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Abstract

Changes in the angle of illumination incident upon a 3D surface texture can
significantly alter its appearance. Such variations affect texture feature im-
ages can dramatically increase the failure rates of texture classifiers. Changes
in illumination direction causes texture clusters to describe a two dimensional
trigonometric function in feature space, which is dependent on illumination
tilt and slant angle.

Starting from a sinosodial prediction for texture features we analytically
derive two different classification algorithms. First a classifier is introduced,
which is robust to changes in illumination tilt direction. The classifier is
tested with both, simulations and experiments. Finally we introduce a clas-
sifier, which is robust to changes in illumination direction.



Chapter 1

Introduction

1.1 Motivation

This report is concerned with the application of texture analysis to clas-
sify rough textured surfaces. Side lighting which is used in many texture
databases, enhances the appearance of the surface texture but produces an
image, which is a directionally filtered version of the surface height function.
Except for [3] and [7], the effect due to variations in illumination direction
is neglected in the published literature. They pointed out, that a classi-
fier, which has been trained using images of surfaces at a given illumination
direction, which classifies well under these conditions, may not be able to
accurately classify the same surfaces illuminated under different directions.

In this report a new model for the behaviour of illuminated surfaces in fea-
ture space, which was proposed by [4] and investigated by [14] is used for
illumination invariant classification of surfaces. Laws’ masks as well as Ga-
bor filters are used to obtain features of the images.

Our aim is to develop a classifier, which is robust to the change of illu-
mination direction. First we develop a sub-problem, the illumination tilt!
independent classification, to validate the model for tilt invariance. The
classification is verified with both, simulations and experiments. The next
step is to develop a classifier, which is invariant to the illumination direction.
This classification is also verified by simulations and experiments. The final
step is to compare both classifiers in order to misclassification and accuracy
of illuminant direction estimation.

'Tn the axis system we use, the camera is parallel to the z-axis, illuminant tilt is the
angle the illuminant vector makes with the x-axis when it is projected into the xy-plane,
and illumination slant is the angle that the illuminant vector makes with the camera axis.
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1.2 Area of Research

This work uses a linear reflection model based on Kube and Pendland’s linear
model, investigated by [4] and [14]. A classifier can be divided in measure-
ment, feature extraction and discrimination. Measurement is the transfor-
mation of an illuminated surface to its image. Feature extraction is the
extraction of information from the image. The discrimination is described
by an algorithm, which uses the extracted features to assign the image to a
particular class.

To extract information from an image we use Laws’ masks and Gabor fil-
ters. Laws [11] formulated “texture energy measures” to extract information
from an image. The two-dimensional generalisation of Gabor filters was first
defined by Daugman [6]. Randen [12] compared filters for texture classifi-
cation and referred to Jain and Faarrokhina [9], which showed that Gabor
filters can be applied successfully to texture discrimination.

Kube and Pendland [10] presented a linearized model of the Lambertian
reflection model, which is valid for many natural surfaces. Chantler [4] used
this model to investigate the response of textures to illumination rotation. He
showed that the behaviour of texture features may be modelled as a sinoso-
dial function of the illumination tilt angle(r).

We use this model to develop a classification method, which is robust to
changes in illumination direction.

1.3 Dissertation Organisation

The dissertation is organised into six chapters. Chapter 2 contains the
background theory for this work. First we describe the Two-Dimensional
Fourier Transformation. Then a short introduction into filters used in im-
age processing is given. Also the Lambertian reflectance model and Kube
and Pendland’s linear model are described. These describe the connection
between the surface and its illuminated image. The chapter ends with an
introduction in texture feature generation followed by the model used for
illumination invariant classification in this work. Chapter 3 presents real
surfaces whereas Chapter 4 describes four synthetic surfaces, which are
used in this report. Starting with a detailed introduction into classification
Chapter 5 presents the classification model and the results for illuminant
tilt invariant and illuminant direction invariant classification of textures. Fi-
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nally Chapter 6 summarizes the results and conclusions of this work and
draws together conclusions for further investigations.



Chapter 2

Background Theory

The aim of this chapter is to introduce the basics, required to understand
this project. First we present the Two-Dimensional Fourier Transform, which
connects the spatial domain to the frequency domain. In the next section
we give a short overview about two dimensional filters and masks used in
texture analysis. Gabor filters and Laws’ masks are choosen for this project
so that they are discussed in detail. We introduce the Lambertian reflectance
model, which is a diffuse reflection model that describes the influence of
illumination to the image. Assuming distant point sources for illumination

and no self-shadowing of the surface itself, we reach the linearised reflection
model derived by Kube and Pendland [10].

2.1 Two-Dimensional Fourier Transform

This report is concerned with analysing and processing textured images. A
very important tool, which connects the spatial domain to the frequency
domain is the Fourier Transform. The two dimensional continuous form is
given in the next equation pair.

o0 o0

Flo,ws) = / / F(t, ta)e drtr g=deata gy g,
1
i

f(tla t2)

o0 o0
/ / (w1, wo) eI eIt gy iy
—00 — OO

where

f(t1,t9) 1is the signal in spatial domain and
F(wy,ws) is the signal in frequency domain.

4
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This transformation cannot be used for numeric calculations, because of
the infinite integrals, which can only approximately numerically calculated.
The Discrete Fourier Transform is appropriate to represent the Fourier Trans-
form for digital computer realization, because it is discrete and of finite length
in both the spatial and the frequency domain. Its two dimensional realiza-
tion, the Two-Dimensional Discrete Fourier Transform (TDDFT), is shown
in the next two equations.

1 —1N-1 o .
Fu) = oo 3 3 f (o y)e e
z=0 y=0
M-1N-1 . .
fy) = F (u, v)eti¥useti%oy
u=0 v=0
where
f(z,y) is the signal in spatial domain,

F (u,v)  is the signal in frequency domain and
M x N is the size of the image.

In image processing the TDDF'T is used pixelwise. If the horizontal dis-
tance between two pixels is given by Az and the vertical by Ay the interval
between two successive frequencies is:

Ay = —1 and Ay = L

M-Ax N-Az

Two very useful properties are:

- P(u,v) +b-Q(u,v)

Linearity a-p(z,y)+b-q(x,y) a
P(U, U) : Q(ua U)

Multiplication p(z,y) ®q(z,y)

The symmetrical relationchips of the Fourier Transform can be used to
simplify the calculation if the signal to be transformed is known.
Important relationships are:

Spatial domain Frequency domain

Real Real even & imaginary odd
Imaginary Real odd & imaginary even
Real and assymetrical Complex and hermetian
Imaginary and assymetrical | Complex and antihermetian
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and vice versa.
More properties and an investigation in detail can be found in [1].

2.2 Filter

In image processing filters are normally used to suppress either high frequen-
cies (lowpass filters), or low frequencies (highpass filters) in the image. Also
bandpass filters are used. Filters can be used to reduce the noise in the image,
to ‘blur’ images (remove detail), to highlight detail and so on. For classifica-
tion filters are used to extract features out of the image (to get the feature a
postprocessing stage as presented in section 5.1 on page 30 is needed). Beside
nonfiltering approaches for feature generation like co-occurrence (statistical)
and autoregressive (model based) features, linear and nonlinear filters are
used. A detailed discussion about filters for texture classification can be
found in [12]. Linear filters which are very popular in texture analysis are
Gabor filters, Laws’ masks, Wedge and Ring filters, Wavelet transforms etc.
Gabor filters and Laws’ masks are extensively used in this report, so that we
discuss them in detail.

2.2.1 Laws’ Masks

One of the first filtering approaches for texture identification was the use of a
bank of separable filters to get a two dimensional frequency band split. It was
presented by Laws [11], who used three one dimensional filters to generate
two dimensional filter masks (Laws’ masks).

The one dimensional filters are:

L3 =(1,2,1) Level detection,
E3=(-1,0,1)  Edge detection and
S3=(-1,2,—1) Spot detection.

Before illustrating the two dimensional approach of Laws, we will investi-
gate the one dimensional filters in detail. All these filters are used pixelwise.
(Note we investigate only a few specific filters to describe the groups of fil-
ters.)

Level detection filters
Level detection filters are lowpass filters. The simplest filter is the mean
filter, which is used to reduce noise in an image. It simply calculates the
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average value of its neighbour pixels including itself. Another level detection
filter is the Gaussian smoothing filter. It is similar to the mean filter, but
instead of constant filter values the filter shape is gaussian (“bell-shaped”).

Edge detection filters
Edge detection filters are highpass filters. They are used to find the bound-
aries between two areas of different levels.

Spot detection filters
Spot detection filters are bandpass filters.

Laws convolved these filters with each other, to provide a set of symmetric
and antisymmetric centre weighted masks with all but the level filters being
zero sum. He convolved these filters in turn with transponses of each other
to give various sizes of square masks. The most usefull filters he found are

(1 -4 —6 -4 -1
—2 -8 —12 -8 -2
E5L5 = | 0 0 0 0 O
2 8 12 8 2
1 4 6 4 1
1 -4 6 -4 1
—4 16 —24 16 —4
R5R5 = | 6 —24 36 —24 6
4 16 -24 16 -4
1 -4 —4 1
(-1 0 2 0 -1
—40 8 0 —4
L5S5 = | —6 0 12 0 —6
—40 8 0 —4
-1 0 2 0 -1
-1 0 2 0 -1
—2 0 4 0 -2
E5S5 = | 0 0 0 0 0
2 0 —4 0 2
10 -2 0 1

The letters L, E, S and R (Ripple detection) indicates the one dimensional
filters, which where convolved to generate the two dimensional filters. L5, S5
and R5 are lowpass, bandpass and highpass filters with zero phase whereas
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E5 is a bandpass filter that causes a phase shift of 90°. In the following the
generation of the two dimensional masks is shown for E5L5. The basic filters
for E5L5 are Edge detection and Level detection.

They are

L3 =(1,2,1) Level detection and
E3=(-1,0,1) Edge detection.

Its magnitude frequency responses are:

|Hps(w)| = ‘e‘jw +2+ ejw‘ = 2(1+ cos(w))
|Hgs(w)| = ‘—efj“’ + ej“" = 2sin(w)

Convolving the filters with itself, we get:

L5 = L3xL3=(1,2,1)x(1,2,1) = (1,4,6,4,1)
E5 = E3xE3=(-1,0,1)*(-1,0,1) = (-1,-2,0,2,1)

For the magnitude frequency responses, we get:

|Hps(w)] = 12(1 + cos(w)) - 2(1 + cos(w))| = 4(1 + |cos(w)])
|Hps(w)| = [2sin(w) - 2sin(w)| = 4 |sin(w) (1 + cos(w))]

The convolution of the transposed Level detection filter and the Edge
detection filter is shown in the next equation.

E5L5 = (E5)" % L5

—1 1 -4 -6 -4 —1
9 2 8 —12 -8 -2
= 0 |%(1,4,6,4,)=| 0 0 0 0 0
P 2 8 12 8 2
1 1 4 6 4 1

The magnitude frequency responses for the Laws’ filter masks are:
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Figure 2.1: White noise filtered with two dimensional Laws’ masks are shown
in frequency domain. On the left side the mask E5L5 is used and on the
right side the transposed mask L5ES is used.

|HE5L5(W1,CO2)| = |HE5(W2) 'HL5(¢01)|
= 4sin(wy)(1 4 cos(wsg)) - 4(1 + cos(wy)?)
|HR5R5(W17W2)| = |HR5(CU2) : HR5(W1)|

4(1 + cos(wy))? - 4(1 + cos(w;)?)
|Hps(ws) - Hss(wi)]
4sin?(wq) - 4(1 — cos(w)?)
|Hpsss(u,v)| = |Hpgs(ws) - Hss(wi)]

= 4sin®*(ws) - 4sin(w;)(1 + cos(w;)?)

|HL5S5(U7 U) |

The Laws’ masks are normally used in pairs of a mask and its transposed
mask. Transposition means that the filter matrix is transposed. For the
E5L5 mask the transposed mask is L5 E5. The magnitude frequency response
is the same for both masks, but there is a shift of 90° in the filter direction.
Figure 2.1 shows white noise filtered with an E5L5 Laws’ mask on the left
and a L5E5 Laws” mask on the right.
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2.2.2 Gabor Filter

Gabor filters are widely used in texture analysis. They became very popular
because the human vision system is also thought to use banks of directional
bandpass filters such as Gabor filters. Gabor filters are defined having a
Gaussian envelope modulated by a complex exponential. In the one di-
mensional case the filter is expressed in spatial and frequency domain by
equations 2.1 and 2.2. It is obvious that the filter can be described by the
extension of the Gaussian envelope o, the center frequency wg and the phase
displacement, ¢.

2

g(x) = exp[%] explj2mwo x + @] (2.1)
f
G(w) = exp[—2m0} (w — wy)?] + exp[—2m07 (w — wp)?] (2.2)

The equivalent two dimensional form, first introduced by [6] is described
in the next two equations.

1 22 92 .
o) = eapl—2 (5 + L) eapliarmuga] (2.3
2 02 oy
B 1, (u—mwuy) v° 1, (u+ug) 02
G(u,v) = A(€$p[—§(073 + U—g)] + 65517[—5(073 + 0—3)]) (2.4)
where Oy = 273% and o, = leay.

As with the one dimensional case, a two dimensional filter is completely
described by its center frequencies ug, vg and the standard deviations o, and
0,. Gabor filters can also be described by their centre frequency and their
directionality, which is defined as the direction of the maximum intensity. We
use the notation typeFCQFO to denote a Gabor filter with a centre frequency
of Q2 cycles per image-width and a direction of © degrees. The type of the
filter is either complex (com), real (real) or isotropic (iso).

Figure 2.2 (on the left side) shows the filter comF20A135 in frequency
domain. A Gabor filter (colours inverted) is shown on the right side of figure
2.2. Here the definition of center frequency €2, direction © and the nyquist
frequency fc of the filter is visualized. For classification a filter with a good
spatial resolution and a good spectral resolution is needed. The resolution
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"

j 0.5fc
Q

Figure 2.2: a) comF20A135 (real part) b) Visualization of filter parameters
in frequency domain

for Gabor filters in both, spatial and frequency domain, is dependent on the
standard deviation of the Gaussian envelope. For a one dimensional filter
in spatial domain the standard deviation is found in the denominator of the
exponential whereas for in the frequency domain it is found in the enumer-
ator. This causes a trade-off between spectral and spatial resolution. A
high resolution in spatial domain causes a low resolution in frequency do-
main and vice versa. This is also true in the two dimensional case. The
Gaussian envelope in the spectral domain is dependent on the reciprocal of
the standard deviation in spatial domain. Nevertheless Gabor filters exhibit
good localization properties in spatial domain as well as in frequency domain.

A simplification of the complex Gabor filter is the real Gabor filter, where
only the real part of the complex transfer function is used. The next equation
shows the transfer function of a real Gabor filter.

The advantage of much less computation is bought by the disadvantage
that the trade-off between the spatial variance and the bandwidth is no longer
optimal. The transfer function of the isotropic Gabor filter is given in the
following equation:
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A investigation of isotropic and real Gabor filters can be found in [14].

2.2.3 Filter Bank

In texture analysis, filters are used to determine features from images. The
number of features which are needed depends on the pre-knowledge of the tex-
tures. To solve a particular problem, a small set of features might be enough
to describe a particular texture, but for classification of a large set of textures
without any pre-knowledge a large bank of filters is needed. The selection
of the filters is also dependent on the classification problem. Without any
pre-knowledge the filters of a filter bank are choosen to cover a wide range of
different information of the textures. The Gabor filter banks which are used
in this report can be found in table 2.1. The Gabor filter bank 6 for exam-
ple contains the filters comF20A0, comF20A90, comF30A45, comF30A135,
comF40A0 and comF/0A90. The mixed filter banks are shown in table 2.2.
The covered area in frequency domain for each filter bank is presented in
appendix B.3 on page 83.

filter Gabor filter bank
12(10[8[6[4]3]2

comF20A0 X[ X | XX X[X]X

comF20A45 X | X |X

comF20A90 X I X[ XX X[|X|X

comF20A135 || X | X | X

comF30A0 X

comF30A45 X X[ XX |X|X

comF30A90 X

comF30A135 | X | X | X | X | X

comF40A0 X | X X

comF40A45 X | X

comF40A90 XX | XX

comF40A135 || X | X

Table 2.1: Gabor filter banks used for classification as well for real as for
synthetic surfaces
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Table 2.2: Mixed filter banks used for classification as well for synthetic as
for the real surfaces in database 1

2.3 Image Formation

The first steps of classification are measurement and feature extraction. For
feature extraction the physical surface has to be linked to its resulting image.
Postprocessing of the image results in features. In this section we describe
mechanisms to link the surface to its image intensity.

2.3.1 Lambertian Reflectance Model

When light illuminates a surface, two different types of reflectance occur. The
interface (or surface) reflection occurs at the interface between the surface
and the air. The fraction of the light that penetrates into the surface, is partly
absorbed and partly scattered around within the surface material. After that
it is reflected back to the surface into the air again. This type of reflection
is called body or diffuse reflection. The Lambertian reflectance model is a
diffuse reflection model, which describes the relationship between the surface
derivates and the image intensity. Diffuse reflection is widely encountered in
machine vision and must be modelled. The model shows that the perceived
intensity of a surface is only dependent on the relative geometry of the facet
and the illuminant direction. The radiant intensity varies with the visible
area of the facet while the radiance of the facet is constant to the viewer’s
position.

The equation



CHAPTER 2. BACKGROUND THEORY 14

(2.5)

describes this model assuming an orthographic projection of the surface
to the viewer. The radiant intensity ¢ is the normalized dot product of the
facet normal vector & and the illumination vector I times the albedo p of the
surface. This is only one model, which uses diffuse reflectance. Other diffuse
models were investigated, because the Lambertian model is inadequate for
many applications. A detailed treatment can be found in [7], which proved
that the Lambertian model is a good approximation for a wide range of
textures especially with low slope angles.

2.3.2 Kube and Pendland’s Linear Model

A feature model described by the Lambertian surface reflectance model, as
shown in section before, is very difficult to implement in a classification al-
gorithm because of the nonlinearities caused by the normalization factor.
Kube and Pendland presented a linear model based on the Lambertian re-
flectance model in [10]. The paper essentially applies a simplified version of
the Lambertian surface reflection model to an expression for the power spec-
tral density of the fractal height map. The following equations describe this
model for the assumption of an orthographic projection onto the xy-plane.

If we assume that:

e the surface is Lambertian,

e the surface is only illuminated by distant point sources and
e the surface is not self-shadowing.

We can derive the power spectra density from equation 2.5.

i(z = px sz, ) Jx,y) . 2.6
(z,y) p(z,y) ‘s(x,y)- (x’y)‘ (2.6)
Oh Oh
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i(x,y) 1is the radiant intensity,

p(z,y) is the albedo of the surface,

§(x,y) is the normal vector field of the surface height function h(z,y),
I(z,y) is illumination vector field,

p(z,y) is the slope in x direction and

q(z,y) is the slope in y direction.

The assumption of point sources at an infinite distance causes the illumi-
nation vector field to have a uniform direction.
The illumination vector is then described by:

I(z,y) = [cos(T) sin(c), sin(7)sin(o), cos(o)]

where
T is the illumination tilt angle and
o is the illumination slant angle.

The definition of tilt and slant angle is illustrated in figure 5.2 on page 31.

