said that our rendering method is model-based, in contrast to image-based 

rendering methods. The basic difference between them is found in the approach 

used to obtained the virtually generated image. In traditional model-based 

rendering, a geometric model of a scene, together with surface reflectance 

properties and lighting parameters, are used to generate an image of the scene 

from a desired light point. In image-based rendering a set of images are taken 

from (possibly) known viewpoints and they are directly processed to create new 

images.  
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Chapter 5    

Approach to the problem 

In the preceding chapters some theoretical background concerning the main 

topics of this research was presented. Firstly, Chapter 2 examined possible 

descriptions of physical surfaces, specially rough ones, and the interaction with 

light in the imaging process. Secondly, Chapter 3 described the classifier as a 

combination of three mechanisms: texture measure, post-processing, and 

discrimination. Finally, Chapter 4 surveyed popular surface recovery techniques 

and identified the relighting process. This investigation through literature should 

be perceived as a supportive tool when approaching the current issue. In this 

chapter we state the problematic, use both theory and previous work to 

recommend a model-based solution, and describe a relatively simple and speed-

efficient implementation. 

5.1   Problematic 

It has been shown that changes in the angle of illuminant incident upon a 

surface texture can significantly modify its appearance. These alterations can 

affect the output of texture features to such an extent that they may cause 

complete misclassification. Essentially, this occurs because a side-lighting 

enhances the appearance of the surface texture producing an image which is a 

directionally filtered version of the surface height function. Furthermore, as 

Kube and Pentland [Kube88] predicted in their pioneering work, the axis of 

this filter is a function of the illumination’s tilt angle. In the context of texture 
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classification, this is very unfortunate as many classifiers employ directional 

filters in their feature measures like e.g. Gabor filters, which are used in this 

research.  

 Notwithstanding the evidence, very little work has been published on this 

subject. [Chantler94] studied the effect caused by variations in illuminant 

direction on images of physical texture, investigated the impact of this effect on 

texture classification and proposed methods of reducing classification errors 

under this situation. Leung and Malik [Leung99,01] developed a texture 

classification scheme that identifies 3D textons1 for the purposes of illumination 

and view-point invariant classification. They tackled the difficulties of 

recognising that samples of the same material under different 

viewpoint/lighting settings actually belong to the same type. They made the 

point that variations due to surface relief cannot be treated with simple 

brightness normalisation or intensity transforms. [McGunnigle98] confirmed by 

simulation and experimentation that the features on which classification is 

based are functions, not only of the surface, but also of the illuminant tilt 

angle. He evaluated several proposals in the literature for reducing the tilt 

induced effect. However, he encountered them inefficient for his data set and 

proposed a new method based on photometric stereo. His evaluation showed 

that it was able to accurately model real textures and to significantly reduce 

the effect of tilt variation on classification. 

5.2   Model-based solution 

The ability to set classification parameters from a set of examples is very 

important. Clearly, the quality of the classifier setting depends on the quality 

and size of the training set, which is always finite. Therefore, to design and set 

a classifier, it is not possible to use all the textures which will later need 

                                      
1 Fundamentally, a 3D texton is a vocabulary of prototype tiny surface patches with 
associated local geometric and photometric properties. 
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classifying. The classifier setting methods must be inductive in the sense that 

the information obtained from the elements of the training set must be 

generalised to cover the whole feature space, implying that the classifier setting 

should be near optimal for all feasible textures, even for those which it had 

never ‘seen’ before.  

 When tackling classification under varying lighting condition, the problem is 

considerably increased. Not only should the classifier be able to discern among 

different textures, but it also should be able to perform robustly against 

changes in the appearance of identical textures. In that case, it is obviously not 

viable to train at every single illuminant direction and store up infinite number 

of training statistics to secure a more successful classification. 

 One potential solution to that difficulty is a model-based method. It takes 

advantage on the fact that it is not based on the actual surface but on its 

model. Therefore, it is a much more reasonable approach because it merely 

requires a finite and rather small data set to model the surface. Essentially, this 

technique aims to anticipate the feature space distributions by modelling the 

physical and analytical processes of imaging and feature extraction. It forms a 

spatial model of the training surfaces in a primary training stage. The 

classification process proper begins with secondary training, when the recovered 

surfaces are synthetically rendered under the specific lighting condition, and the 

resulting images are the basis of training. We hypothesise that if the model 

components, i.e. the reflectance function and the surface characterisation, are 

satisfactorily accurate, the classification rates will come close to those of the 

best case2 classification. 

 Figure 5.1 illustrates the general set-up of the system identifying three main 

steps: recovery or primary training, secondary training and classification. In 

following subsections, each phase is individually explained highlighting the 

functionality of relevant components.  

                                      
2 Best case is referred to that situation where training and classification are performed 
under the same lighting conditions.   
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5.2.1   Recovery stage 

Firstly, the procedure need a structured set of data held in a repositorye.g. a 

database for a computer-based application. This database should be accessible 

from the software in order to restore the data. Generally, the data set consists 

of several images obtained at different illuminant angles. The number of 

required images relies entirely on the technique used for the implementation. 

Specifically, we adopted a photometric technique due to [McGunnigle98] which 

requires just three images as data set. This technique is explained later on in 

Section 5.3. In any case, the resulting surface model is composed of three 

images, ( , ),  ( , ),  and ( , ),p x y q x y a x y  representing the partial derivatives and 

albedo respectively. This modelling process is without doubt the key 

component of the system; the final misclassification rate will mostly depend on 

the precision to imitate the real appearance of the materials. 

5.2.2   Training stage 

The surface model found in the previous stage is fed into the relighting 

algorithm so as to simulate the appearance of the actual image texture under a 

definite lighting condition. Basically, the algorithm applies Eq.(5.1) to the 

surface model in order to produce an estimation of the radiant intensity. 

Consequently, this procedure presumes that the reflectance function of the real 

surface can be modelled as Lambertian and the lighting conditions are known3. 

In the next step, a multichannel system measures the prior simulated image 

with the aim of extracting key features. This set of texture features is 

subsequently entered into the discriminant generator which separates the 

feature space so that only patterns from one class are in each separated region. 

The result is a set of statistics which will become the basis for posterior 

classification.   

                                      
3 This assumption confines the proposal to applications where the direction of illuminant 
during the classification stage can be either manually or automatically controlled. 
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Figure 5.1 Block diagram of suggested model-based classifier. 

  

5.2.3   Classification stage 

Finally, the actual texture is submitted to the very same multichannel scheme 

used during secondary training. The feature images extracted are passed to a 

statistical classifier that uses the statistics obtained in the training session, and 

labels each pixel as belonging to a certain class on the basis of its feature vector 

and the a priori probability of that vector being a member of each class. The 

resulting output image is a class map in which the value of each pixel 

correspond to the group with the lowest discriminant score at that pixel.  

5.3   Photometric implementation 

In Section 4.2 the related literature was reviewed in order to identify 

appropriate implementations as well as the practical issues arising from the 

technique’s use. From this study, we understand that accurate models imply 

difficult and less efficient systems. As noted in [McGunnigle98], in the context 
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of a model-based classifier the accuracy of surface recovery is of secondary 

importance to the accurate prediction of training images. This relaxation allows 

other factors to be taken into account. We also believe that the ease of 

implementation and the computational speed become a priority for our 

purposes.  

5.3.1   A simple photometric stereo scheme 

Assuming Lambertian surface reflection, and no significant shadowing or inter-

reflection, the intensity of an illuminated surface may be expressed as: 

 2 2 1/2

( , )cos sin ( , )sin sin cos( , )
( ( , ) ( , ) 1)

p x y q x yi x y
p x y q x y

 (5.1) 

where  denotes the incident light flux, and  denotes the variations in 

reflectance property such as surface markings.  

 As noted in Section 4.2.2, three images under different illuminant conditions 

are required to avoid possible ambiguities. If the surface is illuminated from 

0 ,  90 ,  and 180 ,  and same slant angle, Eq.(5.1) can be significantly 

simplified. For each given point ( , )x y  of the image the radiant intensity can be 

stated respectively as: 

 1/20 2 2
( sin cos )

1
i p

p q
 (5.2) 

  1/290 2 2
( sin cos )

1
i q

p q
 (5.3) 

 1/2180 2 2
( sin cos )

1
i p

p q
 (5.4) 

 Adding Eq.(5.2) and Eq.(5.4) will produce a non-linear function of the 

surface derivates: 

 1/20 180 2 2
2 cos

1NL
i i i

p q
 (5.5) 
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 Now dividing Eq.(5.2) and Eq.(5.3) by Eq.(5.5) will generate two linear 

functions mapping surface slope to image intensity: 

 0

0 180

1 tan
2p

i pi
i i

 (5.6) 

 90

0 180

1 tan
2q

i qi
i i

 (5.7) 

 These equations may be transposed to give the desired derivative fields: 

 

0

0 180

1 2
1 2
tan tan

p

i
i ii

p  (5.8) 

 

90

0 180

1 2
1 2
tan tan

q

i
i ii

q  (5.9) 

 Knowing the gradient fields one can use any equation ranging between 

Eq.(5.2)-(5.5) to isolate the albedo of the surface texture, yet it is advantageous 

to choose Eq.(5.5) since it produces less computational cost. In that case, the 

albedo is given by 

 
1/22 20 180 1

2 cos
i i

a p q  (5.10) 

  Due to all the assumptions, i.e. Lambertian reflection, no shadowing, and 

neglectful interreflections, this model is sub-optimal and certainly inferior, in 

terms of accuracy, to some techniques surveyed in Chapter 4. Even if the 

reflectance function is near Lambertian, surfaces with high slope angles may 

perform comparatively worse than those of low slope angles, since the former 

may present major levels of shadows and interreflections. Despite inadequacies, 

this scheme does provide a fast and simple implementation and will be adopted 

during experimentation. The performance of this scheme, hereafter refer to as 

simple photometric stereo,  will be assessed carefully in Chapter 6.  
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Figure 5.2 Laboratory apparatus to collect photometric stereo data. 

 

5.3.2   Collecting photometric data 

The required input data is a set of images of test surfaces, each one lit from a 

different known direction, all captured from the same view point. In the 

particular case of the simple photometric stereo scheme (see Section 5.3.1), only 

three images are acquired at tilt angles of 90  increments starting at 0°. 

Implicit in this approach is the assumption that the illumination’s slant angle is 

held constant for all three images  see Eq.(5.2)−(5.4). As done generally in 

the field of photometric stereo, we collect multiple images of a static surface 

texture with a static camera under varying lighting conditions. Figure 5.2 shows 

the device constructed to assist with this process. The sample is placed on a 

platform which is situated perpendicular to the camera’s line of sight. A single 

light source is mounted on an arm which can be positioned to the specific 

zenith and azimuth. In the context of lighting, azimuth is commonly referred to 
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as the illuminant tilt angle; analogously, zenith is referred to as the illuminant 

slant angle. The light source is a single filament tube with a mask. The mask 

gives the source a near Gaussian which helps to smear specular highlights and 

reduces aliasing of the azimuth function. The imaging device is an CCD camera 

which is fixed in the apex of the apparatus and is connected to a frame store 

mounted in a workstation.  

5.4   Feature extraction 

Section 3.3 reviewed different approaches to texture feature extraction and 

justified the use of signal processing techniques. Specifically, motivated by 

studies of human perception, many computer vision researchers have proposed 

a paradigm based on a filter-bank model. Among several categories of operators 

which can perform a joint space/spatial-frequency decomposition, the Gabor 

functions have been shown to be optimally localized per the uncertainty 

principle in both the space and spatial-frequency domains. 

 This section presents a bank of Gabor filters for the extraction of texture 

features from multi-textured images. The approach includes an integrated 

design for the filtering process as well as a post-processing scheme to adapt the 

filtered images for classification.  

5.4.1   Multichannel scheme 

The multichannel filtering approach is intuitively appealing because it allows us 

to analyse differences in sizes and orientations of different textures. Unlike other 

approaches to texture analysis, the multichannel filtering approach is inherently 

multiresolutional. Another important advantage is that one can decompose the 

original image into several filtered images with limited spectral information.

 Figure 5.3 illustrates a general k-channel filtering scheme, where M is the 

number of texture features. The input image ( , )i x y  is assumed to be composed 

of D  disjoint textures 1 2, , ,
D

t t t  with 2.D  Each single filter channel in the 
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scheme consists of a bandpass Gabor filter ( , ),kg x y a non-linear operator, and a 

smoothing post-filter ( , ).kh x y  The subscript k denotes a particular filter 

channel with 1 .k M  

 The output of a first filtering stage ( , )ko x y  is the convolution of the input 

image with the 2D Gabor filter 

 ( , ) ( , ) ( , )
k k
o x y i x y g x y  (5.11) 

where  denotes convolution in two dimensions. The non-linear operator is 

computed in the following stage as 

 ( , ) ( , ) ( , ) ( , )k k k
m x y o x y i x y g x y  (5.12) 

where ( , )km x y  is an energy estimation in the local region. However, ( , )km x y  

has been shown to fail in accomplishing the discriminant criteria (see Section 

5.4.3  for discussion). Thus, a smoothing post-filter is then applied to ( , )km x y  

yielding the final feature image  

 ( , ) ( , ) ( , )
k k k
f x y m x y h x y  (5.13) 
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Figure 5.3 Multichannel filtering scheme for feature extraction. 
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5.4.2   Filtering in the frequency domain 

This section focuses on the filtering stage of a particular channel. We believe it 

is desirable to perform the filtering in the frequency domain because of the 

computational difficulty of a two-dimensional convolution in the spatial 

domain. Then, the complex filtering expressed by Eq.(5.11) is transformed into 

a product in the frequency domain  

 ( , ) ( , ) ( , )k kO u v I u v G u v  (5.14) 

where ( , )kG u v  is the Fourier transform of the Gabor filter in the k-th channel 

and ( , )I u v  is the Fourier representation of the image. Figure 5.4 depicts a 

detailed implementation of a Gabor filter in the frequency domain. 

 Some theory is now introduced that justifies the implementation adopted. 

