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Abstract
The dependence of statistical properties of an image as a
function of illumination direction is an exciting topic which
was so far investigated experimentally, and also addressed
theoretically for a special case of low-order moments of
image features. In this paper we observe the principal re-
lationship between thejoint (co-occurrence) distribution of
surface properties and the corresponding joint distribution
of local image features. We focus on two kinds of statis-
tics computed from local image neighbourhoods: (a) the
joint distribution of pixel intensities, and (b) the joint dis-
tribution of binary patterns obtained by taking the signs of
intensity differences between a selected reference pixel and
all other pixels. We work with a non-parametric histogram
representation of the probability distribution functions, and
show how the frequencies in a histogram bin depend on
illumination. Finally, we focus on approximating the il-
lumination dependence of image statistics by a harmonic
series. Experimental results obtained using a real surface
are presented.
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1 Introduction

It is well known that the image statistics are strongly af-
fected by the illumination conditions which are used for
taking an image. In face recognition, for example, illumi-
nation dependence is the source of deep intra-class image
variability which is often much higher than the inter-class
variability implied by a change in identity of a person ob-
served [6]. In the field of 3D texture analysis, the illumina-
tion direction was shown to play a crucial role as well [4].
As many recognition algorithms across computer vision are
based on probabilistic approaches, it is extremely impor-
tant to understand how the image statistics are dependent
on illumination.

Such topic was approached both from empirical and
theoretical directions: Ginneken et al [9] presented an
empirical approach, providing the experimental evidence
of dependence of image intensity histograms on illumina-
tion. Most interestingly, the paper also divides 3D textures

into several categories and highlights the difference in his-
togram behaviour between them. A surface model-based
approach of Chantler et al. [5] opens the way to understand-
ing how texture surface statistics implies the statistics of an
image under given illumination. The paper shows that the
variance of a histogram is a first order harmonic of illu-
minant tilt, under assumptions that the surface is of gently
varying height and of uniform reflectance. Barsky [2] re-
laxes the assumptions and shows that such dependence can
be described by harmonic expansion of second order in a
general situation.

This paper delivers the following contributions to the
topic: (i) unlike all previous work, we observe the forma-
tion of joint (co-occurrence) image statistics, i.e. not statis-
tics of individual pixels, but statistics of local image neigh-
bourhoods, and (ii) we explain the illumination dependence
of individual multidimensional histogram bins, as opposed
to predicting the behavior of low-order histogram moments
(variance, skew, curtosis, etc.).

The paper is organised as follows. In Section 2 we
present the local image features selected to be investigated,
and explain why we consider the focus on them to be of
importance. In Section 2.1 we show that given the illu-
mination conditions, the process of image statistics for-
mation is essentially related to integrating over portions
of the surface statistics space. In Section 2.2 we show
how a histogram bin population depends on illumination.
In Section 3 we show that to capture the dependence of
image statistics on illumination tiltexactly generally re-
quires many parameters. However, we show that a lower-
dimensional harmonic approximation of such dependence
is in hand which reduces the number of parameters greatly,
and we observe the feasibility of the approximation based
on real experiments. In Section 4 we bring the discussion
of the results and identify future directions of research.

2 Local image statistics

In this paper, we aim to gain insight into the dependence of
image statistics on illumination. The first question is what
features will be considered. For the purpose of this study,
two types of local features were selected:

(a) Intensities: A ’trivial’ feature obtained by reshaping
the intensities in a local image neighbourhood into
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Figure 1. Local image features considered is this paper: (a)
the raw image intensities in a local image neighbourhood,
reshaped into a single feature vector; (b) the signs of dif-
ferencessk = sign±(i× − ik) between areferencepixel
intensity (here pixel D) and the other pixel intensities.

a single feature vector (see Fig. 1(a)). Besides that
this feature is a ’natural’ choice for this introductory
study, the motivation also comes from that this feature
has been recently used for texture recognition, with
success rate outperforming the filter-based approaches
[11].