We get the normalized image intensity i(z, y) by

p(x,y) cos(T) sin(o) + ¢(x, y) sin(7) sin(o) + cos(o)
VP, y)? + (2, y)? + 1

Using the Taylor series of i(z,y) at the normal (p,q) = (0,0) we obtain:

i(@,y) = (2.8)

i(x,y) =~ p(z,y)cos(r)sin(o) + q(z,y)sin(7) sin(o) + cos(o) (2.9)
cos(o)
2

This approximation can be used if p,¢ < 1. Kube and Pendland [10]
stated that for real surfaces the maximum slope is rarely more than 15°, so
that (p(z,y)? + q(z,y)?) < 0.1. If the absolute value of the slant angle o
between the average illuminant and the viewer’s position is more than 6°
the linear terms in equation 2.10 will dominate. The report deals only with
slant angles between 30° and 75° so that we neglect the other case. For a
detailed investigation for the case |o] < 6° we refer to [10]. In the following
the case |o| > 6° is considered. Neglecting the last term in equation 2.10 and
transforming it to the frequency domain, we get the final equation:

(p(z,9)* + a(z,y)%)

I(w,0) = p*w? cos?(§ — ) sin*(0) H(w, #) (2.10)

where
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w,#) is the surface power spectrum,
is the image power spectrum,
is the albedo of the surface,

is the radial frequency and

is the polar angle.

=& ~x
&
=

This equation describes a linear dependency between the surface power
spectrum and the image power spectrum. This is essential for further inves-
tigations of this project.



Chapter 3

Real Surfaces

A short overview of the real textures used in this report is given in this chap-
ter. Two different databases are used to solve two different types of problems.
Database 1 contains images of 29 textures illuminated with an illumination
slant angle of 45° and illumination tilt angles between 0° and 180°. We use
this database for classification of textures with known slant, but unknown
tilt angle. In real cases the illumination slant angle is also unknown so that
the classification algorithm is extended to classify textures with unknown
illumination slant and tilt. For this classification we cannot use database 1,
because it contains no further information about the behaviour of the illu-
minated textures in slant direction. Database 2 contains information about
the behaviour of rough textures that have been illuminated from various di-
rections of tilt and slant. It represents an extension of database 1 where the
images captured with a new camera varying the illumination source. We use
the terms illumination tilt angle and illumination slant angle to represent the
illumination direction, because they are commonly used in texture analysis.
Figure 5.2 on page 31 explains them. The illumination tilt angle describes
the angle in the horizontal plane whereas the illumination slant angle de-
scribes the angle in the vertical plane. Zenith and azimuth are alternative
terms for slant and tilt repectively.

17
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3.1 Database 1

Database 1 contains 29 real world textures captured with an illumination
slant angle of 45° and illumination tilt angles between 0° and 180°. For
textures and1 to and7 the illumination tilt angle of two consecutive images
is 15° whereas for the other textures the difference is 10°. The database
encloses textiles, rocks, stones, wallpapers and several kinds of food. One
image of every texture illuminated with 45° of slant and 0° of tilt can be
found in appendix B.1 on page 81.

3.2 Database 2

Database 2 contains 25 real world textures choosen out of the Pho Tex Database,
which can be found under the URL:
http://www.cee.hw.ac.uk/texturelab/database/dbase/index.html .
The database contains most of the textures of database 1 recaptured with a
new camera varying the illumination source. Every texture is imaged with
two different slant angles (45° and 60°) and illumination tilt angles between
0° and 180° in steps of 30°. One image of every texture illuminated with 45°
of slant and 0° of tilt can be found in appendix B.2 on page 82.



Chapter 4

Modelling Rough Synthetic
Surfaces

4.1 Introduction

In this section we introduce a model of syntetic surfaces. Although there are
disadvantages to use simulated surfaces for classification instead of real tex-
tures, synthetic surfaces are useful for investigating the boundary conditions
of the classifier. Consider a texture to be a realisation of a two dimensional
random process the texture can be described by its means and its phase. Sinn
[15] investigated the necessity of the phase spectrum for structured surfaces,
because here most of the information is in the phase spectrum. For un-
structured surfaces the phase spectrum is assumed to be equally distributed.
This report deals only with unstructured syntetic surfaces so that the phase
spectrum is neglected. Modelling signals where a certain degree of spatial
cohesion or correlation is expected, first order statistics only give a limited
insight into their behaviours. Because of this it is customary to characterize
textures by their second order statistics. While the autocovariance function
(ACF) is used to characterize texture in spatial domain, in frequency do-
main its Fourier equivalent, the power spectral density (PSD) is used. The
surface height map is generated from the surface height function using the
Inverse Discrete Fourier Transform. In order to select directional surfaces as
well as isotropic surfaces, we select four different surfaces and investigate the
behaviour due to changing illumination direction. Therefore we illuminate
the generated surface height maps with a Lambertian reflection model (can
be found in section 2.3.1 on page 13) varying the illumination direction, cal-
culate the best fit feature equations for every slant angle. The feature curves
and its values are plotted.

19
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4.2 Fractal

The first model we investigate is a fractal model, which models natural sur-
faces. The PSD of Fractal is shown in equation 4.1.

w3

S(w) (4.1)

The bode plot of Fractal is a straight line (angle of 45°). The information
is held in the lower frequencies, which means that the illuminated surface is
uneven.

fractal-30-0-fr

fractal-30-60-sp fractal-75-60-sp fractal-30-60-fr

Table 4.1: On the left side and in the middle illuminated surfaces of Fractal
with a tilt slant angle of 30° (left) and 75° (middle) and a tilt angle of 0°
(figure at the top) and 60° (figure below) are shown. On the right side the
(to the left side) correspondent PSD are shown.

Table 4.1 shows surfaces and their PSD illuminated with different illumi-
nation directions. We use the nomenclature model-o-7-domain to describe
the illumination direction of the image, where o is the illumination slant an-
gle, 7 is the illumination tilt and domain is either the frequency domain (fr)
or the spatial domain (sp).

A description of the illuminant angles can be found in figure 5.2 on page 31.
Both figures on the left side are illuminated with an illumination slant angle
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Figure 4.1: Feature values and the corresponding best fit curves of the Gabor
F20A45 filtered synthetic surface fractal

of 30°. The texture, rough and uneven, looks like rocks. Changing the illu-
mination slant angle to 75° the image energy falls. The left side of the table
shows the PSD for the surfaces illuminated with a slant angle of 30°. The
isotropic behaviour due to illumination rotation as well as the distribution
of the image energy can be seen. The level of grey value is proportional to
the image energy so that for w = 0 (the center of the figures) the image en-
ergy is high. The isotropic behaviour can be seen by comparing both figures.
Changing the illumination direction cause a change in the direction of the
energy in the PSD.

Figure 4.1 shows the behaviour of a fractal dependent on the illumination
direction in feature space. The feature values which are dependent on the
illumination tilt angle, describes a sinosodial curve in feature space. The
best fit curve is approximated by the feature values. Every best fit curve
describes different illumination slant angles. It can be seen that independent
of the slant angle the best fit curves fit well so that we assume good results
for classification as well as for estimation of illumination tilt.
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4.3 Mulvaney

The Mulvaney surface is model developed for machined surfaces. Machined
surfaces are assumed to be rough, but even so that the image energy is
modeled up to higher frequencies. The bode plot is a horizontal line for low
frequencies and a straight line (angle of 45°) for high frequencies.

S(w) = ki (ksw?® + 1) 2 (4.2)
Equation 4.2 shows the PSD of a Mulvaney surface.

A AT O

R dnas R
malfin-30-0-sp malfin-75-0-sp

malfin-30-0-fr

iz e

malfin-30-60-sp malfin-75-60-sp malfin-30-60-fr

Table 4.2: On the left side and in the middle illuminated images of a Mul-
vaney surface with a tilt slant angle of 30° (left) and 75° (middle) and a tilt
angle of 0° (figure at the top) and 60° (figure below) are shown. On the right
side the (to the left side) correspondent PSD are shown.

Table 4.2 shows a set of illuminated surfaces and its PSD in the same
order as that for the fractal surface. It can be seen that the surface is even
and that the effect of shadowing for high illumination slant angles is low. The
figures on the left side show the PSD of a Mulvaney surface for illumination
tilt angles of 0° and 60°. The isotropic behaviour as well as the low energy
for low frequencies and rising energy for higher frequencies is shown.

Figure 4.2 shows the behaviour of a Mulvaney surface in feature space.
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Figure 4.2: Feature values and best fit curves of the Gabor F20A45 filtered
synthetic surface Malfin

The feature values fit very well to the best fit curves so that we expect a
good accuracy for the classification of a Mulvaney surface.
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4.4 Ogilvy

The last two synthetic surfaces we will introduce are directional. While the
PSD of the last two surface models where independent of the image direction
the Ogilvy PSD is dependent on both surface directions.

1 1
S(u,v) = ky———— (4.3)

A2+u? A3+v?

Equation 4.3 represents the PSD of an Ogilvy surface. In u as well as in
v direction the Ogilvy surface acts like a fractal. Choosing the image energy
high in one direction and low in the other direction, the surface gets highly
directional. Choosing the image energy high in both directions the surface
gets directional in both directions.

ogil-75-0-sp ogil-30-0-fr

0gil-75-60-sp ogil-30-60-fr

Table 4.3: On the left side and in the middle illuminated images of an Ogilvy
surface with a tilt slant angle of 30° (left) and 75° (middle) and a tilt angle
of 0° (figure at the top) and 60° (figure below) are shown. On the right side
the (to the left side) correspondent PSD are shown.

Table 4.3 presents illuminated surfaces and its PSD of an Ogilvy. The
illuminated surfaces show the directionality and the behaviour due illumina-
tion direction changing. Only less shadows occur so that Ogilvy surfaces fits
well to our assumptions of the classifier.
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Figure 4.3: Feature values and best-fit-curves of the Gabor F20A45 filtered
synthetic surface ogil

The assumption of accuracy is underpinned by figure 4.3, which shows a
very good fit of the best fit curve to the corresponding feature values.
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4.5 Sand Ripples

Sand ripples is a highly directional fractal surface, which has all its energy in
one direction. The PSD that of a fractal surface, where the peak frequency
is moved away from DC.

1
(f - Fpeak)ﬁ
Where the peak frequency Fjq is given by

Fpeak: \/me_‘_f??

and the direction © of the texture is given by

S(w) = (4.4)

0= tan’l(&)
fa
The classification of directional surfaces is demanding related to the fea-
ture generation. If only directional bandpass filters are used the feature
values are low when the filter direction differs from the surface direction.
Another essential problem is shadowing, which occures if the illumination
direction is changed. The figures in table 4.4 show that shadowing occures
for all the viewed slant angles. The PSD of Sand ripples are only two peaks
(the harmonics fall into the viewed frequency range). Changing the illumi-
nation direction has no effect of the image direction, the only effect is the
change of the level of the image energy.
As assumed the feature values in figure 4.4 vary large from the best fit
curve so that an accurate classification of Sand ripples is not expected.
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-

| i
sand-30-0-fr

sand-30-60-1r

sand-75-60-sp

Table 4.4: On the left side and in the middle illuminated images of Sand
ripples with a tilt slant angle of 30° (left) and 75° (middle) and a tilt angle
of 0° (figure at the top) and 60° (figure below) are shown. On the right side
the (to the left side) correspondent PSD are shown.
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Figure 4.4: Feature values and best fit curves of the Gabor F20A45 filtered
synthetic surface Sand ripples.



Chapter 5

Texture Feature Generation

5.1 Introduction

Feature extraction is a fundamental subprocess of the classification problem.
In this chapter we start with a short overview over popular and useful feature
extraction techniques. After that we introduce the feature generation using
linear filters and image energy, which is used in this dissertation.

5.1.1 Feature Extraction Techniques

Feature segmentation and classification is a wide area of research. Roughly,
feature segmentation can be categorized into:

e feature selection,
e feature extraction and

e feature reduction.

In the following we treat the feature extraction, which is essential for
supervised classification. The main purpose of texture feature extraction is
to map differences in spatial structures, either geometric or stochastic into
differences in grey value.

As shown in figure 5.1 feature extraction can be categorized into struc-
tural, feature based and model based. There is no strict border between fea-
ture based and model based methods. Because model parameters are used
as texture features, model based methods could be considered as a subclass
of feature based methods. The structural methods assume that there exist
well defined texture primitives, which compose the textures. Model based
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Figure 5.1: Overview on feature extraction techniques according to Reed and
Du Buf [13](claims no demand of completeness)

methods can be categorized into fractal and stochatic models. Based on a
specific model, (which can be used for generation of synthetic surfaces) the
parameters that model the textures best are used as features. Feature based
methods are widely used. We can devide them in two groups. The first group
uses unique features like operator based features, statistically based features,
transform domain features and others. An example for operator based fea-
tures is the convolution with center weighted filter masks, like Laws masks
with the image. The second group is using unique segmentation features.
These are region-based, boundary-based and hybrid methods.

So far, we have considered texture extraction methods as being either
feature based, model based or structural in nature. Another approach which
is used in texture analysis is to group the techniques into statistical methods
and those using spatial-frequency or spatial/spatial frequency methods. In
the past statistical methods seemed to be superior compared to the spatial-
frequency or spatial/spatial-frequency methods, because in the early fre-
quency analysis methods there was no possiblility to investigate the local be-
haviour in spatial as well as in frequency domain. Spatial/spatial-frequency
methods are based on image representations that indicate the frequency con-
tent in localized regions in the spatial domain. Such methods are able to
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Figure 5.2: Measurement Setup (taken from PhoTex database)

archieve a high resolution in both the spatial and spatial-frequency domains
and are consistent with recent theories on human vision.

We use a spatial /spatial frequency method to extract the features. The fea-
tures are able to characterize local properties of the image so that with a
set of features we are able to distinguish between textures as well as for
illuminated textures with different illumination directions.

5.1.2 Feature Measurement and Generation

The extraction of features from a texture is divided into two sub-processes.
The first sub-process is the measurement.

Figure 5.2 shows the measurement setup. The camera is placed perpen-
dicular to the test surface. For illumination of the texture we use a light
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Figure 5.3: Simulation Setup

source, which is assumed to produce parallel light beams equally to a point
light source at infinity distance. This is necessary to assume the illumination
process as a linear process. We can take shots of the texture under differ-
ent illumination directions. The camera has no postprocessing stage so that
we get the illuminated image of the texture. In the feature generator the
illuminated image is filtered with different linear filters followed by a vari-
ance estimator. Linear filters are needed to get a filtered image, which is
proportional to the illuminated image, so that the feature output is a linear
function of the illumination process.

Figure 5.1.2 passes the simulation and test setup to generate the fea-
tures. As described above the real surfaces passes through an illumination
process, are transformed into the frequency domain, filtered with Gabor fil-
ters, transformed back into spatial domain and finally a variance estimation
process extracts the features. The difference for synthetic surfaces is that here
the surface height map passes through a Lambertian reflection algorithm to
generate illuminated surfaces.



Chapter 6

Classification

6.1 Introduction

The aim of this chapter is to present a new classification method using lin-
ear feature generation. First we give a short introduction of classification
techniques, then we present a classifier based on Kube and Pendland’s lin-
ear model that uses a Maximum Likelihood approach for discrimination. We
verify the functionality of the classifier with two different problems. The first
is to classify illuminated surfaces with unknown tilt but known slant. This
is a simplification of the main problem, to classify illuminated surfaces with
unknown tilt and slant angle.

6.2 Classification Techniques

Many different texture classification algorithms have been reported in liter-
ature in the last years. Rotation invariance or illumination invariance are
important problems in texture classification. Classification consists of mea-
surement, feature extraction and discrimination. In general, texture classi-
fication can be divided into supervised and unsupervised classification. Un-
supervised classification techniques are mostly automated, while supervised
classification normally requires human input in the classification process.
The main difference between the techniques can be found in the class gener-
ation process. For unsupervised training the training data is used to separate
the classes without any previous assumptions about their spatial distribution
on the image. Supervised training assumes prior knowledge about the spa-
tial distribution of the classes on the image. The final stage of the image
classification process is the discrimination of the image, either pixelwise or
areawise.
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6.3 Classification using Kube’s Linear Model

In this section we describe a general model for a supervised classifier of
texture surfaces. We assume the test textures have the following properties:

e Lambertian reflection,

e no self- or cast-shadowing,
e no interreflection,

e small slope angles and
e orthographic projection.

Later we will discuss the problems that occur when textures fail to perform
some assumptions. The first two parts of our classifier, measurement and
feature extraction, have already been described in previous chapters. Now
we will concentrate on the main process of classification: discrimination. As
presented in chapter 2.3.2 on page 14 the behaviour of illuminated surfaces
can be described by equation 2.10:

I(u,v) = p*w?cos*(0 — 7) sin®(0) H(w, 0)

We use a feature generator, which is a combination of a linear filter and
a variance estimator.

f(1) = VAR(o(x,y))

Where o(x,y) describes the output of the linear texture filter. As shown
in [14] the best fit feature equation can be derived as follows. Assuming the
average of o(x,y) as zero, we get:

f(r) = / /O(w,ﬁ) dz dy
00 2T
= /w3sin2(a) /0052(0 —7)A(w, 0) df dw
0 0
00 2T

— /w33m2(a) / % [1+ cos(26)cos(2T)

?I—sin(29)sm(2r)]A(w, 0) df dw
= asin®(o) + beos(27) sin(0) + csin(27) sin? (o) (6.1)
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where
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A(w, 0) df dw
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cos(20)A(w, 0) df dw
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sin(20)A(w, 6) df dw
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A(w, 0) is the notional power spectrum of the output of the linear texture
filter applied directly to the surface height function.
The above parameters a, b and ¢ are all functions of the surface height func-
tion and the linear filter of the texture feature, but none is a function of
illuminant tilt angle(7) or illuminant slant angle(o). For this reason it is
sufficent to know a, b and ¢ in order to describe the behaviour of texture
features as a function of the illumination direction. The parameters can be
calculated by extracting the texture features for every surface and every lin-
ear filter with several different values of illumination tilt and illumination
slant. For every texture filtered with n linear filters we get:

4 = nsin?(o) 32:1 Ji
9 N

bi = nsin2( );COS(TJ) (fj — ai)
2 N

¢ = MTQ(U);SIH(TJ‘) (f; — ai)

where 7 = (11,72, 73, ..., Tv)" covers exactly one period.
Filtering every surface with n linear filters the behaviour of a surface in
feature space can be described by its feature vectors @, b and ¢, where:

== (alaa’27a3a"'7an)T

(bla an b3a (RS bn)T

(Cl, Co,C3, ..., Cn)T

o o S
I
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The standard deviation s; of the feature values to the corresponding best
filt curve can be calculated by the following equation:

1 N

5= || o 25 Vi) = (ot bucos(r) + cusin(r,))

where

fi(75) is the feature value i for a texture illuminated
with a tilt angle of 7;

An elementary investigation of this model can be found in [5] and [14].

6.3.1 Maximum Likelihood Approach

In the previous section we derived the theoretical behaviour of texture fea-
tures due to illumination direction changing. To model the behaviour of tex-
tures caused by changes in the direction of the light source and to consider
the effects of background noise, shadowing nonlinearities etc., we choose a
multivariate Gaussian distribution model. We explain the reasons for choos-
ing a Gaussian distribution in section 6.4.1 on page 38. The real behaviour
of texiare featmwdeled by the following equation:

1 i — i)’
fi(Ta ¢) = \/%O—.exp[_ (y 282“)

2

] (6.2)

where
p; = sin® (o) (a; + b; cos(27) + ¢;sin(27))

and y; is the real feature value. For every surface filtered with n different
linear filters, we get:

f(T, o) = (fi(r,0), fo(,0), fs(1,0), ..., fu(r,0))T (6.3)

The idea of classification is to identify the texture, to which all the vector
elements are nearest. For the given probability density functions f;(7,0),
where the unknown values are 7 and o, a solution can be found by maximiz-
ing the product of all the probability density functions. A solution of this
problem is the Maximum Likelihood approach, which is a method for deter-
mining estimators and their parameters. A detailed introduction of the use
of estimation algorithms in signal processing can be found in [8]. In our case
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the Likelihood function L(7,0) is the probability density for the occurence
of a sample configuration a;, b;, ¢; and s; where i defines a choosen surface.