First, we need to rewrite some formulae in a proper manner. The GEF defined 

by Eq.(3.3) can be seen as a sum of two functions: one is real and even-

symmetrical, and the other one is imaginary and odd-symmetrical. This is 

summarised by Eq.(5.15) 

 0 0 0 0
even, real (1) even, real (2) odd, imaginary

( , ) ( , ) cos[2 ( )] sin[2 ( )]g x y e x y u x v y j u x v y  (5.15) 

where, for simplicity, ( , )e x y  represents the Gaussian envelope. Thereby, when 

transformed into the frequency domain, see Eq.(5.16), we can distinguish even-

symmetrical part from odd-symmetrical part. 

 

0 0 0 0
even,real

(1) even, real part

0 0 0 0

(2) odd, real part

1 1( , ) ( , ) ( , ) ( , )
2 2

1 1( , ) ( , )
2 2

G u v E u v u u v v u u v v

j u u v v j u u v v
j j

 (5.16) 

 Note that Eq.(5.16) is, in effect, equivalent to Eq.(3.4). Let us denote the 

convolution between ( , )E u v  and component (1) as ( , ),evenG u v  and the 
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convolution between ( , )E u v  and component (2) as ( , ) :oddG u v  

2 2 2 2
0 0 0 0

2 2 2 2

2 2 2 2
0 0 0 0

2 2 2 2

( ) ( ) ( ) ( )1 1( , ) exp exp
2 2 2 2 2 2

( ) ( ) ( ) ( )1 1( , ) exp exp
2 2 2 2 2 2

even
u v u v

odd
u v u v

u u v v u u v v
G u v

u u v v u u v v
G u v

 (5.17) 

 An image function ( , )i x y  is always real valued, thus according to the 

symmetry property its Fourier transform satisfies 

 #( , ) ( , )I u v I u v  (5.18) 

where #  denotes complex conjugate. Eq.(5.18) implies that ( , )I u v  is a 

complex function consisting of even-symmetric real part ( , )RI u v  and odd-

symmetric imaginary part ( , ).II u v  

 To calculate the complex output of the filter in the spatial domain, the 

result of correctly computing the above four spectrums is applied to the inverse 

Fourier transform. Among all the possible combinations (see Table 5.1), it can 

be demonstrated that only a complex spectrum consisting of even real part and 

odd imaginary partproducts (a) and (c)gives a real image ( , )Ro x y  in the 

spatial domain. Conversely, a complex spectrum consisting of odd real part and 

even imaginary partproducts (b) and (d)provides an imaginary image 

( , )Io x y  in the spatial domain. 

  

Image spectrum Gabor spectrum  

Part Properties Part Properties Product 

( , )RI u v  real, even ( , )evenG u v  real, even (a) real, even 

( , )RI u v  real, even ( , )oddG u v  real, odd (b) real, odd 

( , )II u v  imaginary, odd ( , )evenG u v  real, even (c) imaginary, odd 

( , )II u v  imaginary, odd ( , )oddG u v  real, odd (d) imaginary, even 

Table 5.1 Summary of combinations between image and Gabor filter. 
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Figure 5.4 Block diagram of Gabor filtering in the frequency domain. 

  

 It is worthy of note that the IFFT software was originally devised to render 

only the real part. Nevertheless, this program can be used to obtain the 

imaginary part by multiplying the complex input image by .j  It is equivalent 

to swap the input images and multiply the real part by 1.  

5.4.3   Post-processing 

Although the form of the Gabor filter itself is relatively standard, it is generally 

advocated a subsequent processing of the signal prior to classification. This 

post-processing stage aims to estimate the energy in the filter output in the 

local region. In the majority of approaches, the local energy function takes the 

form of a non-linearity followed by a smoothing filter (Figure 3.3). 

 Commonly applied non-linearities are the magnitude | ⋅ |, the squaring ( ⋅ )2, 

and the rectified sigmoid tan( )  [Randen99]. We avoid using the rectified 

sigmoid because it requires tuning of the saturation parameter, . Between the 

other two parameter free non-linearities, we chose signal magnitude since it is in 

a range which is more comparable to that of the original image. This means 

that numerical stability is less of a problem than for signal power, and outlying 

samples are less significant. Typical approaches to the calculation of the signal 

magnitude are the quadrature filtering and the absolute value estimator. We 

adopt the quadrature filtering scheme for the following reasons: 
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1. For pixel-based classification, which may be adversely affected by smeared 

transitions between areas of different textures caused by low pass filtering, 

quadrature filters are more appropriate [Aach95]. 

2. This scheme makes explicit the suppression of phase in favour of 

magnitude information as the basis for classification. 

 In that case, the final expression for Eq.(5.12) is given by 

 ( , ) ( , ) ( , )k km x y i x y g x y  (5.19) 

 Another consideration is that the post-processing must perform reliably in 

conjunction with the discriminant function. Since the classifier used in the 

discriminant stage is optimal for Gaussian data only (see Section 3.4.2 for 

details) it is also necessary that the output feature image, ( , ),kf x y  should have 

at least an approximately Gaussian distribution. It has been found that even 

when the texture is filtered in quadrature, the feature distributions have 

unacceptably large variances, presumably because of filtered images not being 

sufficiently narrowband [Kieran95]. In addition, the quadrature filter output 

histogram approximates a Rayleigh distribution. This result is supported by 

theory: “the PDF of the resultant of two uncorrelated Gaussian processes will 

follow a Rayleigh distribution” [Couch93]. After low pass filtering, the 

distribution more closely approximates the Gaussian case, reaching the 

optimality of the discriminant. Commonly applied smoothing filters in the local 

energy function are rectangular and Gaussian low pass filters. Experience has 

taught us that the Gaussian filter is the far better choice and will consequently 

be used in our implementation [Randen99]. The lowpass Gaussian filter in the 

k-th channel is given by 

 
2 2

2 2

1 ( )( , ) exp
2 2k

Lk Lk

x yh x y  (5.20) 

where Lk  determines the Gaussian filter in the channel k. 
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Figure 5.5 Post-processing scheme based on quadrature filtering. 

 

 The final implementation of the post-processing procedure is shown in 

Figure 5.5. Note that the Gaussian smoothing filter is also implemented in the 

frequency domain in order to avoid the costly convolution. 

5.5   Gabor filters design 

Many studies such as [Dunn95] and [Weldon96] have been devoted to the 

algorithmic design of optimal Gabor filters for a particular task. They have 

considered a supervised texture segmentation problem, i.e. samples of textures 

are provided to help in designing the filters. While former designs are more 

efficient, we prefer to propose a more standard filter implementation based on 

[Jain91] but with some modifications. This implementation, although 

suboptimal, will allow us to obtain more general conclusion and extend our 

results to a wider range of textures. Once again, we remark that we are 

interested in the coherence of the system as a whole in preference to separately 

optimise each component.   

5.5.1   Filter characterisation 

Our filtering technique uses a multichannel scheme based on a bank of Gabor 

filters. We now present a consistent way of specifying a Gabor filter in the polar 

and radial space. Existing techniques in the literature use either complex-valued 

Gabor filters [Bovik90], pairs of Gabor filters with quadrature phase 

relationships [Perry89, Tan90], or real-valued even-symmetric filters [Malik90]. 

Although Malik and Perona provide some explanation for using even-symmetric 
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filters only, our implementation in the frequency domain need the use of the 

complex form of Gabor filtersthe optimal space/frequency characteristic of 

the Gabor filter only holds for the complex form of the function. 

 Clearly, to uniquely describe a Gabor filter in the spatial domain, four 

independent filter parameters ,x  ,y  0,u  and 0v  have to be specified. 

However, the frequency- and orientation-selective properties of a Gabor filter 

are more explicit in its frequency domain representation. Additionally, our 

filtering implementation is in the frequency domain. Therefore, we prefer to 

specify a Gabor filter by its spatial frequency location and bandwidth. The 

filter location is determined by the radial centre frequency 0 and orientation 

0  given by 

 
12 2 2

0 0 0( )u v  (5.21) 

 1 0
0

0

tan
v
u

 (5.22) 

where 0  is in cycles/image and 0  is in degrees measured from the u-axis. In 

addition to radial frequency and orientation, the frequency bandwidth B  and 

orientation bandwidth B  are also of interest. For the Gabor filters (either 

even- or odd-symmetrical part) defined by Eq.(5.17), the half-peak magnitude 

bandwidth are given by 

 
1
2

0
12 2

0

(2 ln2)
log

(2 ln2)
u

u

B  (5.23) 

 
1
2

1

0

(2 ln2)2 tan vB  (5.24) 

where B  is in octaves and B  is in degrees. Figure 5.6 shows an intuitive way 

to specify Gabor filters in terms of their spatial frequency location and 

bandwidths: 0,  0,  ,B  and .B   
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Figure 5.6 Gabor filter parameters in spatial frequency domain: 
 (a) Filter location, (b) Filter bandwidth. 

 

 To determine the optimal values of x  and y  (or analogically B  and B ), 

many algorithms need to know the textures in advance. Hence, the results 

obtained under these circumstances are merely valid for a few number of 

textures. As we aim to generalise our conclusion for an ampler range of 

textures, we assume a popular constraint introduced by Jain and Farrokhnia 

based on biological justifications which has been adopted by most non-design 

researchers. This restriction fixes all the filters with frequency and angular 

bandwidth of 1B  octave and 45B  degrees respectively. Several 

experiments have shown that the frequency bandwidth of simple cells in the 

visual cortex is about 1 octave. Taking these values, one simply must designate 

the filter location 0 0( , ) and the space constants of the Gaussian envelope will 

be automatically calculated by using Eq.(5.23) and Eq.(5.24).  

5.5.2   Selection of filters 

As advocated by [Jain91], we opt for a systematic sampling of the image 

spectrum. Theoretically, the ideal set of filters used in our algorithm should 

result a nearly uniform coverage of the spatial frequency domain. Jain proposed 

sampling the image spectrum at intervals of 1 octave and 45 degrees. For 

instance, for a 512×512 image a total of 32 filters can be used4 orientations 
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and 8 radial frequencies. We note here that a large number of filters can lead to 

associated disadvantages in computing a large number of filtered images and 

classifying a large-dimension feature space. On the other hand, experimental 

evidence suggests that classification error tends to increase as the number of 

filters decrease, particularly near texture boundaries. Attempting to solve this 

trade-off, we indicate the following points: 

• For some textures, filters with very low radial frequency may not be very 

useful, since these filters capture spatial variations that are too large to 

explain textural variations in an image [Jain91].  

• The radial spectra of different surface models (and consequently of their 

images) differ most markedly at low frequencies [McGunnigle98]. 

• The S/N ratio decreases with increasing frequency because of attenuation 

of high frequencies due to blurring. 
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Figure 5.7 Plot of the filter set in the spatial-frequency domain (512×512). 
Only the even-symmetrical part of the frequency response is shown. The 

 origin is at the centre of the image and the axes are in cycles/image-width. 
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 This would suggest that it is the low frequencies that should be most closely 

scrutinised by the classifier. As an empirical compromise, we decided to use 

three sets of filters located at radial frequencies of 25, 50, and 100 cycles/image. 

As done by Jain, each frequency band will be sampled at four equidistant 

orientations, 0 0 ,45 ,90 ,  and 135 .  This leads to a total of 12 texture 

features instead of a 32-dimensional feature space, which represents a reduction 

of 62.5%.  Figure 5.7 shows the frequency response of the bank of Gabor filters 

which ranges from the low frequencies to the mid band. 
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Chapter 6    

Assessment of image 
prediction 

Chapter 5 proposed a model-based scheme to overcome the problem of classifier 

failure induced by varying lighting direction. In an initial stage, the technique 

estimated the surface derivative field and albedo using photometric stereo in 

order to predict the observed texture under specified illumination conditions. 

This chapter is dedicated to the evaluation and verification of the technique’s 

robustness in relation to different effects, specifically the influence of surface 

roughness and varying illumination angles. The primary target is to ascertain in 

what way, and to what extent, departures from the ideal Lambertian model and 

assumptions concerning shadowing and interreflections, affect image prediction. 

6.1   Introduction 

Previous chapter suggested a complete photometric classification system to 

reduce the effect of variations in lighting conditions on classification. Now, this 

chapter concentrates in the assessment of the most important component of the 

system: the surface recovery. Of particular interest is the degree to which the 

simulated image conforms to the correct value. With this goal, following 

sections present experimental studies that may help to discern in which 

situations the technique does perform reliably.  
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Figure 6.1 Experimental measure of image prediction. 
 

  Figure 6.1 outlines the experimental approach to measure the accuracy of 

image prediction in a controlled and analytical manner. A particular case of 

study can be simulated by changing some variables such as input image or 

lighting conditions, and then one can evaluate how these changes affect the 

performance of the algorithm. Specifically, we are interested in the technique’s 

robustness under the influence of the following effects: 

• Surface roughness: intuitively the more abrupt the surface is, the higher 

the slopes become. As slopes increase, more and more facets are affected 

by shadows. Since the recovery method does not consider shadowing, 

surface roughness will play an important role in the image prediction. 

• Varying illuminant tilt angle: the algorithm interpolates between training 

images in order to imitate the intensity image of a surface captured under 

arbitrary tilt. Then, the inaccuracy of the image prediction will fluctuate 

throughout the tilt range, presumably taking minimum values at 

0 , 90 ,  and 180 (photometric data set) and maximum values in 

between. 

• Varying illuminant slant angle:  although a model-based scheme should 

be equally skilled at dealing with changes in slant, this represents a much 

more demanding task since now it is required the extrapolation among 

the training images. Besides, shadowing becomes more intense for higher 

values of slant, commonly for 45 .  
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 In order to allow comparison between different cases, a single generic 

criterion of accuracy will be selected. Objective quantitative methods usually 

estimate the quality of an image by comparison with a known reference image. 

Popular methods use simple measures such as the maximal absolute error or 

correlation between images. With these methods it is possible to distinguish a 

few big differences from a lot small differences. However, we are more interested 

in calculating the average error rather than recognising particular errors. One 

suitable method is the mean square error (MSE); for a N×N image its definition 

is given by 

 
1 1 2

2
0 0

1 �( , ) ( , )
N N

n m

MSE i m n i m n
N

 (6.1) 

where �( , )i x y  denotes the estimated image and ( , )i x y  is the reference image. 