(b) Signs of intensity differences:Intensity i× of a se-
lected reference pixel is compared with intensitiesik
of all other pixels in a neighbourhood. If the refer-
ence pixel intensity is higher or equal tok-th pixel
intensity, ’+1’ is recorded for thek-th pixel; and ’−1’
otherwise. For example, if the pixel neighbourhood is
2×2 then the number of recorded signs of differences
is 3 (see Fig. 1(b)). Thek-th feature componentsk

can thus be written as

sk = sign±(i× − ik) , (1)

where the sign ’±’ indicates the modification of a
standard signum operator: the casei× = ik is merged
with the casei× > ik, making the operatorsign± bi-
nary.

Such feature is invariant, in particular, to any mono-
tonic transformations in the pixel neighbourhood. It
makes the recognition robust to variations in local sur-
face illumination, indeed at the price of loosing dis-
criminability. In texture recognition, it was proposed
and applied with great success by Ojala et al. [8]. It
is closely related to ordinal measures successfully ap-
plied for establishing image correspondences [3].

Having the features selected, the second question is
what feature statistics are to be studied. Thejoint image
statistics, as opposed tomarginal image statistics, are con-
sidered to be the key to successful texture recognition [10].
This is why we study the full (joint) distributions of feature
vectors. For representation of feature distributions, multi-
dimensional histograms are used.
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Figure 2. The illumination geometry

2.1 Statistics and illumination

The goal of this section is to analyse the way how the ob-
ject surface statistics, together with given illumination con-
ditions, imply the image statistics. To do so, a link be-
tween the surface and the image (the model of image for-
mation) is needed. To keep the subsequent analysis simple,
we adopt the following assumptions: (i) the model of re-
flectance is Lambertian, and (ii) inter-reflections and shad-
ows are neglected. While all illustrations are done using
these assumptions, it is not difficult to generalise for a dif-
ferent model of image formation. We make remarks on this
topic at relevant places of the paper.

Let the light source be of directionl and of intensity
σ, and let the pixel whose intensity is recorded be of normal
orientationn and of albedo1 ρ. Let the angle between the
light vector and the normal vector beη1 (see Fig. 2). Then
the intensityi observed is [7]

i = ρσ cos η1 = (ρn)>(σl) = b>s , (2)

where> mark stands for vector transposition. The right-
hand side of this equation combines the surface albedo and
normal direction into a single vectorb termed thescaled
normal vector, and the light intensity and direction into
vector s termed thescaled light vector. These two enti-
ties enable to express the Lambertian model of reflectance
in especially simple form.

Let us now start with an elementary example showing
how single pixel intensity distribution can be computed.
Let the scaled light vectors as well as the distribution of
scaled normal vectorsp(b) be given. Then, due to (2), im-
age intensity distributionp(i) can be computed easily: As
the scaled normals producing a given intensityi are those
whose dot product with the light vectors is the same, one
just needs to integrate over the a plane perpendicular to the
light direction. More precisely, there holds

p(i) =
∫

{b:b>s=i}

p(b)
‖s‖

dAs , (3)

where As denotes the surface element of an integration
plane perpendicular tos. This can be shown as fol-
lows. First, both distributions must sum to unity, mean-
ing

∫
IR

p(i)di =
∫
IR3 p(b)db . Choosing the scaled normals

1Albedo is a reflectance parameter which states what portion of inci-
dent irradiance is emited back into space in the form of diffuse reflection.
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Figure 3. Given the scaled light vectors and local surface
statistics, the feature histograms can be computed: (a) his-
togram of image intensities, given by integrating respective
slabs of distribution in scaled normals space. The slabs are
perpendicular tos; (b) histogram of signs of co-occurring
intensities, computed by integrating the distributionp(d)
of co-occurring scaled normals differences over respective
half-spaces.

space coordinates such that the third one coincides with the
light source direction, there holdsdi = ‖s‖db3. The result
(3) then follows immediately.

Fig. 3(a) summarises the mechanism of intensity dis-
tribution formation. In the figure, intensity distribution is
parametrised using a histogram. Givens, each histogram
bin range implies a slab in the scaled normals space over
which the distribution is integrated. The bin shown in black
in the figure corresponds to zero-intensity bin collecting
normals which are shadowed. Note also that the distribu-
tion is depicted as a half-space because in real imaging just
thevisiblenormals (those not inclined away from the view-
ing direction) contribute to the intensity distribution.