L(r,0) := fi(r,0) - fa(7,0) - fs(1,0) < ...« fulT,0)

The Maximum Likelihood estimator (7, &) are the values for which L(7, 5)
is maximal. This is defined by the condition:
d L(a) din L(7,6)

=0 or

da da

The Maximum Likelihood estimator is:

e consistent,
e at least asymptotically unbiased,
e sufficent and

e best asymptotically normally distributed (BAN) estimator.
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6.4 Classification of Illuminated Surfaces with
unknown Tilt

As shown in the introduction, changes of illumination significantly can change
the appearance of a 3D surface. In this section we specify a general model
to get a discrimination algorithm, which is able to classify textures and to
estimate their illumination tilt direction. We assume that the illumination
slant angle is unknown, but constant for training and classification.

6.4.1 Tilt direction independent classification model

In section 6.3 on page 34 we derived a general model of our feature extraction
algorithm (equation 6.1 on page 34).

We got:
00 27r1
f(r) = [w?sin®(0) [ =[1 4 cos(26) cos(27)
[
+sin(26) sin(27)] A(w, 0) df dw
= asin’®(0) + bsin?(0) cos(27) + csin’(o) sin(27)
where:

1,
a = §sm(0)

w

Aw, 0) df dw

S

1
b = 551’712(0)

cos(20)A(w, 0) df dw

1
c = gsin (0)

w

sin(20)A(w, 6) df dw

S

If the slant angle is known, we obtain:

f(7) =d+ ecos(27) + fsin(27) (6.4)

where
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d = asin*(o)
e = bsin®(o)
f

= csin’(0)

The above parameters (d, e and f) are all functions of illuminant slant
(0), the surface height function and the linear filter of the texture feature,
but none of them is a function of illumination tilt. Thus these parameters
can be used for illumination tilt invariant classification. To use this model
for real textures we have to investigate the effect of noise. The term noise
is used as a collective term that includes quantisation noise and temporal
noise. As shown in [7] the noise can be modelled as a white noise source. We
choose a Gaussian distribution function to model the effect of noise in the
image. The Gaussian distribution is defined by its mean and its variance.
The mean is assumed as the values of the feature function. Assuming an
ergodic process the variance of the Gaussian distribution is equal to the
variance calculated by the differences between the measured feature values
and its approximation.

The Gaussian distribution is defined as:

= - 6.5
oV 2w 202 (6.5)
where y is the input value, y is the mean and o is the variance. For a
featureset of a texture, generated with one linear filter and several images
with different illumination tilt angles, we get d;, e;, f; and the variance s;.
The mean can be derived as:

wi(T) = d; + e;cos(27) + fisin(27) (6.6)
rewriting equation 6.5 gives:

__ 1 (yi — (d; + e;cos(27) + f;5in(27))
gl(Ta ?Jz) - Si\/ﬁ 655]9[ 232

)

]

filtering the texture with n different filters we get :

G = [gg(T, yo)a 91(7: y1)7 P gN(Tv yn)]

Assuming independence of the errors estimated for every texture we can cal-
culate the product of g;(7,y;) where i is the feature function using the i
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filter. The resulting function describes the membership of image y belonging
to a texture in the multidimensional feature space. A high result leads to a
close relationship of the image to belong to the texture. Calculating the max-
imum of this function, which is only dependent on the illumination direction
we can estimate the direction of the unknown image. This procedure is equal
to the Maximum Likelihood (ML) estimation. The discrimination algorithm
describes a ML estimation of the illumination tilt direction for a specific tex-
ture. The ML estimator itself describes a value, which is proportional to
the probability that the unknown image belongs to this texture. Choosing
the texture where the ML estimator is maximal we get an estimation of the
unknown illuminated image.

As described in section 6.3.1 on page 36 before, the Likelihood function L(7)
is the product of the feature functions.

L(t) = go(T,%0) - g1(7,01) - - - gn (T, ynN) .
1;[1 S\/lﬁ expl— (y; — (d; + eicoséi;') + fisin(27))) ]

The value 7(yo,y1,-..,yn) for which L(7) is maximal is the Maximum
Likelihood estimator.
It is defined by the condition:

6.7)

dL(a) _
da 0
To simplify we take the natural logs:
dl
n L(a) _0
da
We get:
) b &1 (y; — (d; + e;eos(27) + fisin(27)))?
— In(L = —I1 —
57_ n( (7—)) 57_ nizl_[ls\/%exp[ 20.2 ]
0 & 1
= —>) 1 6.8
57 (o) (69

§ & (y; — (d;i + e; cos(27) + f;sin(27))?

B EZ 281'
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This equation can be solved either numerically or by subdividing the sum
and substituting sin(27) = X.
Equation 6.8 results in a 4 order polynomial.

AX*+ BX*+CX*+ DX +E=0 (6.9)

The solutions of this equation can simply be found by calculating the
roots of the polynomial. We get four solutions for X, which corresponds to
eight possible solutions for 7. Choosing the solution, which maximizes the
Likelihood function, we get a estimation of tilt beside the value of L(7) for
each surface in the database. We can discriminate the unknown surface by
choosing the surface with the highest Likelihood value. The result is beside
the classification of the surface the estimation of the illumination tilt angle.
In the next section we validate this model with a simulation of four synthetic
surfaces and experiments using two different databases of 29 and 25 different
real world textures.
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6.4.2 Simulations and Experiments

This section is divided in two parts, simulation using synthetic surfaces and
experiments using real world textures. The synthetic surfaces are used to
validate the classification algorithm.

Simulations
The first part consists of a simulation of four different synthetic surfaces
imaged with illumination tilt angles between 0° and 180° in 10° steps and
illuminated slant angles of 30°, 45°, 60° and 75°. For every slant angle we use
the tilt angles 0°,20°,40°,...,160° to train the classifier and the remaining
for classification. The training database consists of the estimated parameters
d;, e;, f; and the variance s; for every trained surface.

root mean square tilt error [degq]

| l
o . v

12 g 4
mfractal oogil number of Filters

B malfin mzand ripples

Figure 6.1: Root mean square error of synthetic surfaces as a function of
number of filters

As discussed in section 4 on page 19 we expect good results for the Ogilvy
and Fractal surface as well as for the Mulvaney surface Malfin. For Sand rip-
ples we expect bad results as well for low as for high slant angles. We use
three different complex Gabor filter sets with four, eight and twelve filters.
This is a total amount of 12 classifications (four datasets with different slant
angles filtered with three different datasets). Surprisingly no misclassifica-
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tion occured. Even in the worst case, for the dataset imaged with a slant
angle of 75° and a filter bank of only four filters all images are classified
correct. Problems occured for the estimation of the illuminant tilt angle. As
expected the tilt error for Sand ripples is always much higher than for the
other surfaces.

First we will give a short overview about the range of the tilt errors, then we
discuss the classification results where the tilt error is large.

Figure 6.1 on the page before shows the root mean square tilt error as a
function of the filter bank. We want to point out that the filter banks are
choosen intuitively so that they are not choosen for a specific problem. The
errors presented are the mean of three classifications for the different slant
angles. That means that the root mean square error for Fractal for the
Gabor filter bank 12 is the mean of the root mean square errors that oc-
cured for Fractal filtered with the Gabor filter bank 12 with the slant angles
30°,45°,60° and 75°. It can be seen that except Sand ripples for all surfaces
the illumination tilt angle is estimated well. As expected the root mean
square error for Sand ripples rises up to more than 10° for a slant angle of
75°. Equation 6.10 on the following page defines the root mean square error.

0
8
B
4
| I
o A—J . . .
30 45 60 75

mfractal o ogil slant_angle [deg]

root mean square tilt error [deq]

B malfin | sand ripples:

Figure 6.2: Root mean square error of synthetic surfaces as a function of
slant
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€rms — J l Xn:(TZ - 7A—)2 (610)

nG3

T; is the real illumination tilt angle and
T is the predicted illumination tilt angle.

In the following the abbrevation rms error instead of root mean square
error is used.

In the same way as for figure 6.1 on page 42 we can calculate the mean of
the used filter banks. Figure 6.2 on the preceding page shows the mean rms
error for the surfaces as a function of the illumination slant angle. The figure
shows that except Sand ripples the rms error is independent of the slant angle.
Summarizing both results shows that if the surfaces fits the assumed linear
illumination model, the classifier is able to detect beside the surface itself the
illumination tilt angle well. If the features of the illuminated surfaces differ
obvious from the feature model, we get a less accuracy for tilt estimation and
misclassifications can occur. Now we will investigate the accuracy problems
of Sand ripples in detail for the Gabor filter bank 4 and a slant angle of 30°
and 75°.

a0 4

70

=1]

50

40

30

tilt error [deq]
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miractal 75 o ogil_75 tilt angle [deg] Root mean square tilt error.
¥ Z o fractal_75: 0303256 ogil_75: 0102387
m malfin_75 msand_ripples_75 malfin_75 0127666 sand_ripples_75: 26.94336

Figure 6.3: Tilt error for four synthetic surfaces for a slant angle of 75°
filtered with four different complex Gabor filters.



CHAPTER 6. CLASSIFICATION 45

Figure 6.3 on the page before represents the worst case that occured.
The figure presents the estimated tilt error between the input image and the
classified image as a function of the illumination tilt angle. For all surfaces
except Sand ripples the tilt error is below 1°. For Sand ripples the tilt error
rises up to 77° so that a accurate estimation of illuminant tilt with the Gabor
filter bank 4 is impossible for high slant angles. To get better results for Sand
ripples we investigate the effects that occur when we use the Gabor filter bank
12, which contains 12 complex Gabor filters.

tilt error [deg]

-5 -

|fractal_75 Dogil_75 tilt angle [dey] |Root mean square tilt error:
& A= fractal_75 0107308 ogil_?5 0088782
® malfin_75 8 sand_ripples_75 malfin_75: 0.102365 sand_ripples_75: 1.246717

Figure 6.4: Tilt error for four synthetic surfaces illuminated with a slant
angle of 75° filtered with 12 different complex Gabor filters.

Figure 6.4 shows the estimated tilt error for Gabor filter bank 12 and a
illumination slant angle of 75°. It can be seen that the maximum tilt error
decreases to 3° absolute. The accuracy of the classification result is ‘bought’
with an increasing of the neccessary image information.

Finally we investigate the behaviour of the estimated tilt error by varying
the illumination slant angle. Figure 6.5 on the next page shows the estimated
tilt error as a function of illumination tilt using Gabor filter bank 4 for a il-
lumination slant angle of 30°. Although we guess that the classifier is able to
classify both the surface and the illumination tilt angle well (we recognized
a rms error of less than 2°) the maximum of the absolute tilt error for Sand
ripples is more than 5°. In appendix A.1 on page 73 the tilt errors for classi-
fication with four filters for surfaces illuminated with slant angles of 45° and
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tilt error [deg]

miactal_30 @ogil_30 tilt angle [deg] Root mean square tlt error:
fractal_75: 0.237487 ogil_75: 01360455
m mialfin_30 m sand ripples_30 malfin_75: 0161282 sand_ripples_75: 2.362364

Figure 6.5: Tilt error for four synthetic surfaces illuminated with a slant
angle of 30° filtered with 4 different complex Gabor filters.

60° are shown. The behaviour of the surfaces is similar to the classifications,
which where investigated just before.

The investigation of synthetic surfaces for a illuminant tilt independent
classification showed good results for most of the surfaces. Only for Sand
ripples we got large estimated tilt errors as expected.

Experiments

The next step is to classify real world textures. Two different datasets where
classified with two different filter bank sets. Both databases can be found
in appendix B on page 80. Database 1 contains 29 real world textures im-
aged with tilt angles between 0° and 180° in 10° steps rspective for and1 to
and7 in 15° steps. The illumination slant angle is fixed at 45°. We used sev-
eral different constellations of mixed filter banks and also different training
datasets to classify the textures. For classification of database 1 (see ap-
pendix B.1 on page 81) the filter banks are choosen out of two Laws’ masks
(L5E5 and FE5L5), one real Gabor filter (realF25A45), one isotropic Ga-
bor filter (isoF'25) and five complex Gabor filters (comF25A0, comF25A45,
comF25A90, comF25A135 and comF50A45). The constellations of the dif-
ferent filter banks can be found in 2.2.3 on page 12.
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Figure 6.6: Percentage of misclassified images as a function of filters and
training values for database 1

Figure 6.6 shows the total percentage of classification errors as well as the
percentage of failed calculations using different filter banks for feature extrac-
tion and different sizes of the training dataset. A failed calculation occures,
when the discrimination algorithm is unable to calculate a ML estimator for
the correct surface that means that the roots of the polynomial where not
found. If only three or two filters are used, the classification accuracy is bad.
For three filters nearly 10% of the images are misclassified. For practical use
normally a classification error less than three or four percent is tolerable so
that a minimum of four filters are needed to classify database 1. The result
is also dependent on the size of the training dataset. The term “four half”
means that for this classification four filters are used, half of the database
is used for training and half for classification. ”Siz quater” means that six
filters are used and only one quater of the database is used for training and
three quaters are used for classification. If only a quarter of the images are
used for training the misclassification error rises rapidely. While there where
no misclassifications if only six filters are used and half of the images are
used to train the classifier, we got a misclassification rate of more than 3%
if only a quater of the images are used for training. We recognized, that the
Laws’ masks that are only used in the mixed filter bank 9 contain no further
information compared to the other filters to get a better classification accu-
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Figure 6.7: The rms error of tilt for classification using four, six and nine
filters.

racy. So for further investigations we used filter banks that only contains
Gabor filters. We want to point out that the mixed filter banks we used, are
not optimal for classification problems, because of overlappings of filters in
frequency domain. Plots of the scanned frequency range of the filter banks
can be found in appendix 2.2.3 on page 12.

The tilt error is exemplified for nine, six and four filters using half of the
database for training. Figure 6.7 shows the rms error of tilt for all surfaces
in database 1. Except and7 and cardl the rms tilt error is less than 10°.
The surface card! is highly directional as Sand ripples so that all information
of the image is concentrated in one frequency. Using nine filters for feature
extraction, we get an average rms error of 2.69°. For six filters the average
rms error rises slightly to 2.88° whereas we get an average rms error of 3.82°
if only four filters are used for feature extraction.

A great disadvantage of the used ML-approach is, that when only one of
the extracted features helds completely wrong information of the image, the
value of the ML estimator gets low, which can cause misclassifications and
calculation failures. If a feature helds no information about the image the
effect of noise controls its behaviour due to changes in illumination direc-
tion, which is assumed as gaussian distributed. The model we use is able
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to describe this effect, but if only a few feature values are used for training,
the algorithm predicts a feature curve, which fits the feature values used for
training very well so that a small variance is calculated instead of a much
higher variance we get, if more feature values are used. If we classify highly
directional surfaces illuminated with a certain direction some features held
no information of the image so that noise dominates. This is the case for
cardl and also for and7 if only four filters are used.

Because of the lack that database 1 contains only images with an illumi-
nation slant of 45° so that it cannot be used for classification with unknown
tilt and slant, we had to introduce the new texture set database 2. This
database does not represent a complete set of new textures, it rather uses
old textures, imaged with slant angles of 45° and 60° and tilt angles between
0° and 180°. The tilt distance between two cosecutive images is 30°. We
use the tilt angles 0°, 60° and 120° for training and 30°, 90° and 150° for
classification. The feature value we got for an illuminant tilt angle of 180° is
neither used for training nor for classification, because using it for training
would rise the influence of the best fit curve at the illumination tilt angle
0°, which is equal to 180° compared to the other feature values. We did not
use this feature values for classification, because we assumed a w-periodic
sinosodial function of the feature values in feature space so that the similar
feature value is already used for training. For less training values the accu-
racy of the estimated best fit feature curves to the feature model gets lower
so that the estimated tilt error rises. Because we assume an ergodic process,
we calculate the variance using the tilt deviations between the feature curve
and the extracted features. This causes the problem that for less training
values the feature curve gets closer to the feature values and the variance
gets lower. The resulting process is no longer ergodic. Although we know
this problem in our case we assume the process as ergodic to keep the size
of the image database small. So beside the less accurate estimated feature
curves the Gaussian distribution function gets narrower. For this reason we
assume a larger tilt error for database 2 than for database 1.

Figure 6.8 on the next page shows the misclassification rates dependent
on the number of filters used for feature extraction. We got resonable results
only for using more than six texture features (for every feature a filter is
needed). For eight filters we got a misclassification rate, which is smaller
than 4%. Failed calculations where detected for the classifications using six
and eight filters.

Figure 6.9 on the following page shows the rms tilt error using four and
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Figure 6.8: Percentage of misclassified images as a function of filters and of
number of training values for database 2
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Figure 6.9: The rms tilt error dependent on the slant angle for classification
using 8 and 4 filters (database 2).
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eight filter for classification. Comparing the results of the two identical tex-
tures andl and afa (captured with different resolutions), for the same classi-
fication using four features confirms our prediction. Especially for the images
we grabbed from textiles large rms tilt errors occured. While for and! to
and6 (database 1) the rms tilt error was below 5° the rms tilt error for
the same textiles imaged with a different resolution rised up to more than
63°. Tables which show the misclassifications we got for classification with
different filter banks are shown in appendix A.1 on page 73.
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6.5 Classification of Illuminated Surfaces with
unknown Tilt and Slant

The classifier presented in the last section is able to detect surfaces and es-
timate the illumination tilt angle, but changing illumination slant between
training and classification can also cause complete misclassification. In this
section we modify the discrimination algorithm, so that the classifier is able
to classify the surface and estimate both the illumination tilt and illumina-
tion slant angle. Because of nonlinearities (self- or cast-shadowing) of real
surfaces, we reduce the range of illuminant slant between 30° and 60° for real
surfaces and 30° to 75° for syntetic surfaces. Tables which contains the mis-
classifications and the rms tilt error for using Gabor filter bank 8 are shown
in appendix A.2 on page 77.

6.5.1 Illumination direction independent classification
model

Starting from the best fit feature equation 6.1 on page 34, we get:

f(r,0) = asin®(c) + beos(27) sin?(0) + csin(27) sin’(0) (6.11)

where the parameters a, b and ¢ are only functions of the surface height
function and the linear filter of the texture feature. Assuming Gaussian
Variation to approximize the effects of noise.

(y; — sin®(0)(a; + bicos(27) + ¢;sin(27)))?
252

]

(6.12)
where g;(7,0,y;) is the best fit feature estimation function of a filtered
image (filter i) for the feature value y; dependent on the illumination tilt and
slant angle.
The Maximum Likelihood Function is the product of the estimation func-
tions and can be written as:

(ry 0 1) = —— eap
i\T,0,Yi) — ETP|—
g Y N D

L(r,0) = T] —=eapl- (i — sin*(0)(a; + b;c;s(zr) + ¢;sin(27)))?

]

(6.13)
Taking the natural logs we get the Log Likelihood function:
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In f(1) =1In H(ﬁ) 4 Z (y; — d; — ez-cosgzr) — fisin(27))?

[ 1

The resulting equation is a function of illumination tilt (7) and slant angle
(0). The vector g = (T(Yo, Y1, YN)s (Yo, Y1, -, yn))", the Maximum
Likelihood estimator, can be found by calculating the Maximum of In L(7, o).
The necessary conditions for extremas of two dimensional functions can be
found in [2].