6.2   Limitations of the model 

Before analysing the performance of the simple photometric stereo scheme in 

detail, we make some observations regarding the assumption that the rendering 

can be described by Eq.(5.1). The relighting process is a priori restricted by the 

following three limitations: 

1. Although, in general, the reflectance function is approximately diffuse, we 

note that it is not perfectly Lambertian; in fact, we will intentionally 

challenge the method for non-Lambertian textures. 

2. Choosing to describe the reflectance function using Eq.(5.1) implies that 

for certain facet orientations a negative intensity may be observed; this is 

clearly not the case, and 

3. Eq.(5.1) makes no allowance for the non-local effect of cast shadows. 

The degree to which the second and third points occur is highly dependent on 

the surface relief, whereas the first point relies mostly on the surface material. 



6.2  Limitations of the model  67  

 

6.2.1   Non-Lambertian reflectance 

The reflection on an object surface is often partitioned into two components: 

interface reflection and body reflection, according to the dichromatic model 

proposed by [Shafer85]. Interface reflection, also known as specular, originates 

from light reflection on an optical boundary between the surface and the air; 

for smooth surfaces, it is mirror-like. Body reflection results from the light that 

penetrates the object body and is scattered by the object material particles 

back into the air. It is fairly diffuse, even for smooth surfaces, and actually it is 

the mechanism thanks to which objects can be seen from any direction. 

 Our approach only considered body reflection and used a Lambertian model 

to characterise it. Certainly, the Lambertian model is only a simplification of 

reflectance behaviour of common materials, but it is very attractive for its 

linearity and it is straightforward to implement. However, as the assumption of 

Lambertian reflectance breaks down, the method produces error. Sometimes 

the Lambertian assumption is only violated in a limited number of pixels, e.g. 

when some pixels accommodate the specular reflection. Specular reflections are 

frequent sources of errors for many computer vision algorithms. 

6.2.2   Cast and self shadowing 

We pointed before that in some cases the Lambertian function can return 

negative values. As a result, self-shadowed regions are assumed to have negative 

intensities since the technique does not clip1 affected areas. The model-based 

technique also fails to account for cast shadows, thus the more abrupt a surface 

is the more difficult the prediction turns out to be. In this respect, it can be 

observed that for the higher values of slant, where shadowing is severe, the 

technique may also undergo more difficulties. Figure 6.13 is a good case in 

point that reflects the difficulty in predicting cast shadows, as observed in the 

lack of shadow behind the bump in the upper left-hand side of the surface. 

                                      
1 Process an image so as to remove the parts above or below predetermined thresholds. 
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6.3   Test textures 

A total of thirty-five physical texture samples were used throughout the 

experimental work presented in this dissertation. These textures are used not 

only in this chapter but also in Chapter 7 to compose ‘artificial’ multitextured 

images for classification tests. 512×512 monochrome images (when presented to 

the method) were obtained from each sample using illumination tilt angles 

ranging between 0° and 360° incremented by either 10° or 30° degree steps. All 

textures were illuminated at a slant angle of 45°. In addition, twenty-two 

surfaces were also illuminated at slant angles of 30°, 60°, and 75°. Appendix A 

contains one example image of every texture (imaged at slant angle of 45° and 

tilt angle of 0°).  

 The test set includes a wide variety of textures which may be grouped into 

the following three classes according to their visual appearance: 

• isotropic surfaces, e.g. plaster1 or deposit3, and in general all the textures 

made from plaster showed a highly uniform topology. 

• directional surfaces, e.g. anaglypta3 or card, in which the directionality is 

approximately aligned with the y-axis; and 

• repeating primitives, e.g. peanuts or peas, which show a great deal of 

shadowing and therefore they are a handicap to the photometric stereo 

scheme. 

 A histogram description was applied to the variation of surface gradient in 

order to characterise the nature of the textures. Different types of gradient 

distributions were identified, which corroborates the diversity of the dataset. 

For instance, let us consider deposit3, card, and peas, which provides a 

representative example of each texture class defined above. It was observed that 

surfaces which are formed by natural process, e.g. fracture, deposition, or wave 

action, are essentially random textures and most approximate Gaussian random 
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processlike deposit3, which was formed by depositing plaster powder on a 

flat plaster surface (see histogram for p and q in Figure 6.2.a and Figure 6.2.b 

respectively). Card had a typical distribution of a surface with sinusoidal height 

profile (see Figure 6.2.c and Figure 6.2.d). Other textures like peas, which are 

the result of uniformly placed repeating primitives, did not usually suit any 

particular distribution (see Figure 6.2.e and Figure 6.2.f); to a certain extent, 

they recall normal distributions which have been widened out and flattened, 

presumably because of the estimation being affected by severe shadowing. 

 In general, it was observed that textures which are isotropic in appearance 

do not necessary have to follow Gaussian processes; conversely, those textures 

which do follow Gaussian processes seemed to be highly uniform textured 

surfaces with isotropic appearance.  

 Furthermore, it was noted that the measure of the q distributions is biased, 

as they present a negative skew in some cases. This asymmetry might be 

explained by natural processes such as erosion or abrasion, but it is believed 

that the main reason is attributable to the estimation method itself. Note that 

whereas the p estimation is based in symmetric photometric data, images from 

tilts 0° and 180°, the q estimation is only based in one image from tilt of 90°. 

 A description of the methodology employed to obtained these histograms as 

well as a complete list of histograms for surface partial derivatives p and q can 

be found in Appendix B. Table B.1, at the end of the appendix, lists the AASR 

values for all the textures, as well as the mean values of the surface slopes. 

Observe that both p and q mean always tends to zero  not strictly true for 

peanuts and gravel q map  which validates the assumption made in Section 

1.2 that the surfaces considered in this dissertation are globally flat.  
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(e) (f) 

Figure 6.2 Histogram representation of the partial derivative fields for 
 (a)(b) deposit3, (c)(d) card,  and (e)(f) peas. Deposit3 and peas p−q 
distributions are compared with a best fit Gaussian. Card histograms 

 are not compared since the non-Gaussian character is evident. 
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6.4   Accuracy of image prediction 

The aim of the model-based scheme considered in the previous chapter is to 

predict the image, and ultimately the feature distributions, of a surface imaged 

under arbitrary lighting conditions. For natural textures the most restrictive of 

the assumptions made, in the author’s opinion, is that shadowing is not 

significant. This section pays particular attention to this aspect, dividing the 

study up to three components corresponding to the response of image 

prediction to (i) changes in topological texture (or surface relief), (ii) changes in 

illuminant tilt angle, and (iii) changes in illuminant slant angle. All the 

experiments presented in this chapter were performed using modified versions 

of the shell script pserror (see Appendix C). 

6.4.1   Influence of surface roughness 

In this section, analysis of laboratory results are presented using two different 

criteria. First, in order to isolate the effect of surface roughness from other 

phenomena, investigation into different samples of the same material surface is 

carried out. Secondly, examination of different test surfaces attempts to discern 

whether the degree of roughness is enough to predict which one will perform 

worse.  

 

Experiment 6.1 

Four samples were formed by fracturing a large block of plaster. Different 

degrees of roughness were obtained for each one ranging from severe to smooth. 

A perspective view of the test surfaces can be consulted in Appendix A. 

Plaster1 is the roughest plaster fracture we obtained, and shadowing is severe 

at most slant angles. Plaster2 and plaster3 are intermediate in roughness 

between plaster1 and the later smoother fracture, plaster4, which was formed in 

the same way as the other three fractures, but the resulting block was also 

cured and smoothed, giving a ceramic type fracture. Several images of the 

plaster blocks were acquired for slant angles of 45°, 60°, and 75°. The 
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description and main statistics of the captured images into study are listed on 

Table 6.1. In this table, the value of AASR was estimated using Eq.(2.9). 

 Original images were compared with predicted ones for tilt angles varying 

between 0° and 360° in 30° steps at each slant case, testing a total of 144 cases2. 

The slant angle of the photometric image set was the same than that of the 

original image, i.e. 45°, 60° or 75°. An estimated error in the prediction of the 

images was computed using Eq.(6.1). As we were not interested in a particular 

case, but on the overall behaviour with respect to surface roughness, we 

averaged the errors along the tilt angle; we preferred, however, to plot the 

results differentiating between slant angles. Figure 6.3 shows the MSE of the 

test samples for different cases of slant angles. In all three sets, plaster1 was the 

most inaccurate, whereas plaster4 was the most accurate. The other two 

surfaces, plaster2 and plaster3, performed more closely since they are of similar 

roughness; as expected, plaster2 was slightly more difficult to predict. 

 To this point, we have shown the importance of roughness but we still need 

a direct link between roughness and error. In fact, certain resemblances between 

contours of each set illustrated in Figure 6.3 may be found. This would suggest 

that further study into a larger number of different textures could help to find a 

consistent relationship between surface roughness and error, if that is the case. 

This will be investigated in Experiment 6.2. 
 

 

 

 

 

 

 

 

 

Description  Mean*   Standard deviation* 

Surface Roughness AASR =45° =60° =75° =45° =60° =75° 
plaster1 severe  0.185 2907 2169 1320 668 831 804 

plaster2 moderate 0.137 2978 2310 1363 503 635 649 

plaster3 gentle 0.126 2626 1769 865 489 568 480 

plaster4 smooth 0.0757 2888 2170 1327 287 349 367 

* Depth: floating point (32 bits), Scaled maximum: 4096 
 
 

Table 6.1 Characteristics of the test samples for Experiment 6.1. 
                                      
2 12 tilt angles × 3 slant angles × 4 surfaces = 144 different cases. 



6.4  Accuracy of image prediction  73  

 

0

100

200

300

400

500

45º 60º 75º
Illuminant slant angle

M
ea

n 
sq

ua
re

 e
rr

or

plaster1 plaster2 plaster3 plaster4

 

Figure 6.3 Mean square error of four plaster fractures with  
different degree of roughness at slant angles of 45°, 60°, and 75° 
 (same slant angle of photometric data set and predicted image). 

 

Experiment 6.2 

The purpose of this experiment was to detect a possible relationship between 

the estimated slope angles and the error in the image prediction. As done in 

Experiment 6.1, three cases of slant (equal for photometric data and prediction) 

were considered and the computed MSE along the tilt angle was averaged. An 

estimation of the average slope angles was also calculated for each surface, 

again in terms of AASR. In order to find a possible correlation, we preferred to 

work with a linear error, so the square root values of MSE were considered in 

this case.  

 The experiment was repeated for 15 miscellaneous textures, providing three 

sets of 15 points shown in Figure 6.4. A sample image of the 15 textured 

surfaces can be found in Appendix A. Error curves were compared with typical 

tendencies, reaching a modest regression value of 0.90 (for slant of 60° and 

linear regression). There was therefore no clear relationship between these two 

variables, although the results indicated an upward trend in MSE with 

increasing AASR. 
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 It is supposed that even though surface roughness is an important factor 

which always has a negative effect, there exists other secondary phenomena 

which also affect the accuracy of the prediction. Naturally, other surface 

properties, e.g. directionality, specularity, or even asymmetry, may also 

contribute to the error measure. If the premise is true, then the irregularly 

increasing error may be justified. 
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Figure 6.4 Root MSE vs. AASR for three cases of slant (45°, 60°, and 75°). 
Same slant angle of photometric image set and predicted images.  
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Figure 6.5 Irregular variation in the inaccuracy of image prediction 

 (only slant angle of 60° is plotted). 
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In order to sustain the validity of this idea, let us consider the variation of error 

in the range of AASR from 0.10 to 0.14, which involves the following textures: 

lentils, deposit5, anaglypta2, and deposit6 (see Figure 6.5). Lentils is a texture 

formed by repeating primitives (red lentils) randomly placed over the scene; 

deposit5 and deposit6 are two isotropic surfaces formed by depositing plaster 

powder on a plaster surface of moderate and severe roughness respectively; 

anaglypta2 is a paper surface featuring irregular stripes that give a certain 

directionality align with the y-axis. Regarding the natural or artificial formation 

of the textures, Figure 6.5 illustrates the transition from repeating primitives to 

isotropic-like surfaces, and from directional to isotropic-like ones. In the first 

situation, despite the fact that lentils is not as much rough as deposit5, the 

former may be more affected by shadowing due to gaps between primitives, 

thus producing an additional error and being less accurate overall. The second 

situation showed that simulation of directional marks (like in anaglypta2) 

seems to be a more demanding task than the prediction of deposit6, which is 

the result of a number of random events and has a typical Gaussian 

distribution. 

 

6.4.2   Effect of varying tilt 

As it is aimed to design a model-based technique capable of enhancing the 

classification process under varying illuminant direction, the study of image 

prediction under arbitrary tilt conditions is extremely important. In this section 

the slant angle will be held constant at 45°, otherwise mentioned. Two different 

behaviours depending on the tilt angle into consideration are expected. For 

those values of tilt ranging from 0° to 180°, where the input data is contained, 

error curves will consist of two lobes with minimums at 0°, 90°, and 180°; for 

values of tilt from 180° to 360°, a parabola with maximum nearby 270° is very 

likely to occur. These two cases are investigated separately in the following 

experiments. 
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Experiment 6.3 

The recovery images remained unchanged at 0°, 90°, and 180°, but the tilt of 

the illumination used in the image prediction was varied between 0° and 180° in 

10° steps. Actual images were compared with those obtained by applying 

empirical rendering using the mean square error. After analysing the 

experimental results, three different types of curve were observed.  

 

Case A: Isotropic surfaces 

For those textures having a strong isotropic character  see Appendix A  

the curves very likely followed a quadratic relationship with the tilt angle (see 

Figure 6.6). More specifically,  the mean square error was found to be well 

approximated by the following equation: 

 
1

2

(90 ) 0 90
( )

90 180( 90)(180 )

k
MSE

k
 (6.2) 

where 1k  and 2k  adjust the curves to the correct fit, and are assumed to be 

independent of the tilt angle. This equation predicts that maximums occurs at 

tilt of 45° and 135°. Due to limitations on the sampling process, we did not 

have the opportunity to corroborate the MSE value for these two tilt angles, 

yet Figure 6.6 suggests that the proposition may be correct. Of all the surfaces, 

Eq.(6.2) was best satisfied by peanuts, gravel being the lowest accurate case.  

