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Abstract

Texture recognition has been a very active research area during the last
three decades. Although a large amount of progress has been made in many
areas, there was not much work on the effect of varying light conditions.
Especially the effects of changing illumination direction have received little
attention. This work shows that a wide range of texture features have a
sinusoidal behaviour due to illumination tilt rotation.

Starting from a linearised diffuse reflection model, we derive analytically a
sinusoidal prediction for texture features which are generated by linear filters
followed by an signal energy estimation. In addition we make further pre-
dictions for the behaviour of isotropic and unidirectional surfaces. We also
show that the resulting curve of these features in the two-dimensional feature
space in general is an ellipse. We define the boundary conditions for which
the marginal cases of the ellipse, circle and line, occur.

We verify these predictions both by simulations and experiments. For simu-
lation we use five different synthetic surfaces and their artificial illuminated
images. To show the general validity of our sinusoidal prediction, we inves-
tigate the behaviour of 30 different real world textures.



Chapter 1

Introduction

1.1 Motivation

Texture analysis is a growing subject of interest and research. One problem
of texture analysis is that the input of the classifier is usually an image of the
surface instead of the intrinsic surface. This can be mastered if the image
is only dependent on the surface height map and all other influences are
negligible or constant. One of the main effects which can change the image
of a surface dramatically are light conditions. Figure 1.1 on the following page
shows two textures illuminated with different tilt angles. Although all other
parameters are constant, the images look quite different. Thus illumination
tilt seems to have a large influence on images of 3D textures.

The main motivation of this dissertation is to derive a prediction for the
behaviour of texture features due to tilt rotating. To make this statement
as general as possible, we derive this prediction using as few as possible
restrictions for the textures and the feature generation.

1.2 Area of Research

Although the area of 3D surface recognition is a large research field, surpris-
ingly there was not much work about the effect of illumination conditions on
texture features.

[4] showed that classification is effected by the illumination spectral dis-
tribution, i.e. by the colour of the light. He presented illumination invariant
features using a linear model for surface spectral reflectance.

[3] showed that the illumination direction has a deep impact on the image
of a texture and thus on classification. Classifiers, which ignore the effect
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Figure 1.1: two textures illuminated with different tilt angles
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of illumination changes, can fail catastrophically. He also introduces tilt-
compensation filters to reduce the effect of illumination tilt angle changes.

Rather than compensating the effect, [2] used a model based approach
to obtain a illumination independent classification in the case that the illu-
mination angle is changed between training and classification: The physical
surface is estimated from several images using photometric stereo. This sur-
face is used for classification instead of the image.

1.3 Dissertation Organisation

This dissertation consists of six chapters. Chapter 2 presents the back-
ground theory needed for this work. First the Two-Dimensional Fourier
Transform and two one-dimensional simplifications, the polar and the radial
plot, are introduced. Also the Gabor and Laws filters are described. Finally
Kube’s Linearisation Model, as a link between the texture surface and its im-
age, is derived. Chapter 3 introduces four synthetically generated surfaces
which are used for simulation later. Chapter 4 gives a short review of tex-
ture feature generation in general and a description of the feature generation
used for this work in detail. In chapter 5 the effect of changing tilt direction
is derived theoretically. A sinusoidal prediction for texture features due to
tilt rotation is derived. The behaviour of isotropic unidirectional surfaces is
investigated more closely. In addition the behaviour in the two-dimensional
feature space is examined. In chapter 6 the analytically derived predictions
of chapter 5 are verified using simulations and experiments. For simulation
the synthetic surfaces presented in chapter 3 are used. For the experiments
30 different real world textures with different attributes are used. Chapter
7 summarises the results of this work and gives interesting points for further
research.



Chapter 2

Background Theory

In this section we give a short overview of the background theory which
is used in this work. Since this work uses the Two-Dimensional Fourier
Transform extensive, we first give its definition. We also introduce two groups
of linear filters which are used in this work: Gabor and Laws filters. The
polar and radial plot as one-dimensional plots of the two-dimensional Fourier
Transform are described. Finally we introduce a link between the surface
texture and its illuminated image in frequency domain.

2.1 Two-Dimensional Fourier Transform

In this work we use the Fourier Transform to investigate the relationship
between between the space and frequency domain. Since images are defined
as a two-dimensional signal, its Fourier Transform is also two-dimensional.
Because images are made up of pixels, they are defined only on a discrete
grid. For this reason we use the Discrete Fourier Transform. The Discrete
Two-Dimensional Fourier Transformation and its inverse Transformation are
defined as follows:

M-1N—

F(u,v) = M— Z Z z,y)e” W uze Koy

M- 1 .
z = F(u,v)é’ Muze™ v

f(2,y) Z Ny

u=0 v=0
where
f(z,y) is the signal in spatial domain

F(z,y) is the signal in frequency domain

4
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Mx N is the size of the image

Although the 2-D signal f(x,y) is often considered to be a real value and
the integer or floating point intensity value at location (x,y), it need not to
be always so. In general the Fourier Transform is a transform between two
complex functions. Although the one-dimensional Fourier transform is well
known, the interpretation of its two-dimensional generalisation is often tricky.
Details and more properties of the Two-Dimensional Fourier Transform can
be found in [10].

2.2 Polar and Radial Plot

The spectrum using a 2-D Fourier Transformation is a function of two vari-
ables (in this work we use u, v- or w, f-coordinates). In the following chapters
we often use polar and radial plots is a graphic simplification. Because they
are only dependent on one variable they can be drawn as a 2-D plot.

2.2.1 The Polar Plot

The polar plot adds the magnitudes of all frequencies in one certain direction
to produce a measure for the intensity in this direction. All these frequencies
lie in a radial line. It is used for illustrating directional properties of the
image. The definition of the polar plot is

P(9) = /000 Flw,0) dw

The polar plot shows the distribution of signal energy over direction. Due
to the fact that a Cartesian grid is used for the FFT, the polar plots in this
dissertation are only approximations. In fact we work with discrete images;
thus we can not extend the integration infinitely, as a result, we can not
calculate the exact polar plot of our images. A rotating of the image causes
a shift of its polar plot of the same angle. Figure 2.1 on the next page shows
wood in spatial and frequency domain. It shows that there is a high amount
of energy in the direction of the x-axis. Figure 2.2 on the following page
shows the polar plot of wood. It shows the directionality of wood.

2.2.2 The Radial Plot

The radial plot averages the magnitudes of radial frequencies over all direc-
tions of the image. The definition of the radial plot is
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Figure 2.1: wood in spatial and frequency domain
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Figure 2.2: polar plot of wood
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Figure 2.3: radial plot of wood

The radial plot shows the radial shape of the frequency domain indepen-
dently of the direction. Figure 2.3 shows the radial plot of wood. It shows
that most of the image energy is in lower frequencies.

2.3 Gabor Filters

In this dissertation we use two groups of linear filters. We first introduce the
Gabor filters which are very popular in the image processing society. One
reason why these filters became quite popular is that the characteristics of
certain cells in some mammals can be approximated by these filters. The
one-dimensional spatial and spectral forms are

—x2

hz) = exp (;) exp [ (2mwnz + 9)

Gw) = A {exp[—Qon(w — wp)?] + exp[—2m0? (w + wp)?]  (2.1)
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+  exp[—2m0?(w — wy)?] — exp[—2mo?(w + wO)Q]}
= 2A exp[-27m0?(w — wp)?] (2.2)

In spatial domain it consists of a Gaussian envelope modulated by a
complex exponential. In frequency domain it consists of a Gaussian around
the centre frequency wy (equation 2.2). It can also be split into a real-even
and a real-odd part (equation 2.1).

The spatial variance is dependent on the standard deviation o of the
Gaussian, which is in the denominator. The bandwidth in frequency domain
is also dependent on o, which is now in the enumerator. Thus a small spatial
variance causes a large bandwidth and vice versa. For classification and
segmentation problems both a small spatial variance and a small bandwidth
is needed. This means that the value of ¢ is always a trade-off. It was shown
that the complex Gabor filters have optimal localisation properties in both
spatial and frequency domain and thus are ideal for these problems.

In the two-dimensional case Gabor filters have the following equation:

hay) = exp [—— (j—}gi)]exp[j(moxw)]

T Yy

Glu,v) = A{e"p H (@ ! F)] e l_% (wff# N ;)]
(

where

Oy Oy

2mo, 2moy

A rotation of the x-y plane will result in Gabor filters at other orien-
tations. Like the trade-off between spatial variance and bandwidth in the
one-dimensional case, there exists also a trade-off between the spatial and
spectral resolution. A large spatial variance causes a small bandwidth and
vice versa. Instead of the whole complex filter sometimes only the real part
of the pulse response is used:

h(z,y) = exp [—1 (j—z + y_2>] cos(2mupx + @)

2 \oz oy
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Because the pulse response is real and even, its transfer function is also
real and even:

G(u,v) = A{eXp l—% (% T Z_;}ﬂ +exp l_% <% i %)H

This causes much less computation than using the whole complex filter.
The disadvantage is that the trade-off between spatial variance and band-
width is not longer optimal.

Examples of Gabor filters in frequency domain can be found in appen-
dix C on page 74.

The previous Gabor filters filter have both a certain centre frequency and
direction. In addition also isotropic Gabor filters are used. The transfer
function in w, f-coordinates is

) =enp (-0

o2

The usage of these filters and the advantages and disadvantages of iso-
tropic filters are explained in chapter 4.

2.4 Laws Filters

In addition to the Gabor filters which where introduced in the previous sec-
tion we use a second group of linear filters called Laws filters. [9] developed
a set of two-dimensional masks derived from three simple one-dimensional
filters. the basic one-dimensional filters are

L3 = (1,2,1) = “level detection”
E3 = (-1,0,1) = “edge detection”
S3 = (-1,2,-1) = “spot detection”

The magnitude frequency responses of these filters are:

|Hps(w)| = [e 7% +2+4 e =2(1 + cosw)
|Hgs(w)| = 2sinw
|Hgz(w)] = 2(1 —cosw)

Laws convolved these with each other to provide a set of symmetric and
anti-symmetric centre-weighted masks with all but the level filters being zero
sum. He found the most useful to be
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L5 =L3 L3 = (1,21) * (1,2,1) = (1,4,6,4,1)
E5 = L3 * E3 = (-1,-2,0,2,1)
S5 = E3 x E3 = (1,0,-2,0,1)
R5 = 83 * S3 = (1,-4,6,-4,1)

Because convoluting in time domain is equal to multiplying in frequency
domain, the magnitude frequency responses of these filters can be obtained
by multiplying the frequency responses of the previous filters:

“level detection”
“edge detection”
“spot detection”
“ripple detection”

el

|Hps(w)| = [2(1+cosw)2(1 + cosw)| = 4(1 + cosw)?
|Hgs(w)| = 4]sinw(1 4+ cosw)|

|Hgs(w)| = 4sinw

|Hps(w)| = 4(1 — cosw)?

These filters are convolved in turn with transposes of each other to give
square masks. He found the most useful are

1 -1 -20 21
4 —4 -8 0 8 4
L5E5 = L5T«E5=| 6 |*(~1,-2,0,2,1)=| -6 —12 0 12 6
4 —4 -8 0 8 4
1 -1 -20 21
10 20 -1
20 40 -2
E585 = 00 00 O
2.0 -4 0 2
10 -20 1

R5R5 = 6 —24 36 —-24 6

-1 0 2 0 -1
-4 0 8 0 —4
L5S5 = -6 0 12 0 —6
-4 0 8 0 —4

-1 0 2 0 -1

Since these two-dimensional Laws’ masks are made up from separable one-
dimensional filters, their frequency response may be obtained by multiplying
in the frequency domain:
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Figure 2.4: white noise in frequency domain after filtering with a L5E5 (left)
and a E5L5 Laws filter (right)

|Hpsps(u,v)| = |Hps(v) Hes(u)| = 4(1 + cosv)? 4sinu(1 + cosu)
|Hpgsss(u,v)| = 4sinv (1 + cosv)4sin®u

|Hgsrs(u,v)| = 4(1+ cosv)?4(1 + cos u)?

|Hpsss(u,v)| = 4(1 —cosv)?4sin®u

Figure 2.4(left) shows white noise in frequency domain after filtering with
a LSES Laws filter. This matches the theoretically derived results very well.
Changing the order of these filters (for example from L5E5 to E5L5) causes
a 90° shift (figure 2.4 right).
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2.5 Image Formation

To investigate the effect of changing illumination direction on rough surfaces
the physical surface has to be linked to its resulting image. The first step is
to link the surface derivatives to the image intensity. This is a local process
applied to one facet of the surface.