They are:

g-(t,0) = 0 (6.14)
9o(1,0) = 0 (6.15)

where g, (7,0) = %g(r, o), go(r,0)= %g(r, o)

The sufficient conditions for extrema can be found by calculating the
determinant:

A — g’TT (7_7 O—) gTU (7_7 O—)
gTU (7—7 U) g(TO' (T’ O-)

The type of the extrema is dependent on the result of A:

97+ (7,0) < 0 maximum
977 (7,0) > 0 minimum

A>O:>{

A <0 = no extremum

A =0 = more complex discussion is needed

Because of the mathematical complexity (associated with a high computal
cost) we simply calculate the necessary conditions and check the maximum
by inserting the possible values in the Maximum Likelihood function. This
is possible, because for the classification of tilt and slant we get a maximum
of 24 solutions for the illumination tilt angle (provided that equation 6.14 is
solved for o and inserted into equation 6.15) and 48 possible solutions for
the illumination slant. Substituting cos?(27) = 1 — sin?(27), X = sin*(27)
and Y = sin®*(o) for L,(7) and L,(c), we obtain:
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EL(T) = Z 2101‘2(% — sin®(¢)(a; + b; cos(27) + ¢;sin(27)))

-(— sin?(¢)(—2b; sin(27) + 2¢; cos(27))) (6.16)

%L(O’) = Y 2;2 (y; — sin?(¢)(a; + b; cos(27) + ¢;sin(27)))? (6.17)

1

Solve equation 6.17 for Y we obtain:

MAY £V1—-X?MBY + XMCY

Y = (M[AA+ MBB) 12X MAC + X*(MCC — MBB)

6.18
+v1— X?(2XMBC + 2M AB) (6.18)

Inserting this equation into equation (6.16) results to a 12" order poly-
nomial in X. The solutions for X can be inserted into equation(6.17) to get
the solutions for Y. The entire derivation of the polynomial can be found in
appendix C.2 on page 103.
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6.5.2 Simulations and Experiments

This section starts with simulations of four synthetic surfaces imaged with
four different slant angles and tilt angles between 0° and 180° in 10° steps.
The slant angles are 30°, 45°, 60° and 75°. We use these images to investigate
the limits of our linear reflection model.

The second part of this section is an experiment using database 2, which
contains 25 textures illuminated with two different slant angles (45° and 60°)
and tilt angles between 0° and 180° in 30° steps. As pointed out in sec-
tion 6.4.2 on page 46, the tilt stepsize causes problems in accuracy. Because
of the large amount of results we select only the bad results and inspect
them in detail. A table of misclassifications dependent on different Gabor
filter banks are shown in appendix A.2 on page 77.

Simulations

As well as in section 6.4.2 on page 42 first we use simulations to validate
the classification algorithm. In section 4 on page 19 we investigated the be-
haviour of four synthetic surfaces due to changing illumination tilt direction.
We found out, that the surfaces Ogilvy, Fractal and Malfin fitted the lin-
ear model well whereas for Sand ripples large differences between the best fit
curves and the feature values occured. The best fit parameters we estimated,
where independent of illumination tilt, but dependent on illumination slant.
In order to get the best fit parameters for illumination independent classifi-
cation we need to estimate them from feature sets that are dependent on tilt
and slant. The result is a curve that describes the behaviour of the surface
due to changes in illumination direction in the feature space.

To get a feeling of the accuracy of the feature values to its model, we
can simply plot the estimated feature curve and the “slant compensated”
feature values (the measured feature values are divided by its known slant
factor sin?(c)). Figure 6.10 on the next page exemplifies this for Sand rip-
ples in the one dimensional feature space. If the compensated feature values
fits the curve well, we expect good results for the estimation of the tilt and
slant. Note, that this is only valid for the inspection of the cuvature and the
mean value of the best fit curves, an investigation of the distribution with
this model is not possible. Large deviations between the best fit curve and
the feature values (as seen in figure 6.10 on the following page show that the
surface does not fit the model well.

We choose a more illustrative way to show the accuracy of the linear
model is simply to take the estimated best fit curves we got in section 4 on
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Figure 6.10: Slant compensated feature values and its best fit curve for Sand
ripples filtered with the complex Gabor filter comF20A45.

page 19 and divide them by its slant factor sin?(¢) to provide “slant compen-
sated” best fit curves (eg. figure 6.11 on the following page). The resulting
curves approximate the illumination tilt and slant independent best fit curve.
Differences between two curves result from nonlinearities of the surface in fea-
ture space. While differences of the mean values show a bad fit of the slant
angle, differences of the curvature show a bad approximation of tilt. We
expect good results for the classification, if all the slant compensated best fit
curves describe the same illumination independent best fit curve. Differences
cause errors in illumination tilt and slant and can cause misclassifications.

Figure 6.11 on the next page shows the feature values of an Ogilvy surface
divided by its slant factor sin?(c). All feature curves describe nearly the
same best fit curve so that Ogilvy fits well to our model. We expect good
classification results and also good results for the estimation of tilt and slant.

For a Mulvaney surface the model is no longer optimal. In figure 6.12
on the following page we detect differences in the mean values and slightly
differences in the shapes of the curves. The best fit curve which we use for the
tilt and slant invariant classification can roughly be estimated as the curve
we get if we average the values of the four curves for every tilt angle. For
this reason we expect a higher estimated tilt and slant error than for Ogilvy
and possibly misclassifications.
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Figure 6.11: Tllumination independent feature values of an Ogilvy surface
filtered with the complex Gabor filter comF20A45.
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Figure 6.12: Illumination independent feature values of a Mulvaney surface
filtered with the complex Gabor filter comF20A45.
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Figure 6.13: Illumination independent feature values of Fractal filtered with
the complex Gabor filter comF20A45.

For Fractal the difference of the curves rises compared to the the Mulvaney
or Ogilvy surfaces we analysed before. Figure 6.13 shows the slant dependent
best fit curves of Fractal divided by its slant factor. The best fit curve we get
for a slant angle of 75° differs from the other curves so that the estimation of
images illuminated with a high slant angle will cause estimation errors and
misclassifications. If we limit the illumination slant angle we would expect
good results.

Figure 6.14 on the following page shows the behaviour of Sand ripples
filtered with the Gabor filter comF20A45 in feature space. Beside a very
high difference of the mean values of the curves also the shape differs for
an illumination slant angle of 75°. The feature curve shows the predicted
behaviour of Sand ripples in feature space. For an image illuminated with a
tilt angle of 90° and a slant angle of 30° the feature value is more than 1.5
times the predicted value. For classification we expect a high misclassification
rate and tilt and slant errors up to 90°.

Summarizing the predictions we expect very good results for Ogilvy, good
results for Mulvaney surfaces, relatively bad results for Fractal and extremly
bad results for Sand ripples.

The next step is to validate our predictions by classifications using dif-
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Figure 6.14: Illumination independent feature values of Sand ripples filtered
with the complex Gabor filter comF20A45.

ferent feature sets to describe the surface in the feature space. All Ga-
bor filter banks where used for illuminated images with slant angles of 30°,
45°, 60° and 75°. The classifier is trained on illuminated images with the
same range of illumination slant angles and with illumination tilt angles be-
tween 0° and 180° in 10° steps. For classification the illumination tilt angles
10°,30°,50°,...,170° in combination with the illumination slant angles of
30°,45°,60° and 75° are used.

Figure 6.15 on the next page shows the percentage of misclassifications
dependent on the number of filters used to extract the features out of the
illuminated images. To classify all the surfaces (except Sand ripples) only
the Gabor filter bank 4 is needed. For the maximum percentage of misclas-
sification we get less than 2%. A classification of Sand ripples is not possible
even when 12 filters are used. Misclassification errors for four selected clas-
sifications can be found in table A.3 on page 77.

We exemplify the estimated tilt and slant error for the worst case where a
classification is reasonable for the Gabor filter bank 4. Further investigations
showed that increasing the number of feature values improves the estimated
errors only slightly.

Figure 6.16 on page 61 shows the estimated tilt errors (figure at the top)
and the estimated slant errors (figure at the bottom) that occured when filter
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Figure 6.15: Percentage of misclassification for illuminant direction invariant
classification of synthetic surfaces. The percentage of misclassification of
the entire classification and for the classification of all surfaces except Sand
ripples is shown.
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Figure 6.16: Tilt slant classification of synthetic surfaces illuminated with a
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bank Gabor 4 was used and images with an illumination slant angle of 30°
where used. For all surfaces except Sand ripples the tilt error is less than
1.5°. Also the illumination slant angle for these surfaces is detected well. The
maximum of the estimated slant errors is less than 2.5°. For Sand ripples
as expected high tilt and slant errors with a misclassification rate of 50%
occured.

The result using images illuminated with a slant angle of 75° is shown in
figure 6.17 on the following page. The estimated tilt error remains almost
constant less than 3°, but the slant error rises compared to figure 6.16 on
the page before. As shown in the mathematical model in appendix C.2 on
page 103 the estimated slant angle is a function of the estimated tilt angle.
For this reason a rise in the tilt error causes also a higher slant error. Only
for the Ogilvy surface the maximum slant error remains low below 3°.
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Figure 6.18: Percentage of misclassified images for illumination direction
independent classification dependent on the used Gabor filter bank

Experiments
The final step in this report is the classification of real illuminated surfaces
with unknown illumination direction. 25 textures are imaged with two dif-
ferent illumination slant angles and seven different illumination tilt angles.
They are classified with seven different Gabor filter banks. Detailed infor-
mation about filter banks can be found in section 2.2 on page 6.

The accuracy of the illumination direction independent classifier is shown
in figure 6.18. It can be seen that for classification using Gabor filter bank
4 or 3 the misclassification rate is large. In order to get results for practical
use we need to use Gabor filter bank 6 or above. For a classification with
Gabor filter bank 10 we get a misclassification rate below 2%. Comparing
the results with the tilt classification (shown in figure 6.8 on page 50), we
recognize more detection errors for the classification of tilt and slant. This
is obvious, because for classification of tilt and slant we have three unknown
values, whereas for tilt classification the number of unknown values is two.
The next step is to investigate tilt and slant errors that occured. As already
described before, the illuminant slant error is a function of the estimated
illuminant tilt angle and therefore a function of the tilt error. If the dif-
ference between the estimated tilt and the real tilt of an image is large we
also get a large deviation between the estimated slant and the real slant angle.
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In the following we investigate the classification filtered illuminated im-
ages in the eight dimensional feature space in detail. Eight dimensional
feature space means that the textures are filtered with eight different Gabor
filters so that the illuminated images are described by eight feature values.
Figure 6.20 on page 67 shows the rms tilt error (figure at the top) and the
rms slant error (figure at the bottom) that occured. The dependency be-
tween tilt and slant error is obvious. To our surprise for most of the treated
textures the rms tilt error is less than 5°. For these textures the rms slant
error is also low. We recognize that for nearly all textures the rms slant error
rises when images illuminated with a higher slant angle are classified. For
the textiles we got bad estimation results for both, for tilt and slant so that
we investigate them in detail (except afe_60 and afg_60), because for them
we got relatively good results.

The results we got for the estimation of tilt and slant are shown in fig-
ure 6.20 on page 67. Nearly all viewed textures have good tilt estimation
results for an illumination tilt angle of 30°. Only for afc_60 the tilt error is
more than 15°. It was also recognized that the tilt error rises if the textures
are illuminated with large tilt angles. Especially for aci we get tilt errors
below 3° for the images illuminated with a tilt angle of 30° and 90°, but for
150° the tilt error rises up to more than 20°!. Figure 6.20 on page 67 at the
bottom shows the slant errors we got. It can be seen that nearly all errors
are negativ, which means that the estimated slant angle is smaller than the
real illumination slant angle.

In order to find the cause of the tilt and slant angles we studied the feature
generation of these textures. The following figures present the predicted
best fit curves, which are independent of the illumination direction and the
feature values for the viewed textures illuminated with 60° of slant. The
feature values are slant compensated, which means that the feature values
are divided by the slant factor sin?(c). The features for a tilt angle of 30°,
90° and 150° where used for classification, whereas the remaining together
with the corresponding equivalents for the slant angle of 45° where used for
training. We selected the worst feature curves to discuss the errors (every
image is described by eight features), because the result of the Maximum
Likelihood function is proportional to the squared error so that the maximum
error is responsible for the accuracy of the estimation. Figure 6.21 on page 68
shows the best fit curve and the slant compensated feature values of aci_60
filtered with the Gabor filter comF30A135. The term aci_60 describes the
images we get when the texture aci is illuminated with a slant angle of 60°.
The curves above and below the best fit curve are the margins of the area
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Figure 6.19: Root mean square tilt error (figure at the top) and rms slant
error (figure at the bottom) for the tested surfaces of database 2
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Figure 6.20: Tilt error (figure at the top) and slant error (figure at the
bottom) for selected textures as a function of the tilt angle. The illuminated
slant angle of the used textures is 60°
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Figure 6.21: The behaviour of the texture aci filtered with comF30A135 in
feature space is shown.

where 68% of the feature values should be found. For the tilt angles 30° and
90° the feature values are in this area whereas the difference between the
feature value for 150° of slant and the aequivalent best fit value is nearly two
o. We expect that the large difference of this feature value is the reason for
the bad estimation of the illumination direction.

Figure 6.22 on the following page shows afa_60 filtered with the Gabor

filter comF20A135. We recognize that the best fit curve represents the feature
values very bad. This is due to the lack that only six feature values are used
to estimate the best fit curve (three feature values for every slant angle) and
the feature value we got for 180° of tilt was neglegted. The problem that
occures if this feature value is also used for the estimation of the best fit
curve is that the influence of the best fit curve for 0° is twice compared to
the other feature values.
The bad estimation results we got for afa causes to two different problems.
The first is the number of training values. A rise in training values to estimate
the best fit curve would rise the fit of the feature values to the predicted
feature curve. The second problem is the noise of the image. In this case
most of the information that is extracted by Gabor filter F20A135, is noise,
so that the best fit curve is not able to describe the texture.

The same result was found for afc. The feature values we got for the
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Figure 6.24: The behaviour of the texture afc filtered with comF/0A0 in
feature space is shown.

tilt angles 0°, 60° and 120° and the slant angles 45° and 60° where used to
estimate the best fit curve. Figure 6.23 on the page before shows the feature
values and the corresponding feature curve in feature space. The values
differ extremly so that the best fit curve cannot describe the behaviour of
afc filtered with the Gabor filter comF40A0 in feature space. We recognize
a large difference between the feature values for a tilt angle of 0° and 180°. If
the feature values would behave like a w-periodic sinosodial curve the feature
values for 0° and 180° of tilt should be the same.

The feature values we used for classification are shown in figure 6.24. It
can be seen that the prediction of the feature curve fails completely, so that
the classifier is unable to classify the image with is illuminated with a illu-
minant tilt angle of 90°.



Chapter 7

Summary and Further Research

7.1 Summary

We have presented a new tilt invariant 3D surface texture classifier that ex-
ploits the hyper-elliptical behaviour of texture features. Using a Maximum
Likelihood approach for discrimination the ML function could be transformed
to a 4" order polynomial in tilt (shown in C.1 on page 87). The classifier has
been shown to perform well on 29 real images out of Database 1. We obtain
a high classification accuracy and an accurate estimate of the tilt angle when
the complete image is used.

Also an illumination direction invariant 3D texture classifier based on this
method is presented. We investigated the illumination accuracy for 25 dif-
ferent real world textures in Database 2. Its discrimination function caused
to a 12" order polynomial in tilt and a 6" order polynomial in slant. As
expected the accuracy is lower than for tilt invariant classification, but if the
range of the illumination slant angle is restricted the classifier also provides
a high classification accuracy and quite good estimations of illumination tilt
and slant. Finally, we investigated six textures in detail, which where inac-
curately classified. Most of the misclassifications occured because of a very
bad fit of a feature values to the corresponding best fit feature curves in at
least one dimension of the feature space. If the feature value is heavily de-
pendent on the noise in the image, a prediction of best fit curve fails, so that
an accurate classification of this texture is no longer possible. We found that
these textures contained shadows, which is responsible for the high value of
the noise.

71
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The requirements we made for the textures where

e Lambertian reflection,

e no self- or cast-shadowing,
e no interreflection,

e small slope angles and
e orthographic projection

If the filter bank is choosen for a set of textures, which comply with
the requirements the classifier is able to classify illuminated textures with
unknown illumination direction.

7.2 Further Research

This work invested a classification algorithm that is able to estimate the sur-
face type and the position of the illumination source. Varying illumination
slant angle reduced the accuracy of the tilt and slant estimates. For some
textures we found big differences in the feature values we extracted for illu-
mination tilt angles of 0° and 180°.

Is it possible to extend this classifier so that it is able to classify tilt angles
greater than 180°7 We think it is worthwhile to investigate this problem to
get a classifier that is robust in illumination tilt and illumination slant angle.
Another question which comes into mind is whether this approach can be
used for pixel by pixel classification, and hence segmentation.