 In general, the constants 1k  and 2k  may not be identical, presumably 

because of the textural properties being not symmetrical. Again, gravel exhibits 

the most asymmetrical situation, having the biggest different between the two 

constants, whereas peanuts’ MSE can be modelled by 1 20.405,  0.414,k k  

thus 1 2.k k  In order to show the validity of Eq.(6.2) under proper conditions, 

i.e. nearly Lambertian reflection and isotropy, consider the peanuts texture 

since it was the most successful case. Figure 6.7 illustrates the goodness of fit 

between modelled and real power of error. 
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Case B: Anisotropic surfaces 

On the contrary, it was observed that surfaces which are anisotropic in 

appearance have an important impact on the directional characteristics of their 

image textures. As a result, some orientations of the light source provoke more 

difficulties than others, and therefore the error of the image prediction does not 

follow the standard pattern obtained in case A. This unpredictable behaviour of 

the error is shown in Figure 6.8 for spaghetti1, card, ripple3, spaghetti2, and 

stucco. A sample of these textures can be consulted in Appendix A. The 

experiment was also performed on a paper texture, which showed similar error 

curve to that of Figure 6.8; however, it was decided not to show the curve 

because the MSE was much lower than for the order textures and the variation 

of error would not be observed.   

 

Case C: Specular particles 

Like many other photometric methods, our simple photometric stereo technique 

gets confused in the presence of specular components. This effect was observed 

using a sandpaper texture, which is composed by a loose granular substance, 

typically resulting from the erosion of siliceous and other rocks. This texture 

has interesting optical properties since different facets become specular as the 

illuminant tilt angle changes. Given that the specular peaks were so narrow, the 

tilt function needed to be sampled densely. Figure 6.9 shows the MSE with 

respect to illuminant tilt angle sampled in 5° steps.  

 Note that sandpaper is the smoothest of all the surfaces, but its associated 

error is comparable to that of stones or chips, which are much rougher surfaces 

(see Table B.1 for exact values of AASR). The error may be then due to the 

specular particles of the surface, whose reflectance behaviour is very 

complicated to imitate. Initially, the sudden peak of error at tilt of 70° was 

attributed to a strong specularity at that angle, perceivable from the camera 

viewpoint. However, it may be also due to a photometric corrupted data 

obtained at that particular tilt angle. 
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(b) 

Figure 6.6 Accuracy of image prediction for 8 isotropic surfaces under varying 
tilt angle: (a) MSE is low to moderate; (b) MSE is moderate to high. 

Although different level of inaccuracy is observed, the power of the error are 
similar to each other (in terms of shape).   
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Figure 6.7 Best fit between Eq.(6.2) and peanuts’ MSE  (k1=0.405, k2=0.414). 
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Figure 6.8 Accuracy of image prediction for 5 anisotropic surfaces. 
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Figure 6.9 Image prediction in the presence of specular particles.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment 6.4 

This experiment studied the second range of tilt angles, i.e. from 180° to 360°. 

Three different textures were used, namely plaster2, ripple3, and sandpaper, as 

representative members of the isotropic, directional, and specular case 

respectively. The resulting errors in the simulated images are plotted versus 

illuminant tilt angle in Figure 6.10.  

 Once more, it is observed that for an isotropic surface with a diffuse 

reflectance function, the MSE can be approximated by an equivalent equation 

to that of Eq.(6.2). Specifically, the mean square error is given by   

 3( ) ( 180)(360 ), 180 360MSE k  (6.3) 

where 3k  is an analogous constant to that of 1k  and 2.k  Figure 6.10 shows the 

actual MSE of plaster2 prediction and best fit curved line modelled by Eq.(6.3)

having an analytically estimated constant 3 0.022.k   
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 Unlike the isotropic case, the error for ripple3 is highly unpredictable, 

depending chiefly on the particular directionality properties of the surface. 

Surprisingly, the image texture at tilt equal to 270° is not the less accurate, 

specially considering that the MSE is maximum at 260°. The error also suffers 

a sudden variation at tilt of 220°, being the range 210°−260° the more affected 

in general.  

 Finally, sandpaper had a typical error variation of isotropic surfaces, except 

that it might be more affected by specularities when illuminated from tilt of 

255°. Due to specularities, the texture is again the worst precisely estimated, 

even though it is e.g. 30 times smoother than plaster2. 
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Figure 6.10 Inaccuracy of the image prediction for tilt angles ranging from 
 180° to 360°. Three different behaviours are observed: plaster2 is well 

 fitted by the isotropic, diffuse case modelled by Eq.(6.3); ripple3 has an 
unpredictable error variation characteristic of directional surfaces; and 

sandpaper presents specular components.  
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6.4.3   Effect of varying slant 

Although not directly, some previous experiments have already shown that 

higher slant angles tends to augment the inaccuracy of the estimation (recall 

e.g. Figure 6.3 or Figure 6.4). In this section, the impact of varying slant angle 

on image prediction is explicitly assessed. 

 In contrast to the tilt angle, the slant angle is not predetermined by the 

simple photometric stereo method, thus strictly it can take any value in the 

range 0°-90°. The method established, however, same slant angle for all three 

images constituting the dataset. To ease the discussion of the experiments, the 

slant angle used in the data set will be simply refer to as input slant, whereas 

the slant angle of the predicted images will be refer to as output slant. In this 

respect, two distinct situations are identified: (i) same input and output slant 

angles, and (ii) different input and output slant angles; both of them will be 

examined in Experiment 6.5 and Experiment 6.6 respectively. 

 The ultimate purpose of this section is to determine which case of input 

slant angle is the best option as a standard selection for the dataset. In other 

words, it is tried to find the input slant angle more capable on average of 

predicting any given output slant angle. This uncertainty leads to the following 

compromise: on the one hand, it is desirable the slant angle to be as large as 

possible, because illumination directions which are close to a perpendicular to 

the surface plane, i.e. low slant angles, provide less information since the 

perceived image textures are more similar. On the other hand, large slant 

angles, although providing more information to the photometric stereo, 

intensify the level of shadowing, thus also deteriorating the precision of the 

estimation. This idea, intuitively understandable, can be mathematically 

justified as follows.   

 Section 4.2.2 explained the fundamentals of photometric techniques and 

reduced the problematic to that of solving 1L I D  see Eq.(4.3) for 

correspondence. For a photometric stereo technique using three sources of light 

and assuming Lambertian reflection, the illuminant matrix L  is given by 
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1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

cos sin sin sin cos

cos sin sin sin cos

cos sin sin sin cos

L  (6.4) 

In particular, this matrix is significantly simplified for the simple photometric 

stereo method, since it considers same illuminant slant angles and tilt angles of 

0°, 90, and 180°. Then, it is easy to demonstrate that the determinant of that 

illuminant matrix is only a function of slant angle given by 

 2det  2 sin ( )cos( )L  (6.5) 

 Regarding Eq.(6.5), we make two observations: first, our problem of surface 

recovery cannot be solved for slant angles of 0° and 90°, because the 

determinant must be different from zero. Secondly, and more important, 

observe that the solution will be inversely proportional to the determinant of 

the illuminant matrix. Hence, noting that the images of the data set are always 

affected by noise, the lower the determinant is, the more sensitive the method is 

to noise. In effect, let 1I  and 2I  be two data images affected by noise such that 

 1 1 1

2 2 2

I i n

I i n
 (6.6) 

where 1,2n  represents additive noise produced during the imaging process, and 

1,2i  represents the incident image. Let us express the contribution of these two 

images to the solution as  

 1 2 1 2

1 ( )
det  

i i n n
L

 (6.7) 

It is clear that even the addition of terms with opposite sign will degrade the 

S/N, due to the additive character of the noise. In order to soothe this 

degradation, it is attractive to work only in the range of slant angles which 

maintains the factor (1/det L) as low as possible. Figure 6.11 illustrates the 

variation of this factor with respect to the illuminant slant angle.   
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Figure 6.11 Variation of the illuminant matrix determinant with respect to 
slant angle. High values of 1/det(L) are identified as a source of degradation, 

whilst low values are more suitable for a successful surface recovery. 

 

 Approximately, the above premise is satisfied by slant angles between 30° 

and 75°, and therefore this range will be adopted as the starting point for 

further investigation.  

 

Experiment 6.5 

This experiment assessed the accuracy of the image prediction with respect to 

illuminant slant angle, restricting the study to those cases where the input slant 

angle is equal to the output slant. In order to examine the performance of the 

photometric technique, we decided to use a single tilt angle of 270° for the 

rendering, since it usually represents the hardest case to deal with. 

Consequently, note that the MSE curves in this section trace the maximum 

error limit for each particular texture, and that normally the error will be found 

below these curves.  

 Several physical texture samples were used in this experiments (see 

Appendix A). Images were obtained from each sample using illumination slant 
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angles ranging between 30° and 75° incremented by 15°. All textures were 

illuminated from tilt angles of 0°, 90°, and 180° to form the input data. In 

addition, another image at tilt angle of 270° was captured in order to calculate 

the MSE of the rendered image at that angle.  

 Generally, low slant angles provided image textures with small differences 

amongst the pixels’ intensity. As the angle of illuminant became more and more 

shallow, shadowed areas became bigger, thus increasing the image contrast. 

However, this tendency started to saturate and even decrease from a certain 

slant angle, typically 60 ,  probably because of a general state of darkness 

affecting the whole surface scene. As we aimed to calculate an objective 

measure of error, it was recommendable to compensate for these changes in 

image variance; the original measure of MSE was therefore divided by image 

variance at each slant angle into study, giving what we call normalised MSE. 

 While most of the textures performed in a similar way to that illustrated in 

Figure 6.11.a here only some of the results are shown to avoid redundancy 

a few number of textures presented different MSE variation throughout the 

slant angle axis, as shown in Figure 6.12.b. From the results, it seems that 

surfaces such as plaster4 and deposit1, which are formed by a series of random 

processes, and consequently have nearly Gaussian distribution (see Appendix 

B), follow a monotonously ascending tendency.  

 Textures formed by repeating primitives, like mixture and peas also tend to 

correspond to similar error curves; however, when the size of the primitive 

patterns was large compared to the dimensions of the image, like in pebbles, 

the outcome was quite unpredictable, it depends on the case of study, and it 

may be due to the combination of many factors, chiefly severe shadowing. 

 Directional surfaces, e.g. ripple1 and specially ripple3, also showed different 

trends, and again trying to find a tendency towards a particular type of 

behaviour was very complicated. 
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Figure 6.12 Normalised mean square error against illumination slant angle. 
Two different behaviours are detected: (a) the error rises at an exponential 

rate; (b) the error variation is uncertain, yet almost always increasing. 

  

 In any case, even though different trends was observed, the imprecision of 

the simple photometric stereo had a clear tendency to increase for higher slant 

angles. Finally, Figure 6.13 compares real image textures across a rough, 

diffuse, plaster surface to rendered images as illuminant slant angles varies, and 

pictures how renderings turn out to be less realistic for shallower lighting 

directions. Note that the illustrated example was one of the worst predictions 

obtained.  
 

 

 

 

    

    

Figure 6.13 Visual comparison between actual and predicted intensity images 
at four slant angles. Top row: plaster1 illuminated from slant 30°, 45°, 60°, and 

75°. Bottom row: simulated plaster1 rendered at identical slant angles.  
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Experiment 6.6 

From the results of Experiment 6.5 it appears that the best input slant angle is 

30°. However, the previous experiment only studied prediction tasks performed 

at the same slant angle used for modelling the surface, which represents a very 

unlikely condition in a real application. The only intention was to show that 

even with same input and output slant, a rise in its value has normally negative 

consequences in image prediction. Hence a more pragmatic, general situation is 

considered next, where the input and output slant are different. The 

experiment was carried out in three steps. 

 First, given a particular texture, images at slants of 30°, 45°, 60°, and 75° 

were rendered from photometric data at slants of 30°, 45°, 60°, and 75° in all 

possible combinations (giving 16 input-output slant pairs). For each case the 

experiment computed the MSE in the prediction; the set of results were 

gathered in a 4×4 matrix of errors, where the rows represent input slants and 

the columns represent output slants. The procedure was repeated for the 

following 17 textures grouped into three types: 

• isotropic textures: deposit1, deposit2, deposit3, deposit4, deposit5, 

deposit6, plaster2, and plaster4. 

• directional textures: anaglypta1, anaglypta2, anaglypta3, ripple1, ripple2, 

and ripple3. 

• repeating primitives textures: mixture, peas, and pebbles. 

 Table 6.2 exemplifies the matrix of errors of a member of the isotropic and 

directional texture types, deposit5 and ripple2 respectively. A common feature, 

not only of the representative results shown here but of all the textures 

evaluated, was that the values of the elements above the diagonal were usually 

lower than their corresponding symmetrical ones below the diagonal. It 

suggested that the photometric scheme coped better with a forward prediction 

(input slant output slant) than a backward one (input slant output slant). 
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  Output slant  Output slant 

  30°°°° 45°°°° 60°°°° 75°°°°  30°°°° 45°°°° 60°°°° 75°°°° 
30°°°° 55.26 192.2 246.0 385.1  46.53 83.55 157.1 250.5 

45°°°° 204.2 93.66 160.1 344.8  52.54 71.74 153.3 248.7 

60°°°° 363.4 209.1 124.7 313.3  348.6 246.4 70.26 172.2 

Input 

slant 

75°°°° 1145 828.1 527.5 193.5  881.0 678.3 366.4 62.25 
  (a)  (b) 

Table 6.2 Matrix of MSE on the prediction of (a) deposit5 and (b) ripple2. 
Diagonal elements are in italics to emphasise same input and output slant. 

 

 At this point of the analysis it was not simple to conclude which case of 

input slant angle was more suitable as a standard selection, mainly because the 

error measure depended on three variables: the texture, the output slant, and 

the input slant.  Then a second level of analysis was developed.  