2.5.1 The Lambertian Reflectance Model

To describe the relationship between the surface derivatives of a facet and
the resulting image intensity the Lambertian model is used. [2] proofed that
this model is a good approximation for a wide range of surfaces, especially for
isotropic surfaces with low slope angles. This model is used for all surfaces
used in this report. The Lambertian model is a model of diffuse reflection and
deals with the local process of the light reflection of one facet. It states that
the perceived intensity of a facet is dependent only on the relative geometry
of the facet and the illumination direction. Although the radiance of the
facet is constant with respect to the viewers position, the radiant intensity
varies with the visible area of the facet. In the following an orthographic
projection is assumed. Because the visible area is proportional to the cosine
of the angle between the radiated light and the surface normal, the radiant
intensity ¢ can be expressed as the normalised dot product of the facet normal
vector § with the illumination vector [ times the albedo of the facet p:

(2.3)

2.5.2 Kube’s Linear Model

In this section a transfer function in frequency domain between the surface
and its resulting image is derived. We assume that the surface has Lamber-
tian reflection and there are no significant self or cast shadowing or inter-
reflection. Self shadowing means that the angle between the facet normal and
the illumination vector becomes larger than 90°. In this case equation 2.3
becomes negative which has no physical sense. Cast shadowing means that a
part of a surface is shadowed by another part of the surface. Inter-reflection
means that light is reflected by one facet and reaches another facet. Adopting
these assumptions equation 2.3 can be generalised to
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=

. g z,y)- ! T,y
i(ry) = play) S I, (2.4
5z, y) - Ule,y)|
oh oh

3(z,y) [ 9 By ] [—p(z,9) q(z,y) 1] (2.5)
where
i(z,y) is the radiant intensity.
p(z,y) is the albedo of the surface.
§(z,y) is the normal vector field of the surface height function h(z,y).
Iz, y) is illumination vector field.
p(z,y) is the slope in x direction.
q(z,y) is the slope in y direction.

If the illumination is produced by a point source located in an infinite dis-

-

tance, [(x,y) can be simplified to

f(:c,y) = [kl k‘z ]i'g] (26)
where
ki = cos(7) sin(o) ky = sin(7) sin(o) ks = cos(o)
T tilt angle o slant angle.

Using equation 2.5, 2.6 and ‘f(x, y)‘ =11in 2.4 we get

_klp(m: y) - kQQ(xa y) + k3
VP, y) + P y) + 1

For p,q < 1 we can linearise this equation to

i(z,y) =

i(.’L‘, y) = klp(xa y) + qu(.’L', y) + k3
This equation can easily be transformed into frequency domain:
Z(u,v) = kiP(u,v) + k2 Q(u, v) + k3d(u,v)

Using polar coordinates we get:

p(z,y) = % < P(u,v) = iuH(u,v) = iw cos(0)H(u,v)
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q(z,y) = % <~ Q(u,v) = wH(u,v) = iw sin(0)H(u,v)

Ignoring the mean we get

Z(w,0) = [kiiw cos(f) + keiw sin(8)|H(w, 0)
= jw sin(o)cos(d — 7)H(w, 0)

14

(2.8)



Chapter 3

Synthetic Surfaces

3.1 Introduction

In this section we introduce some models for natural and machined surfaces.
With these models we will be able to construct synthetic test surfaces for
simulations. We will use these synthetic surfaces as a first step for inves-
tigating the effect of illumination tilt changing in section 6.2. Although
simulations have disadvantages compared to experiments with real surfaces
they are quite useful because many sources of error are eliminated. It is
also possible to change the surface properties by changing the parameters,
whereas in experiments we can only use a limited number of surfaces. After
rendering the synthetic surface with a illumination algorithm we have both
the illuminated surface image and the original surface height map. Using real
surfaces we only get images of the surface but not the surface height map.

3.2 Generation of Synthetic Surfaces

Surfaces are in general two-dimensional random processes. Hence, they are
described by means of their statistics. Because surfaces have a certain degree
of spatial cohesion or correlation, their first order statistics give only a lim-
ited insight into their behaviours. It is customary and convenient to charac-
terise surfaces by their second order statistics, the auto-correlation function
(ACF). The following four models are described by the Fourier equivalent
of the ACF, the power spectral density (PSD). To describe an image com-
pletely, both its PSD and its phase spectrum is needed. [8] and showed that
although structured images have most of their information in the phase spec-
trum, unstructured images have all their information and characteristics in
their PSD. All following models describe unstructured surfaces. Therefore

15
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Figure 3.1: PSD of the fractal and Mulvaney surface models

we model for all models the phase spectrum as an uncorrelated random field
with a normal distribution. The Inverse Fast Fourier Transform is used to
generate the surface height map from the PSD and phase spectrum.

3.2.1 Fractal

We first consider a model for isotropic natural surfaces. Because the model
is isotropic, the power spectrum is only dependent on the centre frequency
w. A large number of surfaces in nature have over several decades a power
spectrum of the following form:

w3

This means that the Bode plot of the PSD is a line with a roll off of 3
(figure 3.1). Since the model is used in discrete form we assume the surface
is band-limited above the Nyquist frequency.

Figure 3.2 on the next page shows the height map and the illuminated
surface of a fractal which was modelled using equation 3.1. The illuminated
surface is computed using Lambertian reflection (equation 2.7 on page 13)
with an illumination slant angle of 45° and a tilt angle of 180°. Although the
height map does not seem to be a real world natural surface, the illuminated

S(w) (3.1)



CHAPTER 3. SYNTHETIC SURFACES 17

Figure 3.2: height map (left) and illuminated surface (right) of the fractal
surface model

surface looks like a real surface such as rocks or stones.

3.2.2 Mulvaney

This section introduces the Mulvaney surface which models a machined sur-
face. The fractal surface in the previous chapter models a natural surface. It
is not only rough but also uneven because it has most of its energy in lower
frequencies. This is volitional for natural surfaces but not for machined sur-
faces which are rough but even. Thus a model for machined surfaces has
to suppress lower frequencies compared to the fractal model. Because the
model is also isotropic, the power spectrum is again only dependent on the
centre frequency w. The PSD for the Mulvaney model is

S(w) =k (ko +1) . (3.2)

Figure 3.1 on the preceding page shows the PSD of the Mulvaney model
with the cut-off frequency ko = 0.32. For low frequencies it behaves like
white noise ( the PSD is a constant). For high frequencies it behaves like
a fractal with a roll-off factor of 3. Figure 3.3 on the next page shows the
height map and an illuminated image of the Mulvaney model. Because of
the suppressed low frequencies it is flat compared to the fractal model.
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Figure 3.3: height map (left) and illuminated surface (right) of the Mulvaney
surface model

3.2.3 Ogilvy

The previous two models are isotropic, i.e. their features do not vary with
the direction. But many real world surfaces are directional. Most of these
directional real world surfaces have a higher image energy in one direction
which makes them directional. The Ogilvy surface models this directionality
by using different cut-off frequencies for the v and v direction:

! 1 1
"1/N F w2 1/A2 + 02
Above these cut-off frequencies the Ogilvy surface behaves like a fractal
with a constant roll-off factor. Figure 3.4 on the following page shows an
illuminated image and the PSD with different cut-off frequencies. For highly
directional surfaces (left part) it is a proper model for real world surfaces.
The main disadvantage can be seen on the right part of the figure: If the
cut-off frequencies are similar in both directions the surface does not become
a isotropic surface but a two-directional surface (the image energy is high in
two directions). Thus the Ogilvy surface is not a proper model for a smooth
transition between isotropic and directional surfaces. For this reason we use
this model only as a highly directional surface.

S(u,v) = (3.3)
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Figure 3.4: illuminated image and PSD of a Mulvaney surface with the pa-
rameters Ay = 1/16 Ay = 1/64 (left) and A\; = 1/16 Ay = 1/16 (right)
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Figure 3.5: illuminated surface and PSD of the synthetic surface sand ripples

3.2.4 Sand Ripples

The last model introduced in this chapter is sand ripples which is an extreme
case of a highly isotropic surface with nearly all image energy in one centre
frequency. The PSD consists of two Dirac impulses:

S(u,v) = d(u—ki,v — ko) + d(u+ ki1,v + ko)

Thus the surface is approximately a sine wave. Figure 3.5 shows the
illuminated surface and the PSD of this surface with the parameters k; = 64
and ky = 0. All the image energy is around the direction and frequency of
the sine wave.



Chapter 4

Texture Feature Generation

4.1 Introduction

In the previous chapter we introduced the theoretical background needed for
theoretical and experimental investigation into the effect of illuminant tilt
changing on texture features. Because feature generation is a subprocess of
the classification problem, this chapter first gives a short introduction into
the idea of classification. After that we give a short overview of popular
and useful texture feature extraction techniques. Finally we describe the
feature generation using linear filters and image energy which is used for this
dissertation.

4.2 Classifier

The combination if algorithms by which pixels are classified and the image
segmented will be described as the classifier. The classifier must be able
to detect and identify different textures and the boundaries between them.
The whole process can be broken into three subprocesses: measurement,
feature extraction and discrimination. Measurement in this case means the
measurement of the physical signal. From this measure, features are derived
which represent a numerical quality of the surface. Several features which
are derived from the same measurement are treated as being orthogonal and
grouped together as a feature vector. The feature vector is associated to
a pixel and thus is a local process. The final step is to use a discriminant
function to label every pixel according to the estimated class. The result is a
segmented image where every pixel is labelled and thus belongs to one class.

21
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4.3 Overview of Feature Extraction Techni-
ques

The aim if this section is not to show any technique in detail but show the
main groups of features. Feature extraction can be categorised in model-
based, structural and feature-based methods.

Model-based features are derived from a surface model. This model has
to fit the group of textures which are classified. The classifier computes the
parameters of the model for every texture and uses this parameters as fea-
tures. This model-bases textures can be divided into stochastic and fractal
models. Although we do not use these features for classification in this disser-
tation, we used fractal models in chapter 3 to construct synthetic simulation
surfaces.

Another group of texture features are derived using structural methods.
These techniques assume that textures are composed of well-defined texture
primitives. Although this assumption is only valid for a small range of tex-
tures, some of these techniques work very well for these group of textures.
Because the textures used in this work do not meet this criterion we do not
discuss these methods.

The last group we introduce are the widely used feature-based methods.
This group again can be divided into its main groups statistically based and
operator-based features. Statistically based features use histograms or one
or second order statistics of the image grey levels. A wide range of these
statistics are published, like average intensity, standard deviation, contrast,
entropy, angular second moment, etc. . Examples for operator-based features
are the convolution with different masks followed by an energy estimation or
operators derived from co-occurrence matrices.

Texture features can also be divided into statistical methods and spatial-
frequency or spatial/spatial-frequency. It was proofed that in the past sta-
tistical methods were superior compared to spatial-frequency methods. This
was due to the lack if spatial locality in these early frequency analysis meth-
ods. Joint spatial/spatial-frequency methods are based on image representa-
tions that indicate the frequency content in localised regions. These methods
can achieve a high resolution both in spatial and frequency domain and thus
produce much better results.

The feature generation introduced in the next section uses the spatial/-
spatial-frequency method. The aim of this work is to investigate the be-
haviour of texture features produced by this group of features due to illumi-
nant tilt changing.



CHAPTER 4. TEXTURE FEATURE GENERATION 23

———————————————————————————————

|
: Linear . . ! feature
o Tlluminated Filtered Variance \ ! output
Surface lluminatio Image Te).(ture Tmage Estimation/ p
| Filter I f(7)

. I
feature generation |

_______________________________

Figure 4.1: Feature generation

4.4 Texture Feature Generation using Linear
Filters

As mentioned in the previous section the texture feature generator used in
this dissertation uses a spatial/spatial-frequency domain method. Because
we want to predict the behaviour of a wide range of texture features, we
model this generator as general as possible.

Figure 4.1 shows the general structure of the classifier. Although we want
to classify textures, the input of the feature generator is an illuminated image
of the texture. The problem is that the image of one surface varies under
different light conditions. The feature generator is a combination of a linear
filter and a variance estimation. We will derive the theoretical behaviour of
texture features without any further assumptions for the linear filter. The
variance estimator computes the square (z?) ,followed by a low-pass filter or
averaging function. Sometimes the absolute value (|z|) is used as a cheaper
approximation of the variance. Although we will only use the square for an
analytical prediction of texture features, we will use also the absolute value
in our experiments.



Chapter 5

The Behaviour of Texture
Features due to Illumination
Tilt Changing

5.1 Introduction

In this chapter we derive a analytical prediction for the behaviour of texture
features due to tilt rotating. We use the group of features derived by the tex-
ture feature generator introduced in section 4.4. We assume that the surfaces
reflections of textures used in this work can approximately be described by
Kube’s linear model (introduced in section 2.5.2). After we have derived a
general prediction for the behaviour of texture features we derive further pre-
dictions for the features of isotropic and unidirectional textures. Finally we
derive a analytical prediction for the behaviour of features in feature space.

5.2 Output of Linear Filters and their Fea-
tures

In section 2.5.2 we derived a link between the surface and its image in the
frequency domain. Using equation 2.8 on page 14 in terms of power spectrum
the surface is linked to its image as follows:

I(w,0) = w?cos*(0 — 7)sin?(c)H(w, 0)
where

(w,0) is the polar form of spatial frequency

24
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Figure 5.1: Feature generation with Kube’s Linearisation model

(with 6 = 0°).
I(w,0) is the image power spectrum.
H(w,0) is the surface power spectrum.