Appendix A

Results

A.1 Classification with known Illumination Slant
Angle
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Figure A.1: Tilt error for four synthetic surfaces illuminated with a slant
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Figure A.2: Tilt error for four synthetic surfaces illuminated with a slant
angle of 60° filtered with four different complex Gabor filters.
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Input

Misclassification

9 filter 6 filter 4 filter 3 filter 2 filter
surface tilt surface tilt surface tilt surface tilt surface tilt surface tilt
chips1l 30 stones2 138.30
chipsl 90 andl 44.21
chipsl 110 stones2 103.86
chipsl 130 michael7 135.07 michael7 33.63
chipsl 150 stones2 25.59 stones2 166.46
cardl 50 wood 90.80
cardl 90 radial45s 87.95
beansl 130 andl 170.52
beansl 170 michael6 154.02
rockl 130 slab4b 148.27
stones2 170 michael7 2.21
iso45 90 michael5 19.67
iso45 110 wood 149.89
rock45 50 and4 51.036
rock45 150 and5 52.60
slab45 70 rockl 18.56 rockl 6.13
stri45 10 slab45 19.14
stri4b 50 rock45 140.98
stri4b 70 and5 161.60
stri45 90 and5b 170.18 and5 170.06
stri4b 110 and5 166.92
stri4b 130 and5 155.66
stri45 150 and5 144.23
strid5 170 rock45 159.75 and5 59.50
twins45 90 is045 89.88 iso45 95.87 is045 100.44
wood 30 twins45 117.95
wood 150 iso45 113.29

michaell 10 michael2 14.25
michaell 90 michael2 104.88
michaell 110 michael2 113.46
michaell 170 michael2 22.82
michael2 30 michaell 33.27
michael2 50 michaell 44.41
michael2 70 michaell 122.25
michael2 130 michaell 127.88
michael2 170 michael8 179.69 michael8 162.35 michael8 15.87
michael4 70 and3 31.73
michael4 90 michael7 107.97
michael4 110 and3 28.49
michael6 50 and2 137.75 and2 41.74
michael6 70 and2 76.22
michael7 10 chipsl 163.68 stones2 21.03
michael7 30 and3 17.79
michael7 50 and3 140.74
michael7 90 chipsl 85.43
michael7 130 michael4 49.24
michael8 50 michael2 136.68
michael8 90 and3 100.98
michael8 150 michael2 158.31
michael9 10 and?2 154.48
michael9 90 and2 111.70
michael9 170 and?2 156.01
andl 15 beansl 133.30
andl 165 beansl 129.72
and?2 135 michael9 134.05
and3 165 chipsl 16.16
and4 45 rock45 123.73
and4 75 rock45 26.03 rock45s 25.95
and4 135 rock45s 27.10
and4 165 rock45 56.85
and5 45 rock45 38.21
and5 165 michael5 46.78
and6 15 and?2 35.90 michael9 138.06
and6 45 and?2 43.76 michael9 133.43
and6 75 and?2 54.43 and2 55.46
and6 105 and?2 61.89 and2 62.02
and6 135 michael6 45.31 and2 42.75
and6 165 and?2 20.65 and?2 156.95
and7 15 andl 36.67 michael6 123.38
and7 45 andl 42.77 michael6 106.55
and7 75 andl 47.55 michael6 99.17
and7 105 chipsl 46.44 beansl 117.89
and7 135 chipsl 43.57 beansl 121.67
and7 165 michael6 67.74 michael6 123.71

Table A.1: Detection failures for tilt-classification of real textures (Database

1)
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Misclassification

Input 8 filter | 6 filter | 4 filter | 3 filter | 2 filter

surface [ tilt surface | tilt | surface [ tilt | surface [ tilt | surface [ tilt | surface [ tilt

aaa 150 aao 149.77

aab 90 afb 70.32

aaf 30 aab 150.65

aaf 90 afb 81.56

aaf 150 aam 135.09 aab 46.25

aal 90 afd 137.92

aai 150 acc 83.047

aaj 90 ace 61.62 ace 61.61

aam 90 afb 129.40

aar 150 aaf 157.67 aai 160.04

aba 30 abk 155.56

abk 30 afa 173.87

abk 90 aaj 100.92 afc 81.19

abk 150 aci 21.54 aci 21.54

acc 90 aci 58.58

acc 150 ace 153.12 ace 153.07 ace 153.07

acd 90 afa 128.87

acd 150 aab 146.08

ace 90 aci 72.92 afa 168.62 aaj 142.81

ade 30 acd 46.72

ade 90 acd 119.03

aci 30 aai 20.83

aci 90 afd 149.76

aci 150 aam 167.56

adc 90 aaa 103.51

adc 150 aaa 122.48 aaa 133.12

ade 30 aaa 155.88

ade 90 afa 103.29 afa 103.42

ade 150 afa 151.25 aab 134.85

adg 30 aab 38.10

adg 90 aam 64.57

adg 150 aaf 3.74 afa 146.17 afa 164.83 afa 164.75

afa 30 aam 149.66

afa 90 aaf 83.46 aaf 83.44

afa 150 aam 137.86 afb 39.12

afb 30 aaf 54.11783

afb 150 aal 115.95 aaf 68.19

afc 30 afg 148.36 afg 25.97

afc 150 afg 149.05

afg 150 afc 54.11 afc 53.72

Table A.2: Misclassifications
tilt angle (Database 2)

for classification of real textures with known
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A.2 Classification with unknown Illumination
Direction

Misclassification

Input 8 filter 4 filter 3 filter

surface slant tilt surface tilt slant surface tilt slant surface tilt slant
ogil 75 50 malfin 34.47 67.32
130 malfin 143.31 74.69

malfin 30 10 ogil 165.44 22.94

50 ogil 59.76 29.96

70 ogil 77.42 31.44

90 ogil 97.04 32.54

110 ogil 110.18 34.51 ogil 113.74 33.90

170 ogil 148.45 28.67

malfin 45 10 ogil 169.12 32.18

50 ogil 58.27 41.46

70 ogil 75.81 44.67

90 ogil 96.42 46.60

malfin 60 10 ogil 169.61 40.05

50 ogil 57.81 52.20

70 ogil 75.10 57.71

90 ogil 95.97 60.90

malfin 75 10 ogil 168.42 42.28

50 ogil 57.84 55.35

70 ogil 74.34 62.28

90 ogil 95.40 65.24

sand 30 10 fractal 2.88 37.11 fractal 80.87 30.82 fractal 53.08 38.47

30 fractal 7.38 37.00 fractal 78.79 33.10 fractal 53.46 41.74

50 fractal 31.82 36.87 fractal 77.99 36.75 fractal 53.73 47.38

70 fractal 79.31 39.26 fractal 53.74 51.72

90 fractal 83.12 39.51 fractal 53.86 52.49

110 fractal 87.76 39.37 fractal 53.58 52.78

130 fractal 91.37 37.13 fractal 52.79 49.55

150 fractal 178.44 38.19 fractal 93.01 33.79 fractal 51.46 44.58

170 fractal 179.27 38.56 fractal 91.01 31.77 fractal 50.21 41.67

sand 45 10 fractal 28.07 19.77 fractal 140.75 18.55

30 fractal 53.85 21.38 fractal 134.36 19.87

50 fractal 8.84 30.88 fractal 69.46 25.62 fractal 123.24 23.63

70 fractal 60.05 30.88 fractal 75.31 31.37 fractal 55.43 37.83

90 fractal 79.55 31.98 fractal 82.16 33.51 fractal 55.83 41.27

110 fractal 66.23 30.16 fractal 91.92 31.48 fractal 55.28 38.93

130 fractal 177.52 31.66 fractal 102.69 25.99 fractal 128.74 25.87

150 fractal 147.86 22.41 fractal 137.26 22.02

170 fractal 174.33 21.04 fractal 143.21 20.14

sand 60 10 fractal 10.61 18.24 fractal 147.11 16.79

30 fractal 29.58 17.70 fractal 143.48 15.75

50 fractal 5.24 26.49 fractal 54.65 18.26 fractal 131.79 16.15

70 fractal 63.04 24.18 fractal 72.50 22.66 fractal 119.83 20.72

90 fractal 83.80 26.70 fractal 82.57 26.53 fractal 117.74 25.08

110 fractal 120.14 23.53 fractal 97.33 22.95 fractal 125.93 22.53

130 fractal 177.43 26.61 fractal 126.06 18.43 fractal 133.58 18.34

150 fractal 153.48 17.34 fractal 140.24 16.92

170 fractal 175.84 17.65 fractal 144.69 16.73

sand 75 10 fractal 40.40 21.48 fractal 138.35 20.75

30 fractal 2.92 30.85 fractal 43.25 19.71 fractal 138.20 17.82

50 fractal 6.95 24.25 fractal 54.33 17.01 fractal 130.05 14.56

70 fractal 71.04 19.11 fractal 73.96 16.83 fractal 119.87 15.22

90 fractal 85.25 20.98 fractal 83.63 19.81 fractal 120.08 18.72

110 fractal 103.95 18.29 fractal 102.62 17.36 fractal 125.81 17.00

130 fractal 175.19 23.56 fractal 122.35 16.95 fractal 130.94 16.85

150 fractal 178.43 29.78 fractal 123.60 18.52 fractal 133.43 18.46

170 fractal 81.84 19.72 fractal 134.22 19.69

Table A.3: Misclassifications for synthetic surfaces with unknown illumina-
tion direction
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Input Misclassification
8 filter 6 filter 4 filter
surface slant tilt surface tilt slant surface tilt slant surface tilt slant
aaf 45 30 aab 34.54 44.57
aaf 90 aab 92.87 48.33
aaf 60 30 aab 34.87 50.88
aaf 90 aab 95.78 59.06
aai 45 30 ace 70.89 53.50
aal 90 aab 100.81 28.49
aai 60 90 aab 102.67 41.57
aaj 45 30 abk 72.54 62.77
aaj 60 30 acc 74.85 32.29 acc 72.67 31.80
aas 45 30 aaj 70.63 60.73
aas 150 aar 141.44 32.99
aas 60 30 aar 38.20 42.93
aas 150 aar 143.62 44.17
abk 45 150 abj 137.00 55.01
acc 60 150 ace 153.47 72.10
ade 60 90 aaa 91.12 34.83
aci 45 30 aao 25.56 21.80 aam 26.96 35.78
aci 90 aar 83.83 46.15
aci 150 aab 160.05 39.27
aci 60 30 acc 60.54 28.30
aci 90 aar 84.47 38.25
aci 150 aaa 160.10 25.80 aab 161.77 31.16
adg 45 30 aaa 17.74 32.91
adg 150 aaa 166.30 32.86
adg 60 30 aaa 23.31 33.30 aaa 20.99 33.77
adg 90 aaf 92.20 38.36
adg 150 aaa 163.13 32.64
afa 45 30 aai 37.93 57.17
afa 90 aaa 91.49 35.97
afa 150 aab 124.89 34.24
afa 60 90 aaa 91.15 39.78
afa 150 adg 138.17 59.91 aab 126.20 44.38
afb 45 30 acd 95.30 42.51
afb 60 30 acd 100.24 47.06
afc 45 30 afd 11.99 53.32
afc 90 aaj 0.40 16.03
afc 150 aaj 176.54 20.14
afc 60 30 aaj 11.48 20.00
afc 90 afg 74.55 27.88
afc 150 aaj 174.61 19.53
afg 45 90 aaj 95.49 28.40 aaj 95.44 28.44
afg 60 90 aab 75.77 16.37 aaj 95.84 34.65 aaj 95.74 34.78
afg 150 aab 164.01 15.21 aaj 161.20 28.70

Table A.4: Misclassifications for real textures with unknown illumination
direction (Database 2)
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rms tilt error for a slant angle of 45° in [°]

Surface 12 filter 10 filter 8 filter 6 filter 4filter
tilt slant tilt slant tilt slant tilt slant tilt slant
aaa 2.5058 1.6977 2.3745 1.7016 2.9349 1.6943 3.0691 1.9960 2.9348 2.2799
aab 1.4625 0.4717 1.4196 0.5670 1.3187 0.5355 1.3449 0.3582 1.6039 0.9100
aaf 2.1585 2.6816 2.3556 2.7367 2.0229 2.6396 2.0358 2.4940 2.1140 2.9011
aal 1.8148 4.1489 1.9329 4.2058 2.2008 4.3838 1.9732 4.1665 1.1913 5.1940
aaj 3.0362 0.6945 3.2045 0.6789 2.8185 0.5931 3.1311 0.6012 3.5663 0.5242
aam 2.8111 1.2596 3.0850 1.3221 3.0445 1.2567 2.7157 1.4237 2.9459 1.4896
aao 1.4440 0.7245 1.3474 0.6799 1.2984 0.6349 1.3637 0.9470 1.3149 0.9511
aar 0.9698 0.2816 1.2620 0.4169 1.6842 0.3033 1.7161 0.2037 1.8477 0.6023
aas 1.0194 1.6533 1.1069 1.6514 1.0277 1.7442 0.6760 1.7832 1.2040 1.5169
aba 2.2890 1.0749 2.1834 1.1556 2.6982 1.1608 2.8698 1.1276 2.5682 1.0740
abj 2.0018 0.6167 2.1475 0.6195 2.2033 0.6866 2.2913 0.6756 2.0235 0.7482
abk 2.8439 0.9935 2.8532 1.0310 2.9776 0.9822 3.1596 1.1135 2.8643 1.1357
acc 1.0184 0.6457 1.0175 0.8211 0.9046 0.8815 1.9089 0.8040 1.4359 1.0861
acd 2.2726 1.1774 3.9341 1.2380 3.8135 1.0649 3.2974 0.9262 3.2019 0.8680
ace 2.8489 3.6902 3.0392 3.7293 2.8752 3.5384 3.0044 3.4922 3.8365 3.4050
adc 3.1598 4.2440 2.9426 4.1829 3.1065 3.9856 3.3137 3.9568 5.0669 4.0649
ade 8.6625 8.7405 8.8085 8.3377 9.3090 8.3283 10.1771 9.4639 10.0490 8.2476
aci 11.4665 18.3652 11.5176 18.1480 12.3333 18.5694 13.7327 18.6390 10.3734 18.6923
adg 3.4272 7.1020 3.6540 7.2620 2.4213 6.8824 2.8224 6.9640 2.2109 7.5875
afa 11.8456 3.2650 14.1289 4.3732 16.8266 4.7017 6.2162 2.6347 5.4636 6.0080
afb 16.7096 3.5492 14.2708 3.3542 15.9853 3.3301 17.2819 3.5958 15.9369 3.1811
afc 49.3845 13.2968 26.7390 12.5114 61.0358 15.1828 62.2004 14.1883 32.6011 14.6886
afd 10.5053 1.1356 11.0395 1.3060 11.6106 1.5115 11.2811 1.4667 11.1093 2.5070
afe 2.7722 5.7677 1.8605 5.7926 3.1202 5.8723 19.6186 5.3687 23.1347 6.5506
afg 3.6296 2.4082 2.6740 2.9617 2.7829 2.7988 2.3464 1.9072 1.8374 2.1462

Table A.5:

Root mean square tilt error for real textures imaged with illuminant slant of

45°
rms error for a slant angle of 60° in [°]
Surface 12 filter 10 filter 8 filter 6 filter 4filter
tilt slant tilt slant tilt slant tilt slant tilt slant
aaa 2.2389 3.0129 1.9664 3.0427 1.9833 2.7580 2.2244 3.1658 1.9564 2.7873
aab 1.4056 2.2852 1.6452 2.9447 1.6447 2.7237 1.4432 2.4361 1.7639 3.9293
aaf 1.0166 4.9549 1.1328 4.9153 1.0122 5.0739 1.0797 4.9715 1.5361 4.9053
aai 2.4483 6.2362 2.4670 6.6181 2.6021 6.6721 2.2024 5.9881 3.4651 7.3465
aaj 1.7778 2.5846 1.8116 2.5684 1.5742 2.4583 1.8230 2.5649 1.8239 2.4117
aam 2.1146 2.9561 2.3723 2.7485 2.2798 2.6261 2.0810 3.9551 1.9293 3.4807
aao 1.7552 3.0040 1.4509 2.5762 1.4686 2.7838 2.0235 2.7773 1.9014 2.4774
aar 0.9543 7.1845 0.7532 6.3866 1.5130 7.7588 1.4019 7.6745 1.0653 7.8667
aas 0.9530 4.5405 0.9129 4.4165 0.3655 6.0396 0.5214 6.0411 0.8075 5.1948
aba 1.1243 3.1594 1.2499 3.2904 1.0625 3.4183 1.4835 3.3120 1.0586 4.1122
abj 1.1988 2.6938 1.0187 2.5167 1.0418 2.4515 0.9860 2.2538 1.1850 2.1707
abk 1.0835 1.7657 1.1435 1.7106 1.0658 1.8179 1.1118 1.9719 1.1333 1.8887
acc 7.1894 6.1409 0.9045 2.1876 0.7569 2.0789 0.4872 1.3132 1.2426 2.0174
acd 1.9338 3.1933 3.2455 3.7328 3.3344 3.7447 2.9040 4.1871 2.1373 3.9324
ace 2.5805 3.0429 2.3222 3.1368 2.5654 3.4782 2.1095 3.1145 2.5616 3.5818
adc 3.9993 9.7878 3.9454 9.7115 4.1468 9.5012 4.3247 9.3073 4.6972 11.1921
ade 9.3253 7.7012 10.2892 7.3599 9.6446 8.1799 9.7794 7.6298 9.8940 7.5061
aci 13.0791 16.6148 12.8807 16.8343 13.7494 16.9091 15.1953 16.5688 12.2683 15.7164
adg 2.1677 9.5084 2.0568 9.3895 2.7976 9.7612 2.2507 9.6844 3.5784 10.0291
afa 8.8818 3.4974 10.2194 5.8342 11.1492 5.4316 7.2850 3.1405 5.1460 6.3683
afb 64.0338 43.9560 8.8722 12.3348 9.0658 12.0457 9.2015 12.1997 7.9007 11.2342
afc 28.0386 12.7437 26.5639 12.7386 36.1406 13.6478 36.5367 12.9718 27.4462 15.4636
afd 10.1824 6.6437 10.6965 6.8109 11.9556 6.6571 11.1152 7.3170 12.0337 7.6198
afe 2.5942 5.8429 2.9652 5.5169 2.8115 5.8529 1.6260 6.2477 3.9036 5.5781
afg 4.8767 4.8010 3.6128 5.9253 3.5509 5.4142 3.3213 4.1502 3.7644 4.2111

Table A.6: Root mean

nant slant of 60°

square tilt error for real textures imaged with illumi-




Appendix B

Texture Databases

For this student research project two different texture databases are used.
The first database (database 1) is used for classification of tilt. 29 different
textures are imaged with an illumination tilt angle between 0° and 180° and
an illumination slant angle of 45°. The difference of the illumination tilt
angle of two consecutive images is 10° except the data sets andl to and?,
which are imaged in 15° steps. Because of the fixed slant angle this database
can’t be used for classification of tilt and slant.

The second database (database 2) contains 25 different textures imaged with
an illumination tilt angle between 0° and 180° and illumination slant angles
of 45° and 60°. The difference of the illumination tilt angle of two consecutive
images is 30°.

80
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B.1 Database 1

and1(zoomed) and4(zoomed) and5(zoomed)

and6(zoomed)

slate4b

cardl

stones2

michaelb michae16 michael7 michael8 michael9
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B.2 Database 2
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B.3 Filter Bank

The filtered area in frequency domain dependent on the filter bank is shown
(zoomed). The filters used for a specific filterbank can be found in the ta-
bles 2.1 on page 12 and 2.2 on page 13 where the particular filters are dis-
cussed in detail.

3

12 Gabor filters 10 Gabor filters 8 Gabor filters

6 Gabor filters Gabor 4 filters 3 Gabor filters

2 Gabor filters
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9 Mixed filters 6 Mixed filters 5 Mixed filters

iF

4 Mixed filters 3 Mixed filters 2 Mixed filters



Appendix C

Mathematical Models

The discrimination functions we use for classification are exponential. In gen-
eral the extrema of nonlinear functions are solved numerically. In this section
we proof, that the maximum of the functions we use can be found solving
polimomial functions. We transform the nonlinear problem to polynomial
functions, where the extrema can simply calculated by finding its roots. The
disadvantage of the transformation is that because of separating the sums
the numerical error rises. The advantage is the reduced computal cost ( no
explicit numerical method like Newton algorithm or Constant Gradient al-
gorithm is used). The next two sections present the transformations of the
discrimination functions to polynomials.

C.1 Estimation of Tilt

The estimation of tilt is a simplified problem of estimation of tilt and slant,

so that the discrimination function to estimate tilt and slant can also be used

for estimation of tilt. Because of its complexity and the rised error in this

section we derive the transformation of the tilt estimation function.
Starting with the linear prediction

Yi(7) = (d; + eicos(27) + fisin(27)) (C.1)
assuming Gaussian variation of the sum of errors

1 (t—p)*
() = ——e =7

© sVor

The Maximum Likelihood method is used to estimate the most probably
surface. We get the following equation:

85
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1  (yj—(djtejcos(27)+fisin(27)))>

e 252
2m

1.0 =11 -

Finding the Maximum Likelihood estimator means that we need to find
the maximum of f(r,6). Because In is a linear operator, in the same way we
can maximize In f(7,0).

— d; — e;cos(27) — fisin(27))?

Z 2s?

2

In f(r

Calculating the first derivation of In f;(7) gives:

(2(y; — d; — e;cos(27) — fisin(27)) - 2(e; sin(27) — f; cos(27))

_ 2212[261(% di) sin(27) — 2(y; — d;) cos(2r)

—(2e? — 2f7)sin(27) cos(27) — 2e¢; fisin?(27) 4 2¢; f; cos®(27)]
Using the following abbrevations:

A=y
B=Y

[261 (yi — d;)]

s[2fi(di — yi)]

Substitution of cos?(27) = 1 — sin?(27), we get:
0 = Asin(27) + Bcos(27) + C'sin(27) cos(27) + Dsin®*(27) + E

The term cos(27) can be substituted by:
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sin?(27) = X
cos(21) = £V1-—X?

. T T
—if — = <271 < =
2 2

T 3

if +—<2r < —
+1 —|—2_T_2

So we get:
+V1-X2(B+CX)=-AX-DX*>-F

Calculating the square of the equation we can derive the left side of the
formula as:

(£V1- X2 (B+CX)* =
= (1-X*)(B*+2BCX +(C?X?)
B?+2BC X +(C*X? - B?2X? - 2BC X® - C?Xx*

For the right side of the formula we get:

(—AX -DX?*—-E)?=
= A’X°4+24AX(DX*+E)+ (DX*+ E)?
A2X2 4+ 2ADX3+2AEX + D’X*+ 2D E X? + E?