 In order to eliminate the dependence on output slant angle the mean square 

errors in each row were averaged. The results are plotted in Figure 6.14 for each 

set of textures (in ascending order of AASR) and different input slant angle. It 

was observed that the rendering process from input slant of 45° was typically 

the most successful case, except for deposit1, deposit3, and deposit4, whose 

best case was slant of 30° (although with no more than a slight difference). In 

addition, Figure 6.14 corroborated once more that higher slope angles do not 

directly imply a worst image prediction, as observed in Experiment 6.2. 

 Finally, Figure 6.15 illustrates an overall average error where the dependence 

on the particular texture is also eliminated; each point represents the average 

MSE (over all output slants and textures) plus-minus the standard deviation of 

the measures at each input slant angle. It is concluded that the best input slant 

angle might be found in the range 30°−45°, but the number of samples used 

was not enough to precisely determine a single optimum input slant angle. 
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Figure 6.14 Average MSE of 17 test textures for input slant angles 
 of 30°, 45°, 60°, and 75°. The results are separated with respect to 
 three texture  types, namely isotropic, directional and repeating 
primitives;  each set being arranged in ascending order of AASR.  
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Figure 6.15 Average MSE over all the textures and output slant 
 angles at input slant angles of 30°, 45°, 60°, and 75°. The standard 

 deviation of the measure is also plotted. 
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6.5   Discussion 

Previous sections have evaluated the accuracy of image prediction concerning 

different aspects. Many results, chiefly in terms of mean square error, have been 

obtained, and some conclusions have been drawn. To this point, the method, 

understood as an individual component, has been criticised and to the question 

whether the rendered images are perfectly correct, the answer is in general no. 

However, we must keep a sense of perspective about what it is intended. We 

remind that the training stage prior classification will be performed on the 

basis of these predicted images. Therefore, the key question is whether the 

simulated images are accurate enough to enhance the classification performance 

with respect to a naive classification system3. This question will be explicitly 

answered in next chapter, but first let us justify here the application of such 

model-based method to texture classification with the following example. 
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Figure 6.16 Errors in the plaster1 data used to train the classifier for 
 a naive method, which only uses one image at tilt=0°, and photometric 
 stereo, which uses three images at tilt=0°, 90°, and 180°. The horizontal 

axis represents the tilt angle at which the classification would be performed.  
                                      
3 Naive classifier is refer to a classification approach which always uses the same image 
texture for training regardless of the particular illumination condition.  
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 Figure 6.16 compare the naive and model-based approach in terms of error 

in the input data used for training the classifier. The graph was obtained as 

follows. The input and output slant angle were held constant at 45°. For the 

naive method, a captured image of the texture at tilt of 0° was compared with 

an image of the texture at tilt angles between 0° and 360° in 10° increments; in 

so doing, we calculated the MSE of the hypothetic training image that a naive 

classifier would used, which is always the 0° image instead of the actual image 

at the particular tilt angle. For the photometric technique, the curve was 

obtained using the same methodology as Experiment 6.3. The testing was 

carried out on plaster1, which was one of the worst predicted cases studied in 

this chapter, and even under the circumstances the improvement is substantial.  
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Chapter 7    

Classification performance 

Chapter 6 was concerned with the evaluation of the model-based rendering as an 

individual component of the entire system. Although the results already 

encouraged the use of such a method for classification purposes, it is still needed 

to give a more convincing evidence that this approach is in fact suitable for coping 

with the problem of lighting dependency. The objective is then to experimentally 

confirm the ability of photometric classification to the stabilisation of 

misclassification rate at a reasonable level, ideally close to the best possible 

classification. Before proceeding, it is noteworthy to mention the difficulty to 

generalise results at this stage owing to strong interdependences of samples during 

classification. 

7.1   Introduction 

Unfortunately, the effect of illuminant variation on classification performance is 

highly dependent on the application. Changes in lighting conditions cause 

displacements of class members within the feature space, but these movements 

are only significant if they cross decision surfaces, the position of which is 

dependent upon the characteristics of the original training set. Hence the 

number of classification errors is a function of the feature measure selected, the 

number of textures, the properties of the textures, and obviously the illuminant 

tilt angle and slant angle. 
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 The testing and developing of classification tasks representative of all the 

possible applications is quite out of the question. The results and conclusions 

regarding improvements introduced by the model-based approach should be 

considered in context, even though they are believed to give good proof of 

enhancement in a diversity of situations. 

 In order to make the results comparable, the focus will be on the approach 

to the classification problem, keeping the general configuration of the system as 

similar as possible. Figure 7.1 shows the system set-up; depending on the data 

available to the training session, three different situations are defined:  

best case  training is based on real data imaged under the appropriate 

illumination condition. 

naive classifier regardless of the particular lighting conditions, the 

classifier is always trained with the same image which represents a single 

illuminant direction. By default, this image is held constant at tilt angle of 

0° and slant angle of 45°. 

model-based training is based on rendered data at the intended 

illuminant direction.  

 By means of this configuration, different classified images are separately 

obtained, and their quality can be evaluated with respect to each other, as the 

case may be. Given a particular classification task, misclassification of the 

model-based approach is presumed to be due to both inadequate image 

prediction and limitations of the classifier itself, whereas the best case 

classification may be due solely to the latter. Thus, initially it is logical to 

believe that the difference between the model-based classification failure and 

that of the best case may be due exclusively to the inaccuracy of image 

prediction. The classification error of the naive classifier is expected to suffer a 

quickly rise as the angle of illuminant is moved away from its original direction 

used during training, being naturally the worst case out of the three.  
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Figure 7.1 Three different approaches to texture classification: 
 best case, naive, and model-based classifiers.  

 The purpose of the work described in this chapter is not to develop an 

optimum classifier, but to evaluate the benefits of using a simple photometric 

stereo technique on a conventional classifier. In previous chapters, effort was 

not invested in optimising either the feature extraction or the discriminant 

function they were merely selected on the basis of popularity in the literature 

and ease of implementation. Rather the aims of the following sections are: 

• to define the scope of the investigation and select adequate test montages, 

• to evaluate classification performance under varying lighting conditions, 

• to investigate into a possible relationship between inaccuracy of image 

prediction and misclassification of the model-based approach, and 

• to assess the consequences of increasing the number of textures. 
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7.2   Experimental framework 

The work reported here consists of classifying some multi-textured images  

under varying illuminant tilt and slant angles. The number of textures, 

configuration of the composite, and borders between textures vary according to 

the case of study. The variation of illuminant direction is simulated by changing 

either the tilt or the slant angle between training and classification sessions. 

The analysis of the two variables at the same time is not pursued.  

 The proposed procedure is a supervised method, i.e. it is assumed that 

representative texture samples are given, as done usually in real segmentation 

or classification problems. In addition, the classifier is trained using the entire 

montage rather than individually extract statistics from each texture image. 

Hence the procedure is only testing the ability of the features to describe the 

textures but not the ability to generalise from the training data. 

7.2.1   Selection criteria 

The selection of the composite texture images sought to meet the following 

criteria: 

• Overall, the classifier should perform well for the best case approach. In 

this manner, the initial level of difficulty inherent in a particular situation 

is maintained as low as possible. 

• To the contrary, the naive classifier should exhibit high misclassification 

rates under varying lighting conditions. Thereby, the effect of illuminant 

variation on the feature set is guaranteed to be significant in an 

uncompensated case. 

 Then, if under these two circumstances the model-based approach was able 

to enhance the performance of the given classification task, its merits would be 

really appreciated. 
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7.2.2   Test images  

The same set of textures presented in Section 6.3 are used here to form the 

composite textures of Figure 7.2. The prediction of most of them has been 

explicitly assessed in Chapter 6; a sample of each texture can be found in 

Appendix A. A histogram description of their surface derivative fields can be 

consulted in Appendix B. None criterion with respect to texture granularity 

was adopted; consequently, some images are apparently bigger than others 

when compared with the image dimension.  

 Five types of configurations were selected, each one made up of two, four, 

five, eight and twelve textures. All the test images are 512×512 monochrome 

images which are equally divided up to the specified number of regions so that 

all the textures have the same weight relative to the image. Table 7.1 

summarises the characteristics and composition of the montages used in the 

experiments. Notice that the montages were named following the nomenclature 

montage, plus number of textures, and plus key reference to Figure 7.2. 

 

 

Descriptor Number 
textures 

Figure 
reference 

Composition 
(in clockwise direction) 

montage2A 2 Fig.7.2(a) plaster3, ripple3 

montage4B 4 Fig.7.2(b) beans, chips, card, rock 

montage4C 4 Fig.7.2(c) plaster2, deposit1, deposit4, ripple2 

montage4D 4 Fig.7.2(d) mixture, peas, barley, pebbles 

montage5E 5 Fig.7.2(e) gravel, spaghetti1, spaghetti2, rice, card 

montage5F 5 Fig.7.2(f) paper, spaghetti1, stucco, spaghetti2, card 

montage8G 8 Fig.7.2(g) deposit3, ripple2, anaglypta2, anaglypta1, 
lentils, barley, anaglypta3, peas 

montage12H 12 Fig.7.2(h) 
mixture, ripple1, deposit2, anaglypta1, 
lentils, barley, peas, pebbles, plaster1, 
ripple3, sandpaper 

Table 7.1 Summary of montages and characteristics. 
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(a) (b) (c) 

 

   

(d) (e) (f) 

 

  

     (g)                   (h)   

Figure 7.2 Composite texture images used in the experiments. Each image 
 will be referred to hereafter as follows: (a) montage2A, (b) montage4B, 

 (c) montage4C, (d) montage4D, (e) montage5E, (f) montage5F,  
(g) montage8G, (h) montage12H.     
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7.3   Accuracy of classification  

In this section, the classification performance is thoroughly assessed under 

varying lighting conditions. It is believed that next experiments give the most 

convincing proof of enhanced classification. The experimental data of these 

experiments was obtained using modified versions of shell scripts shellbest, 

shellnaive, and shellmbased, which are listed in Appendix C. 

7.3.1   Variation of tilt angle  

The three approaches to texture classification introduced in Figure 7.1 are put 

to the test with respect to illuminant tilt angle. Its companion, the illuminant 

slant angle will be held constant throughout the experiment, thus only one 

variable is analysed at a time. We note that three montages are explicitly 

considered here, gathered as Experiment 7.1, even though the tilt response was 

also studied for other montages whose results will be discussed in other sections 

for convenience. 

 

Experiment 7.1 

Composite images montage2A, montages4B, and montage5F were used (see 

Figure 7.2). All three classifiers were trained with textures captured or rendered 

with slant angle of 45°. The tilt angle of the test sets was varied first in 10° 

steps from 0° to 360° (only montage2A) in order to see the overall tilt response, 

and then in 10° steps from 0° to 180° (for the other two montages), thus 

concentrating in the first half, where the data set of the model-based approach 

is contained. The resulting classification error rates are shown in Figure 7.3. 

 Improvements introduced by the model-based classification are evident in all 

three classification tasks; not only in few occasions, but at almost all tilt angles, 

the model-based misclassification rate is lower than that of the naive classifier. 

It is particularly remarkable the error reduction that takes place approximately 

between tilts of 50° and 120° see classification results at tilt of 90° on 

montage4B in Figure 7.4. Furthermore, the model-based classification 
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maintained a stable level of error through the tilt axis and certainly follows the 

line described by the best case, coinciding at tilts of 0°, 90°, and 180°, for which 

the image prediction was most effective. To a certain extent, the model-based 

approach made the same errors as the best case, as well as other errors. This 

led to question whether the differences in the errors are only a consequence of 

image prediction inaccuracies.  Section 7.4 will try to answer this matter.  
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Figure 7.3 The effect of illuminant tilt variation on (a) montage2A, 
 (b) montage4B, and (c) montage5F. The legend is the same for all 3 graphs. 
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(a) (b) 

Figure 7.4 Class map at tilt angle of 90° for (a) the naive and  
(b) the model-based classifiers (test image: montage4B). While the 
 naive classifier fails in discriminating between textures in the lower 

 part, the model-based method provides a good classified image. 

 

 Also perceptible is the fact that in some cases the misclassification rates are 

even lower than for the so-called ‘best case’. The explanation is that the pixels’ 

Gaussian probability assumption of having a specific feature vector (see Section 

4.2.3 for details) is actually suboptimal, specially considering the variety of 

textures presented to the classifierAppendix B shows that many textures do 

not approximate Gaussian processes. Hence the TEC optimisation on each 

classification approach is affected by the data reliability regarding the 

assumption at each illuminant direction.  

 Finally, Table 7.2 shows the average misclassification rates for each 

combination of approach and test image, and the resulting reduction in the 

number of errors for each classification task. The reduction factor calculates the 

improvement with respect to the naive classification, and takes values in the 

range [0,1]. Its definition is given by 

 reduction ( ) 1 ABER
ANE

 (7.1) 

where ABE  is the Average Best case total Error of classification, and ANE  is 

the Average Model-based total Error of Classification. 
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Test image Classification 
approach montage2A montage4B montage5F 

Best case 2.34% 4.28% 4.93% 

Model-based 2.36% 4.46% 6.63% 

Naive 2.65% 13.3% 24.0% 
 

Reduction 0.109 0.665 0.724 

Table 7.2 Average total error of classification for best case, model-based 
and naive classifiers (test images: montage2A, montage4B, and montage5F). 
The reduction factor introduced by the model-based classifier with respect 

 to the naive classifier is also shown. 

  

 Sometimes it occurs that a classification task is not significantly affected by 

changes in illumination, like on montage2A. It happens that these changes 

generate displacements of class members in the feature space but without 

extensively invading other class regions. In that situations, the application of 

the model-based approach, although it does provide improvements, their 

magnitude (see reduction factor on Table 7.2) is lower, not because of the 

method itself but because of the nature of the classification task.  

 The presented results show a considerably improved classification, hitherto 

robust to changes in the tilt of the illumination vector. In next section, the 

classification performance will be assessed with respect to the other variable, 

the illuminant slant angle. 