The assumptions for this equation where
e Lambertian reflection
e no self or cast shadowing
e no inter-reflection
e small slopes
e orthographic projection.

For the group of classifiers described in section 4.4 the generated features can
be described

f(1) = VAR(o(z, y))

where o(z,y) is the output of the linear texture filter. Because we treat the
illumination process as a linear operation we can exchange the illumination
process and the texture filter ( 5.1).

If the average of o(z,y) is zero and O(w, ) is the power spectrum of
o(z,y) then

f(r) = 70700(w,9)dxdy

O(w, 8) df dw

/wO(w,@) d6 dw
0

= 7w3sin2 (o) 70082(0 —7)A(w, 0) db dw (5.1)



CHAPTER 5. ILLUMINATION TILT CHANGING 26

where A(w,#) is the notional power spectrum of the output of the linear
texture filter applied directly to the surface height function.

Using cos?(z) = 1/2(1 + cos(2z)) and cos(x — y) = cos(z)cos(y) +
sin(x)sin(y) we get

flr) = /w38in2(0)/1/2 [1 4 cos(20)cos(2T)

+sin(260)sin(27)|A(w, 6) df dw
= a+ bcos(27) + csin(27)
= a+dcos(2T + ¢) (5.2)

where

3

a = 1/2sin’(o) | w® | A(w,0)dddw

b = 1/2sin?(o) cos(20)A(w, 0) df dw

w

c = 1/2sin’*(0) sin(20)A(w, 6) df dw

S

0\8 0\8 0\8
&
O\§ O\:[\}D O\:[\}D

d= Vb + 3, ¢ = arctan(c/b)

The parameters a, d and ¢ of equation 5.2 are independent of the tilt
angle 7. Thus this equation predicts a sinusoidal behaviour with a period of
27 for the features generated by this group of texture classifiers.

5.3 Behaviour of Isotropic, Directional and
Unidirectional Surfaces

In this section we examine equations 5.1 and 5.2 more closely for the special
cases of investigating an isotropic, a directional or a unidirectional surface.
Equation 5.1 on the preceding page can also be written as

oo 21
/ wH(w,0) K(w,0) F(w,0) df dw (5.3)
00

where
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Figure 5.2: angular plot of an isotropic and a directional gabor filter

H(w,0) is the surface PSD

K(w,0) is Kube’s model in terms of the PSD:
K(w,0) = w? sin?(0) cos®(0 — 1)

F(w,0) is the PSD of the texture filter.

Thus f(7) can be imagined as the area of the angular plot after multiply-
ing H(w,0), K(w,0) and F(w,#). Figure 5.2 shows the angular plot of an
isotropic and a directional Gabor filter as examples of an isotropic and di-
rectional filter. We define the maximum of the angular plot of a directional
filter is at the filter direction «. A variation of « causes a shift of the figure
according to the x-axis. Figure 5.3 on the following page shows the angu-
lar plot of Kube’s model. The maximum is at # = 7. A variation of the
illumination tilt angle 7 causes a shift of the figure according to the x-axis.
Figure 5.4 on the next page shows the angular plot of an isotropic, a direc-
tional and an unidirectional surface. we define the maximum of a directional
and unidirectional surface as the surface direction f.

5.3.1 Using Directional Filters

First we investigate the behaviour of f(7) using identical filters except a
different filter direction «. If the surface is isotropic, the area of the angular
plot and thus f(7) becomes maximal if 7 = a. f(7) becomes minimal if
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Figure 5.5: slab45 before and after filtering with a F25A45 Gabor filter

7T—a = 90°. Because the value if the minimum and maximum is independent
of the filter phase «a, the parameters a and d are constant for every a. Thus
we expect for the special case of an isotropic surface

fiso(Ty @) = a + dcos[2(T — a)]. (5.4)

This means that the phase of the oscillation of f;, is always twice the direc-
tion of the filter.

If the surface is unidirectional, the area of the angular plot and thus
f(7) is maximal if 7 = 5. The parameters a and d are dependent on the
filter direction o and are maximal if & = 5. Thus the feature output of an
unidirectional surface is

funi(T, @, B) = a(a) + d(a) cos[2(T — B)]. (5.5)

This means that the phase of the oscillation of f;, is always twice the direc-
tion of the surface.

Isotropic and unidirectional surfaces are the marginal cases of all possible
surfaces. All other surfaces behave like a mixture of these to cases. There
are no further simplifications for these directional surfaces:

faireet(T, @, B) = ala, B) + d(«, B) cos[2T + é(«, B)] (5.6)

The same formulas can also be derived in a more intuitive way. Figure 5.5
shows the surface slab45 before and after filtering with a directional F25A45
Gabor filter.
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Figure 5.6: unidirectional surfaces: cardl and michael3

It is obvious, that only frequencies similar to the filter centre frequency
and direction can pass the filter. If the angle between illumination tilt and
filter frequency 7 — « is small, these surface frequencies produce a high image
contrast and with it a high image energy behind the filter. If the surface is
isotropic the maximum of f(7) is at 7 = a. If 7 — « is similar to 90° the
energy of the output image is small, because the surface frequencies which
pass the filter are not illuminated. If the surface is isotropic, the minimum
of f(r) is at 7 — a = 90°. The resulting image for a constant 7 — « is always
the same except a rotation of the whole image. Thus the image energy is
independent of 7 — a.. It follows that the parameters a and d of equation 5.2
on page 26 are independent of a which leads to formula 5.4 on the preceding
page.

Figure 5.6 shows two approximately unidirectional surfaces. These sur-
faces contain only one direction of waves which can be illuminated. f(7) is
maximal if 7 equals the surface direction 5 because in this case the illumi-
nated surface waves produce a maximal image energy. Although the location
of the maximum is independent of the filter direction a the value of the max-
imum varies with «. If o = [ the energy which can pass the filter is maximal.
This leads to formula 5.5 on the preceding page.

5.3.2 Using Isotropic Filters

Isotropic filters are used quite often in pattern recognition although the in-
formation of direction of the image is lost. The reason becomes obvious by
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looking at equation 5.3 on page 26. If the used object is a 2-D object instead
of a rough 3-D object, Kube’s model is not applied. A rotation of the ob-
ject results a shift according to the x-axis of its angular plot. But using an
isotropic gabor filter this has no effect on the area of the resulting angular
plot. Thus the features of all kind of 2-D objects (isotropic, directional and
unidirectional) are rotation invariant.

But this is not true for rough 3-D surfaces. Because Kube’s model is
applied to the surface, the texture features are neither rotation invariant nor
illumination tilt invariant. Only in the special case of an isotropic surface the
features are both rotation and tilt invariant. This is because Kube’s model
is multiplied with both a constant because of the surface angular plot and
a constant because of the isotropic gabor filter. In this case the resulting
area of the angular plot does not change due to rotation or illumination tilt
changes.

5.4 Behaviour in a Multi-Dimensional Fea-
ture Space

To classify or segment an image normally many features are generated from
one image (see also section 4.2). In the case that features are generated
using linear filters these different features are generated using the same group
of filters but with different centre frequencies and directions. Because the
classifier makes its decisions in this multi-dimensional feature space it is
important to investigate the behaviour of texture features due to tilt changing
in feature space.

In the general one-dimensional case, the sinusoidal behaviour of two dif-
ferent surfaces under varying illumination tilt can vary in the mean value,
the oscillation amplitude and the phase:

f1(7) = a1 + by cos(27 + ¢1)

Jo(T) = ag + by cos(27 + ¢9)

If by + by > |a; — az| then there is no boundary to distinguish between
the two surfaces. In this case an illumination tilt independent classification
or segmentation is not possible.

If two different features are derived from the same image, the results can
be plotted in two dimensional feature space by plotting one feature against
the x-axis and one feature against the y-axis. Using our sinusoidal prediction
we get the general behaviour
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z = f1(7) = a1 + by cos(27 + ¢1)

y = fo(T) = ag + by cos(27 + ¢2)

If the surface is isotropic and the two filters a identical except a difference
in direction of 90°, the mean value and the oscillation amplitude of the two
features are the same and the phase difference becomes 180°:

fi(1) = a+ b cos(27) (5.7)
y = fo(r) =a+bcos(2T +180°) = a — b cos(27) (5.8)

The range of values for both x and y are a — b to a + b. By substituting
equation 5.7 in 5.8 we get

y=2a—=x

This is a line which is symmetric to the bisector of the x- and y-axis end
goes from the point (a — b; a +b) to the point (a + b;a —b). Thus we predict
that the scatter plot for isotropic textures and two identical but orthogonal
filters is a line.

If the surface is isotropic and the two filters a identical except a difference
in direction of 45°, the mean value and the oscillation amplitude of the two
features are the same and the phase difference becomes 90°:

x = fi(7) =a+ b cos(27) (5.9)
fo(7) = a+ b cos(27 +90°) = a — b sin(27) (5.10)

The range of values for both x and y again are a — b to a + b. By
substituting equation 5.9 in 5.10 we get

) T—a
y=a—bs1n[arccos( 2 )

Using sin[arccos(x)] = v/ 1 — 22 we get
z—a\? a-—y
1-— =
(57) =5

— P =(x—-0a)’+(@y—a)
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This is the equation of a circle with the radius b and the centre point
(a;a). Thus we predict that the scatter plot for isotropic textures and two
identical filters except a difference in direction of 45° is a circle which is
symmetric to the bisector of the x- and y-axis.

The line and the circle are the two marginal cases of all possible curves.
In the general case of a directional surface and two different filters the curve
is an ellipse. The proof is shown in appendix E.

Because the parameters of the ellipses can have any value, the ellipses
can overlap. In this case there is no boundary to distinguish between the
two surfaces. An illumination tilt independent classification or segmentation
is not possible.

5.5 Summary

In this section we derived a prediction of the behaviour of texture features
due to tilt variation. It predicts a sinusoidal behaviour of this features.
The parameters of this equation f(7) = a + d cos(27 + ¢) are dependent on
the height map of the surface and thus can not be calculated from images.
Although there is no further simplification for the general case we can make
more predictions for special cases. In the case of applying filters, which are
identical except the filter direction o, f(7) behaves according to equations
5.4, 5.5 and 5.6 on page 29. Applying an isotropic filter we predict that f(7)
is a constant for isotropic surfaces. Finally we predicted that the resulting
figure in the two-dimensional feature space is an ellipse.



Chapter 6

Simulations and Experiments

6.1 Introduction

In the previous chapter we derived the behaviour of texture features due to
tilt angle changing in theory. Particularly we predicted a sinusoidal behaviour
of texture features. Now we verify these predictions using simulations and
experiments. This chapter consists of two parts: First we use simulations
to compare features derived from synthetic surfaces with features derived
from illuminated images. Then we use real world textures to compare our
predictions with experimental results.

6.2 Simulations

We use a simulation as a first step to test our analytical results. Our predic-
tion for the behaviour of texture features was as follows:

f(r) = a-+bcos(27) + csin(27)
= a+ dcos(2T + ¢)

a = 1/2sin?*(o) | w® | A(w,0)dddw

b = 1/2sin*(0) [ w? [ cos(20)A(w, 0) df dw

0\8 0\8
O\:]N, O\:]N,

34
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2w
w? / sin(20)A(w, 6) df dw
0

d=Vb+ 2, ¢ = arctan(c/b)

The parameters a, b and ¢ are only dependent on A(w,#) which is the
power spectrum of the surface multiplied with the power spectrum of the
used linear filter. For a explicit computation of the parameters we need the
surface of the texture. Using real world textures we can only get illuminated
images of the textures instead of the intrinsic surfaces. For this reason we
use the synthetic generated surfaces presented in chapter 3.

For this simulation we have to transform these equations from w, #-coor-
dinates to u, v-coordinates. Using the Jacobian determinant gg‘:z; = \/u21+v2
and sin(2x) = 2sin(z) cos(x), cos(2z) = 2cos®*(z) — 1, u = wcos(f) and
v = wsin(f) we get

c = 1/2sin’*(0)

a = 1/2sin(o)? /_o:o /_O:O(u2 +v?) A(u,v) dudv
b = 1/2sin(0)? /_O:o /o:o(u2 —v?) A(u,v) du dv

c = 1/2 sin(a)Q/oo /OOQUUA(u,v)dudv

—0o0

The simulation compares the texture features derived from the surface
(using the sinusoidal prediction) with the features computed from illuminated
images. The simulation setup is shown in figure 6.1 on the next page. First
the surfaces of the four different synthetic surfaces introduced are computed.
From this surfaces illuminated images are rendered using the Lambertian
reflection (equation 2.3 on page 12). The illumination slant angle is 45° for
every image; the tilt angle goes from 0° to 180° with 10° steps. These images
are filtered with four different even Gabor filters. The centre frequency of the
filters is always 25 circles per image; the directions are 0°, 45°, 90° and 135°.
The images are filtered with a real Gabor filter, which means a multiplication
with a real and even filter in frequency domain. In addition the features are
computed from the PSD of the surfaces and the same Gabor filters using the
sinusoidal prediction.