Arranging the whole equation in X we get the result:

0 = XYC*-D*)+X*24D+2B0)
+X?(A*+2DE+B*—C*) + X(2AE —2BC) + (E* — B?)

Calculating the roots of this function and reinserting the possible solutions
in the linear prediction, we get the maximum choosing the solution, which
maximizes the function.
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C.2 Estimation of Tilt and Slant

This section shows one possible solution of the two dimensional ML function,
which is used to classify textures and estimate the illumination tilt and slant
angle. The derivation of equation 6.12 on page 52 can be found in chapter
6. This section shows the transformation of of the ML function to a 12
order polinom. The advantage of the polynomial function is its simplicity
of evaluate the maximum. For the Maximum Likelihood function of our
tilt-slant classifier we found the following equation:

1 exp (y; — sin®(¢)(a; + b; cos(27) + ¢;sin(2¢)))?

V2mo; 202

In order to find its maximum, we can maximize the natural log of f(7, ¢).

flro) =TI

In f(7,¢) = i In(—m=) — ¥, 522 (v — sin®(¢) (a; + b; cos(27) + ¢; sin(2¢) )

2mo;

In f(1,¢) — Zln(\/%al) = — Z 2(172 (y; — sin®(¢)(a; + b; cos(27) + ¢; sin(2¢))?

= — max

Using the abbrevation:

In f(1,¢) — Zln( !

V2o,

) =g(7, 9)

gives:

g(1,0) = Z 2;2 (y; — sin?(¢)(a; + b; cos(27) + ¢;sin(27))?

i

In order to find the maximum of ¢(7,¢) as a function of tilt(7) and
slant(o) we need to calculate the first and second partial derivates. The
necessary conditions for extrema are:

g.(1,0) =
9o(T,0) = 0

The sufficient conditions for extrema can be found by calculating the
following determinant:

A — gT’T (7—7 U) gTO' (7—7 U)
gTU (7_7 O—) 90'0' (Ti 0)
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Calculating the determinant, we get the type of the extrema:

97+(7,0) < 0 maximum
Gr-(7,0) > 0 minimum

A>0:>{

A <0 = no extremum

A =0 = more complex discussion is needed

To reduce the computal cost we calculate the zero points of the partial
derivates g,(7,0) and ¢,(7,0) and check the maximum by inserting the pos-
sible solutions for tilt and slant into g(7, o).

Calculation of g,(7,0) = 0:

g-(t,0) = 0
59(57; ?) = % Z %‘Q(yz — sin®(¢)(a; + b; cos(27) + ¢; sin(27)))?
= Z QLUZQ(y — sin®()(a; + b; cos(27) + ¢; sin(27)))

.(_ sin’(¢)(—2b; sin(27) + 2¢; cos(27)))

= > %[261}%‘ sin?(¢) sin(27) — 2¢;yi sin®(¢) cos(27)

—2b; sin® () sin(27) (a; + b; cos(27) + ¢; sin(27))
+2¢; sin*(¢) cos(27) (a; + b; cos(27) + ¢; sin(27))
S %[zbi% sin() sin(27) — 2iy; sin(6) cos(27)

—Z2aibi sin®(¢) sin(27) — 2b7 sin®(¢) sin(27) cos(27)
—2b;c; sin® (@) sin?(27) + 2a;¢; sin® (@) cos(27)
+2bc; sin?(¢) cos?(27)
+2¢7 sin? (@) cos(27) sin(27)]
= 2hesin®(9) sin2r) (s — as5in(9)
+2¢; sin’ () (a; sin®(¢) — y;) cos(27)
+2sin*(¢) sin(27) cos(27) (7 — b?)
+(—4byc; sin®(¢) sin?(27) 4 2b;c; sin*(¢))]

Substitution of
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Y = sin%(¢)
X = sin(27)
+V1—-X?2 = cos(27)

gives:

1
V11— X2Y =2V — 2Y a0+ 2X Y2b; —2X Y7¢)] =
— O

2

1
= > —[2X Y by — 2X Y?a;b; + 2Y?bic; — 4X?Y?b;c;]

2

The equation can be simplified using the following abbrevations:

MAA = ZalaQ

MAB = ¥ b

MAC = ¥ i

MAY = ¥ a

MBB = Zalb?
1

MBC = Y —be
MBY = Zlby
Mce = Y~
MCY = Y —cuy;

1
MYY = Za—iyf

+V1 - X2-2Y MCY —2Y?*MAC + 2XY?MBB — 2X Y?MCC]

90
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= [2XY MBY —2XY?MAB +2Y?MBC — 4X*Y*M BC]

+V1 - X2 [Y(2MCY) +Y*X(2MBB — 2MCC)) — 2M AC)]
= [Y(2X MBY)+ Y*X?*(-4MBC) + X(—2MAB) + 2M BC)]

Calculating the square of the first part of the formula gives:

(£V1 = X2 [Y(2MCY) + Y*(X(2MBB — 2MCC)) — 2M AC)))?
= (1-X*AY2MCY? +2Y?*(2MCY)(X(2MBB — 2MCC) — 2M AC)
+Y*4(X(2MBB — 2MCC) — 2M AC)?]
= Y (1 - X*(4X*(MBB - MCC)?
—8X MAC(MBB — MCC) + 4MAC?)]
+Y?[(1 — X*)(8X MCY(MBB — MCC) — 8MCY MAC)]
+Y?[(1 — XH(4MCOY?)]
= YY-4X*(MBB — MCC)? +8X*MAC(MBB — MCC)
+X%(4(MBB — MCC)? — AMAC?)
—8X MAC(MBB — MCC) + 4M AC?]
+Y3[-8X*MCY (MBB — MCC) +8X*MCY MAC
+8X MCY(MBB — MCC)
—8MCY MAC)
+Y2[—4X*MCY? + 4MCY?)
= X' -4YY(MBB - MCC)* + X*(8Y*MAC(MBB — MCC)
—8Y3*MCY(MBB — MCC)) + X*(4Y*((MBB — MCC)? — MAC?)
+8Y?*MCY MAC — 4Y?*MCY?) + X (—8Y*'MAC(MBB — MCC)
+8Y3MCY (MBB — MCC)) + (4Y*MAC?
—8Y*MCY MAC + 4Y?MCY?)]

[Y(2X MBY) + Y?(X*(-4MBC) + X(—2M AB) + 2M BC)]?
= 4X%’Y?’MBY? - 16X*Y*MBY MBC — 8X?Y*MBY MAB
+8X Y3MBY MBC + 16X*Y*MBC? + 16X*Y*MBC MAB
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0

—16X?Y*MBC? + 4X?>Y*MAB? —8XY*MAB MBC + 4Y*MBC?

X*16Y*MBC? + X*[-16Y*MBY MBC + 16Y*M BC M AB]

+X?[4Y2 M BY? — 8Y*MBY MAB — 16Y*MBC? + 4Y*M AB?|
+X[8Y*MBY MBC — 8Y*MAB MBC)
+4Y* M BC?

Recalcuate the equation above gives:

X*Y*16MBC?* + 4(MBB — MCC)?]

+X3[YY(16MBC MAB — 8MAC(MBB — MCC))
+Y*8MCY(MBB — MCC)

—16MBY MBC)]

+X?[YH(=16 MBC? + AM AB? + 4M AC? — 4(MBB — MCC)?)
+Y3(=8MBY MAB — 8MCY MAC)

+Y?(4MBY? + 4MCY?)]

+X[Y*(-=8MAB MBC +8MAC(MBB — MCC))

+Y3(8MBY MBC — 8MCY (MBB — MCQ))]

+Y*YAMBC?* — AMAC?) + Y*(8MAC MCY) + Y*(—4MCY?)]

Substitution of

VA
VB
Ve
VD
VE
VF
VG
VH

VI
VK
VL

gives:

16MBC? + 4(MBB — MCC)?

16MBC MAB — 8MAC(MBB — MCO)
SMCY (MBB — MCC) — 16MBY MBC
~16MBC? + AMAB? + AMAC? — 4(MBB — MCC)?
—8MBY MAB — 8MCY MAC

AMBY? + 4MCY?

—8MAB MBC +8MAC(MBB — MCC)
SMBY MBC —8MCY (MBB — MCO)
4MBC? — 4M AC?

SMAC MCY

—4MCY?
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0 = X'(Y'VA)+X}(Y'VB+YVO)
+X2(YYVD+YVE+Y?*VF)+ X(Y'VG +Y?*VH)
+(Y'VI+Y*VK +Y?*VL)

= YYX'WVA+XVB+X*VD+XVG+VI)
+Y}(X*VC + X*VE+ XVH+VK)+Y*X*VF+ VL)

divide by Y2 (sin*(¢) #0 V¢ €]0,2])

0 = YV (X'"WA+XVB+X°VD+ XVG+VI)
+Y(X*VC+ X’ VE+XVH+VK)+ (X?VF + VL)

Calculation of g,(7,0) = 0:

gqﬁ(Tad)) =0
= 2 2(1,.2 (yi — sin®(¢)(a; + b; cos(27) + ¢;sin(27)))?

i

Substitution of
H;i(1) = (a;i + b; cos(27) + ¢; sin(27))

gives:

0(r0) = Y 5l — () Hi(r))?

i

%ﬂ;(ﬁ) — Z 2;2 (2(y; — sin®(¢) H;(7))(—2sin(¢) cos(¢) Hy(T)))

— 2sin() cos(é) 3 — (s (0)H2(7) - ()

Because 2 -sin(¢) cos(¢) =0 Vo=ni neN
we get fixed points at ¢ = 0° and ¢ = 90°
with:

93

(C.2)
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Hi(t) = (a;i+bjcos(27) + ¢;sin(27))
> —yiHi(t) = MAY + cos(2r)MBY + sin(21)MCY
g;

HZ(1) = a; + 2a;b; cos(27) + 2a;c; sin(27)
—i—bf cos?(27) + 2b;c; cos(27) sin(27) + cf sin?(27)

Z —H (1) = MAA+2cos(2r)MAB + 2sin(27)M AC + cos*(27) M BB

= +2cos(27)sin(27) M BC + sin*(27)MCC

L > Ul_;_zyiHi(T)
KA VST

MAY + cos(2r)M BY + sin(21)MCY
MAA+2cos(21) M AB + 25sin(27) M AC + cos?(27) M BB

+2 cos(27) sin(27) M BC' + sin®(21)MCC

Subst: X = sin(27) and +v/1 — X2 = cos(27)

sin’(¢) =
MAY ++1— X2MBY + X MCY
MAA+2/1—X?MAB+2X MAC + (1 — X?)MBB

+2X+/1— X2MBC + X2MCC
MAY + /1= X2MBY + XMCY
(MAA + MBB) +2X MAC + X?(MCC — MBB)

C.3
+v1— X2(2X MBC + 2M AB) (€:3)

Substitution of

Y = sin®(27)
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Y, = MAY +V1-X?MBY + X MCY

Yy = (MAA+ MBB)+2X MAC + X*(MCC — MBB)
+v1 - X2(2X MBC +2M AB)
Y,

Yy = =
Yy

and inserting equation C.3 into equation C.2

YQ
0 = Y—”Q(X“VA +XVB+X*VD+XVG+VI)
d
Y,
+7(X3VC +X*VE+ XVH+VK)
d

+(X*VF + VL)
Multiply by Yy gives:

0 = Y2 (X'WVA+XVB+X*’VD+XVG+VI) (C.4)
+Y, Yy(X*VC + X*VE + XVH + VK)
+YH(X?VF + VL)

Calculation of Y2:

V2 = (MAY £V1— X2MBY + X MCY)?
MAY? 4+ 2MAY 1 — X2MBY +2XMAY MCY
+(1 — X*)MBY? + 21— X2X MBY MCY + X’MCY?
= X’[-MBY?+ MCY?|+ X[2MAY MCY]
+v1 — X2[2MAY MBY +2X MBY MCY]+ [MAY? + MBY?]

Substitution of

WA = —MBY?+ MCY?
WB = 2MAY MCY
WC = MAY?+4+ MBY?

gives:
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Vi= X’WA+ XWB+WC+V1— X2[2MAY MBY +2X MBY MCY]

Calculation of Y, Yy:

Y, Y, = (MAY =1 - X2MBY + X MCY)((MAA+ MBB) + 2X MAC
+X%(MCC — MBB) £ V1 — X2(2X MBC + 2M AB))
= +V1— X22MAY MAB +2X MAY MBC + MBY MAA
+2X MBY MAC + X?MBY MCC + (1 — X*) MBY MBB
+2X MCY (MAB + X MBC)]
+X2[MAY MCC — MAY MBB —2MBY MAB + 2MAC MCY]
+X3[—2MBY MBC + MCC MCY — MBB MCY]
+X[2MAY MAC +2MBY MBC + MAAMCY + MBB MCY]
+[MAAMAY + MAY MBB + 2MBY MAB]

Subst:

WD = MAY MCC — MAY MBB —2MBY MAB +2MAC MCY
WE = -2MBY MBC + MCCMCY — MBBMCY

WF = 2MAY MAC +2MBY MBC + MAAMCY + MBB MCY
WG = MAAMAY + MAY MBB +2MBY MAB

gives:

Yy = X*WE+X*WD+XWF+WG+V1 - X22MAY MAB
+2X MAY MBC + MBY MAA +2X MBY MAC
+X2MBY MCC + (1 - X*)MBY MBB
+2X MCY (MAB + X MBC)]

Calculation of Y}

Y} = [(MAA+ MBB)+2X MAC + X*(MCC — MBB)
+v1— X2(2X MBC +2MAB))?
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Subst:

gives:

WH
WI
WK

WL
WM

+v1 — X2[2(MAA + MBB)(2MAB + 2X MBC)
+4X MAC(2MAB +2X MBO)

+2X?(MCC — MBB)(2MAB + 2X M BC)]
+X*[(MCC — MBB)? — 4M BC?]
+X*[4AMAC(MCC — MBB) — 8MAB M BC)
+X%[2(MAA+ MBB)(MCC — MBB)

+4MAC?* + 4M BC? — 4M AB?]
+X[AMAC(MAA + MBB) +8MAB MBC]
+[(MAA + MBB)? + 4M AB?

= (MCC — MBB)? — 4M BC”?

= 4MAC(MCC — MBB) —8MAB MBC

= 2(MAA+ MBB)(MCC — MBB) +4MAC?
+4M BC? — 4M AB?]

= AMAC(MAA+ MBB) +8MAB MBC

= (MAA+ MBB)*> + 4MAB?

V) = X'WH+ X’WI+X’WK+ XWL+WM

+v/1 - X2[X?*(4MBC(MCC — MBB))
+X?*(8MAC MBC +4MAB(MCC — MBB))
+X(4MBC(MAA+ MBB) +8MAC MAB)
+4MAB(MAA + MBB))

Rewrite equation C.4 using Y2 | ¥,,Y; and Y} gives:

0 = (X’WA+XWB

+WC + 1 — X2[2MAY MBY +2X MBY MCY]
[X*VA+ X3VB+ X*VD+ X VG + VI
+HXWE+ X’WD+ XWF+WG+V1—-X?
(X?(MBY MCC — MBY MBB +2MCY MBC)
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Subst:

+X(2MAY MBC +2MBY MAC +2MCY MAB)
+(2MAY MAB + MBY MAA+ MBY MBB)))
[X*VC+X?*VE+ XVH+ VK]

+(XWH+ X*WI+ X*WK+XWL+WM
+v1 — X2(X*(4MBC(MCC — MBB))
+X?*(8MAC MBC + 4MAB(MCC — MBB))
+X(4MBC(MAA+ MBB) +8MAC MAB)
+4MAB(MAA+ MBB)))[X?VF + V]

WN = MBY MCC — MBY MBB+2MCY MBC
WO = 2MAY MBC +2MBY MAC +2MCY MAB
WP = 2MAY MAB+ MBY MAA + MBY MBB
WR = 4MBC(MCC — MBB)
WS = 8MAC MBC +4MAB(MCC — MBB)
WT = 4MBC(MAA+ MBB)+8MAC MAB
WU = 4MAB(MAA+ MBB)
WV = 2MAY MBY
Ww 2MBY MCY
gives:
0 = (X’WA+XWB+WC+V1-X2(WV+XWW)

XWVA+XVB+X?’VD+ X VG4 VI]

+(X*WE+ X*WD+XWF+WG+V1 - X2
(X*WN+XWO+WP)[X*VC +X*VE+XVH+ VK]
+(X*'WH+X*WI+ X*WK+XWL+WM
V1 - X2(X*WR+ X*WS + X WT + WU))[X?VF + VL]

Separating gives:
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V1 = X2(WV + XWIW)(X*VA+ XVB+ XVD+ XVG+VI)
+H(XWN + XWO4+WP)(X*VC+ X*VE+XVH+VK)
+(XPWR+X*WS+XWT +WU)(X?*VF+VL)]

= [(X*WA+XWB+WC)(X*VA+X*VB+X*VD+XVG+VI)
+HX*WE+ X*WD+ XWF+WG)(X*VC+ X*VE+ XVH+VK)
+H(X'WH+ X*WI+ X’WK+XWL+WM)(X’VF+VL)]

Extracting X of the left side of the equation gives:

V1 = X2(WV + XWW)(X*VA+ XVB+ X?VD+ XVG+VI)
+(X*WN+XWO+WP)(XVC+X*VE+XVH+VK)
+HXPWR+X*WS+ XWT +WU)X*VF + VL)]

= +V1- XX (VAWW + VCWN + VFWR)
+X VAWV + VBWW + VEWN +VCWO +VFWS)
+X}VBWV + VDWW + VHWN +VEWO
+VCWP+VFWT +VLWR)
+X2(VDWV +VGWW +VKWN +VHWO
+VEWP+VFWU +VLWS)
+X(VGWV +VIWW + VEWO +VHWP +VLWT)
+(VIWV +VKWP+VLWU)]

Subst:

DA = VAWW +VCWN+VFWR

DB = VAWV +VBWW +VEWN+VCWO+VFWS

DC = VBWVAVDWW +VHWN+VEWO+VCWP
+VFWT+VLWR

DD = VDWV+VGWW +VKWN+VHWO+VEWP
+VFWU+VLWS

DE = VGWV +VIWW +VKWO+VHWP+VLWT

DF = VIWVA+VKWP+VLWU

gives:
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=+v1—- X2 [X°DA+ X'DB + X*DC + X*DD + X DE + DF]

Calculating the square:

(1-X*(X°DA+ X'DB+ X?DC + X?DD + X DE + DF)?
(1—-XH[X(DA?) + X°(2DADB) + X*(2DADC + DB?)
+X"(2DADD +2DBDC) + X*(2DADE +2DB DD + DC?)

+X°(2DADF +2DB DE +2DC DD)
+X*2DB DF +2DC DE + DD?) + X*(2DC DF +2DD DE)
+X?(2DD DF + DE*) + X(2DE DF) + DF?

Subst:

gives:

EA
EB
EC
ED
EE
EF
EdG
EH

ET
EK
EL

DA?

2DADB

2DA DC + DB?

2DADD +2DB DC
2DADE +2DB DD + DC?
29DADF +2DB DEFE + 2DC DD
2DB DF +2DC DE + DD?
2DC DF +2DD DE

2DD DF + DE?

2DE DF

DF?

