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Stéphane Gimenez, Joe Wells Unification Modulo Observational Equivalence



Higher Order Unification
Unification Modulo Observational Equivalence

Solution

Higher Order Unification
Unification
Objectives
Higher Order
Huet’s Algorithm

Unification Modulo Observational Equivalence
Calculus
Semantics
Observational equivalence
Unification

Solution
Reusing HOU
Augmented call-by-value reduction
Reduction of unification problems
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Motivations

I C. Haack proposed a tool for automatic adaptation of
software components that would need UMOE.

I The approximation made was to use HOU to find unification
candidates modulo β-equivalence, then check in a second time
that the observational behavior are the same.

I We propose to find solutions in a single phase.
I Possibly, finding solutions that are not needed to respect

β-equivalence.
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Unification

I Classical unification problems deals with solving equations at
the syntax level modulo some equivalence relations such as
associativity or commutativity.

b + X + Y ≈ a + Z

I Ground Solution:

X 7→ a, Y 7→ a, Z 7→ b + a

I Unifiers:
Y 7→ a, Z 7→ b + X

Y 7→ a + T , Z 7→ b + T + X
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Definition
An unification problem is a set of equations t1 ≈ t2 in an algebra
extended with unknowns X ,Y ,Z ..., for which equivalence is
written '.

Definition
An unifier for a given unification problem is a substitution θ (that
replaces unknowns with terms) such for each equation t1 ≈ t2 of
the unification problem, θt1 ' θt2.

Definition
An unifier θ1 is said more general than θ2 (θ1 ≤ θ2) iff there exists
a substitution θ such that θ2 = θθ1
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I In our example,

X 7→ a, Y 7→ a, Z 7→ b + a

≥ Y 7→ a, Z 7→ b + X

≥ Y 7→ a + T , Z 7→ b + T + X

I In fact there are two minimal unifiers,

X 7→ a + T , Z 7→ b + T + Y

Y 7→ a + T , Z 7→ b + T + X
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Objectives

I Find a most general unifier when it exists.

I Find a complete finite (finitely representable) set of minimal
unifiers.

I Find a complete finite (finitely representable) set of unifiers.

I Enumerate a complete set of unifiers.

I Find an unifier when there is one.

The existence of an unifier is undecidable for almost every
“complex” algebra, only the two last specifications can be assured.
Incomplete results can also be interesting.
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Higher Order

I When the algebra considered is the algebra of λ-terms modulo
βη-equivalence, unification is said Higher Order Unification.

I Higher Order Unification is semi-decidable.

I A exhaustive “generate and test” algorithm allows to know
that a specific problem has solutions.

I Huet’s algorithms allows to restrict the search space.
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Definition
Simply-typed λ-terms are built using the following syntax:

lσ→τ ::= λxσ. tτ

tτ ::= lτ xτ X τ tσ→τ
1 tσ

2

Definition
A unification problem is syntactically defined as:

P ::= P1,P2 tτ
1 ≈ tτ

2 ∅ ⊥
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Huet’s Algorithm
Rules for Higher Order Unification

I delete:
P, t ≈ t → P

I decompose:

P, x~t ≈ x~t ′ → P, t1 ≈ t ′1, . . . , tn ≈ t ′n

I eliminate:

P,X ≈ t → P[X := t],X ≈ t if X 6∈ fv t
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I imitate: ω ranges over x and X ,

P,X ~t ≈ ω~t ′ → P,X ~t ≈ ω~t ′,

X = λ~r . ω(λ~s1.Z1(~r ,~s1), . . . , λ~sn.Zn(~r ,~sn))

I project:

P,X ≈ x~t → P,X ≈ x~t,

X = λ~r . ri (λ~s1.Z1(~r ,~s1), . . . , λ~sn.Zn(~r ,~sn))

I guess:

P,X ~t ≈ Y ~t ′ → P,X ~t ≈ Y ~t ′,

X = λ~r . ω(λ~s1.Z1(~r ,~s1), . . . , λ~sn.Zn(~r ,~sn))
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Unification Modulo Observational Equivalence

I A different kind of unification on simply-typed λ-terms.

I Observational equivalence instead of βη-equivalence.