Figures 6.2 to 6.5 show the results of this simulation. They show that the
prediction for the texture features fits the real behaviour of these features.
Using the surface sand ripples only the 0°-filtered images have measurable
energy. This happens because this surface is highly directional with the
direction 0°. All other filters suppress nearly all the image energy.
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Figure 6.1: Simulation Setup
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Figure 6.3: feature means of a filtered Mulvaney surface derived from the
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6.3 Experiments

6.3.1 Introduction

The experiments below are implemented using thirty different surfaces, each
imaged with a illumination tilt angle between 0° and 180°. The difference of
the illumination tilt angle of two consecutive images is 10° except the data
sets and1 to and7, which are imaged in 15° steps. All surfaces are illuminated
at a slant angle of 45°, in addition some surfaces are also illuminated with a
slant angle of 60°. One image of every surface can be found in appendix B
on page 71.

To verify if the results correspond with our theoretical prediction f(7) =
a + dcos(2T + ¢) a best fit curve for every data set output is calculated.
These best fit curves f,(7) = ap + by cos(27) + ¢, sin(27) represent these func-
tions which satisfy the theoretical prediction and are closest to the measured
curves. One way to calculate the parameters ap, b, and ¢ is to use an itera-
tive nonlinear optimisation. A much easier non iterative way which produces
also good results is as follows: The parameter a; is calculated as the average
value of one period. The parameters b, and ¢, are calculated as the ampli-
tude of the fundamental oscillation using a Discrete Fourier Transform. The
resulting formulae are as follows:

fo(T) = ap+ bycos(27) + cpsin(27) (6.1)
1 N-1

@ = > fe (6.2)
k=0
9 N-1

by = — Y (fx— ap)cos(2wkr/N) (6.3)
N =
9 N-1

s = — 3 (fx—ap)sin(2wk7r/N) (6.4)
N =

N number of measure points of one period

The average value is subtracted from every value before calculating the
DFT to get a better accuracy.

To specify how close the measured curve is to the best fit curve we need
a measure of error. An intuitive way to calculate an absolute measure of
error M, is to sum the squared differences between the measured and best
fit points:
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Figure 6.6: Feature generation using real Gabor filters

1 N-1
M=— Z (fx — fbk)Q (6.5)
N\ iz

To calculate the relative measure of error we divide the absolute measure
of error with the amplitude of the fundamental oscillation. Thus the relative

measure of merit is calculated as follows:

M 1Jzﬁﬁh—ﬂm 66

m=———= —
2 2
by, + ¢

Jr+a N
6.3.2 Gabor filters

Implementation

In the following all directional Gabor filters are specified by the expression
FQAO, where 2 is the centre frequency in circles per image and © is the
filter direction.

As our first experiment to verify our analytical predictions, we filter all
surfaces with four complex Gabor filters with the parameters F25A0, F25A45,
F25A90, F25A135, F50A45 and one real Gabor filter with the parameters
F25A45. All filters are represented in the frequency domain in appendix C
on page 74. The experiment implementation for real Gabor filters is straight
forward (figure 6.6). Because real Gabor filters are real and even in spatial
domain they are also real and even in frequency domain. Thus the real and
imaginary part of the input image can be multiplied with the filter before
the filtered image is transformed back to spatial domain.

Complex Gabor filters have a complex pulse response. This means that
the result of a real image filtered with this filter is complex. The following
symmetrical relationships are summarised in table 6.1 on the following page.
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‘ spatial domain ‘ frequency domain ‘
real real-even + imaginary-odd
imaginary real-odd + imaginary-even
real-even + imaginary-odd real

Table 6.1: symmetrical relationships of the Fourier transform (from [10] page
13)

Because the complex Gabor filter consists only of a real-even and a imaginary-
odd part in spatial domain, it consists only of a real-even and a real-odd part
in frequency domain. Because the image is real in spatial domain, it consists
of a real-even and an imaginary-odd part in frequency domain.

Before the filtered image can be transformed back to spatial domain, it
has to be split into the part which is real in spatial domain and the part
which is imaginary in spatial domain. These two parts can be transformed
back separately. To get the real part in spatial domain, the real-even and
the imaginary-odd part in frequency domain are needed. The real-even part
in frequency domain is the multiplication of the real-even part of the image
with the real-even part of the filter. The imaginary-odd part in frequency
domain is the multiplication of the imaginary-odd part of the image with the
real-even part of the filter. To get the imaginary part in spatial domain, the
real-odd and the imaginary-even part in frequency domain are needed. The
real-odd part in frequency domain is the multiplication of the real-even part
of the image with the real-odd part of the filter. The imaginary-even part
in frequency domain is the multiplication of the imaginary-odd part of the
image with the real-odd part of the filter.

Figure 6.7 on the next page shows the implementation of the feature gen-
eration. The FFT ! program generates only a real image in spatial domain:

Freal + jﬂmag - f
By multiplying both sides with j the spatial domain becomes imaginary:
_Emag + jFreal - ]f

Thus the same program can be used to compute the imaginary spatial image,
if the negative imaginary part is treated as the real part and the real part is
treated as the imaginary part.

Results

Because there are far to many results it is not possible to show all the data
set curves. In the following some examples with typical data set outputs are
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Figure 6.7: Feature generation using complex Gabor filters

shown.

To check if a high relative measure of error corresponds to a bad intuitive
fit of the measured curve with the prediction f(7) = a + dcos(27 + ¢), the
curves with the best, the worst and a mean relative measure of error are
compared in figure 6.8 on the following page. It shows that our measure of
error is accurate to calculate the sinusoidal fit of a curve.

The complete results are shown on the tables A.1 on page 67 and A.2
on page 68. Figure 6.9 on page 44 shows a graphic representation of the
sinusoidal measure of error and the energy of the filtered images of all com-
binations of surfaces and filters.

The figure shows that nearly every combination of a surface and a filter
produces a nearly sinusoidal behaviour of f(7). Only if the energy of a filtered
image is very low (because the images contains no information in the filter
frequencies), does the measure of error become large. For example card? is a
nearly unidirectional surface and contains only information in the direction
0°. Because of this the F25A90com filtered image contains nearly no energy;
its measure of error becomes large. Stones2 has most of its information in
lower frequencies. Thus the high frequency filtered F25A50com image has
few energy and a large measure of error.

Figure 6.10 on page 45 shows a comparison between the measure of error
of images filtered with real and complex F25A45 Gabor filters. It shows
that the behaviour of images filtered with real Gabor filters is as good as
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Figure 6.10: comparison of the sinusoidal measure of error between a real
and a complex Gabor filter

images filtered with complex Gabor filters. The average measure of error

of all F25A45real filters is 0.036424 compared to 0.038977 for F25A45com
filters.

6.3.3 Behaviour of Isotropic, Directional and Unidi-
rectional Surfaces

In section 5.3 we made further predictions for the special cases of using filters
on isotropic or unidirectional surfaces. Some of the results of the previous
experiment can be used to verify these predictions.

Figure 6.11 on the next page shows the feature mean dependent on the tilt
angle for rock1 which is approximately an isotropic surface. In agreement
with equation 5.4 on page 29 the maximum of the oscillation is always at
the filter direction . The amplitude of the oscillation and the mean of
the curve is approximately equal for every . Figure 6.12 on the next page
shows the feature mean dependent on the tilt angle for michael3 which is
an approximately unidirectional surface with the surface direction g = 0°.
In agreement with equation 5.5 on page 29 the maximum of the feature size
dependent on the tilt angle 7 is always at 7 = [ and is independent of the
filter angle a. The amplitude of the oscillation is the bigger the smaller the
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difference 7 — § is. The filters F25A90com F25A135com produce a output
of nearly zero because the image has nearly no information in this direction
and thus very little energy passes through the filters.

Figure 6.13 shows the feature means of the directional surface bigdir60. In
general the maximum does not equal « or 5. The amplitude of the oscillation
varies dependent on «.

In section 5.3.2 we suggested that isotropic filters produce only rotation
and tilt independent features in the case of isotropic surfaces. If a feature is
tilt independent, f(7) would be a straight line. To investigate the behaviour
of these surfaces using isotropic filters, the texture feature means using a
isotropic F25 Gabor filter are computed. Instead of computing a sinusoidal
best fit curve, we now want to know how close the output curve is to a
straight line. As a measure of error the relative variances of the features are
computed:

V=

1 VS e — fa)?
N

- (6.7)
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Figure 6.15: comparison between the relative variances of texture features
using an isotropic Gabor filter

Figure 6.14 on the preceding page shows the normalised feature means’
of the three surfaces investigated above. In agreement with the theory the
output of the isotropic surface is nearly a line and the output of the uni-
directional surface varies much. The behaviour of the directional surface is
between these two marginal cases.

The relative variances of the feature means of all surfaces using an iso-
tropic Gabor filter are shown on table A.3 on page 69. A chart of all relative
variances is shown in figure 6.15. This measure of error is worst for the two
unidirectional surfaces cardl and michael8 and best for isotropic surfaces.
The more directional a surface is the worse is the relative variance of its
texture feature.

6.3.4 Results of High Frequency Filters

Figure 6.9 on page 44 shows that the images filtered with the F50A45 filter
have always less energy than images filtered with F25 filters. Now we analyse
this effect more detailed. Figure 6.16 on the following page shows surface
slab45 in frequency domain. It can be seen that most of the energy and

!mean stands for the mean value over the whole image; normalised means that f(7) is
divided by its mean value
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Figure 6.16: Norm of slab45 in frequency domain

thus the information of the surface is situated in the lower frequencies.

Figure 6.17 on the next page shows gabor filters with a centre frequency of
20 and 150 circles per image. If the image is filtered with the F150A40 filter
(this means it is multiplied in frequency domain) nearly all of the information
of the image is lost.

Figure 6.18 on the following page shows the radial plot of slab45 and the
F25 and F150 filters.

Again it can be seen that nearly all of the energy is cut by the filter
with 150 circles per image. The remaining energy is superposed by noise.
This noise is mainly quantisation noise, which results from the eight bit
quantisation of the digital camera. Because normally the full range of the
camera is not used, one or two bits get lost. So the resulting quantisation is
six or seven bit. Because of these problems the results produced with high
frequency filters are not used in this work.

6.3.5 Using the Absolute Pixel Value

Quite often the average of the absolute pixel values |z| is used as a estima-
tion of the image energy instead of the variance. The advantage is that it
is faster to compute. The disadvantage is that it is only a rough estimation
of the image energy. Although the behaviour of the texture features due
to tilt rotation can not be predicted analytically we compute the features
and compare them with the best fit curves fi(7) = a + b cos(27 + ¢) and

fa(r) = \/a + b cos(27 + ¢). The best fit curve fo(7) is the theoretical be-
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Figure 6.17: Gabor filter F25A45 and F100A45 in frequency domain
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haviour of the standard deviation. The results are shown in table A.4 on
page 69. Figure 6.19 on the following page shows a comparison between
the behaviour of these features. Although the absolute pixel value is differ-
ent from the standard deviation surprisingly the results show that the best

fit curve fo(r) = \/a + b cos(27 + ¢) is approximately as good for texture
features using |z| as the best fit curve fi(7) = a + b cos(27 + ¢) for tex-
ture features using (z)2. This is particular true for surfaces with a good fit
(surfaces right of michael?7).

6.3.6 Laws Filters

The statement of this work is that the behaviour of texture features derived
from a linear filter followed by an energy estimation follows the equation
f(7) = a+b cos(27 + ¢). This is true for every linear filter. Also it does not
matter if the image is filtered by multiplying it in frequency domain or by
convoluting it spatial domain. The previous experiments used Gabor filters
in the frequency domain. One main reason to use Gabor filters was there
popularity in the computer vision community. To show the general validity
of this equation we investigate the behaviour of texture features using Laws
filters. In contrast to Gabor filters we use Laws filters by convoluting the
images in spatial domain. For this experiment we use the same surfaces as
before and filter them with L5E5 and E5L5 filters (which are orthogonal).
Figure 6.20 on page 54 shows the behaviour of the mean features derived
from the surfaces chipsl and michael7. It shows that the feature behaviour
fits very good the prediction f(7) = a + b cos(27 + ¢). The results of all
surfaces are shown in table A.5 on page 70. Figure 6.21 on page 55 shows
a chart of the relative sinusoidal measures of error and the image energy
after filtering with Laws filters. It shows that the results fit the theoretical
prediction very well.

6.3.7 The phase of f(7)

In section 5.3.1 we predicted that for isotropic surfaces, the phase of the
oscillation of f;s, is always twice the direction of the filter. We can use our
previous experimental results to verify this prediction.