= X2(—EA)+ X'"(—=EB) + X'(EA — EC)

+X%(EB — ED) + X*(EC — EE) + X"(ED — EF)
+X%FEE - EG)+ X°(EF — EH) + X*(EG — EI)
+X*(EH — EK)+ X*(EI — FL) + X(EK) + EL

100
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Calculating the second part:

(X°WA+ XWB+WO)(X'VA+X*VB+X?’VD+XVG+VI)
+HX*WE+ X*WD+ XWF+WG)(X’VC+ X*VE+ XVH+VK)
+(X*'WH+ X*WI+ X*WK +XWL+WM)(X?VF+ VL)

= X(WAVA+WEVC+WHVF)
+XSWAVB+WBVA+WEVE+WDVC+WIVF)
+ XY WAVD+WBVB+WCVA+WEVH+WDVE+WFVC
+WKVF+WHVL)
+X*WAVG+WBVD+WCVB+WEVK+WDVH+WFVE
+WGVC+WLVF+WIVL)
+X?2WAVI+WBVG+WCVD+WDVK +WFVH+WGVE
+WMVF+WKVL)
+X(WBVI+WCVG+WFVK+WGVH+WLVL)
+(WCVI+WGVK+WMVL)

Subst:

GA = WAVA+WEVC+WHVEF

GB = WAVB+WBVA4+WEVE+WDVC+WIVF

GC = WAVD+WBVB+WCVA+WEVH+WDVE
+WFVC+WKVF+WHVL

GD = WAVG+WBVD+WCVB+WEVK+WDVH
+WFVE+WGVC+WLVF+WIVL)

GE = WAVI+WBVG+WCVD+WDVK+WFVH
+WGVE+WMVF+WKVL

GF = WBVI+WCVGH+WFVK+WGVHA+WLVL

GG = WCVI+WGVK+WMVL

gives:
= X°GA+ X°GB + X*'GC + X*GD + X?GE + X GF + GG

Calculating the square:
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(X°GA+ X°GB + X'GC + X*GD + X*GE + X GF + GG)?
= X"(GA*) + X" (2GAGB) + 2" (2GAGC + GB?)

+X?(2GAGD +2GBGC) + X}(2GAGE +2GBGD + GC?)

+X"(2GAGF +2GBGE +2GC GD)

+X%2GAGG +2GBGF +2GC GE + GD?)

+X°(2GB GG + 2GC GF +2GDGE)

+X*2GC GG +2GD GF + GE?)

+X?*(2GD GG +2GE GF)

+X?(2GE GG + GF?)

+X(2GF GG)

+GG?

Subst:

HA = GA?
HB = 2GAGB
HC = 2GAGC +GB?
HD = 2GAGD+2GBGC
HE = 2GAGE +2GBGD + GC?
HF = 2GAGF +2GBGFE +2GCGD
HG = 2GAGG+2GBGF +2GC GE + GD?
HH = 2GBGG +2GCGF +2GDGE
HI = 2GCGG +2GDGF + GE?
HK = 2GDGG +2GEGF
HL = 2GEGG + GF*?
HM = 2GFGG
HN = GG?

gives:
= XPHA+X"HB+X"HC +X°HD+ X®HE + X"HF + X°HG

+X°HH + X*HI + X?HK + X?HL+ X HM + HN (C.5)
(C.6)
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Rewriting equations C.5 on page 100 and C.5 into one equation

0 = X2(HA+EA)+X'""(HB + EB)
+X'"(HC + EC — EA)+ X°(HD + ED — EB)
+X%(HE+ EE — EC)+ X' (HF + EF — ED)
+X%(HG + EG — EE) + X°(HH + EH — EF)
+XY(HI+ EI — EG) + X*(HK + EK — EH)
+X*(HL+ EL—-FEI)+ X(HM — EK) + (HN — EL)



Appendix D

Scripts

D.1 C-Programs

C-Programs in /ul/ee3/ceeap/cpplinux

best_fit_dbase

Calculates the parameters a, b, ¢ and s of the function
a+ b* cos(x) + ¢ * sin(z)
which fits the function given by the input values best. Where a is the mean,

b and ¢ are the coefficients and s is the variance of the best fit curve. The
input values must cover exactly one period.

/

*

NAME
best_fit_dbase

SYNOPSIS
Calculates the parameters a, b ,c and s of the
function a+b*cos(x)+c*sin(x) which fits the slant
corrected functions given by the input values best.
a is the mean, b and ¢ are the coefficients and s
is the standard-deviation of the best fit curve.
The input values must cover exactly one period.

X X X X K K XK X X X *

104
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* AUTHOR
* Andreas Penirschke
*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define PI 3.141592654

/* FAILURE HANDLING NOT DISPLAYED */

/* USAGE: x/
/* [VALUES 1]...[VALUES N][SLANT 1]...[SLANT N] [LENGTH OF VALUES I]
main(argc,argv)
char *argv([];
int argc;
{
/* DEFINE VARIABLES*/
int i,j, fun_val, test, slant_num;
float a=0.0, b=0.0, ¢=0.0, s=0.0, tmp;

/* NUMBER OF FEATURE VALUES PER SLANT ANGLE x/
fun_val=atoi(argvlargc-11);

/* NUMBER OF DIFFERENT SLANT ANGLES */
slant_num=(int) ((argc-2)/(fun_val+l));

/* CALCULATE THE BEST FIT PARAMETERS */
for(i=0;i<(fun_val-1) ;i++)

{
for (j=0;j<slant_num; j++)
{
tmp=atof (argv[i+1+(j*fun_val)]);
tmp=tmp/ (sin(PI/180*atof (argv[argc-1-slant_num+j]1))\
*sin(PI/180*atof (argv[argc-1-slant_num+j]l)));
at+=tmp;
b+=tmp*cos (2*PI*(double) i/(double) (fun_val-1));
c+=tmp*sin(2*PI*(double) i/(double) (fun_val-1));
}
}

a=a/(double) (argc-2-(2*slant_num));
b=2*b/ (double) (argc-2-(2*slant_num) ) ;
c=2%c/(double) (argc-2-(2*slant_num)) ;
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/* CALCULATE THE STANDART DEVIATION S: */
for(i=0;i<(fun_val-1) ;i++)

{
for(j=0;j<slant_num;j++)
{
tmp=atof (argv[i+1+(j*fun_val)]l);
tmp=tmp/ (sin(PI/180*atof (argv[argc-1-slant_num+j]))\
*sin(PI/180*atof (argv[argc-1-slant_num+j]l)));
tmp=(tmp- (a+b*cos (2*PI*(double) i/(double) (fun_val-1))\
+c*sin(2*PI*(double) i/(double) (fun_val-1))));
s+=tmp*tmp;
}
}

s=sqrt(s/(double) (argc-2-(2*slant_num))) ;

/* WRITE RESULTS BACK */
printf("%.10f %.10f %.10f %.10f ", a, b, c, s);
exit (0);
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D.2 Shell-Scripts

Shellscripts in /ul/ee3/ceeap/shellscripts

feature_generation

For every surface the features of images taken under different tilt angles are
computed. Every image is filtered with 12 different complex Gabor filters
in the frequency domain, then transformed back into spatial domain. The
mean of the variance of each filtered image is calculated and stored as feature
vectors for each surface.

set -x # DEBUG VERSION

# SET PATHS

a=/net/delos/usr/local/imaging/bin
c=/net/lxtexturel/spare/6/Invest6
d="ceeap/experiments/slant_angle/gabor_filters
output=dbase_real # NAME OF THE QUTPUT FILE

# INIT THE OUTPUT FILE WHICH IS READ BY EXCEL
echo \"‘date‘\" > ${name} #quotes are needed for Excel

# WRITE THE HEADER FOR THE OUTPUT FILE
echo surface slant filter 0 30 60 90 120 150 180 >> ${name}

# CREATING GABOR FILTERS IN THE FREQUENCY DOMAIN

for phase in 0 45 90 135

do
gab4vinnie3-4 -f20 -a$phase -pl -nb512 gaborF20A${phase}_re
gab4vinnie3-4 -f20 -a$phase -p-1 -n512 gaborF20A${phasel}_im
gab4vinnie3-4 -£30 -a$phase -pl -nb512 gaborF30A${phase}_re
gab4vinnie3-4 -£30 -a$phase -p-1 -n512 gaborF30A${phasel}_im
gab4vinnie3-4 -f40 -a$phase -pl -nb512 gaborF40A${phase}_re
gab4vinnie3-4 -f40 -a$phase -p-1 -nb512 gaborF40A${phasel}_im

done

# CALCULATING THE FILTERED IMAGES
for text in afa afb afc afd afe afg
do # TEXT



APPENDIX D. SCRIPTS 108

# LOOP OVER DIFFERENT SLANT ANGLES
for slant in 45 60
do # SLANT

# EMPTY FEATURE ARRAYS
for freq in 20 30 40
do # FREQ
for phase in 0 45 90 135
do # PHASE
eval featurecomF${freq}A${phase}=\"\"
done # PHASE
done # FREQ

# LOCP OVER DIFFERENT TILT ANGLES
for tilt in 0 30 60 90 120 150 180
do # TILT

# CUT THE SIZE OF THE IMAGES
$a/cutim -X512 -Y512 -x104 -y0 \
$c/${text}/6.${text}.0.${slant}.${tilt} tmp

# TRANSFORM THE IMAGE INTO FREQUENCY DOMAIN
$a/fft3 tmp fft_re fft_im

$a/swapshop fft_re fft_re fft_re
$a/swapshop fft_im fft_im fft_im

# FILTER IMAGE WHITH DIFFERENT COMPLEX GABOR FILTERS
# AND COMPUTE FEATURES
for freq in 20 30 40
do # FREQ
for phase in 0 45 90 135
do # PHASE
com_gabor fft_re fft_im $d/gaborF${freqtA${phase}_re \
$d/gaborF${freqrA${phase}_im final
eval featurecomF${freq}A${phase}=\"\
\$featurecomF${freq}tA${phase} \‘variance_m final\‘\"
done # PHASE
done # FREQ
done # TILT

# STORE RESULTS IN OUTPUT FILE
for freq in 20 30 40
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do # FREQ
for phase in 0 45 90 135
do # PHASE

eval echo \$text \$slant comF\${freq}A\${phase}\
\$featurecomF${freqrA${phase} \>\> ${name}

done # PHASE

done # FREQ

done # SLANT

done # TEXT

echo \"‘date‘\" >> ${name}

#

DELETE UNIMPORTANT FILES

rm fft_x*
rm final
rm gaborFx*

data_generation

This shellscript separates the input database into training and classification.
For classification the odd tilt angles are used and to calculate the training
parameters the even tilt angles are used.

set -x # debug version

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

SYNOPSYS

Generates for each surface in input a database train (odd
tild angles) and a database class to test the classifier.
The output of calculation is stored in the file features.

AUTHOR
Andreas Penirschke

MODIFICATION
09/01/02

MODULES REQUIRED

Input to create the feature_vector

[ comF20A0 comF20A45 comF20A90 comF20A135\
comF30S0 comF30A45 comF30A90 comf30A135 \
comF40A0 comF40A45 comF40A90 comF40A135 ]
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# number of used Filters in the database filter_num
#SET CONSTANTS

#NUMBER OF USED FILTERS AND SLANT ANGLES IN DATABASE
filter_num=12
slant_num=4

#SET PATHS AND DEFINE INPUT AND QUTPUT FILE
a=/ul/ee3/ceeap/cpplinux
b=/ul/ee3/ceeap/experiments/dbase/dbase_real_10deg #DATABASE
input=dbase_synth_new # DATABASE

# BEST_FIT_APPROXXIMATION USING EVEN TILD ANGLE‘S
output_train=result_12/data_train
output_train_matrix=result_12/data_train_m.txt

# REDUCED DATABASE USING ODD TILD ANGLE’S
output_class=result_12/data_class
output_class_matrix=result_12/data_class_m.txt

#DELETING UNUSED FILTERS

row=‘cut -d’ ’ -f1 $b/$input | wc -w*

eval sed -n \’1p\’ $b/$input \| tr \’\\11\’ \’> \’ \> dbase
i=2

while [ "$i" -le "$row" ]

do #i
eval sed —n \’${i}p\’ $b/$input \| tr \’\\11\’ \’ \’ \>\> dbase
i=‘expr $i + 1°¢
eval sed —n \’${i}p\’ $b/$input \| tr \’\\11\’ \’ \’ \>\> dbase
i=‘expr $i + 3¢
eval sed —n \’${i}p\’ $b/$input \| tr \’\\11\’ \’ \’ \>\> dbase
i=‘expr $i + 2¢
eval sed —n \’${i}tp\’ $b/$input \| tr \’\\11\’ \’ \’ \>\> dbase
i=‘expr $i + 6°¢

done #i

# SEPARATE INPUT DATA INTO DATA_CLASS AND DATA_TEST

# STORE VARTABLES IN OUTPUT_CLASS AND TEMPORARY FILE TRAIN_DATA
column=‘sed -n ’1p’ dbase | wc -w°

row=‘cut -4’ ’ -f1 dbase | wc -w¢

train_v=""
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class_v=""
rm train_data
rm $b/$output_class
i=1
while [ "$i" -le "$row" ]
do
eval sed —n \’${i}p\’ dbase \> feature
eval train_v=\"\$train_v\‘cut -d\’ \’ -f1-3 feature \
VIR~ SRS CANN A AR
eval class_v=\"\$class_v\‘cut -d\’ \’ -f1-3 feature \
VIR~ SRS CANN A AR

j=4
while [ "$j" -le "$column" ]
do

echo $i $j

eval train_v=\"$train_v \‘cut -d\’ \’ -f\$j feature\‘\"
j=‘expr $j + 1°
if [ "$j" -le "$column" ]
then
eval class_v=\"$class_v \‘cut -d\’ \’ -f\$j feature\‘\"

fi
j=‘expr $j + 1°¢

done

i=‘expr $i + 1°¢

echo $train_v >> train_data

echo $class_v >> $b/$output_class

train_v=""

class_v=""

done

#GENERATE MATRIX FILE WHICH CAN BE READ BY MATLAB
cat $b/$output_class | tr ’ ’ ’\11’ > tmp
cut -f{4-$column} > $b/$output_class_matrix

#CALCULATION OF THE BEST_FIT PARAMETERS OF TRAIN_DATA [A B C S]
#BEST_FIT_PARAMETERS ARE STORED IN FILE OUTPUT_BEST
column=‘sed -n ’1p’ train_data | wc -w°

row=‘cut -d’ ’ -fl1 train_data | wc -w‘

tilt_val=‘expr $column - 3¢

surf_row=‘expr $filter_num \* $slant_num‘

echo "surface filter a b ¢ s" > $b/$output_train

i=2
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while [ "$i" -1le "$row" ]
do
echo $i # LINECOUNTER

j=%$i
tmp_filt=‘expr $i + $filter_num‘
while [ "$j" -1t "$tmp_filt" ]
do
k=0
train_v_slant=""
train_val=""
while [ "$k" -1t "$surf_row" ]
do
tmpl=‘expr $k + $j°
eval sed —n \’${tmp1}p\’ train_data > train_v
eval train_v_slant=\"$train_v_slant
\f‘cut -d\’ \’ -f2 train_v\‘\"
eval train_val=\"$train_val \‘cut -d\’ \’ -f4- train_v \
\NEotr V2 N7 ANEN N
k=‘expr $k + $filter_num‘
done

eval train_v_desc=\"\‘cut -d\’ \’ -f1,3 train_v \‘\"
tmp="$train_val $train_v_slant $tilt_val"

eval train_v_best=\"\‘$a/best_fit_dbase $tmp\‘\"

echo "$train_v_desc $train_v_best" >> $b/$output_train
j=‘expr $j + 1¢

done
i=‘expr $i + $surf_row’
done

#GENERATE PARAMETER MATRIX FILE WHICH CAN BE READ BY
#MATLAB

sed -1d $b/output_train | tr > ° ’\11’ > tmp

cut —-f{3-$column} > $b/output_train_matrix

# DELETE UNIMPORTANT FILES
rm featurex

rm train_vx*

rm dbase
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class_matrix_slant

This shellscript classifies a given result matrix which is generated by tilt_slant_calc.m.
by finding the maximum ML-value in every line of the matrix.

#set —x # debug version

SYNOPSYS
DISCRIMINATION OF THE ML VALUES GIVEN
IN MATRIX GENERATED BY
TILT_SLANT_CALC.M

AUTHOR
Andreas Penirschke

MODIFICATION
20/01/02

MODULES REQUIRED
MAX

INPUT
RESULT.TXT

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
# OUTPUT

# RESULT_CLASS.TXT

#SET PATHS

a=/ul/ee3/ceeap/cpp
b=/ul/ee3/ceeap/experiments/slant_angle/synth_surf/result_12

#SET INPUT AND OUTPUT FILES
input=result.txt
output=result_class.txt

#RESULT VECTOR
result_vector=""
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#CALCULATE COLUMN AND ROWS OF INPUT FILE
column=‘sed -n ’1p’ $b/$input | wc -w*
row=‘cut -f1 $b/$input | wc -1°

#SEARCHING THE TEXTURE WITH MAXIMUM ML VALUE
#AND STORE IN OQUTPUT FILE
i=1
while [ "$i" -le "$row" ]
do
eval sed -n \’${i}p\’ $b/$input > image_res
eval result_vector=\"\$result_vector\‘cut -f1 image_res\‘ \"
data=""
j=4
while [ "$j" -le "$column" ]
do
echo "$i $;j"
eval data=\"\$data\‘cut -f\$j image_res\‘ \"
j=‘expr $j + 3¢
done
best=‘$a/max $data‘
startl=‘expr $best \* 3¢
start=‘expr $startl - 1°¢
end=‘expr $start + 2°
eval result_vector=\"\$result_vector \$best \‘cut \
-f\$start-\$end image_res\‘\\n\"
i=‘expr $i + 1°¢
done
echo $result_vector | tr > > ’\t’ > $b/$output

#DELETE UNIMPORTANT FILES
rm image_res
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D.3 Matlab'M-Scripts
Matlab-scripts in /ul/ee3/ceeap/matlab_tools

tilt_calc.m

MATLAB is a registered trademark. This script solves the discrimination
function that is used for tilt estimation with known slant. The mathemat-
ical background can be found in C.1 on page 87. The input is the training
database ( vectors J,Zi ¢ and § for each of the n surfaces calculated by
the shell script D.2 on page 107 ) and the feature matrix which contains m
unknown surfaces ( m unknown feature vectors ). The output is a matrix
m X n, which contains the results of the Maximum Likelihood estimator.