7.3.2   Variation of slant angle 

As done in Section 7.3.1, the three classification approaches considered in this 

chapter are put to the test, but now with respect to variation in the illuminant 

slant angle, holding the tilt of the illuminant constant throughout the 

experiment. We remind thatas demonstrated in Section 6.3.3the 

application of the simple photometric stereo technique is by definition not 

recommended beyond the range 30°−75°, and therefore only the slant response 

inside this range is of interest here. 
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Experiment 7.2 

Two composite images were used in this experiment, namely montage4C, and 

montage4D. Each classifier was trained at illuminant tilt angle of 0°, either 

using actual images (for the naive and best case method) or predicted images 

(for the model-based method). After training, the classifiers were tested at 

slants of 30°, 45°, 60°, and 75°. The classification results are shown in Figure 

7.5. These two plots compare the slant response of the naive, model-based, and 

best case classifiers under an optimistic situation, since a training image from 

tilt of 0° is used. Presumably, in a general study of variation in both illuminant 

angles, the slant-induced TEC would be added to the tilt-induced TEC, 

reflecting a more realistic figure. 

 Although being the improvements also noticeable, the results are not as 

significant as in the tilt response; the most important TEC reduction is found 

on montage4C at slant of 75° (see corresponding model-based and naive 

classified images in Figure 7.6). Specially unexpected is the fact that in 

montage4D, Figure 7.5.b, the error is lower at slant angle of 30° than at 45°, 

being the latter the training angle.  
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Figure 7.5 The effect of illuminant slant variation on (a) montage4C, 
 and (b) montage4D. The legend is the same in the two graphs. 
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(a) (b) 

Figure 7.6 Classification results at slant angle of 75° for (a) the naive and  
(b) the model-based approach (test image: montage4C). 

 

7.4   Dependence on image prediction 

It was observed in Experiment 7.1 that the tilt responses of the model-based 

and best case classification had a similar waveform. Next experiment 

investigates the implications that these similarities in waveform may have.  

 

Experiment 7.3 

This investigation into the differences between misclassifications rates of the 

model-based and best case classification aim to discern whether they can be 

utterly ascribed to image prediction inaccuracies. A new error rate, absolute 

difference classification error, was then defined as the simple arithmetic 

difference (taking the absolute value if negative) between both misclassification 

rates. Figure 7.7 shows this error rate on montages5E and montages5F. If the 

proposition was to be true, the curves of the absolute difference error should 

recall those of the ( )MSE  presented in Chapter 6. Although some 

resemblances may be establish, except that both of them reach minimums at 

tilts of 0°, 90°, and 180°, there is no evident relationship between them.   
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Figure 7.7 Absolute difference misclassification rate between the model-based 
and best case on (a) montage5E and (b) montage5F.   

 

 In fact, both measures are related by a non-linear relationship which is very 

complicated to experimentally establish. The main reason is found observing 

the feature space. Chantler et al [Chantler02] presented both theory and 

experimental results that show that the means of texture features derived from 

linear filters are sinusoidal functions of the illumination tilt in a 1D feature 

space, and in general follow super-elliptical trajectories in multidimensional 

feature spaces. It happens that the means of textures features obtained from 

photometric data tracks the elliptical trajectories of the means of the actual 

texture features but with a certain deviation. If a deviated value cross 

discrimination hypersurfaces, then they are significant; otherwise they are not 

reflected in the misclassification computation. It is concluded that the 

differences illustrated in Figure 7.7 are triggered by imprecisions in the image 

prediction, but their consequences are not proportionally observed from the 

misclassification point of view. 
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7.5   The effect of increasing number of textures 

In this section the effect of increasing number of textures within a composite 

test image is studied. Initially, it is reasonable to suppose that the quality of 

the model-based classification will be degraded as more different textures are 

considered in the same scene. It is also expected that not only the model-based 

approach but also the naive and best case classifiers will perform poorly.  

 With the intention to ascertain whether the model-based approach 

maintains a good level of reduction despite increasing number of textures, let us 

define first two new parameters which characterise together with the reduction 

factor a specific classification task. Likewise the reduction factor, they are 

defined in terms of average TEC. The first one, called efficiency, represents how 

much the model-based method approximates to the best case classification, and 

takes values in the range [0,1], see Eq.(7.2); the second parameter, called 

sensitivity, assumes the best case classification as the starting point and 

measures how much the classification task is affected by changes in the tilt 

angle from that point of view, see Eq.(7.3). It can take values in the range 

[1, );  a sensitivity equal to 1 means that the classification task is not 

susceptible to illuminant variation at all, thus it does not require compensation; 

whereas an infinite sensitivity represents the hypothetically most extreme 

classification task where the best case classification contains no errors and the 

naive classifier completely fails. 

 efficiency ( ) ABEE
AME

 (7.2) 

 sensitivity ( ) ANES
ABE

 (7.3) 

where  

ABE is the Average Best case (total) Error of the classification task, 

AME is the Average Model-based (total) Error of the classification task, and 

ANE is the Average Naive (total) Error of the classification task. 
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 It can be demonstrated that the efficiency and the sensitivity are related 

with the reduction factor R defined in Section 7.3.1 by the following equation: 

 
11R
E S

 (7.4) 

Figure 7.8 plots the reduction factor as a function of sensitivity considering 

different values of efficiency. Two are the main conclusions that can be drawn  

regarding the below figure: 

1. R can be increased by either higher S or higher E; whereas the latter is 

also dependent on the model-based ability to compensate the tilt-induced 

classification error, S depends solely on the particular classification task, 

i.e. on the particular test image in the context of this investigation. 

2. The less the efficiency, the higher the sensitivity required. For instance, a 

minimum value of 2S  is required for a model-based approach, 

performing with an efficiency 0.50,E  in order to start being profitable, 

i.e. to attain 0.R  
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Figure 7.8 Reduction factor against sensitivity for different values 

of efficiency (E) of a particular classification task. E=0 is not 
 plotted since it would imply a reduction tending to , 

 which means that no improvement can be reached at any rate. 
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 The set of parameters R, E, and S  are a useful tool to study the effect of 

increasing the number of textures on classification. Note, however, the difficulty 

in analysing such a problem, mainly because of the impossibility of assessing 

the issue for the same classification task. Thus, it is possible, even though 

unusual, that a test image containing more textures performs better than other 

with less textures, because of the textures being easier to discriminate in the 

former than in the latter.    

 

Experiment 7.4 

This experiment reuses the results obtained for montage2A and montage4B, 

and introduces new data from montage5E, montage8G, and montage12H. 

Thereby, the effect of increasing the number of textures is assessed for 2-, 4-, 5-, 

8-, and 12-textured images. Table 7.3 contained the average TEC for each 

classification approach on each montage into consideration. ABE, AME, ANE 

were calculated averaging the TEC along the tilt axis, thus indirectly this 

experiment also analyses the tilt response of new montages apart from the ones 

already studied in Experiment 7.1.   

 

 

Test image  Average 
 error montage2A montage4B montage5E montage8G montage12H 

ABE  2.34% 4.28% 5.96% 16.6% 24.1% 

AME 2.36% 4.46% 6.96% 19.3% 30.0% 

ANE 2.65%  13.3% 13.5% 30.9% 37.4% 
 

Reduction 0.109 0.665 0.486 0.377 0.200 

Efficiency 0.992 0.960 0.856 0.863 0.805 

Sensitivity 1.132 3.114 2.274 1.860 1.553 

Table 7.3 Average total error of classification for best case (ABE), model-
based (AME), and naive classifiers (ANE) (test images: montage2A, 

montage4B, montage5E, montage8G, and montage12H). Also shown the 
associated reduction (R), efficiency (E), and sensitivity (S). 
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 The results showed that the model-based method sustained a notable 

efficiency despite the rise in the number of textures from 2 to 12, with figures 

always superior to 0.8. However, the reduction factor R decreased dramatically, 

on montage2A and montage12H. Not being the efficiency parameter the main 

reason that such decrease occurred, it had to be caused by a decrement in the 

sensitivity S. On montage2A the reduction factor is close to 1, which means 

that the classification task is practically not affected by changes in the 

illumination. On test images from montage4B to montage12H the rate of 

increase in ABE was greater than that of the ANE. Certainly, about a tenfold 

increase in ABE was experienced, whereas only a fivefold increase in ANE. This 

unfortunate outcome can not be dealt with a better model-based approach, 

since it is chiefly dependent on the sensitivity, and therefore on the naive and 

best case performances. One could suggest then that the solution is to develop 

both better feature extraction system and better discriminant, but this is far 

beyond the scope of this research. 
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Chapter 8    

Summary, conclusions, and 
future work 

8.1   Summary 

The topic of this dissertation is the classification of textured, rough surfaces 

under varying illuminant. Previous work has shown that variations in 

illumination direction causes misclassification in systems which are based on 

unidirectional or multidirectional feature measures such as popular Laws’ masks 

or Gabor filters. This work has presented a simple shape from photometric 

stereo technique which, integrated into a conventional classification system, 

helps to decrease the classification errors. 

 Chapter 2 started with the first element of a conventional texture 

classification system, the image acquisition process. This process was divided 

into two parts: characterisation of incident image on the camera, and the so-

called data image, which is a degradation of the incident image because of the 

imaging process. The incident image was modelled as a Lambertian image, 

based on Kube and Pentland’s model of topological texture generalised to non-

fractal surfaces [Kube88]. This theory provided a useful tool to the development 

of the subsequent approach to the problem of lighting dependence. 

Furthermore, this chapter also introduced some concepts about surface 

description, and concentrated on a first order estimator, the absolute average 

slope ratio or simply AASR, and a histogram representation for the 
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characterisation of surface gradient. The AASR parameter was used in next 

chapters to describe the roughness of all the textures employed in the 

experiments. The histograms were used to model the probability density 

functions of the surface partial derivatives p and q, and it provided a superior 

level of description, where other surface properties, e.g. directionality, were also 

identified. 

 Chapter 3 continued with the other two indispensable components of texture 

classification: feature generation and discriminant function. The course of 

discussion began by introducing the fundamentals of texture classification. A 

supervised statistical method was identified as suitable for our purposes. 

Afterwards, a survey of different feature measures searched for an approach 

such that its output had to be sensitive to illumination variation. Popularity in 

the literature and studies of mammalian visual cortex pointed to the use of a 

multichannel filtering approach based on a bank of 2D Gabor functions. 

Afterwards, the discriminant theory was revised and a linear Bayes classifier 

selected, basically for its simplicity and availability for implementation. In this 

chapter, no effort was destined to the design of a high-efficient classification 

system, since the interest was always directed to the reduction of 

misclassification on existing classification systems. 

 Chapter 4 provided the theoretical background necessary to develop the new 

component of the classification system, the recovery stage. It surveyed 

computer vision methods, commonly known as ‘Shape from X’. Among the 

large number of possibilities, shape from photometric stereo was selected for 

further investigation, since it was reported as an improved method of 

traditional single image shape from shading techniques, and no additional 

hardware was required for its implementation; this method together with a 

relighting algorithm would produce 2D images of a surface under novel 

illuminant direction and form the foundations for training the classifier. 

 Chapter 5 explicitly faced the problematic of the dissertation. All the 

reviewed theory was linked and used to design a self-sufficient solution: a 
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model-based classification system. Detailed implementation of all the 

components was given; first, a simple photometric stereo scheme proposed by 

[McGunnigle98] was adopted to implement the surface recovery stage. This 

stage produced a model of the surface, consisting of partial derivative fields and 

albedo texture. When required, the model fed into a Lambertian relighting 

algorithm could produce an imitation of the perceived image of a texture under 

arbitrary illuminant tilt angle and slant angle. The filtering feature extraction 

process was designed using a set of 12 Gabor filters (with 4 equidistant 

orientations and 3 radial frequencies) based on [Jain91]. The space/spatial-

frequency optimality of the Gabor function allow the opportunity to perform a 

frequency domain-based filtering, thus avoiding the burden of 2D convolutions; 

instead FFT algorithms were applied. 

 Chapter 6 evaluated the image prediction process as an individual 

component. The technique’s robustness and reliability were put to the test with 

respect to variation in both the slant and the tilt of the illumination vector. 

Throughout the investigation the effect of violating the assumptions made by 

photometric stereo was intentionally assessed. Particularly, shadowing was 

shown as the most significant source of errors. Accordingly, an increase in the 

illuminant slant and the surface roughness were noted as indirect sources of 

errors, since they made shadowing more severe. Concerning the tilt response, an 

expression for the power of the error in the prediction, valid for isotropic 

textures, was presented. Concerning the slant response, the selection of a 

optimum slant angle for the photometric dataset was theoretically 

demonstrated to be a trade-off between maximising information and avoiding 

shadowing. Experimental work was then carried out, and the slant range 30°-

45° was found as most suitable for the construction of the surface model. 

 Chapter 7 assessed the performance of the model-based classification system 

related to two extremes situations: a naive classifier and a ‘best case’ classifier. 

The investigation took into account variation in tilt and slant angles, as well as 

variation in the number of textures. Concepts of efficiency, reduction, and 
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sensitivity of a particular classification task were defined in the context of the 

three considered approaches. The results shown a considerable reduction of 

classification errors induced by changes in illuminant tilt angle. The 

investigation into the slant response was, in terms of experimental work, more 

moderate, but the results were also favourable. 

8.2   Conclusions 

This dissertation presented the concept of model-based texture classification 

which incorporated an image prediction subsystem. An increase in surface 

roughness was demonstrated to have a negative effect on image prediction. 

When the textured surfaces were made of the same material, a higher 

roughness typically implied worse prediction; however, an application including 

a variety of textures broke down the anterior relationship, and many other 

surface properties had to be considered. For isotropic textures, the power of the 

prediction error was found to be well modelled by a quadratic function of the 

illuminant tilt angle, which traced inverted parabolas between tilts of the 

photometric image set. Analysis of the results for the slant response showed 

that optimum limits of operation of the photometric stereo scheme may be 

approximately established between input slant angles of 30° and 45°.  