First we have to choose a set of isotropic surfaces. It is always difficult
to decide if a surface is isotropic, because the image of an isotropic surface
is directional, dependent on the illuminant direction. It is also difficult to
decide the directionality from the visual appearance. All textures which are
used in this section except rockl are made up of small randomly distributed
objects and thus can be assumed as isotropic. In addition we use rockl
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flter F25A0 F25A45 | F25A90 | F25A135 | F50A45 | F25A45 L5E5 | E5L5

complex | complex | complex | complex | complex real

theoretical phase
of f(7) 0° 90° 180° 270° 90° 90° 0° 180°

Table 6.2: theoretical phase of f(7) using isotropic surfaces

F25A0 F25A45 F25A90 | F25A135 F50A45 | F25A45

surface L5E5 E5L5

complex | complex | complex complex | complex real mean?®
michaell 9.59° 1.60° 1.25° -8.92° -0.74° 2.86° | -23.60° 3.84° 6.55°
michael2 20.91° 3.28° 3.05° -9.26° -14.49° 4.22° | -15.33° 4.75° 9.41°
michael4 -20.17° -7.58° -5.03° 3.00° -10.11° -3.63° 11.39° | -11.91° 9.10°
michael7 -20.25° 7.42° -7.87° -3.19° 7.95° 8.29° -4.61° 2.43° 7.75°
michael8 -0.30° 4.87° -1.66° -1.10° 13.27° 6.93° -9.38° 6.14° 5.46°
michael9 -4.42° 1.47° -3.05° 2.83° 6.97° 2.56° -0.03° 4.87° 3.27°
chipsl -26.32° -7.84° -14.68° -1.13° -3.99° -3.73° -5.72° -3.90° 8.42°
beansl 8.52° -0.87° -7.55° 1.83° -4.95° -3.21° 2.25° -4.29° 4.18°
rockl -1.24° -8.60° -4.46° -3.31° -3.04° -5.11° 1.60° -7.43° 4.35°
stones2 10.50° -2.82° 20.04° 10.13° -41.87° -3.44° -2.90° 1.45° 11.64°
mean?® 12.22° 4.63° 6.86° 4.47° 10.74° 4.40° 7.68° 5.10° 7.01°

%mean of absolute value

Table 6.3: differences between the theoretical and experimental curve phases
in degree

because we can assume its isotropy from previous experiments (figures 6.11
on page 46 and 6.15 on page 49). The theoretical phase of f(7) for different
filters is shown in table 6.2. The difference between the theoretical and the
experimental phase of f(7) is shown in table 6.3. The mean error over all
results is only 7.1°, which confirms our prediction.

6.3.8 Behaviour in 1D and 2D Feature Space

In section 5.4 we investigated the behaviour of features in the one and two
dimensional feature space analytically. We claimed that in general an illu-
mination tilt independent classification or segmentation is not possible. We
predicted an ellipse-shaped behaviour of features in the two dimensional fea-
ture space. In the special case of isotropic textures and two identical but
orthogonal filters the curve is a line. In the special case of isotropic textures
and two identical filters except a difference in direction of 45° the curve is a
circle. We now verify these predictions using our experimental results.
Figure 6.22 on the following page shows the behaviour of features using
a L5E5 Laws filter. It is obvious that there is no possible boundary between
the feature curves. Even if the illuminant tilt angle is known we can not dis-
tinguish between the textures for particular illumination tilt angles, because
the curves cross each other. E.g. if the illumination tilt angle is 120° we can
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Figure 6.22: one dimensional feature space using a L5E5 Laws filter
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not distinguish between chipsi and michael?.

Figure 6.23 on the next page shows the behaviour of different surfaces in
the two dimensional feature space together with their best fit ellipses using
F25A0 and F25A45 Gabor filters. The best fit ellipses in two-dimensional
feature space are computed by plotting the best fit sinusoidal curves in one-
dimensional feature space (equation 6.1 on page 39) against each other. It
can be seen that the ellipse is a good approximation for the behaviour in
feature space. Because the filters are identical except a difference in direction
of 45° the curve of the isotropic surface rockl is a circle. Figure 6.24 on
page 60 shows features of different surfaces using L5E5 and E5L5 Laws filters.
Because the filters are identical except a difference in direction of 90° the
curve of the isotropic surface bigdir60 is a line.

In both charts the ellipses of the different surfaces cross each other. Thus
in general illumination tilt independent classification or segmentation is not
possible.
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Chapter 7

Summary and Further Research

7.1 Summary

The main result of this dissertation is the sinusoidal behaviour of texture
features due to changing illumination tilt angle 7:

f(r) = a-+bcos(27) + csin(27)
= a+dcos(2T + ¢)

N
B

a = 1/2sin*(o) [ w® | A(w,0)dddw

B

3

b = 1/2sin?*(o) cos(20)A(w, 0) df dw

w
B

c = 1/2sin?*(o) [ w® [ sin(20)A(w, ) df dw

0\8 0\8 0\8
&
O\[\: O\w O\

d=Vb+ 3, ¢ = arctan(c/b)

The parameters a, b and c are only dependent an the surface PSD and the
filter PSD. This prediction is valid for all features derived using a linear filter
followed by a signal energy estimator. It was derived presuming the following
assumptions

e Lambertian reflection
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e 1o self or cast shadowing
e no inter-reflection

e small slopes.

e orthographic projection

Although this equation can not be simplified in general, we made further
predictions for special cases. If an isotropic texture is filtered with several
filters which are identical except a different filter direction «, the parameters
a and d are constant for every a. The maximum of f(7) is always at 7 = «
and the phase of f(7) is always twice the filter direction a:

Juni(T, @, B) = a(a) + d() cos[2(T — B)].

If a unidirectional texture with the surface direction [ is filtered with
several filters which are identical except a different filter direction «, the
parameters ¢ and d are maximal if & = 5. The maximum of f(7) is always
at 7 = § and the phase of f(7) is always twice the surface direction 3:

Juni(T, @, B) = a(a) + d() cos[2(T — B)].

In addition we analysed the behaviour of features in the 2D feature space
as a function of illuminant tilt 7. We predicted an ellipse as the resulting
figure. If the texture is isotropic and the two filters are identical except for
a phase difference of 45°, the resulting figure is a circle. If the texture is
isotropic and the two filters are identical except for a phase difference of 90°,
the resulting figure is a line. We showed that in general these ellipses, circles
and lines cross each other. Thus a illumination tilt independent classification
is not possible.

We verified this predictions both by simulation and experiments: We
computed the parameters a, b and ¢ from the surfaces of synthetic generated
surfaces and compared them with the texture features computed from illu-
mated images. We used experiments to show the sinusoidal behaviour of 30
different real world textures using different Gabor and Laws filters.

7.2 Further Research

This work investigated only the effect of changing tilt. We think it is worth
investigating the effect of changing illuminant slant angle, too. Equation 5.2
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on page 26 can also be rearranged to predict the effect of illumination slant
changes:

flo) = sin®*(o)C

o

C = 1/2[/ /Awededw
+ cos(27) O/w3/cos (20)A(w, 0) df dw

+ sm 27'

o\

w3/szn (20)A(w, 6) df dw]

The parameter C' is independent of the illumination slant angle o. Thus
we expect that f(o) is proportional to sin?(¢). Unfortunatelly at the time of
this work we did not have the equipment to take texture images with different
defined illumination slant angles. Thus we can not verify this prediction.

We hope that this work will be usefull for future investigation. An inter-
esting task for future research is to use these results to compensate the effect
of illumination angle changes. One technique could be to develop illumina-
tion compensation filters as the first stage of a classifier.



Appendix A

Results

A.1 Feature Charts as a Function of Illumi-
nation Tilt

The underlying experimental results for this work are very numerous. We
used 30 different real surfaces (6 of them with two different slant angles) and
filtered them with seven different complex, real and isotropic Gabor filters
and two Laws filters. This means a total of 324 resulting curves. This is
fare to much to show it in this work, even in the appendix. To get a typical
selection of all results we first compute the histogram of all 288 results using a
directional filter (figure A.1 on the next page). The medium of these results
is at 0.036408. This means that half of the results are better and half of
the results worse. Figure A.2 on the following page shows the four curves
which are nearest to the median. We treat them as typical results. They
match the sinusoidal prediction quite good. Now we take all results which
are better than the medium and compute the medium of these results. The
result is 0.024118. One quarter of all results are better, three quarter worse.
We treat these results as typical good results. Figure A.3 on page 66 shows
the four curves which are nearest to this value. The same can be made with
the bad half of the results (the result is 0.056864) to get typical bad results
(figure A.4 on page 66). Even these bad results fit the sinusoidal behaviour
quite good.
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Figure A.2: Results with a typical measure of error (results which are nearest

to the median)
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A.2 Measures of Error

F25A0 F25A45 F25A90 F25A135 | F50A45 F25A45
surface mean
complex | complex | complex | complex complex real

cardl 0.054369 | 0.035566 | 1.017084 | 0.079127 | 0.068492 | 0.02574 0.213396
and6 0.063686 | 0.086828 | 0.164711 | 0.104357 | 0.088089 | 0.087006 0.099112
stones2 0.046747 | 0.072754 | 0.076088 | 0.068525 | 0.277682 | 0.048795 0.098431
and7 0.091667 | 0.047163 | 0.08257 0.154642 | 0.085483 | 0.087043 0.091428
michael3 0.026677 | 0.06633 0.28685 0.053984 | 0.031353 | 0.057988 0.087197
and5 0.022222 | 0.061727 | 0.014496 | 0.129018 | 0.132232 | 0.072793 0.072081
stridd 0.213432 | 0.022094 | 0.047372 | 0.05804 0.020312 | 0.021481 0.063788
michael9 0.039038 | 0.044338 | 0.035215 | 0.041467 | 0.185489 | 0.036915 0.063743
michael2 0.073287 | 0.028472 | 0.053759 | 0.046193 | 0.144608 | 0.031357 0.062946
chipsl 0.051269 | 0.042766 | 0.060856 | 0.057672 | 0.099673 | 0.041786 0.059003
stri60 0.139012 | 0.032127 | 0.049806 | 0.051655 | 0.031095 | 0.031838 0.055922
michaeld || 0.078138 | 0.043032 | 0.072205 | 0.054501 | 0.038028 | 0.04246 0.054727
michael8 0.035249 | 0.050461 | 0.06259 0.037735 | 0.093974 | 0.045939 0.054324
and3 0.142825 | 0.030557 | 0.039851 | 0.0393 0.045594 | 0.023968 0.053682
and4 0.023614 | 0.067834 | 0.026939 | 0.101393 | 0.034108 | 0.06115 0.052506
michael6 0.061337 | 0.043344 | 0.023918 | 0.033608 | 0.100186 | 0.049304 0.051949
michael7 || 0.076699 | 0.050834 | 0.047165 | 0.047289 | 0.044746 | 0.037419 0.050692
michaell 0.056876 | 0.053088 | 0.061681 | 0.022284 | 0.042705 | 0.037679 0.045718
slate60 0.05154 0.026511 | 0.052377 | 0.095803 | 0.020354 | 0.02491 0.045249
and2 0.026698 | 0.044887 | 0.042821 | 0.04201 0.069327 | 0.035313 0.043509
radial60 0.033431 | 0.032491 | 0.07676 0.045987 | 0.026204 | 0.032428 0.041216
radial45 0.052869 | 0.031642 | 0.075244 | 0.026582 | 0.020868 | 0.030514 0.039619
slate45 0.043494 | 0.036971 | 0.031717 | 0.067654 | 0.025493 | 0.029427 0.039126
andl 0.018258 | 0.039975 | 0.032107 | 0.038667 | 0.056323 | 0.026643 0.035328
beansl 0.02202 0.029702 | 0.034145 | 0.030876 | 0.061106 | 0.030913 0.034793
michael5 0.01228 0.056852 | 0.01135 0.02733 0.040942 | 0.057527 0.034380
wood 0.030409 | 0.031727 | 0.035901 | 0.028741 | 0.039329 | 0.029562 0.032611
iso45 0.02408 0.027424 | 0.016261 | 0.051409 | 0.021048 | 0.023168 0.027231
slab60 0.011817 | 0.023054 | 0.032901 | 0.035221 | 0.026029 | 0.021155 0.025029
is060 0.024208 | 0.019389 | 0.023944 | 0.046628 | 0.016805 | 0.017888 0.024810
twins45 0.025028 | 0.028458 | 0.016922 | 0.018028 | 0.02283 0.024156 0.022570
bigdir60 0.014462 | 0.019759 | 0.026188 | 0.032023 | 0.013179 | 0.018249 0.020643
rock45 0.027184 | 0.024394 | 0.009213 | 0.00938 0.02621 0.022093 0.019745
slab4b 0.013637 | 0.017607 | 0.02174 0.02637 0.018404 | 0.017278 0.019172
twins60 0.021057 | 0.025308 | 0.013829 | 0.011721 | 0.01869 0.023593 0.019033
rockl 0.017626 | 0.007708 | 0.011208 | 0.008637 | 0.007395 | 0.005794 0.009728
mean 0.049062 | 0.038977 | 0.077438 | 0.050662 | 0.058177 | 0.036424 0.051790
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Table A.1: relative sinusoidal measure of error using Gabor filters sorted by

the mean measure of error of every surface
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F25A0 F25A45 F25A90 F25A135 | F50A45 F25A45