Dol ToTo ol ToTo o T ToToTo o ToTo o o Jo ToTo o Jo To o o o Jo T o o o To T o o o Jo Fa oo o To T o o o T o o o o T o oo o o o

yA /)
% PROGRAM NAME: tilt_calc_polinom.m %
yA %
% DESCRIPTION: discrimination algorithm to %
yA classify textures with unknown %
% illumination tilt direction %
yA %
% INPUT data_train.txt %
A data_class.txt VA
yA /)
% OUTPUT result.txt %
yA /)
% Author: Andreas Penirschke %
yA yA

TolololololololoToTo oo o o o oo oo lo o o oo o oo o o oo ToToToTo o T o o oo o o oo To o oo To To o o o o o o o o
JDEFINITION OF GLOBAL VARIABLES

global y ABCDEF s

JDEFINITION OF LOCAL VARIABLES

filter_num=12; NUMBER OF USED FILTERS

train_surf=25; JNUMBER OF TRAINING TEXTURES

class_surf=50; %NUMBER OF TEXTURES TO CLASSIFY

%0PEN TEXT FILES

[train_dat,messagel=fopen(’tilt_angle/data_train.txt’,’rt’);
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if train_dat == -1
disp(message)
end

[class_dat,message]=fopen(’tilt_angle/data_class.txt’,’rt’);

if class_dat == -1
disp(message)
end

result=fopen(’tilt_angle/result’,’wt’);
%READ THE SIZE OF THE FILE DATA_CLASS

[tmp,size]=fscanf (class_dat,’%s’);
status=fclose(class_dat);

%REOPEN DATA_CLASS TO READ FEATURE VECTORS OF UNKNOWN
%IMAGES

[class_dat,messagel=fopen(’tilt_angle/data_class.txt’,’rt’);

if class_dat == -1
disp(message)
end

%CALCULATE THE NUMBER OF IMAGES ILLUMINATED WITH
%DIFFERENT TILT ANGLES OF EVERY TEXTURE IN DAT_CLASS
class_column=size/(class_surfxfilter_num+1l);
class_angle=fscanf (class_dat,’%f’,class_column) ;

train=fscanf (train_dat,’%f’);

%L00P OVER DIFFERENT TEXTURES IN DATA_CLASS
for i = 1:1:class_surf
surf=[(fscanf(class_dat,’%f’,class_column))’];

%READ FEATURE VALUES FOR UNKNOWN TEXTURE IN DATA_CLASS
% (FEATURE VALUES FOR ALL IMAGES FROM A TEXTURE)
for j = 2:1:filter_num

surf=[surf; (fscanf(class_dat,’%f’,class_column))’];
end



APPENDIX D. SCRIPTS 117

%LO0P OVER NUMBER OF DIFFERENT IMAGES OR EVERY TEXTURE
for j = 1:1:class_column
angle=class_angle(j);

%PRINT ILLUMINATION TILT ANGLE OF THE IMAGE
fprintf (result,’%d\t’,angle);
y=(surf(:,3j))’;

%L0O0P OVER TEXTURES IN DATA_CLASS
for k = 0: (4*filter_num) : (4*filter_num)*(train_surf-1)

a=[1; b=01; c=[1; s=[1;

%READ BEST FIT PARAMETERS FOR ONE TEXTURE IN DATA_TRAIN
for m = 1:4:(4x(filter_num-1)+1)

a=[a train(k+m)];

b=[b train(k+m+1)];

c=[c train(k+m+2)];

s=[s train(k+m+3)];
end

%CALCULATE SUBSTITUDES
%GENERAL

A=((y-a)./(2.xs)*((y-a)./s)’);
B=((a-y)./s)*(b./s)’;
C=((a~y)./s)x(c./s)’;
D=(b./(2.%s)*(b./s)’);
E=((b./s)*(c./s)?);
F=((c./(2.%s))*(c./s)?);
AA=(2%b./s)*((y-a)./s)’;
BB=(2xc./s)*((a-y)./s)’;
CC=(2xc./s)*(c./s)’—(2%b./s)*(b./s)’;
DD=-(4%*b./s)*(c./s)’;
EE=(2%b./s)*(c./s)’;

%CALCULATE THE ROOTS OF THE POLYNOMIAL Q
Q=[ (CC~2+DD"2) , (2*AA*DD+2*BB*CC) ,
(AA~2+42xDD*EE+BB~2-CC~2) ,
(2*AA*EE-2xBB*CC) , (EE"2-BB"2) ];
res=roots(Q);
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angle=0;
probt=0;

prob=0.0;
tilt=0.0;

%CALCULATE THE ILLUMINATION TILT ANGLE

%0F THE

for n=1:

if

end

if

SURFACE
1:1ength(res)

-0.0001 <= res(n) & res(n) <= 1.001
%VALUE OF TILT IN [0..PI/2]

angle=asin(real(res(n)))/2;
probt=1/(sqrt (2*pi) "length(s) *prod(s))*
exp (- (A+Bxcos(2*angle)+C*sin(2*angle)+
D*(cos(2*angle)) "2+E*xcos(2*angle)*
sin(2*angle)+F*(sin(2*angle))"2));

if probt > prob
prob=probt;
tilt=abs(angle*180/pi);
end

%VALUE QF TILT IN [PI/2..PI]

angle=(pi-asin(real(res(n))))/2;

probt=1/(sqrt(2xpi) “length(s)*prod(s))*
exp (- (A+Bxcos(2*angle)+
Cxsin(2*angle)+D*(cos(2*angle)) "2+
Excos(2*angle)*sin(2*angle)+F*
(sin(2*angle))"2));

if probt > prob
prob=probt;
tilt=abs(angle*180/pi);
end

-1.001 <= res(n) & res(n) <= +0.0001

118
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%VALUE OF TILT IN [PI..3/2%PI]

angle=(pi-asin(real(res(n))))/2;
probt=1/(sqrt(2xpi) “length(s)*prod(s))*
exp (- (A+Bxcos(2*angle)+C*sin(2*angle)+
D*(cos(2*angle)) "2+E*cos(2*angle)*
sin(2*angle)+F*(sin(2*angle))~2));

if probt > prob
prob=probt;
tilt=abs(angle*180/pi);
end

%VALUE OF TILT IN [3/2%PI..2%PI]

angle=(2*pi+asin(real(res(n))))/2;
probt=1/(sqrt (2*pi) "length(s) *prod(s))*
exp (- (A+Bxcos(2*angle)+C*sin(2*angle)+
D*(cos(2*angle)) "2+E*cos(2*angle)*
sin(2*angle)+F*(sin(2*angle))~2));

if probt > prob
prob=probt;
tilt=abs(angle*180/pi);
end

end

end

%WRITE TILT ANGLE AND ML_VALUE IN RESULT
fprintf (result, ’%f\t%e\t’,tilt,prob);
end

%WRITE CARRIAGE RETURN IN RESULT
fprintf (result,’\n’);
end

%WRITE CARRIAGE RETURN IN RESULT
fprintf (result,’\n’);
end

%CLOSE ALL OPEN FILES
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status=fclose(train_dat);
status=fclose(class_dat);
status=fclose(result);
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tilt_slant_calc.m
This script solves the discrimination function of the tilt_slant classifier. The
mathematical background can be found in C.2 on page 103. The input and
the output is the same as for tilt_calc ( D.3 on page 115).

Dol ToTo o ToToTo ol ToToTo o ToTo o o To ToTo o Jo ToTo o o Jo T o o o To T o o o To o oo o To T o o o T o o o o To o o o To T o

yA b
% PROGRAM NAME: tilt_slant_calc_polinom.m h
yA b
% DESCRIPTION: discrimination algorithm to b
A classify textures with h
% unknown illumination direction A
yA b
% INPUT data_train.txt h
A data_class.txt %
yA h
% OUTPUT result.txt %
yA b
% Author: Andreas Penirschke A
yA b

ToTo 1o 1o 1o ToTo ToTo o To o ToTo ToTo o To o Jo 1o JoTo Jo 1o o Jo 1o Jo To o Jo Jo o 1o o To T Jo 1o o To 1o Jo T o To o Jo T o Jo 1o Jo 1o o To o o
%DEFINITION OF GLOBAL VARIABLES

global y ABCDEF

YDEFINITION OF LOCAL VARIABLES

filter_num=12; %NUMBER OF USED FILTERS

train_surf=25; %NUMBER OF TRAINING TEXTURES IN DATA_TRAIN

class_surf=50; %NUMBER OF TEXTURES IN DATA_CLASS

%0PEN TEXT FILES
%TRAINING SEQUENCE

[train_dat,messagel=fopen(’slant_angle/data_train.txt’,’rt’);
if train_dat == -1
disp(message)

end

%TEST SEQUENCE
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[class_dat,message]=fopen(’slant_angle/data_class.txt’,’rt’);

if class_dat == -1
disp(message)
end

result=fopen(’slant_angle/result.txt’,’wt’);
%READ THE SIZE OF THE FILE DATA_CLASS

[tmp,size]=fscanf (class_dat,’%s’);
status=fclose(class_dat);

%REOPEN DATA_CLASS TO READ FEATURE VECTORS OF UNKNOWN
%ILLUMINATION DIRECTION

[class_dat ,message]=fopen(’slant_angle/data_class.txt’,’rt’);

if class_dat == -1
disp(message)
end

%CALCULATE THE NUMBER OF IMAGES ILLUMINATED WITH
%DIFFERENT TILT ANGLES OF EVERY TEXTURE IN DAT_CLASS
class_column=(size)/(class_surf*filter_num+1);
class_angle=fscanf (class_dat,’%f’,class_column) ;
train=fscanf (train_dat,’%f’);

%L0O0P OVER DIFFERENT TEXTURES IN DATA_CLASS
for i = 1:1:class_surf
surf=[(fscanf(class_dat,’%f’,class_column))’];

%READ FEATURE VALUES FOR UNKNOWN TEXTURE IN DATA_CLASS
%(FEATURE VALUES FOR ALL IMAGES FROM A TEXTURE)
for j = 2:1:filter_num

surf=[surf; (fscanf(class_dat,’%f’,class_column))’];
end

%L0O0P OVER NUMBER OF DIFFERENT IMAGES OR EVERY TEXTURE
for j = 1:1:class_column
angle=class_angle(j);

%PRINT ILLUMINATION TILT ANGLE OF THE IMAGE
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fprintf (result,’%d\t’,angle);
y=(surf(:,3j))’;

%L0O0P OVER TEXTURES IN DATA_CLASS
for k = 0:(4xfilter_num): (4xfilter_num)*(train_surf-1)

a=[1; b=01; c=[1; s=[1;

%READ BEST FIT PARAMETERS FOR ONE TEXTURE IN DATA_TRAIN
for m = 1:4:(4x(filter_num-1)+1)

a=[a train(k+m)];

b=[b train(k+m+1)];

c=[c train(k+m+2)];

s=[s train(k+m+3)];
end

%CALCULATE SUBSTITUDES
%GENERAL

MAA=a./s*(a./s)’;
MAB=a./s*(b./s)’;
MAC=a./s*(c./8)’;
MAY=a./s*(y./s)’;
MBB=b./s*(b./s)’;
MBC=b./s*(c./s)’;
MBY=b./s*(y./s)’;
MCC=c./s*(c./s)’;
MCY=c./s*(y./s)’;
MYY=y./s*(y./s)’;

%SUBSTITUTIONS USED FOR THE FIRST DERIVATIVES

VA=16%(MBC) ~2+4* (MBB-MCC) ~2;
VB=16*MAB*MBC+8*MAC*MCC-8*MAC*MBB ;
VC=8*MCY*MBB-16*MBY*MBC-8*MCY*MCC;
VD=4x* (MAB) "2-16* (MBC) ~2+4* (MAC) ~2-4* (MBB-MCC) ~2;
VE=-8*MBY*MAB-8*MAC*MCY ;

VF=4x* (MBY) ~2+4* (MCY) ~2;
VG=8*xMAC*xMBB-8*MAB*MBC-8*MAC*MCC;
VH=8*MBY*MBC+8*MCY*MCC-8*MCY*MBB;
VI=4x(MBC) ~2-4*(MAC) ~2;
VK=8*MAC*MCY;

VL=-4*(MCY) "2;
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WA=(MCY) "2-(MBY) "2;

WB=2*xMAY*MCY ;

WC=(MAY) ~2+(MBY) ~2;
WD=MAY*MCC-MAY*MBB-2*MBY*MAB+2*MAC*MCY ;
WE=MCC*MCY-MBB*MCY-2*MBY*MBC;
WF=2*MAY*MAC+2*MBY*MBC+MAA*MCY+MBB*MCY ;
WG=MAA*MAY+MAY*MBB+2*xMBY*MAB ;
WH=(MCC-MBB) "2-4* (MBC) " 2;

WI=4*MAC* (MCC-MBB) -8*MAB*MBC;

WK=2* (MAA+MBB) * (MCC-MBB) +4* (MAC) “2+4* (MBC) “2-4* (MAB) "2;
WL=4*MAC* (MAA+MBB) +8*MAB*MBC ;
WM=(MAA+MBB) ~2+4* (MAB) "2;
WN=MBY*MCC-MBY*MBB+2*MCY*MBC ;
WO0=2*MAY*MBC+2*MBY*MAC+2*MCY*MAB;
WP=2*xMAY*MAB+MBY*MAA+MBY*MBB;

WR=4*MBC* (MCC-MBB) ;

WS=8*MAC*MBC+4*MAB* (MCC-MBB) ;

WT=4*MBC* (MAA+MBB) +8*MAC*MAB ;

WU=4+MAB* (MAA+MBB) ;

WV=2xMAY*MBY ;

WW=2*MBY*MCY ;

DA=WWxVA+WN*VC+WR*VF ;
DB=WV*VA+WW*VB+WN*VE+W0O*xVC+WS*VF ;
DC=WV*VB+WW*VD+WN*VH+WO*xVE+WP*VC+WT*VF+WR*VL ;
DD=WV*VD+WW*VG+WN*VK+WO*xVH+WP*VE+WU*VF+WS*VL ;
DE=WV*VG+WW*VI+WO*xVK+WP*VH+WT*VL;
DF=WV*VI+WP*VK+WU*VL;

EA=(DA) "2;

EB=2*DA*DB;
EC=2*DA*DC+(DB) "2;
ED=2*DA*DD+2*DB*DC;
EE=2%DA*DE+2*DB*DD+ (DC) “2;
EF=2*DA*DF+2*DB*DE+2*DC*DD;
EG=2%DB*DF+2*DC*DE+ (DD) “2;
EH=2*DC*DF+2*DD*DE ;
EI=2*DD*DF+(DE) "2;
EK=2*DE*DF ;

EL=(DF) ~2;

GA=WA*VA+WE*VC+WHx*VF;
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GB=WA*VB+WB*VA+WE*VE+WD*VC+WI*VF;
GC=WA*VD+WB*VB+WC*VA+WE*VH+WD*VE+WF*VC+WK*VF+WH*VL ;
GD=WA*VG+WB*VD+WC*VB+WE*VK+WD*VH+WF*VE+WG*VC+WL*VF+WI*VL;
GE=WA*VI+WB*VG+WC*xVD+WD*VK+WF*VH+WG*xVE+WM*VF+WK*VL ;
GF=WB*VI+WC*xVG+WF*VK+WG*xVH+WL*VL;

GG=WC*+VI+WG*VK+WM*VL;

HA=(GA) "~ 2;

HB=2%GA*GB;
HC=2*GA*GC+(GB) "2;
HD=2*xGA*GD+2*GB*GC;
HE=2*GA*GE+2*GB*GD+(GC) ~2;
HF=2*xGA*GF+2*GB*GE+2*GC*GD ;
HG=2*GA*GG+2*GB*xGF+2*GC*xGE+(GD) ~2;
HH=2*GB*GG+2*GC*GF+2*GD*GE;
HI=2*GC*xGG+2*GD*GF+(GE) ~2;
HK=2*GD*GG+2*GE*GF ;
HL=2*GE*GG+ (GF) "2;
HM=2*GF*GG;

HN=(GG) ~2;

%CALCULATE THE ZERO POINTS OF THE POLYNOMIAL
%(ONLY DEPENDENT ON TILT)

KA=(HA+EA) ;
KB=(HB+EB) ;
KC=(HC+EC-EA) ;
KD=(HD+ED-EB) ;
KE=(HE+EE-EC) ;
KF=(HF+EF-ED) ;
KG=(HG+EG-EE) ;
KH=(HH+EH-EF) ;
KI=(HI+EI-EG);
KK=(HK+EK-EH) ;
KL=(HL+EL-EI);
KM= (HM-EK) ;
KN=(HN-EL) ;

Q=[ KA , KB , KC , KD , KE , KF , KG , KH , KI , KK ,
KL , KM , KN 1;

tilt_vec=roots(Q);

%DELETE COMPLEX SOLUTIONS FOR TILT
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tilt_real=[];
for n=1:1:1ength(tilt_vec)

if abs(imag(tilt_vec(n))) < 0.001
tilt_real=[tilt_real real(tilt_vec(n))];
end

end

%CALCULATE POSSIBLE SOLUTIONS FOR ILLUMINATION SLANT

slant_vecl=(MAY+sqrt(1-tilt_real."2) .*MBY+tilt_real.*MCY)./
((MAA+MBB)+2*sqrt (1-tilt_real."2) .* (MAB+MBC.*tilt_real)+
2+MAC.*tilt_real+(MCC-MBB) .*tilt_real."2);

slant_vec2=(MAY-sqrt (1-tilt_real."2) .*MBY+tilt_real.*MCY)./
((MAA+MBB) -2x*sqrt (1-tilt_real."2) .* (MAB+MBC.*tilt_real)+
2*MAC.*tilt_real+(MCC-MBB) .*tilt_real."2);

tilt=[];
slant=[];

%CALCULATE POSSIBLE SOLUTIONS FOR ILLUMINATION TILT AND THE
%CORRESPONDING ILLUMINATION SLANT VECTORS (2 VALUES)
for n=1:1:1ength(slant_vecl)

if (slant_vecl(n) >= 0 & slant_vecl(n) <=1 &
slant_vec2(n) >= 0 & slant_vec2(n) <= 1)

if -0.0001 <= tilt_real(n) & tilt_real(n) <= 1.001
%VALUE OF TILT IN [0..PI/2]
tilt=[tilt asin(tilt_real(n))/2
asin(tilt_real(n))/2];
slant=[slant asin(sqrt(slant_vecl(n)))
asin(sqrt(slant_vec2(n)))];

%VALUE QF TILT IN [PI/2..PI]

tilt=[tilt (pi-asin(tilt_real(n)))/2
(pi-asin(tilt_real(n)))/2];
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slant=[slant asin(sqrt(slant_vecl(n)))
asin(sqrt(slant_vec2(n)))];
end

if -1.001 <= tilt_real(n) & tilt_real(n) <= +0.0001
%VALUE OF TILT IN [PI..3/2%PI]

tilt=[tilt (pi-asin(tilt_real(n)))/2
(pi-asin(tilt_real(n)))/2];

slant=[slant asin(sqrt(slant_vecl(n)))
asin(sqrt(slant_vec2(n)))];

%VALUE OF TILT IN [3/2%PI..2%PI]

tilt=[tilt (2*pi+asin(tilt_real(n)))/2
(2*pi+asin(tilt_real(n)))/2];
slant=[slant asin(sqrt(slant_vecl(n)))
asin(sqrt(slant_vec2(n)))];
end

end
end

%PRESETTINGS IF NO SOLUTION FOUND
prob=-1e100;

tilt_final=-1;

slant_final=-1;

%CALCULATE THE ML_VECTOR (2 VALUES DEP. ON SLANT)

%FOR EVERY POSSIBLE TILT SOLUTION.

for n=1:1:1length(tilt)

probt=1/(sqrt (2*pi) "length(s) *prod(s))*

exp(-(MYY/2-(sin(slant(n))) " 2%
(MAY+cos(2*tilt(n) ) *MBY+sin (2*tilt (MCY)+
(sin(slant(n))) 4% (MAA/2+cos(2*xtilt (n))*
MAB+sin(2*tilt(n))*MAC+(cos(2*tilt (n))) " 2%
MBB/2+cos (2*tilt(n) ) *sin(2*tilt(n))*
MBC+(sin(2*tilt(n))) ~2*MCC/2)));

%HOLD THE MAXIMUM SOLUTION FOR ML_VALUE IN PROB
%AND TILT AND SLANT IN TILT_ AND SLANT_FINAL
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if probt > prob
prob=probt;
tilt_final=(tilt(n)*180/pi);
slant_final=(slant(n)*180/pi);
end

end

%WRITE SOLUTION TO RESULT.TXT
fprintf (result, ’%f\t%f\t%e\t’ ,tilt_final,slant_final,prob);
end

%WRITE CARRIAGE RETURN TO RESULT.TXT
fprintf (result,’\n’);
end

%WRITE CARRIAGE RETURN TO RESULT.TXT
fprintf (result,’\n’);
end

%CLOSE ALL FILES
status=fclose(train_dat);
status=fclose(class_dat);
status=fclose(result);
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