 Concerning the classification performance, the model-based classifier 

provided a considerable reduction in the number of tilt-induced classification 

errors. An increase in the number of textures to classify did not significantly 

affect the efficiency of the method, and the final reduction factor was mainly 

dependent on the classification task being sensitive to changes in the 

illumination. Despite the simplicity of the simple photometric stereo scheme, 

experimental simulations showed an enhanced, robust system to changes in 

lighting conditions, and a potential solution for future applications. In the 

author’s opinion, the results have been encouraging enough to merit further 

investigation. 
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8.3   Future work 

The robustness of the model-based approach to changes in slant angle has been 

evaluated in the range 30°−75°, and only four equidistant samples have been 

used. It is recommended a more thorough analysis, ideally from 10° to 80° in 

10° increments, in order to ascertain the exact limitations of the proposed 

solution under varying slant angle. Further studies will also help to determine a 

definite slant angle of the photometric image set for optimal prediction. 

 Having observed the potential of the simple photometric stereo scheme, it is 

advocated the incorporation of a more sophisticated technique. For instance, a 

general photometric technique due to [Barsky01] is suggested. This approach 

uses three images, and their corresponding illuminant direction can be defined 

at any point, without predetermined values of tilt or slant angle. Assessment of 

the new scheme by comparison with the simple photometric scheme may help 

to discern whether the increased computational cost is balanced against the 

introduced benefits. 

 The model-based classification system presented in this dissertation is 

confined to applications where the illuminant direction can be either manually 

or automatically controlled. In order to extent the proposal to applications 

under varying and unknown illumination, investigation into recent photometric 

techniques that work under these circumstances is advised.  
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Appendix A: Test textures 

Experiment 6.1 
 

  
plaster1 

 

  
plaster2 

 

 
plaster3 

 

 
plaster4 
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Experiment 6.21 
 
 

 
 
 
 
                                              
1 Images are sorted in order of AASR; thus, for example, ripple1 matches the first point in 
Figure 6.3 around 0.05, while plaster1 corresponds to the last point around 0.18. 
2 AnaglyptaTM is a type of thick embossed wallpaper, designed to be painted over. 
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Experiment 6.3 
 

Isotropic Case 
 

    
rock rice beans chips 

    

    
stones cornflakes peanuts gravel 

 

Anisotropic Case 
  

   

    
spaghetti1 card ripple3 paper 

    

  

  

stucco spaghetti2   
 
 
 
 
 
 
 
 
 

Specular case 

 

 
    sandpaper 
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Experiment 6.4 
 
 

   

 

plaster2 ripple3 sandpaper  
 
Experiment 6.5 
 

 

    
plaster4 deposit1 mixture peas 

    

   

 

pebbles ripple1 ripple3  
 
  
Experiment 6.6 
 
This experiment does not introduce any new texture. A sample image of the 

textured surfaces used can be consulted in previous sections of this appendix. 

• isotropic textures: deposit1, deposit2, deposit3, deposit4, deposit5, 

deposit6, plaster2, and plaster4. 

• directional textures: anaglypta1, anaglypta2, anaglypta3, ripple1, ripple2, 

and ripple3. 

• repeating primitives textures: mixture, peas, and pebbles. 
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Appendix B: Histogram 
description of surface gradient 

 
This appendix contains the estimated probability density functions (PDF) for the 

surface partial derivatives p and q of all 35 textures used in this investigation. 

The 512×512 p-map and q-map of the surface textures were estimated using the 

simple photometric stereo scheme developed in Section 5.3.1Eq.(5.8) and 

Eq.(5.9) respectively. The histograms shown in Section B.1 and B.2 are 256-

points discrete approximations of the actual PDFs in the range [ 1,1].  These 

histograms represent a statistical model to surface description, and because there 

is a linear relationship between surface gradient and surface height, the 

characteristics observed here such as Gaussian distributions are also valid to 

describe the surface height map.   

 Table B.1, at the end of the appendix, lists the AASR values for all the 

textures, as well as the mean values of the surface slopes. Observe that both p 

and q mean always tends to zero  not strictly true for peanuts and gravel q 

map  which validates the assumption made in Section 1.2 that the surfaces 

considered in this dissertation are globally flat.  
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B.1  Estimated p-map probability density functions1 
 
In alphabetical order: 
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1 Texture sandpaper has a maximum probability density of 0.0926. This values is out of plot, but it 
was preferred to maintain the same scale of y-axis so as to allow comparison between histograms. 
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B.2  Estimated q-map probability density functions2 
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2 Textures card, ripple1, ripple2, and ripple3 have a maximum probability density of 0.102, 0.123, 
0.0798, and 0.101 correspondingly. These values are out of plot, but it was preferred to maintain 
the same scale of y-axis so as to allow comparison between histograms.  
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B.3  First order statistics 
 

  Texture   AASR  P mean Q mean 
anaglypta1  0.07835  0.00056 0.03273 
anaglypta2  0.11805  0.00637 0.02657 
anaglypta3  0.15151  0.00950 −0.01386 
barley  0.16267  0.00069 −0.00137 
beans  0.09100  0.00462 −0.00898 
card  0.09192  0.01457 −0.07522 
chips  0.15430  0.01627 −0.00983 
cornflakes  0.21397  0.02738 −0.06022 
deposit1  0.07043  −0.01271 0.00327 
deposit2  0.07148  0.02452 0.00967 
deposit3  0.11586  0.01306 0.02450 
deposit4  0.14120  0.05402 0.02321 
deposit5  0.11502  0.04863 0.00016 
deposit6  0.13599  0.01587 −0.02694 
gravel  0.48159  −0.01076 −0.19207 
lentils  0.10060  0.00788 0.01183 
mixture  0.15331  −0.00089 −0.00112 
paper  0.05258  0.00135 −0.03937 
peanuts  0.47179  0.03619 −0.20904 
peas  0.30300  0.00478 −0.04198 
pebbles  0.30423  0.00536 −0.04619 
plaster1  0.18494  −0.01185 0.06890 
plaster2  0.13719  0.05316 0.00946 
plaster3  0.12644  0.00593 −0.05353 
plaster4  0.07573  0.02089 0.00640 
rice  0.07278  −0.03170 −0.01116 
ripple1  0.04840  0.02137 0.00440 
ripple2  0.06193  0.02428 0.04736 
ripple3  0.05690  0.00557 0.04082 
rock  0.06062  −0.05202 0.01281 
sandpaper  0.03786  0.00936 0.00097 
spaghetti1  0.09029  0.01474 −0.05943 
spaghetti2  0.17848  0.04192 −0.01312 
stones  0.19778  0.01677 −0.00877 
stucco  0.11598  −0.01392 −0.06286 

Table B.1 Estimated AASR parameter, and mean value of the partial 
derivatives fields p and q for all the textures used in this dissertation 

 (listed alphabetically). 
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Appendix C: Shell scripts 

This appendix provides prototypical Unix shell scripts which, with little or no 

modification, may be used to reproduce all the experimental work contained in 

this dissertation. Implementation of all representative scripts is fully detailed, 

concerning the evaluation of image prediction accuracy and classification 

performance. Required C/C++ programs (source code and executable versions) 

can be found in /u1/cs4/ceeag2/src and /u1/cs4/ceeag2/bin. 

C.1   Image prediction 

This produces a photometric model of a given texture, uses the model to render 

images at tilt angles between 0° and 360° in specified increments, and calculates 

the MSE of the predictions by comparison with the actual image of the texture 

under the current tilt angle. The possibility of introducing different input and 

output slant angles is contemplated. The raw data is gathered into a .xls file for 

further processing and analysis. It can be used to reproduce Experiment 6.1, 6.2, 

6.3, 6.4, 6.5, and 6.6.  

 

# =================================================================== 
# SHELL SCRIPT TO CALCULATE PHOTOMETRIC STEREO ERROR         
# USAGE: pserror texture_name input_slant output_slant tilt_increm   
# ===================================================================  
 
# Definition of paths 
set -x 
programs=~/bin 
data=/net/delos.macs.hw.ac.uk/spare/dbase_cooked/Investigation0 
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# ===== SIMPLE PHOTOMETRIC STEREO ===== 
# Select photometric image set 
# tilt at 0,90,180 deg, slant at input_slant 
surf0=$data/$1/1.$1.0.$2.0 
surf90=$data/$1/1.$1.0.$2.90 
surf180=$data/$1/1.$1.0.$2.180 
 
# Estimate derivative fields and albedo using photometric stereo 
$programs/photometric2 -s$2 $surf0 $surf90 $surf180 $1_p.tmp 
  $1_q.tmp $1_alb.tmp 
 
# ===== RELIGHTING ALGORITHM ===== 
# Initialisation of tilt angle  
tilt=0 
 
# Looping condition on tilt angle 
while [ ${tilt} -le 359 ] 
do 
   
# Lambertian rendering at current tilt angle and output_slant 
$programs/lamb -s$3 -t$tilt -o2 $1_p.tmp $1_q.tmp $1-s$3t$tilt.tmp2 
 
# Compensating a constant of 240 introduced by Lambertian program 
$programs/divim1 -v240 $1-s$3t$tilt.tmp2 $1-s$3t$tilt.tmp2 
  $1-s$3t$tilt.tmp3 
 
# Adding albedo  
$programs/multimago $1-s$3t$tilt.tmp3 $1_alb.tmp $1-s$3t$tilt.o 
 
# Remove temporal images 
rm *.tmp2 
rm *.tmp3 
 
# ===== CALCULATE MEAN SQUARE ERROR (MSE) ===== 
# Selecting actual image 
real=$data/$1/1.$1.0.$3.$tilt 
 
# Writing related info into error file 
echo 
echo -n "tilt=" >> err-$1-s$2$3.xls 
echo $tilt >> err-$1-s$2$3.xls 
 
# Computing mean square error and writing into error file 
$programs/mserror $real $1-s$3t$tilt.o >> err-$1-s$2$3.xls 
 
# Remove rendered image (optional) 
rm *.o 
 
# Increment tilt  
tilt=`expr ${tilt} + $4` 
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# Writing current tilt into error file 
echo ${tilt} 
done 
 
# Remove both partial derivatives and albedo images 
rm *.tmp 
 
 

A more compact procedure to obtain data from multiple slant angles, like in the 

case of Experiment 6.6, is to construct an auxiliary shell script that methodically 

repeats the experiment by executing pserror under different combinations of 

input-output slant angles. For instance, consider the following implementation 

called mseall. 

 

# =================================================================== 
# SHELL SCRIPT TO REPEAT PSERROR FOR MULTIPLE              
# COMBINATIONS OF INPUT-OUTPUT SLANT ANGLES              
# USAGE: sh mseall texture_name tilt_increment          
# ===================================================================  
 
for input_slant in 30 45 60 75 
do 
   for output_slant in 30 45 60 75 
   do 
      sh pserror $1 $input_slant $output_slant $2 
   done 
done 

C.2   Classification performance 

This section list the shell scripts used to simulate the best case, naive and model-

based classification on montage2A. In total, three files are generated, efile-

best.xls, efile-naive.xls, and efile-mbased.xls, which contain the TEC at 

illuminant tilt angles from 0° to 360° in 10° increments for each approach 

respectively. Each shell script consists of three parts: (a) montage construction, 

(b) feature extraction, and (c) training/testing. Implementation of parts (a) and 

(c) depends on the approach, and they are fully detailed in each subsections. As 

the feature extraction is invariant it is only listed for the best case classification. 

Experiment 7.1, 7.2, 7.3, and 7.4 can be reproduced using these shell scripts. 
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Best case classification 

# =================================================================== 
# SHELL SCRIPT TO PERFORM BEST CASE CLASSIFICATION  
# USAGE: shellbest 
# =================================================================== 
 
set -x 
programs=/u1/cs4/ceeag2/bin 
data=/net/delos.macs.hw.ac.uk/spare/dbase_cooked/Investigation0 
outdir=~mjc/public/images 
 
tilt=0 
while [ ${tilt} -le 360 ] 
do 
 
# ===== PART A: MONTAGE CONSTRUCTION ===== 
t1=aab 
t2=aba 
surf1=$data/$t1/0.$t1.0.45.$tilt 
surf2=$data/$t2/0.$t2.0.45.$tilt 
classmap=~/images/classmaps/classmap2b.o 
$programs/montage -C "$classmap" -c50 "$surf1" -c100 "$surf2" montage  
 
# ===== PART B: FEATURE EXTRACTION ===== 
# Transform montage in to the frequency domain 
$programs/fft3 montage $outdir/real $outdir/imag 
$programs/swapshop $outdir/real $outdir/real $outdir/real 
$programs/swapshop $outdir/imag $outdir/imag $outdir/imag 
 
# Create even and odd Gabor filters (3 radial freq, 4 orientations) 
$programs/gaborset1 -f25 -a0 -p1 -n512 $outdir/even1.gab 
$programs/gaborset1 -f25 -a0 -p-1 -n512 $outdir/odd1.gab 
$programs/gaborset1 -f25 -a45 -p1 -n512 $outdir/even2.gab 
$programs/gaborset1 -f25 -a45 -p-1 -n512 $outdir/odd2.gab 
$programs/gaborset1 -f25 -a90 -p1 -n512 $outdir/even3.gab 
$programs/gaborset1 -f25 -a90 -p-1 -n512 $outdir/odd3.gab 
$programs/gaborset1 -f25 -a135 -p1 -n512 $outdir/even4.gab 
$programs/gaborset1 -f25 -a135 -p-1 -n512 $outdir/odd4.gab 
 
$programs/gaborset2 -f50 -a0 -p1 -n512 $outdir/even5.gab 
$programs/gaborset2 -f50 -a0 -p-1 -n512 $outdir/odd5.gab 
$programs/gaborset2 -f50 -a45 -p1 -n512 $outdir/even6.gab 
$programs/gaborset2 -f50 -a45 -p-1 -n512 $outdir/odd6.gab 
$programs/gaborset2 -f50 -a90 -p1 -n512 $outdir/even7.gab 
$programs/gaborset2 -f50 -a90 -p-1 -n512 $outdir/odd7.gab 
$programs/gaborset2 -f50 -a135 -p1 -n512 $outdir/even8.gab 
$programs/gaborset2 -f50 -a135 -p-1 -n512 $outdir/odd8.gab 
 