surface mean
complex | complex | complex | complex complex real a

cardl 3.29838 0.004985 | 0.014553 | 0.005558 | 0.007893 | 0.00973 0.213396
and6 3.989043 | 1.651365 | 3.567205 | 1.971362 | 2.683147 | 3.815013 0.099112
stones2 14.23342 | 14.54340 | 13.53327 | 14.9703 0.706138 | 17.82059 0.098431
and7 4.592971 | 9.825123 | 6.495529 | 8.975717 | 3.578888 | 16.97039 0.091428
michael3 15.94551 | 0.276344 | 0.113047 | 0.198883 | 0.047971 | 0.275129 0.087197
and5 0.426464 | 0.085127 | 1.277333 | 0.086995 | 0.084733 | 0.195629 0.072081
stridd 0.64887 0.312584 | 1.18271 0.31746 0.089843 | 0.618672 0.063788

michael9 || 4.378596 | 3.764813 | 4.285226 | 3.992625 | 0.611411 | 7.652123 0.063743
michael2 || 42.40027 | 37.59083 | 42.41390 | 33.29939 | 2.789578 | 74.81456 0.062946
chipsl 12.72381 | 13.20491 | 14.63473 | 13.30125 | 1.619873 | 28.89644 0.059003
stri60 0.564672 | 0.425475 | 1.401759 | 0.400147 | 0.120075 | 0.846809 0.055922
michael4 || 22.04097 | 28.54557 | 18.97303 | 18.20272 | 9.250407 | 57.56914 0.054727
michael8 || 35.20553 | 34.05491 | 32.93947 | 37.19066 | 3.777672 | 84.82105 0.054324
and3 16.53467 | 7.476012 | 27.40703 | 7.961772 | 3.511898 | 15.73041 0.053682
and4 0.719646 | 0.135869 | 0.963437 | 0.1406 0.154217 | 0.292835 0.052506
michael4 || 6.415494 | 1.85276 3.394262 | 2.834938 | 0.770201 | 4.181116 0.051949
michael7 || 15.69859 | 15.90760 | 17.75771 | 18.67721 | 1.214948 | 30.75361 0.050692
michaell || 46.02110 | 41.50654 | 46.31262 | 49.52092 | 7.423702 | 104.6494 0.045718
slate60 0.01997 0.026104 | 0.18633 0.069534 | 0.009062 | 0.050479 0.045249
and2 3.952079 | 2.916004 | 3.532771 | 3.794899 | 1.960165 | 6.860466 0.043509
radial60 0.131105 | 0.241141 | 0.111216 | 0.0517 0.084971 | 0.496054 0.041216
radial45 0.127728 | 0.244347 | 0.11877 0.051245 | 0.084718 | 0.504555 0.039619
slate45 0.014862 | 0.020207 | 0.132001 | 0.0529 0.006486 | 0.038352 0.039126
and1l 4.779757 | 3.704695 | 23.64979 | 4.468808 | 3.336491 | 4.951399 0.035328
beansl 9.321997 | 8.102075 | 7.020569 | 8.77205 0.629097 | 18.58046 0.034793
michael5 || 0.615729 | 0.014274 | 0.534401 | 0.014914 | 0.0082 0.033138 0.034380

wood 1.432406 | 0.147783 | 0.096377 | 0.237811 | 0.034888 | 0.279384 0.032611
is045 0.562585 | 0.332292 | 0.360078 | 0.506555 | 0.088466 | 0.79639 0.027231
slab60 2.340606 | 1.966591 | 1.736869 | 2.032821 | 0.22392 4.40865 0.025029
iso60 0.796156 | 0.444498 | 0.448454 | 0.664486 | 0.113707 | 1.058005 0.024810

twins45 0.479373 | 0.278629 | 0.245939 | 0.343577 | 0.061581 | 0.622172 0.022570
bigdir60 0.195587 | 0.191815 | 0.336983 | 0.203441 | 0.033031 | 0.438549 0.020643

rock45 0.744335 | 0.6374 0.929729 | 0.921882 | 0.106178 | 1.45596 0.019745
slab45 2.100186 | 1.715461 | 1.508594 | 1.724276 | 0.200342 | 3.754119 0.019172
twins60 0.582478 | 0.327927 | 0.290069 | 0.433404 | 0.07062 0.731837 0.019033
rockl 1.671747 | 1.391594 | 1.722263 | 1.592928 | 0.219182 | 2.951367 0.009728
mean 7.658520 | 6.496307 | 7.767446 | 6.610715 | 1.269825 | 13.831223 7.272339

Table A.2: mean image energy after filtering with Gabor filters sorted by
the mean measure of error of every surface

*mean of the relative measure of error (see table A.1 on the page before)
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] i energy estimation (z)? [z

z::(fice ;)S(ﬁr;é); best fit curve a + bcos(27 + ¢) \/ a + bcos(27 + ¢)
michael3 | 0.140553 and7 0.087043 0.197465 | 0.197347
wood 0.111518 and6 0.087006 0.095079 | 0.094487
radial45 0.105104 and5 0.072793 0.070531 | 0.074579
slate45 0.104776 and4 0.061149 0.062610 | 0.064773
radial60 0.104213 michael3 0.057987 0.045102 | 0.042570
slate60 0.101331 michael5 0.057523 0.058642 | 0.059410
michael6 | 0.078729 michael6 0.049304 0.058171 | 0.047209
stridb 0.075587 stones2 0.048795 0.040807 | 0.035536
andb 0.073491 michael8 0.045938 0.055529 | 0.046726
stri60 0.07145 michael4 0.042459 0.054139 | 0.048403
andl 0.062104 chipsl 0.041785 0.054886 | 0.045014
and6 0.036658 michaell 0.037678 0.038665 | 0.034558
twins60 0.034128 michael7 0.037419 0.045802 | 0.037797
and?2 0.033422 michael9 0.036915 0.042459 | 0.036317
and3 0.031401 and2 0.035313 0.044248 | 0.032794
is060 0.026466 radial60 0.032427 0.036234 | 0.034423
bigdir60 0.025675 stri60 0.031837 0.038167 | 0.026311
and4 0.024746 michael2 0.031356 0.041645 | 0.039140
michael5 | 0.022489 beansl 0.030912 0.046794 | 0.035239
iso45 0.020064 radial45 0.030514 0.032262 | 0.033584
twins45 0.019909 wood 0.029562 0.039027 | 0.029835
and7 0.019148 slate4b 0.029426 0.036116 | 0.023967
rock45 0.018628 andl 0.026643 0.033965 | 0.024167
slab60 0.017729 cardl 0.025745 0.023234 | 0.028042
beansl 0.015333 slate60 0.024911 0.033552 | 0.021124
michaell | 0.015124 twins4b 0.024156 0.035570 | 0.019994
michaeld | 0.014736 and3 0.023968 0.028875 | 0.023294
slab45 0.012351 twins60 0.023593 0.041506 | 0.023116
michael2 | 0.011302 iso45 0.023167 0.033869 | 0.019243
chipsl 0.010494 rock45 0.022092 0.030933 | 0.022309
michael8 | 0.00957 strids 0.021481 0.035134 | 0.021171
michael9 | 0.008569 slab60 0.021154 0.037262 | 0.020600
michael? | 0.006954 bigdir60 0.018248 0.032892 | 0.015334
rock1 0.005183 is060 0.017888 0.033048 | 0.015973
stones?2 0.004651 slab45 0.017278 0.033583 | 0.016578
mean 0.044923 rockl 0.005794 0.025612 | 0.006033

mean 0.036424 0.047039 | 0.038805

Table A.3: relative va-
riance using an isotro-
pic Gabor filter

Table A.4: relative sinusoidal measure of error of
features derived from the image energy and the
absolute value using a F25A45 Gabor filter
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surface measure of error image energy

L5E5 [ ESL5 | mean L5E5 | E5Lb
and6 0.235421 | 0.129158 | 0.182289 | 675888.3 | 415584.0
and5 0.194427 | 0.031635 | 0.113031 | 356449.6 | 571387.1

michael6 || 0.101347 | 0.076138 | 0.088743 | 594409.1 | 397070.8
slate60 0.094415 | 0.063615 | 0.079015 | 4577.903 | 10294.56
michaell || 0.099910 | 0.055526 | 0.077718 | 3163524 3163167

cardl 0.009292 | 0.130257 | 0.069775 | 574511.1 | 2594.397
michael2 || 0.090369 | 0.045408 | 0.067889 | 1183644 1120102
wood 0.019517 | 0.109054 | 0.064286 | 98280.11 | 13219.89
slate45 0.095232 | 0.028654 | 0.061943 | 3267.912 | 7494.331
and2 0.075096 | 0.044822 | 0.059959 | 557249.6 | 581503.9
stri60 0.063488 | 0.047676 | 0.055582 | 40250.50 | 65905.26
and3 0.075953 | 0.028460 | 0.052207 | 1207397 1629082

radial60 0.040008 | 0.059646 | 0.049827 | 15874.56 | 14773.47
michael3 || 0.043742 | 0.047876 | 0.045809 | 838209.8 | 12192.95

andl 0.046851 | 0.037470 | 0.042161 | 1431479 996576.0
slab60 0.025889 | 0.056916 | 0.041402 | 113888.5 | 81652.81
stridd 0.051637 | 0.028923 | 0.040280 | 29831.72 | 51298.23
is060 0.037187 | 0.039869 | 0.038528 | 65389.69 | 42686.50

michael5 || 0.062157 | 0.012675 | 0.037416 | 8656.350 | 25828.49
bigdir60 0.031550 | 0.042853 | 0.037201 | 13276.24 | 15305.63
radial45 0.022187 | 0.045648 | 0.033917 | 16129.09 | 15095.16

and4 0.040719 | 0.024714 | 0.032716 | 1014255 1921410
and7 0.033399 | 0.029372 | 0.031386 | 5156531 1752334
is045 0.035241 | 0.027011 | 0.031126 | 48706.76 | 33872.63
slab45 0.024190 | 0.037185 | 0.030687 | 98869.76 | 71345.01
michael4 || 0.042802 | 0.017298 | 0.030050 | 2227981 2016206
rock45 0.041693 | 0.018217 | 0.029955 | 45195.40 | 41753.78

michael9 || 0.034670 | 0.016280 | 0.025475 | 204894.5 | 217041.9
twins45 0.025739 | 0.021065 | 0.023402 | 27221.34 | 22051.95
twins60 0.026029 | 0.019131 | 0.022580 | 33835.03 | 26468.79
stones2 0.020017 | 0.017592 | 0.018805 | 269805.2 | 260318.3
michael8 || 0.024224 | 0.012688 | 0.018456 | 1493259 1542111
beansl 0.017095 | 0.014526 | 0.015810 | 293904.3 | 280657.0

chipsl 0.018324 | 0.012655 | 0.015489 | 610115.3 | 645875.8
rockl 0.021646 | 0.007758 | 0.014702 | 85366.25 | 87719.12
michael7 || 0.013466 | 0.010278 | 0.011872 | 488564.3 | 510302.4
mean 0.053748 | 0.040224 | 0.046986 | 641408.1 | 518396.8

Table A.5: relative sinusoidal measure of error and mean image energy using
Laws filters sorted by the mean measure of Error of every surface



Appendix B

Texture Data Base

The experiments of this work are implemented using thirty different textures,
each imaged with a illumination tilt angle between 0° and 180°. The differ-
ence of the illumination tilt angle of two consecutive images is 10° except
the data sets and1 to and7, which are imaged in 15° steps. All textures are
illuminated at a slant angle of 45°, in addition some surfaces are also illumi-
nated with a slant angle of 60°. In the following one image of every texture
illuminated with 45° slant and 0° tilt is shown.

andl and3(zoomed)

zoomed)

and4(zoomed) andb(zoomed) and6(zoomed)
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APPENDIX B. TEXTURE DATA BASE

[ap)
o
3
<
=
2
g

michael2

michaelb michael6

michael4

michael& michael9

michael7



Appendix C

Filters

In the following the real part in frequency domain of all filters which are used
in this work are shown.

gaborF25A0 gaborF25A45 gaborF25A90

gaborF25A135 gaborF50A45 gaborF100A45
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iso_gaborF25

L5E5

E5L5
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Appendix D

Source Code

D.1 C-Programs

C-Programs which can be found in “ceems4/cpp/.

variance.c

Computes the variance of the input image:
N

M
v= g5 & 2 (p(i,§) — D)
i=1j=1
Usage: variance image

The input must be a scope file of either float or integer format.

abs.c

Computes the mean absolute value of the input image:
N M
a= 5y ¥ 3 [p6 )]
i=1j5=1
Usage: abs image
The input must be a scope file of either float or integer format.

vtau.c

Computes a sinusoidal prediction of the behaviour of texture features due
to illumination tilt rotating from the surface filter power spectrum density
(PSD).
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Usage: vtau o N A

o illumination slant angle

N number of output points for one period

A PSD of the surface times the PSD of the filter
(scope file of either float or integer format)

Output: 0og 01 ... 0o, abc

0; sinusoidal prediction of texture features
0; = a+ b cos(2wi/n) + ¢ sin(27i/n)
a, b, ¢ parameters of sinusoidal curve
N M
a=1/2sin(r/1800)* 3 ¥ (% + j%) A(4, )

1=17j=

b=1/2 sin(r/1800)? 3 5 (i — ) A(i, j)
c=1/2 sin(7/180 0)? ]XV: % 215 A(i, 7)

best_fit_cosine.c

Calculates the parameters a,b and ¢ of the function a+ b* cos(x) + ¢ * sin(z)
which fits the function given by the input values best. a is the mean, b and
¢ are the coefficients of the fundamental oscillation. The input values must
cover exactly one period.