I Call-by-value semantics, since the two equivalences are the
same in call-by-name semantics.
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Definition
Simply-typed λ-terms are built using the following syntax:

lσ→τ ::= λxσ. tτ

v τ ::= lτ xτ X
¯

τ

Γ

tτ ::= v τ tσ→τ
1 tσ

2 X̄
τ

Γ

Γ ::= tτ , Γ ∅

X
τ

Γ
::= X

¯

τ

Γ
X̄

τ

Γ
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Definition
The inferior bound set of free variables fvinf t of a term t is defined
according to the following rules:

I usual rules:

fvinf λzσ. tτ = fvinf tτ \ {zσ}
fvinf xτ = {xτ}

fvinf tσ→τ
1 tσ

2 = fvinf tσ→τ
1 ∪ fvinf tσ

2

I extended with:
fvinf X

τ

Γ
= ∅
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Definition
The superior bound set of free variables fvsup t of a term t is
defined according to the following rules:

I usual rules:

fvsup λzσ. tτ = fvsup tτ \ {zσ}
fvsup xτ = {xτ}

fvsup tσ→τ
1 tσ
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τ

Γ
=

⋃
tσ∈Γ

fvsup tσ
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Definition
A substitution operator for variables is a pair [xτ := tτ ].

I usual rules:

xτ [xτ := tτ ] = tτ

yσ[xτ := tτ ] = yσ if xτ 6= yσ

(t1 t2)[x
τ := tτ ] = t1[x

τ := tτ ] t2[x
τ := tτ ]

(λzσ. t ′)[xτ := tτ ] = λzσ. t ′[xτ := tτ ] if

{
zσ 6= xτ

zσ 6∈ fvsup t

I extended with:

X
σ

Γ
[xτ := tτ ] = X

σ

Γ[xτ := tσ]

I where:

(t ′
σ
, Γ)[xτ := tτ ] = t ′

σ
[xτ := tτ ], Γ[xτ := tτ ]

∅[xτ := tσ] = ∅
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Definition
A substitution operator for unknowns is a pair [X

τ

Σ
:= tτ ], where Σ

is a vector of distinct variables and t a term which does not
contain X, such that fvsup tτ ⊆ Σ, defined modulo α-conversion of
the variables in Γ.

I transition rules:

(λzσ. t ′)[X
τ

Σ
:= tτ ] = λzσ. t ′[X

τ

Σ
:= tτ ]

(tσ→τ
1 tσ

2 )[X
τ

Σ
:= tτ ] = tσ→τ

1 [X
τ

Σ
:= tτ ] tσ

2 [X
τ

Σ
:= tτ ]

xτ [X
τ

Σ
:= tτ ] = xτ
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I unknowns replacement:

Y
τ

Γ
[X

τ

Σ
:= tτ ] = Y

τ

Γ[X
τ

Σ
:= tτ ]

if X 6= Y

X
τ

Γ
[X

τ

Σ
:= tτ ] = tτ [Σ :=Γ]

I where:

t ′[xσ,Σ := tτ , Γ] = t ′[xσ := tτ ][Σ := Γ]

t ′[∅ := ∅] = t ′
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Semantics

Definition
Call-by-value reduction is the smallest binary relation −→v over
λ-terms that satisfies:

tσ→τ
1 −→v tσ→τ

2

tσ→τ
1 tσ −→v tσ→τ

2 tσ
vleft

tσ
1 −→v tσ

2

vσ→τ tσ
1 −→v vσ→τ tσ

2

vright

(λxσ. tτ ) vσ −→v tτ [xσ := vσ]
vβ

X
¯ Γ

and X̄
Γ

behave differently:

X̄
Γ
((λz . z) u) X

¯ Γ
((λz . z) u)

Stéphane Gimenez, Joe Wells Unification Modulo Observational Equivalence



Higher Order Unification
Unification Modulo Observational Equivalence

Solution

Calculus
Semantics
Observational equivalence
Unification

Semantics

Definition
Call-by-value reduction is the smallest binary relation −→v over
λ-terms that satisfies:

tσ→τ
1 −→v tσ→τ

2

tσ→τ
1 tσ −→v tσ→τ

2 tσ
vleft

tσ
1 −→v tσ

2

vσ→τ tσ
1 −→v vσ→τ tσ

2

vright

(λxσ. tτ ) vσ −→v tτ [xσ := vσ]
vβ

X
¯ Γ

and X̄
Γ

behave differently:

X̄
Γ
((λz . z) u) X

¯ Γ
((λz . z) u)
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Definition
Evaluation context.

cσ⇒σ ::= �σ

cσ⇒τ ::= cσ⇒τ ′→τ tτ ′ lτ
′→τ cσ⇒τ ′

Lemma
Normal forms of type τ for the call-by-value semantics are exactly
the terms of the form:

v τ

cσ⇒τ [xσ′→σ vσ′ ]

cσ⇒τ [X
¯

σ′→σ

Γ
vσ′ ]

cσ⇒τ [X̄
σ

Γ
]
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Observational equivalence

Definition
A congruence for the simply-typed λ-calculus is a relation ∼ that
satisfies:

t1 ∼ t2

λx . t1 ∼ λx . t2
congabs

t1 ∼ t2 t ′1 ∼ t ′2

t1 t ′1 ∼ t2 t ′2
congapp

t1 ∼ t ′1, . . . , tn ∼ t ′n

Xt1,...,tn ∼ Xt′1,...,t
′
n

congscope

Stéphane Gimenez, Joe Wells Unification Modulo Observational Equivalence



Higher Order Unification
Unification Modulo Observational Equivalence

Solution

Calculus
Semantics
Observational equivalence
Unification

Observational equivalence

Definition
A congruence for the simply-typed λ-calculus is a relation ∼ that
satisfies:

t1 ∼ t2

λx . t1 ∼ λx . t2
congabs

t1 ∼ t2 t ′1 ∼ t ′2

t1 t ′1 ∼ t2 t ′2
congapp

t1 ∼ t ′1, . . . , tn ∼ t ′n

Xt1,...,tn ∼ Xt′1,...,t
′
n

congscope
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Definition
The blocking symbol ¬ t of a term t is defined according to the
normal form of t, using the following matching:

¬ t = · ⇐⇒ t↓v = v

¬ t = x ⇐⇒ t↓v = c[x v ]

¬ t = X
¯ Γ

⇐⇒ t↓v = c[X
¯ Γ

v ]

¬ t = X̄
Γ

⇐⇒ t↓v = c[X̄
Γ
]

I The blocking symbol plays the same role as the head variable
in HOU.
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Definition
A bisimulation is a congruence ∼ such that:

t1 ∼ t2 ⇒ ¬ t1 = ¬ t2

t1 ∼ t2

t1↓v ∼ t2↓v

eval

Definition
The observational equivalence ' is the greatest bisimulation. It
exists, because the union of two bisimulations is also a
bisimulation.
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Example

I The booleans can be distinguished.

λxγ . λyγ . xγ 6' λxγ . λyγ . yγ

I η-equivalent terms are not necessarily observationally
equivalent,

f σ→τ→τ ′ xσ 6' λzτ . f σ→τ→τ ′ xσ zτ

I unless the term is a value.

λzτ . f σ→τ→τ ′ xσ zτ ' λz ′
τ
. (λzτ . f σ→τ→τ ′ xσ zτ ) z ′

τ
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Example

I Sometimes, β-equivalent terms are observationally equal in
call-by-value semantics,

λyα. (λzβ→β. yα) (λxβ . xβ) ' λyα. yα

I Sometimes, not.

λyα. (λzβ. yα) (f γ→βxγ) 6' λyα. yα
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Unification

Definition
A unification problem is syntactically defined as:

P ::= P1,P2 tτ
1 ≈ tτ

2 ∅ ⊥ (νx) P (νX) P

Example

Gα→α→α
f α→α→α xα yα ≈ f α→α→α yα xα

unifier:
Gα→α→α

f α→α→α 7→ λuα. λvα. f α→α→α vα uα

Stéphane Gimenez, Joe Wells Unification Modulo Observational Equivalence



Higher Order Unification
Unification Modulo Observational Equivalence

Solution

Calculus
Semantics
Observational equivalence
Unification

Definition
A unifier for a given unification problem is a substitution whose
domain is the set of unknowns of the problem that makes
observationally equivalent the two terms of each disagreement pair.

The substitution term for an unknown must only use variables that
appear as index of the unknown. Then the following substitution is
not a candidate for being an unifier:

Gα→α→α
f α→α→α 7→ λuα. λvα. f α→α→α vα xα

Definition
Assuming we only need one representant by equivalence class, we
restrict our interest space to unifiers whose right-sides are normal
forms.
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Solution

Towards a solving procedure...
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Reusing HOU

The general principle of HOU can be reused: Instantiating
unknowns, using the restrictions that can be grabbed using the
equivalences already discovered.
But,

I the range of normal forms in call-by-value semantics is wider
than for βη-reduction.