Given a local neighbourhood larger than one pixel,
the joint (co-occurrence) intensity distribution can be con-
structed from joint distribution of scaled surface normals
in a very analogous way. For example, a two-pixel co-
occurrencep(iA, iB) can be computed using the joint dis-
tribution of scaled surface normals as

p(iA, iB) =
∫ ∫

{bA : bA
>s = iA}

{bB : bB
>s = iB}

p(bA,bB)
‖s‖2

dAA
s dAB

s .

(4)
Having identified the intensity distribution formation,

let us now turn our attention to the other local feature: the
signs of intensity differences. Thus, let there be two pixel
neighbourhood with pixels A and B as just above, and let
pixel B be the reference one. To evaluatesA let us insert

 b

(a)

 d

(b)

Figure 4. For a given histogram bin, each feature sample
votes into the space of scaled light vectors: (a) scaled nor-
malb votes for light sources giving intensity within the bin
range; (b) the difference vectord votes for light sources
giving signum ’+1’ in the case shown. For both cases,
favourable scaled light vectors are indicated by white.

(2) into (1) to get

sA = sign±(iB − iA) = sign±[(bB − bA)>s] =
= sign±(dA

>s) , (5)

wheredA = bB − bA is termedscaled normals differ-
ence vector, or shortly adifference vector. Obviously, the
mechanism of signs distribution formation is as illustrated
in Fig. 3(b): The+1 bin (shown in white) integrates the
scaled normal difference vector distribution over the half-
space whose projection tos is positive; the−1 bin (shown
in black) integrates the other half-space. Note that the fig-
ure reflects the fact that the domain of difference vectors
distribution is the whole three-dimensional space. The for-
mation of joint distributions of signs of intensity differ-
ences is done in a way analogous to the case of joint in-
tensities distribution.

2.2 Bin population

The previous section answered the question of how the lo-
cal image statistics are generated given the surface statis-
tics and the light source direction. In this section, we
come closer to the very goal of this paper: Given again
the surface properties distribution, how do the image statis-
tics change with illumination? To proceed, we suppose that
the image statistics is represented by (possibly multidimen-
sional) histogram, and observe how the populations of in-
dividual bins depend on illumination direction.

The computation of bin population dependence on il-
lumination is essentially a voting process. Let us first con-
sider the case of single pixel intensity distribution. For a
specific scaled normal sampleb, the set of scaled light vec-
torss producing the intensity within the bin range forms a
slab (see Fig. 4(a)). The vote is represented by a member-
ship function in the scaled lights space which is 1 where
the scaled light is favourable to the bin and 0 where it is
not. The votes are summed across all samples. Formally, if
p(b) is the scaled normals distribution andv(b, l, s) is the
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Figure 5. Illustrating the conditions of the experiment:
(a) The light source moves along a cone whose axis is the
macroscopic normalN. As the surface is of gently varying
depth and of uniform albedo, the difference vectors lie near
the plane perpendicular toN; (b) the voting space is a 1D
illumination tilt space.

voting function for a scaled normalb and l-th histogram
bin, the bin frequencypl dependence ons is then

pl(s) =
∫

v(b, l, s)p(b)db . (6)

The voting process for the difference vectors is similar (see
Fig. 4(b)). Observe that in this case, if lights is favourable
to the bin, thenαs, α > 0 is favourable as well. Hence, in
this case, the voting space can be represented by a suitable
two-dimensional surface.

With joint statistics, the voting mechanism stays
the same; briefly, for a two-pixel co-occurrence, for
the bin frequency plm we can write plm(s) =∫

v(bA, l, s)v(bB ,m, s)p(bA,bB)dbAdbB .
To give this section a summary, we have observed that

evaluation of bin population as a function of illumination
direction is a voting process and can be written in a form of
(6). In the next section, we consider a special type of vot-
ing functions, and get a taste of how co-occurrence statis-
tics change with illumination based on conducting a real
experiment.