Usage: best_fit_cosine pg p1 ... pn

Di points of the approximately sinusoidal curve

Output: 0og 01 ... 0o, abc

0; sinusoidal best fit curve
0; = a+ b cos(2mi/n) + ¢ sin(27i/n)
a, b, ¢ parameters of best fit sinusoidal curve

a=1/n i Di
=0
b=2/n ;O cos(2mi/n) (p; — a)

c= 2/ni§)sin(27ri/n) (p; — a)
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best_fit_line.c

Calculates a best fit line of the approximately equal input values by calcu-
lating the average value.

Usage: best_fit_line py p1 ... pn

Di points of the approximately equal values

Output: 0g 01 ... 011

0; best fit line

best_fit_sqrt_cosine.c

Calculates the parameters a,b and c of the function \/a + b cos(x) + ¢ * sin(z)
which fits the function given by the input values best. The input values must
cover exactly one period.

Usage: best_fit_cosine pg p; ... pn

Di points of the approximately rooted sinusoidal curve

Output: og 01 ... 0, ag by ¢y
0; rooted sinusoidal best fit curve
0; = y/a1 + by cos(2mi/n) + ¢ sin(2mwi/n)
n
ap=1/nY o?
i=0

by =2/n f: cos(2mi/n) o?
=0

n
c1 =2/n Y sin(2wi/n) o
i=0
as, ba, co parameters of best fit sinusoidal curve
ay =1/nY o
iﬁO
by =2/n Y cos(2mi/n) o;
i=0

co=2/n 'io sin(2mi/n) o;
1=
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error_cosine.c

Calculates the absolute and relative error between an approximately sinu-
soidal curve and a sinusoidal curve. The absolute error is the mean of the
squared difference of the two curves. The relative error is the absolute error
divided by the amplitude of the oscillation.

Usage: error_cosine pg p1 ... Pn Qo ¢1 --- @ @ b c

D points of the approximately sinusoidal curve
qi points of the sinusoidal curve
a, b, ¢ parameters of the sinusoidal curve

(a1 + by cos(2mi/n) + ¢ sin(27i/n))

Output: M m
M absolute measure of error
N—_1
M= %\/Zk:o (f& = fr,)?
m relative measure of error

M

error_line.c

Calculates the absolute and relative error of the approximately equal input
values. The absolute error is the variance of the input values. The relative
error is the variance divided by the average input value.

Usage: error_line py p1 ... py

Di points of the approximately equal values
Output: M m
M variance

m variance divided by the average input value
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D.2 Shell Scripts

com_gabor

Filters an image with a complex Gabor filter and transforms the resulting
image back into spatial domain. The input is the real and imaginary part of
the image in frequency domain and the real and imaginary part of the Gabor
filter in frequency domain. The output is the norm of the complex filtered
image in spatial domain.

Usage: com_gabor image real image im gabor_real gabor_im result

# file paths
a=/depot/imaging/bin

# multiply with Gabor filters in frequency domain
$a/multimago $1 $3 real_even
$a/multimago $2 $3 imag_even
$a/multimago $1 $4 real_odd
$a/multimago $2 $4 imag_odd

# transform back into spatial domain

$a/swapshop real_even real_even real_even
$a/swapshop imag_even imag_even imag_even
$a/swapshop real_odd real_odd real_odd
$a/swapshop imag_odd imag_odd imag_odd

$a/ffti real_even imag_even spatial_real
$a/multim "-v-1.0" real_odd real_odd real_odd_inv
$a/ffti imag_odd real_odd spatial_imag

# compute norm of the filtered image

$a/multimago spatial_real spatial_real spatial_real
$a/multimago spatial_imag spatial_imag spatial_imag
$a/addimago spatial_real spatial_imag $5

$a/sqroot $5 $5 $5

rm real* imag* spatialx

shellscript_synth_surf

Compares the texture features which are derived from synthetic surfaces
with features derived from illuminated images: First features are computed
from the surface PSD and filter PSD using the sinusoidal prediction. Then
features are computed by filtering their synthetic illuminated images with a
real Gabor filter.

set -x # debug version

# file paths
a=/depot/imaging/bin
b="/cpp

#init the file ’charts’ which is read by Excel
echo \"‘date‘\" > charts #quotes are needed for Excel
echo paper/shellscript_new >> charts
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#write header for file ’charts’
echo surface filter 0 10 20 30 40 50 60 70 80 90 100 110 120 130\
140 150 160 170 180 a b ¢ absolute relative >> charts

#Generating four synthetic surfaces
$a/greg2dfrac -b3.0 -n512 fractal
../Sand_ripples 64 0 2222 0.25

mv temp sand

$a/0gil_dir 32 16 2222 0.125

mv temp ogil

../Malfin 32 4444 0.25

mv temp malfin

#creating Gabor filters in the frequency domain
for phase in 0 45 90 135
do
../gab4vinnie3-4 -f50 -a$phase -pl -n512 gaborF25A${phase}
done

# loop over every surface
for surface in fractal sand ogil malfin
do

# empty feature arrays
featureF25A0=""
featureF25A45=""
featureF25A90=""
featureF25A135=""

# Compute the power spectrum of the surface
$a/fft3 $surface fft_re fft_im
$a/swapshop fft_re fft_re fft_re
$a/swapshop fft_im fft_im fft_im

$a/multimago fft_re fft_re fft_re
$a/multimago fft_im fft_im fft_im
$a/addimago fft_re fft_im powerl

# loop over different tilt angles

for tilt in 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30\
20 10 0

do

# Render surface using Lambertian reflection
$a/lamb -s45 -t$tilt -ol $surface rendered
$a/divim -v240 rendered rendered rendered

# transform image into frequency domain
$a/fft3 rendered fft_re fft_im
$a/swapshop fft_re fft_re fft_re
$a/swapshop fft_im fft_im fft_im

#filter image with different gabor filters and compute features
for dir in 0 45 90 135
do

../real_gabor fft_re fft_im gaborF25A${dir} final

eval featureF25A$dir=\"\$featureF25A$dir \‘$b/variance finall\‘\"
done

done
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for dir in 0 45 90 135
do

# Compute notional power spectrum of filtered surface
$a/multimago powerl gaborF25A${dir} power2
$a/multimago power2 gaborF25A${dir} power2

# Compute theoretical behaviour of features derived from the surface
echo surface_$surface F25A$dir ‘$b/vtau 45 18 power2‘ 0 0 >> charts

# Compute features derived from the rendered images and compare them
# with features derived from the surface
eval best_fit=\‘$b/best_fit_cosine \$featureF25A$dir\*¢
eval errorF25A$dir=\‘$b/error_cosine \$featureF25A$dir $best_fit\°*
eval echo $surface F25A$dir \$featureF25A$dir 0 0 O \$errorF25A$dir >> charts
echo best_fit_$surface F25A$dir $best_fit 0 0 >> charts
done

done
echo \"‘date‘\" >> charts

rm gabor* fft_* final rendered fractal sand ogil malfin power*

The following scripts only use the images of the surfaces michaell to
michael9. The shellscripts using the other images are very similar; only the
file format of the images is different.

gabor /shellscript_ms

Investigation into the effect of changing tilt direction on the feature output.
For every surface the features of 19 images taken under different tilt angles
are computed. Every image is filtered with different Gabor filters in the image
domain, then transformed back into spatial domain. At least the mean of
the variance of the filtered image is calculated as a feature of the image. The
features are compared with the theoretical prediction f(7) = a+bxcos(27+¢)
(equation 5.2 on page 26), best fit curves are computed (equations 6.2 - 6.4
on page 39) and the sinusoidal measure of error (equations 6.5 and 6.6 on
page 40) are calculated. All results are saved into the files results and charts.
This files can be read by Excel to produce output figures.

set -x # debug version

# file paths
a=/depot/imaging/bin
b="/cpp

#init the files ’results’ and ’charts’ which are read by Excel
echo \"‘date‘\" > results #quotes are needed for Excel

echo \"‘date‘\" > charts

echo paper/shellscript_paper_new >> results

echo paper/shellscript_paper_new >> charts

#write header for file ’results’
echo surface F25A0comabs F25A0comrel F25A45comabs F25A45comrel\
F25A90comabs F25A90comrel F25A135comabs F25A135comrel\
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F50A45comabs F50A45comrel F25A45realabs\
F25A45realrel isotropicabs isotropicrel >> results

#write header for file ’charts’
echo surface filter 0 10 20 30 40 50 60 70 80 90 100 110 120 130\
140 150 160 170 180 a b c absolute relative >> charts

#creating Gabor filters in the frequency domain
for phase in 0 45 90 135
do
../gab4vinnie3-4 -f25 -a$phase -pl -n512 gaborF25A${phase}_re
../gab4vinnie3-4 -f25 -a$phase -p-1 -n512 gaborF25A${phase}_im
done

../gab4vinnie3—4 -f50 -a45 -pl -n512 gaborF50A45_re
../gab4vinnie3-4 -f50 -a45 -p-1 -n512 gaborF50A45_im

# loop over every surface
for surface in 1 234567 89
do

# empty feature arrays
featurecomF25A0=""
featurecomF25A45=""
featurecomF25A90=""
featurecomF25A135=""
featurecomF50A45=""
featurerealF25A45=""
featureisoF25=""

# loop over different tilt angles

for tilt in 000 010 020 030 040 050 060 070 080 090 100 110 120 130\
140 150 160 170 180

do

# prepare image for computing

cp “/images/michael$surface/michael$surface.$tilt.tif.gz

gunzip michael$surface.$tilt.tif.gz

$a/tif2scope -x1792 -y1200 michael$surface.$tilt.tif dummy image
rm michael$surface.$tilt.tif

$a/cutim -X512 -Y512 -x640 -y344 image image

# transform image into frequency domain
$a/fft3 image fft_re fft_im

$a/swapshop fft_re fft_re fft_re
$a/swapshop fft_im fft_im fft_im

#filter image with different gabor filters and compute features
../com_gabor fft_re fft_im gaborF25A0_re gaborF25A0_im final
featurecomF25A0="$featurecomF25A0 ‘$b/variance final‘"

../com_gabor fft_re fft_im gaborF25A45_re gaborF25A45_im final
featurecomF25A45="$featurecomF25445 ‘$b/variance final‘"

../com_gabor fft_re fft_im gaborF25A90_re gaborF25A90_im final
featurecomF25A90="$featurecomF25A90 ‘$b/variance final‘"

../com_gabor fft_re fft_im gaborF25A135_re gaborF25A135_im final
featurecomF25A135="$featurecomF25A135 ‘$b/variance final‘"

../com_gabor fft_re fft_im gaborF50A45_re gaborF50A45_im final
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featurecomF50A45="$featurecomF50A45 ‘$b/variance final‘"

../real_gabor fft_re fft_im gaborF25A45_re final
featurerealF25A45="¢$featurerealF25A45 ‘$b/variance final‘"

../iso_gabor fft_re fft_im 25 final
featureisoF25="$featureisoF25 ‘$b/variance final‘"

done

# compare results with theoretical prediction and write results into

# files

best_fit=‘$b/best_fit_cosine $featurecomF25A0°

errorcomF25A0=‘$b/error_cosine $featurecomF25A0 $best_fit*

echo michael$surface comF25A0 $featurecomF25A0 0 0 0 $errorcomF25A0 >> charts
echo best_fit_michael$surface comF25A0 $best_fit O 0 >> charts

best_fit=‘$b/best_fit_cosine $featurecomF25A45°

errorcomF25A45=‘$b/error_cosine $featurecomF25A45 $best_fit®

echo michael$surface comF25A45 $featurecomF25A45 0 0 O $errorcomF25A45 >> charts
echo best_fit_michael$surface comF25A45 $best_fit O O >> charts

best_fit=‘$b/best_fit_cosine $featurecomF25A90°

errorcomF25A90=‘$b/error_cosine $featurecomF25A90 $best_fit°

echo michael$surface comF25A90 $featurecomF25A90 0 0 O $errorcomF25A90 >> charts
echo best_fit_michael$surface comF25A90 $best_fit O O >> charts

best_fit=‘$b/best_fit_cosine $featurecomF254135°¢

errorcomF25A135=‘$b/error_cosine $featurecomF25A135 $best_fit*

echo michael$surface comF25A135 $featurecomF25A135 0 0 0 $errorcomF25A135 >> charts
echo best_fit_michael$surface comF25A135 $best_fit 0 O >> charts

best_fit=‘$b/best_fit_cosine $featurecomF50A45*

errorcomF50A45=‘$b/error_cosine $featurecomF50A45 $best_fit®

echo michael$surface comF50A45 $featurecomF50A45 0 0 O $errorcomF50A45 >> charts
echo best_fit_michael$surface comF50A45 $best_fit O 0 >> charts

best_fit=‘$b/best_fit_cosine $featurerealF25A45°¢

errorrealF25A45=‘$b/error_cosine $featurerealF25A45 $best_fit°

echo michael$surface realF25A45 $featurerealF25A45 0 O 0 $errorrealF25A45 >> charts
echo best_fit_michael$surface realF25A45 $best_fit 0 O >> charts

best_fit=‘$b/best_fit_line $featureisoF25°¢

errorisoF25=‘$b/error_line $featureisoF25 $best_fit°®

echo michael$surface isoF25 $featureisoF25 0 0 0 $errorisoF25 >> charts
echo best_fit_michael$surface isoF25 $best_fit 0 0 0 O >> charts

echo michael$surface $filter $errorcomF25A0 $errorcomF25A45 $errorcomF25A90\
$errorcomF25A135 $errorcomF50A45 $errorrealF25A45 $errorisoF25\
>> results

done

echo \"‘date‘\" >> results
echo \"‘date‘\" >> charts

rm gabor* fft_x final



APPENDIX D. SOURCE CODE 85

isotropic_gabor/shellscript_ms

Investigation into the effect of changing tilt direction on the feature output.
The setup is similar to the gabor/shellscript_ms. Instead of directional
Gabor filters, isotropic Gabor filters are used; instead of the sinusoidal mea-
sure of error, the relative variance is computed.