I normalization is not sufficient to know if two terms are
equivalent.

I we cannot use β-reduction to deal with scope issues.
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Augmented call-by-value reduction

Lemma
Assuming z 6∈ fv t2, (λzσ. tτ ′→τ

1 ) tσ tτ ′
2 ' (λzσ. tτ ′→τ

1 tτ ′
2 ) tσ

Lemma
Assuming z 6∈ fv v, v τ→τ ′ ((λzσ. tτ

1 ) tσ) ' (λzσ. v τ→τ ′ tτ
1 ) tσ

Lemma
(λzσ. zσ) tσ ' tσ

These are remarkable equivalences that are also β-equivalences.
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Definition
Call-by-value augmented evaluation is defined according to:

t↓a = (t↓v )↓a if t is not a normal form

x↓a = x

(λz . t)↓a = λz . t↓a

c[x v ]↓a = (λw . c[w ]↓a) (x v↓a)

XΓ↓a = XΓ↓a

c[X
¯ Γ

v ]↓a = (λw . c[w ]↓a) (X
¯ Γ↓a

v↓a)

c[X̄
Γ
]↓a = (λw . c[w ]↓a) X̄

Γ↓a

with:

t, Γ↓a = t↓a, Γ↓a

∅↓a = ∅
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Lemma
Normal forms for the augmented evaluation are exactly the terms
of the form:

m ::= x

λz .m

(λw .m) (x m)

X~m

(λw .m) (X
¯ ~m

m)

(λw .m) X̄
~m

Lemma
The relation ↓a is included in ':

t ↓a m ⇒ t ' m
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Reduction of unification problems

I part:
P1  P2

P1,P  P2,P

I bind:
P1  P2

(νω) P1  (νω) P2

I eval:
t1 ≈ t2  t1↓a ≈ t2↓a
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I l/l :
λzσ.mτ

1 ≈ λzσ.mτ
2  (νz) mτ

1 ≈ mτ
2

I x/x :
xτ ≈ xτ  ∅

I x/l :
xσ→τ ≈ λzσ.mτ  (νz) xσ→τ zσ ≈ mτ

I ¬x/¬x :

(λw τ ′ .mτ
1) (xσ→τ ′ vσ

1 ) ≈ (λw τ ′ .mτ
2) (xσ→τ ′ vσ2

2 )

 vσ1
1 ≈ vσ2

2 , (νw) mτ
1 ≈ mτ

2
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Others cases where unknowns do not appear are impossible:

I

xτ
1 ≈ xτ

2 if xτ
1 6= xτ

2

I

(λw τ1 .mτ
1) (xσ1→τ1

1 vσ1
1 ) ≈ xτ

2

I

(λw τ1 .mτ
1) (xσ1→τ1

1 vσ1
1 ) ≈ lτ

I

(λw τ1 .mτ
1) (xσ1→τ1

1 vσ1
1 ) ≈ (λw τ2 .mτ

2) (xσ2→τ2
2 vσ2

2 )

if xσ1→τ1
1 6= xσ2→τ2

2
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Some rules to guess what the unknowns should be substituted with:

I if v τ ∈ Γ
(νX

¯
) P  P[X

¯

τ

Γ
:= v τ ]

I if z 6∈ Γ

(νX
¯

) P  (νȲ) P[X
¯

σ→τ

Γ
:=λzσ. Ȳ

τ

zσ ,Γ
]
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I if tτ ∈ Γ
(νX̄) P  P[X̄

τ

Γ
:= tτ ]

I if z 6∈ Γ

(νX̄) P  (νȲ) P[X̄
σ→τ

Γ
:=λzσ. Ȳ

τ

zσ ,Γ
]

I if w 6∈ Γ and tσ′→τ ′ ∈ Γ

(νX̄) P  (νȲ) (νZ
¯

) P[X
¯

σ→τ

Γ
:=(λw τ ′ . Ȳ

τ

wτ ′ ,Γ
)(tσ′→τ ′Z

¯

σ′

tσ ,Γ
)]
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