3 Voting as a convolution

In this section, we focus on local features given by the signs
of intensity differences. It has been noted in the previous
section that the absolute magnitudes of difference vectors
d and scaled light vectorss do not matter because the result
of computing the sign by (1) is invariant under the transfor-
mations 7→ αs, α > 0 andd 7→ βd, β > 0. This suggests
to identify both the difference vectors and the scaled light
vectors under these equivalence relations, and to use a suit-
able two-dimensional surface enclosing the origin for their
representation; a sphere, for example. Under such identifi-
cation, the distribution of difference vectors is a function on
a sphere, and it is also the sphere what is the light directions

−1 −0.5 0 0.5 1

0

1

λ [π rad]

R
1
2
3
10

Figure 6. The rectangular voting function (R), and its har-
monic approximations (first three, and tenth).

voting space. Importantly enough, the voting functions for
two non-equal difference vectors differ only by rotation be-
cause otherwise they both divide the space of light vectors
into two complementary half-spaces. But that means that
the voting process (6) is in this case a convolution of the
voting kernel with the difference vectors distribution on a
sphere.

To illustrate this, we lower the dimension of the prob-
lem by adopting the following assumption: The surface is
of uniform albedo and gentle height variation. For such sur-
face, the difference vectors computed on scaled normals in
a local neighbourhood all lie near a plane perpendicular to
the mean surface orientation (see Fig. 5(a)). Obviously, the
light source is favourable to the events = +1 provided that
its projection onto the surface lies within the half-circle de-
fined by the direction ofd (see Fig. 5(b)), in other words,
that the illumination tilt (the azimuth angle of the projec-
tion) lies within the nonzero part of the voting function.
That means that the voting space can be collapsed into a
circumference. The voting is a result of convolving the vot-
ing kernel (shown as a black thick solid line in Fig. 6) with
the distribution of the difference vectors which now ’lives’
on the circumference.

3.1 Harmonic expansion of the voting kernel

If the number of voting samples isq, in a general case the
result of voting into the illumination space (the circumfer-
ence) has2q points of discontinuity, and therefore an ex-
act representation of distribution illumination dependence
is costly. The goal of this section is to demonstrate that
the harmonic expansion of the voting kernel can reduce the
number of parameters needed considerably. Approximat-
ing the voting kernel essentially corresponds to switching
to ’fuzzy’ voting when the voting result is not just 0 or 1
but there is a smooth transition in between.

To approximate the voting kernel (shown in black in
Fig. 6) by harmonics, we avoid using the Fourier expan-
sion. This is because the Fourier expansion solves the prob-
lem of least-squares optimal approximation of the kernel;
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Figure 7. (a) A surface illuminated from six tilt directions
specified. The illumination slant was kept at45◦; (b) the
result of surface reconstruction by photometric stereo.

and such approximation has properties which are not de-
sirable in this case: It has several local maxima and both
overshoots and undershoots the values allowable for voting
(1 and 0, respectively). Our aim is to make a harmonic ap-
proximationf(φ) which in addition to best least-square ap-
proximation of the kernel exhibits the following properties:
(i) has a unique maximum 1 and a unique minimum 0, (ii)
is symmetric around0, (iii) f and1− f are the same func-
tions, only shifted byπ. It is a short exercise to show that
in that case the series is formed by odd orders of cosines.
The first three approximations are:

v1(φ) =
1
2
(1 + cos φ) (7)

v2(φ) =
1
2

(
1 +

9
8

(
cos φ +

1
9

cos 3φ

))
v3(φ) =

1
2

(
1 +

75
64

(
cos φ +

1
6

cos 3φ +
1
50

cos 5φ

))

These three approximations, together with the tenth one
(involving the cosine of 19th order) are shown in Fig. 6.