$programs/gaborset3 -f100 -a0 -p1 -n512 $outdir/even9.gab 
$programs/gaborset3 -f100 -a0 -p-1 -n512 $outdir/odd9.gab 
$programs/gaborset3 -f100 -a45 -p1 -n512 $outdir/even10.gab 
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$programs/gaborset3 -f100 -a45 -p-1 -n512 $outdir/odd10.gab 
$programs/gaborset3 -f100 -a90 -p1 -n512 $outdir/even11.gab 
$programs/gaborset3 -f100 -a90 -p-1 -n512 $outdir/odd11.gab 
$programs/gaborset3 -f100 -a135 -p1 -n512 $outdir/even12.gab 
$programs/gaborset3 -f100 -a135 -p-1 -n512 $outdir/odd12.gab 
 
# Perform Gabor filtering in the frequency domain 
for case in 1 2 3 4 5 6 7 8 9 10 11 12 
do 
$programs/multimago $outdir/real $outdir/even$case.gab 
  $outdir/real-even$case.tmp 
$programs/multimago $outdir/real $outdir/odd$case.gab 
  $outdir/real-odd$case.tmp 
$programs/multimago $outdir/imag $outdir/even$case.gab 
  $outdir/imag-even$case.tmp 
$programs/multimago $outdir/imag $outdir/odd$case.gab 
  $outdir/imag-odd$case.tmp 
done 
 
rm $outdir/*.gab 
rm $outdir/real 
rm $outdir/imag 
 
for case in 1 2 3 4 5 6 7 8 9 10 11 12 
do 
$programs/swapshop $outdir/real-even$case.tmp $outdir/real- 
  even$case.tmp $outdir/real-even$case.tmp 
$programs/swapshop $outdir/real-odd$case.tmp $outdir/real- 
  odd$case.tmp $outdir/real-odd$case.tmp 
$programs/swapshop $outdir/imag-even$case.tmp $outdir/imag- 
  even$case.tmp $outdir/imag-even$case.tmp 
$programs/swapshop $outdir/imag-odd$case.tmp $outdir/imag- 
  odd$case.tmp $outdir/imag-odd$case.tmp 
done 
 
# Apply IFFT 
for case in 1 2 3 4 5 6 7 8 9 10 11 12 
do 
$programs/ffti $outdir/real-even$case.tmp $outdir/imag-even$case.tmp 
  $outdir/real$case 
$programs/multim1 -v-1 $outdir/real-odd$case.tmp $outdir/real- 
  odd$case.tmp $outdir/real-odd$case.tmp 
$programs/ffti $outdir/imag-odd$case.tmp $outdir/real-odd$case.tmp 
  $outdir/imag$case 
done 
 
rm $outdir/*.tmp 
 
# Convert real and image parts into magnitude   
for case in 1 2 3 4 5 6 7 8 9 10 11 12 
do 
$programs/magn $outdir/real$case $outdir/imag$case 



Appendix C: Shell scripts 131 

 

$outdir/magnitude$case $outdir/phase$case 
rm $outdir/real$case 
rm $outdir/imag$case 
rm $outdir/phase$case  
done 
 
# Create Gaussian (smoothing) LPFs for each set of Gabor filters 
$programs/gablowp3 -f0 -a0 -p1 -n512 $outdir/gaborlowpass1 
$programs/gablowp5 -f0 -a0 -p1 -n512 $outdir/gaborlowpass2 
$programs/gablowp8 -f0 -a0 -p1 -n512 $outdir/gaborlowpass3 
 
# Apply LPFs 
for case in 1 2 3 4  
do 
$programs/fft3 $outdir/magnitude$case $outdir/real$case 
  $outdir/imag$case 
$programs/swapshop $outdir/real$case $outdir/real$case 
  $outdir/real$case 
$programs/swapshop $outdir/imag$case $outdir/imag$case 
  $outdir/imag$case 
 
$programs/multimago $outdir/gaborlowpass1 $outdir/real$case 
  $outdir/realfiltered$case 
$programs/multimago $outdir/gaborlowpass1 $outdir/imag$case 
  $outdir/imagfiltered$case 
$programs/swapshop $outdir/realfiltered$case 
  $outdir/realfiltered$case $outdir/realfiltered$case 
$programs/swapshop $outdir/imagfiltered$case  
  $outdir/imagfiltered$case $outdir/imagfiltered$case 
rm $outdir/real$case 
rm $outdir/imag$case 
rm $outdir/magnitude$case 
done 
 
for case in 5 6 7 8 
do 
$programs/fft3 $outdir/magnitude$case $outdir/real$case 
  $outdir/imag$case 
$programs/swapshop $outdir/real$case $outdir/real$case 
  $outdir/real$case 
$programs/swapshop $outdir/imag$case $outdir/imag$case  
  $outdir/imag$case 
 
$programs/multimago $outdir/gaborlowpass2 $outdir/real$case 
  $outdir/realfiltered$case 
$programs/multimago $outdir/gaborlowpass2 $outdir/imag$case  
  $outdir/imagfiltered$case 
$programs/swapshop $outdir/realfiltered$case  
  $outdir/realfiltered$case $outdir/realfiltered$case 
$programs/swapshop $outdir/imagfiltered$case  
  $outdir/imagfiltered$case $outdir/imagfiltered$case 
rm $outdir/real$case 
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rm $outdir/imag$case 
rm $outdir/magnitude$case 
done 
 
for case in 9 10 11 12 
do 
$programs/fft3 $outdir/magnitude$case $outdir/real$case  
  $outdir/imag$case 
$programs/swapshop $outdir/real$case $outdir/real$case 
  $outdir/real$case 
$programs/swapshop $outdir/imag$case $outdir/imag$case  
  $outdir/imag$case 
 
$programs/multimago $outdir/gaborlowpass3 $outdir/real$case 
  $outdir/realfiltered$case 
$programs/multimago $outdir/gaborlowpass3 $outdir/imag$case 
  $outdir/imagfiltered$case 
$programs/swapshop $outdir/realfiltered$case  
  $outdir/realfiltered$case $outdir/realfiltered$case 
$programs/swapshop $outdir/imagfiltered$case  
  $outdir/imagfiltered$case $outdir/imagfiltered$case 
rm $outdir/real$case 
rm $outdir/imag$case 
rm $outdir/magnitude$case 
done 
 
rm $outdir/gaborlowpass* 
 
# Apply IFFT 
for case in 1 2 3 4 5 6 7 8 9 10 11 12 
do 
$programs/ffti $outdir/realfiltered$case $outdir/imagfiltered$case 
  if$case 
rm $outdir/realfiltered$case 
rm $outdir/imagfiltered$case 
done 
 
# ===== PART C: TRAINING/TESTING THE CLASSIFIER ===== 
echo "if1 \n if2 \n if3 \n if4 \n if5 \n if6 \n if7 \n if8 \n if9 \n  
  if10 \n if11 \n if12" > FLIST 
$programs/covar12 "$classmap" cov_stats 2 12 50 < FLIST 
$programs/discrim12 -o50 -c2 -f12 -C cov_stats -D discriminant_file  
  -F FLIST -O segout 
 
# Calculate and write error into a file 
echo 
echo -n "tilt=" >> efile-best.xls 
echo $tilt >> efile-best.xls 
$programs/errcnt -c2 "$classmap" segout >> efile-best.xls 
rm discriminant_file 
rm if* 
done  
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Naive classification 

# =================================================================== 
# SHELL SCRIPT TO PERFORM NAIVE CLASSIFICATION  
# USAGE: shellnaive 
# =================================================================== 
 
set -x 
programs=/u1/cs4/ceeag2/bin 
data=/net/delos.macs.hw.ac.uk/spare/dbase_cooked/Investigation0 
outdir=~mjc/public/images 
 
tilt=0 
 
# ===== PART A: MONTAGE CONSTRUCTION ===== 
# ===== PART B: FEATURE EXTRACTION ===== 
# Identical to best case implementation 
 
# ===== PART C: TRAINING/TESTING THE CLASSIFIER ===== 
echo "if1 \n if2 \n if3 \n if4 \n if5 \n if6 \n if7 \n if8 \n if9 \n  
  if10 \n if11 \n if12" > FLIST 
 
# Training 
$programs/covar12 "$classmap" cov_stats 2 12 50 < FLIST 
# Generates the discriminant_file at tilt=0 
$programs/discrim12 -o50 -c2 -f12 -C cov_stats -D discriminant_at0 
  -F FLIST 
 
tilt=10 
while [ ${tilt} -le 360 ] 
do 
 
# ===== PART A: MONTAGE CONSTRUCTION ===== 
# ===== PART B: FEATURE EXTRACTION ===== 
# Identical to best case implementation 
 
# ===== PART C: TRAINING/TESTING THE CLASSIFIER ===== 
# Testing (uses discriminant at tilt=0 regardless of the actual tilt)  
$programs/discrim12 -o50 -c2 -f12 -d discriminant_at0 -F FLIST  
  -O segout 
 
# Calculate and write error into a file 
echo 
echo -n "tilt=" >> efile-naive.xls 
echo $tilt >> efile-naive.xls 
$programs/errcnt -c2 "$classmap" segout >> efile-naive.xls 
rm montage 
rm segout 
rm if* 
done 
 
rm discriminant_at0 
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Model-based classification 

This approach was implemented using three shell scripts, namely recovery, 

training, and testing, corresponding to the three stages defined in Chapter 5. 

In order to efficiently reproduce the experiment at different tilt angles, the three 

shell scripts were combined in a new shell script called shellmbased, which is 

listed at the end of the section. 

 

# =================================================================== 
# SHELL SCRIPT TO PERFORM THE RECOVERY STAGE  
# USAGE: recovery texture_name input_slant  
# =================================================================== 
 
set -x 
programs=~/bin 
data=/net/delos.macs.hw.ac.uk/spare/dbase_cooked/Investigation0 
   
# ===== SIMPLE PHOTOMETRIC STEREO ===== 
# Select photometric image set 
# tilt at 0,90,180 deg, slant at input_slant 
surf0=$data/$1/1.$1.0.$2.0 
surf90=$data/$1/1.$1.0.$2.90 
surf180=$data/$1/1.$1.0.$2.180 
  
# Estimate derivative fields and albedo using photometric stereo 
$programs/photometric2 -s$2 $surf0 $surf90 $surf180 $1_p.tmp 
  $1_q.tmp $1_alb.tmp 
 
 
# =================================================================== 
# SHELL SCRIPT TO PERFORM THE TRAINING STAGE 
# USAGE: training output_slant tilt_angle tex_name1 tex_name2 
# =================================================================== 
 
set -x 
programs=~/bin 
outdir=~mjc/public/images 
 
# ===== RELIGHTING ALGORITHM ===== 
# Lambertian rendering at current tilt angle and output_slant 
$programs/lamb -s$1 -t$2 -o2 $3_p.tmp $3_q.tmp $3-$1-$2.tmp2 
$programs/lamb -s$1 -t$2 -o2 $4_p.tmp $4_q.tmp $4-$1-$2.tmp2 
 
# Compensating a constant of 240 introduced by Lambertian program  
$programs/divim1 -v240 $3-$1-$2.tmp2 $3-$1-$2.tmp2 $3-$1-$2.tmp3 
$programs/divim1 -v240 $4-$1-$2.tmp2 $4-$1-$2.tmp2 $4-$1-$2.tmp3 
 
rm *.tmp2 
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#Adding albedo  
$programs/multimago $3-$1-$2.tmp3 $3_alb.tmp $3-$1-$2.tmp4 
$programs/multimago $4-$1-$2.tmp3 $4_alb.tmp $4-$1-$2.tmp4 
 
rm *.tmp3 
 
# ===== PART A: MONTAGE CONSTRUCTION ===== 
classmap=~/images/classmaps/classmap2b.o 
$programs/montage -C "$classmap" -c50 $3-$1-$2.tmp4 -c100 
  $4-$1-$2.tmp4 montage  
 
rm *.tmp4 
 
# ===== PART B: FEATURE EXTRACTION ===== 
# Identical to best case implementation 
 
# ===== PART C: TRAINING THE CLASSIFIER ===== 
$programs/covar12 "$classmap" cov_stats 2 12 50 < FLIST 
$programs/discrim12 -o50 -c2 -f12 -C cov_stats -D discriminant_train 
  -F FLIST  
 
rm cov_stats 
rm if* 
rm montage 
 
 
# =================================================================== 
# SHELL SCRIPT TO PERFORM THE TESTING STAGE 
# USAGE: testing output_slant tilt_angle tex_name1 tex_name2 
# =================================================================== 
 
set -x 
programs=/u1/cs4/ceeag2/bin 
data=/net/delos.macs.hw.ac.uk/spare/dbase_cooked/Investigation0 
outdir=~mjc/public/images 
 
surf1=$data/$3/0.$3.0.$1.$2 
surf2=$data/$4/0.$4.0.$1.$2 
 
# ===== PART A: MONTAGE CONSTRUCTION ===== 
# ===== PART B: FEATURE EXTRACTION ===== 
# Identical to best case implementation 
 
 
# ===== PART C: TESTING THE CLASSIFIER ===== 
# Using discriminant from training (based on photometric data) 
$programs/discrim12 -o50 -c2 -f12 -d discriminant_train -F FLIST 
  -O segout 
 
# Calculate and write error into a file 
echo 
echo -n "tilt=" >> efile-mbased.xls 
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echo $1 >> efile-mbased.xls 
$programs/errcnt -c2 "$classmap" segout >> efile-mbased.xls 
 
rm if* 
rm segout 
rm discriminant_file 
rm montage 
 
 
# =================================================================== 
# SHELL SCRIPT TO PERFORM MODEL-BASED CLASSIFICATION USING 
# RECOVERING + TRAINING + TESTING (LISTED ABOVE) 
# USAGE: shellmbased input_slant output_slant tex_name1 tex_name2 
# =================================================================== 
 
set -x 
tilt=0 
 
sh recovery $3 $1 
sh recovery $4 $1 
 
while [ ${tilt} -le 360 ] 
do 
 
sh training $2 ${tilt} $3 $4 
sh testing $2 ${tilt} $3 $4 
 
tilt=`expr ${tilt} + 10` 
 
done 
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