set -x # debug version

# file paths
a=/depot/imaging/bin
b="/cpp

#init the files ’results’ and ’charts’ which are read by Excel
echo \"‘date‘\" > results #quotes are needed for Excel

echo \"‘date‘\" > charts

echo paper/shellscript_paper_new >> results

echo paper/shellscript_paper_new >> charts

#urite header for file ’results’
echo surface isotropicabs isotropicrel >> results

#write header for file ’charts’
echo surface filter 0 10 20 30 40 50 60 70 80 90 100 110 120 130\
140 150 160 170 180 a b c absolute relative >> charts

# loop over every surface
for surface in 1 234567 89
do

# empty feature array
featureisoF25=""

# loop over different tilt angles

for tilt in 000 010 020 030 040 050 060 070 080 090 100 110 120 130\
140 150 160 170 180

do

# prepare image for computing

cp “/images/michael$surface/michael$§surface.$tilt.tif.gz .
gunzip michael$surface.$tilt.tif.gz

$a/tif2scope -x1792 -y1200 michael$surface.$tilt.tif dummy image
rm michael$surface.$tilt.tif

$a/cutim -X512 -Y512 -x640 -y344 image image
# transform image into frequency domain
$a/fft3 image fft_re fft_im

$a/swapshop fft_re fft_re fft_re

$a/swapshop fft_im fft_im fft_im

../iso_gabor fft_re fft_im 25 final
featureisoF25="$featureisoF25 ‘$b/variance final‘"

done

# compare results with theoretical prediction and write results into
# files

best_fit=‘$b/best_fit_line $featureisoF25°
errorisoF25=‘$b/error_line $featureisoF25 $best_fit¢
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echo michael$surface isoF25 $featureisoF25 0 0 0 $errorisoF25 >> charts
echo best_fit_michael$surface isoF25 $best_fit 0 0 0 O >> charts

echo michael$surface $filter $errorisoF25\
>> results

done

echo \"‘date‘\" >> results
echo \"‘date‘\" >> charts

rm fft_x final

shellscript_laws_ms

Every texture is filtered with two Laws filters (L5E5 and E5L5) under dif-
ferent illumination tilt angles. The results are compared with the theoretical
predictions and the sinusoidal measure of error is computed.

set -x # debug version

# file paths
a=/depot/imaging/bin
b="/cpp

#init the file ’charts’ which are read by Excel
echo \"‘date‘\" > charts
echo laws/shellscript_new >> charts

#write header for file ’charts’
echo surface filter O 10 20 30 40 50 60 70 80 90 100 110 120 130\
140 150 160 170 180 a b ¢ absolute relative >> charts

# loop over every surfe
for surface in 1 234567 89
do

# empty feature arrays
featurei=""
feature2=""

# loop over different tilt angles

for tilt in 000 010 020 030 040 050 060 070 080 090 100 110 120 130\
140 150 160 170 180

do

# prepare image for computing

cp ~/images/michael$surface/michael$surface.$tilt.tif.gz
gunzip michael$surface.$tilt.tif.gz

../bmpbust -x1792 -y1200 michael$surface.$tilt.tif image image
rm michael$surface.$tilt.tif

$a/cutim -X512 -Y512 -x640 -y344 image image

# filter images with Laws filters using convolution in spatial
# domain and compute features

$a/mask -f -m $a/masks/L5ES image final

featurel="$featurel ‘$b/variance final‘"

$a/mask -f -m $a/masks/ESL5 image final

feature2="$feature2 ‘$b/variance final‘"
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done

# compare results with theoretical prediction and write results into
# ’charts’

best_fit=‘$b/best_fit_cosine $featurel®

error=‘$b/error_cosine $featurel $best_fit°

echo michael$surface LS5ES $featurel 0 0 0 $error >> charts

echo best_fit_michael$surface LBE5 $best_fit O O >> charts

best_fit=‘$b/best_fit_cosine $feature2‘

error=‘$b/error_cosine $feature2 $best_fit*

echo michael$surface ES5LS5 $feature2 0 0 0 $error >> charts

echo best_fit_michael$surface EBL5 $best_fit 0 0 >> charts
done

echo \"‘date‘\" >> charts

rm final image

shellscript_abs_ms

Compares the behaviour of image features using the variance of the image
(the image energy) and the mean absolute value. The results are com-
pared with the best fit curves f(7) = a + b * cos(2T + ¢) and f(7) =

\/a—i-b* cos(21 + ¢).

set -x # debug version

# file paths
a=/depot/imaging/bin
b="/cpp
c="gmg/texture

#init the files ’results’ and ’charts’ which are read by Excel
echo \"‘date‘\" > results

echo \"‘date‘\" > charts

echo abs/shellscript_abs_gmg >> results

echo abs/shellscript_abs_gmg >> charts

#write header for file ’results’

echo surface F25A45realabs F25A45realrel F25A4brealabs F25A4b5realrel \
F25A45realabs F25A45realrel >> results

echo surface var var abs_cosine abs_cosine abs_sqrt_cosine \
abs_sqrt_cosine >> results

#write header for file ’charts’
echo surface filter 0 10 20 30 40 50 60 70 80 90 100 110 120 130\
140 150 160 170 180 a b c absolute relative >> charts

#creating Gabor filter in the frequency domain
../gab4vinnie3-4 -f25 -a45 -pl -n512 gabor

# loop over every surface
for surface in 1 234567 89
do

# empty feature arrays
feature_abs=""
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feature_var=""

# loop over different tilt angles

for tilt in 000 010 020 030 040 050 060 070 080 090 100 110 120 130\
140 150 160 170 180

do

# prepare image for computing

cp “/images/michael$surface/michael$surface.$tilt.tif.gz

gunzip michael$surface.$tilt.tif.gz

$a/tif2scope -x1792 -y1200 michael$surface.$tilt.tif dummy image
rm michael$surface.$tilt.tif

$a/cutim -X512 -Y512 -x640 -y344 image image

# transform image into frequency domain
$a/fft3 image fft_re fft_im

$a/swapshop fft_re fft_re fft_re
$a/swapshop fft_im fft_im fft_im

#filter image with Gabor filter and compute features using the
#image variance and the absolute pixel value

../real_gabor fft_re fft_im gabor final
feature_abs="$feature_abs ‘$b/abs final‘"
feature_var="$feature_var ‘$b/variance final‘"

done

# compare variance feature with sinosoidal best fit curve
best_fit=‘$b/best_fit_cosine $feature_var’
error_var=‘$b/error_cosine $feature_var $best_fit*

echo michael$surface var $feature_var 0 0 O $error_var >> charts
echo best_fit_michael$surface var $best_fit 0 0 >> charts

# compare absolute value feature with sinosoidal best fit curve
best_fit=‘$b/best_fit_cosine $feature_abs’

error_abs_cosine=‘$b/error_cosine $feature_abs $best_fit°*

echo michael$surface abs_cosine $feature_abs 0 0 O $error_abs_cosine >> charts
echo best_fit_michael$surface abs_cosine $best_fit 0 0 >> charts

# compare absolute value feature with rooted sinosoidal best fit curve
best_fit=‘$b/best_fit_sqrt_cosine $feature_abs®

error_abs_sqrt_cosine=‘$b/error_cosine $feature_abs $best_fit*

echo michael$surface abs_sqrt_cosine $feature_abs O O O $error_abs_sqrt_cosine >> charts
echo best_fit_michael$surface abs_sqrt_cosine $best_fit 0 O >> charts

echo michael$§surface $error_var $error_abs_cosine $error_abs_sqrt_cosine >> results

done

echo \"‘date‘\" >> results
echo \"‘date‘\" >> charts

rm gabor* fft_* final



Appendix E

Proof: The scatter plot of two sinusoidal curves, which oscillate about an
average value and have different average values, amplitudes and phases but
the same period, is always an ellipse.

T = ay+bycos(2T + ¢1) < 27 = arccos (x ; al) — ¢
1

Yy = by + bycos(27 + ¢o)

r — a1

by

)-ore0]

= y = ay + by cos [arccos (

Using cos(a + ) = cos(a) cos(B) — sin(«) sin() we get

€ —

Y= ag+ by {( blal) cos(¢; — ¢2) — sin [arccos (x blal)] sin(¢y — ¢1)}

Using sin[arccos(x)] = v/1 — 22 and the abbreviations ¢; = Z—f cos(py — ¢1)
and ¢y = by sin(gy — ¢1) we get

T —a1\?
y=a2+clx—cla1—02\/1—< b )
1

i L e o
Using the abbreviation ¢z = ¢ — fta; we get

_ 2 1 2
5 (et 2
b1 Co Co
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This is equivalent to the general equation of conics in [11]:

0 = az? + 2bzy + cy® + 2dx + 2ey + f

1 1 1
“ = v tan®(¢o — 1) * 11  bisin®(¢s — ¢1)
1
b= biby sin(¢py — 1) tan(p — ¢1)
1

© T Bsin’(gr - o1)

_ o _a 1
i = biba tan(gg — ¢1) sin(dy — ¢1) b7 ltan2(¢2 — ¢1) N 1]

N 1 [ (05} _ aq ]

~ bysin(¢o — ¢1) [batan(go — ¢1)  bysin(ds — ¢r)
e — 1 [ aq _ a9 ]

- b2 sin(¢2 — ¢1) b1 tan(qzﬁz — ¢1) bg Sin(¢2 — qbl)

 ar)? a5 — 2032 cos(dg — ¢1) + (Z—f)z a? cos®(gg — 1)
r= () -1 B sin® (62 — 01)

The determinant

a b

B:bc

[1 - cos®(¢2 — ¢1)]

~ B3 sint(fy — 1)

is always positive. The determinant

a b d
A=|b ¢ e
d e f

is not zero. In this case the conic figure is always an ellipse.



Bibliography

1]

[4]

[5]

8]

[9]

M. J. Chantler, G. McGunnigle, The response of texture features to
Wlluminant rotation, 15th International Converence on Pattern Recogni-
tion, Vol. 3 pp. 943 - 946, September 2000

G. McGunnigle, The Classification of Textured Surfaces Under Vary-
ing Hlluminant Directions, PhD Theses, Department of Computing and
Electrical Engineering, Heriot Watt University, April 1998

Michael J. Chantler, The effect of variation in illuminant direction
on texture classification, PhD Theses, Department of Computing and
Electrical Engineering, Heriot Watt University, August 1994

G. Healey and L. Wang, Illumination-Invariant Recognition of Tex-
ture in Color Images, Journal of the Optical Society of America A, pp.
1877-1883, September 1995

Todd R. Reed and J. M. Hans du Buf, A Review of Recent Tex-
ture Segmentation and Feature Extraction Techniques, CVGIP: Image
Understanding, V57, No.3, pp359-372, May 1993

Trygve Randen and John H. Husoy, Filtering for Texture Classi-
fication: A Comparative Study, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 21, No. 4, April 1999

Thomas P. Weldon and William E. Higgins, Integrated Approach
to Texture Segmentation Using Multiple Gabor Filters, International
Conference on Image Processing, vol. 3 , pp. 955 -958, 1996

Christian V. Sinn, An investigation into the importance of phase in
textured images, Diploma Theses, Department of Computing and Elec-
trical Engineering, Heriot Watt University, July 2000

K.I. Laws, Texture Energy Measures, Proceedings in Image Under-
standing Workshop, No. 1979 pp. 47-51.

91



BIBLIOGRAPHY 92

[10] Ronald N. Bracewell, The Fourier Transform and its Applications
3rd ed., McGraw-Hill International Editions, 2000

[11] John W. Harris and Horst Stocker, Handbook of Mathematics and
Computational Science, Springer Verlag New York, 1998, pp. 393