3.2 Experiment

To test the analysis presented in the previous section we
used a 3D texture ABA from the PhoTex database [1].
This is a plaster surface of uniform reflectance and of sur-
face normal slant not exceeding10◦. This sample fulfills
the working assumption described at the beginning of Sec-
tion 3 with a sufficient degree of accuracy. The data used
were as follows: 36 images of the surface taken with the
light source of slant45◦ and with tilt going from0◦ to 350◦

in 10◦ steps. We used six of these images (see Fig. 7(a)) to
get the surface normals at each pixel by photometric stereo
method [12]. The result of the surface reconstruction is
shown in Fig. 7(b).

We began by computing the distribution of signs of
differences between a pixel and its eastern neighbour. As
in this case the two bins’ probabilities sum up to unity
for each illumination, we evaluated just the dependence of
events = +1. This was done as follows. The normals
estimated by photometric stereo were used for construct-
ing the difference vectors statistics on a circle as suggested
in the previous section. The difference vectors distribution
was then convolved with the full (rectangular) voting ker-
nel, such predicted dependence was compared with the+1
sign statistics computed directly on images acquired across
varying tilt illumination. The result shown in Fig. 8(a)(left)
presents a very good agreement of the predicted and empir-
ical values of the histogram frequency. In Fig. 8(a)(right),
the results of voting by kernel approximation is shown as
well. The same procedure was applied to compute the de-
pendence of frequency of+1 bin for a local neighbour-
hood formed by a pixel and its southern neighbour (see
Fig. 8(b)).

Essentially analogous procedure has been applied to
the eight-dimensional joint distribution of signs in a3 × 3
local image neighbourhood (see Fig. 9). In this case, the
total number of bins is28 = 256. To compute the vot-
ing result, the convolution could not be used any more, but
a product of voting kernels was used as follows from the
theory presented in Section 2.2. For presentation purposes,
we sorted the bins according to their average frequency.
Interestingly enough, around 50% of all data points is con-
tained within the first four bins (observe the scales of fre-
quency vertical axes). Note also that the bins come out
from the sorting procedure in complementary couples (pre-
sented side by side in the figure): This is due to the sym-
metries in the texture surface properties. Predicting the bin
population by voting with a full rectangular kernel again
predicts the population quite well (see black solid lines in
the figure). It is also notable that the harmonic approxima-
tions consistently underestimate the populations with de-
creasing order of approximation, which is caused by fuzzy
voting. However, thequalitativeshape of the first four bins
is captured well even by the product of first harmonic ap-
proximations; this is no more true for the fifth and sixth
bins which are, however, much less populated.
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Figure 8. The dependence of bin populations on illumination tiltλ for signs of differences between pixels as shown above each
of the graphs. The circular dots are empirical data and black solid lines is the result of predicting the bin population by voting
with a full rectangular kernel. Other lines are approximations of the kernel as in Fig. 6.
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Figure 9. The dependence of bin populations on illumination tiltλ for signs of differences as shown above each of the graphs.
The circular dots are empirical data and black solid lines is the result of predicting the bin population by voting with a full
rectangular kernel. Other lines are approximations of the kernel as in Fig. 6.

7



4 Summary and Conclusion

The results obtained under assumptions used in Section 3
are quite encouraging and deserve several remarks. First,
the assumption of uniform albedo, used quite often in
physics-based analysis in computer vision, is usually quite
restrictive. It is worthwhile to note that in this work, if the
task is to characterise statistics of surfaces under different
illumination then the uniform albedo surfaces are actually
the hard case. This is because if the albedos in neighbor-
ing pixels differ greatly, the distribution of signs of inten-
sity differences will tend to be invariant to illumination, as
the ordering of pixels will be governed not by illumina-
tion conditions but by the albedo difference itself. Second,
these results suggest exciting directions for future research.
For the surface texture studied, the bin frequency variations
showed up to be much smoother than they generally could
be. This is of course because it was the underlying dis-
tribution of difference vectorswhich was smooth, and the
voting result inherited this smoothness. While in this work
we mainly outlined the principles governing the way from
surface statistics to image statistics, in future work it will
be interesting to identifycharacteristicsurface statistics
which often appear in reality, and to employ such priors in
recognition tasks, for example. Likewise, a very important
question is how the statistics behave in presence of strong
shadowing, a phenomenon which was excluded in this in-
troductory study.
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