VSComp: The Verified Software Competition

Peter Miiller (ETH Zurich) and N. Shankar (SRI)

Computer Science Laboratory
SRI International
Menlo Park, CA

August 18, 2010

Robin and Amir

Peter Miiller (ETH Zurich) and N. Shankar (SRI) ified Software Competiti

Introducing VSComp

@ The competition is between teams of up to three people,
armed with one or more verification tools.

@ We describe five verification exercises in this presentation. All
require total correctness proofs.

@ Anyone can participate, and student teams are encouraged.

@ An analysis of the results will be announced at the Tools &
Experiments workshop on Thursday.

@ Valentin Wiistholz helped select and prepare the problems.
@ Gary Leavens, Peter Miiller, and Shankar are the judges

@ These slides are available on
http://www.macs.hw.ac.uk/vsttel0/comp.pdf.

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

http://www.macs.hw.ac.uk/vstte10/comp.pdf

Ground Rules

@ Teams can select a name for themselves and nominate a
leader.

@ Teams can only ask questions and receive answers from us in
public.

@ You have two hours from 1600 to 1800 hours to work on
these problems.

e Complete or partial solutions (code, specification, proof)
should be emailed to peter.mueller@inf.ethz.ch.

@ Each email should consist of a solution to a one of the
problems and should be labeled
VSComp-teamname-problem.

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

The Solution

@ In solving the problems, you have to formalize the
specification, write the program, construct and verify the
proof with the aid of a verification tool.

@ You don't have to worry about numeric overflows or
underflows or resource bounds, but other kinds of uncaught
exceptions must be shown to be absent.

@ It would be helpful if you could execute your code on the test
cases.

@ Solutions must be reproducible without change on the
verification tools that you have used.

@ We also need the complete transcript of the verification so
that we can examine the steps and observe the run times.
Any other documentation will be helpful.

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Evaluation of Submissions

@ At the end of the competition, we will forward the solutions to
all the participants.

@ Each team can send us their evaluation of the submissions
made by others.

@ The judges (Peter, Shankar, and Gary) will evaluate both the
submissions and the comments from the teams in making the
final evaluation.

@ Our evaluation of results is subjective (completeness,
elegance, automation).

@ We will not be ranking the submissions, but presenting our
overall assessment of the candidate solutions for each problem.

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Problem Format

@ Description: What does the program compute?

@ Properties to prove: Informal statement of properties. (You
have to formalize these in your own terms, and show
termination of all the functions used.)

@ Pseudocode: A candidate program that is a rough guide, but
you can verify a different program with the same behavior.

@ Test Cases: Examples to illustrate how the program should
work.

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Problem 1: Sum and Maximum

@ Description: Given an N-element array of natural numbers,
write a program to compute the sum and the maximum of the
elements in the array.

@ Properties: Given that N > 0 and a[i] > 0for 0 < i <N,
prove the post-condition that sum < N * max.

@ Pseudocode:

int sum, max = O;
int 1i;
for (i=0; i<N; i++){
if (max < a[i]){
max = alil;
¥
sum += alil;
}

@ Test Case: With the array 9,5,0,2,7,3,2,1,10,6, N is 10,

max is 10, and the sum is 40.

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Problem 2: Inverting an Injection

@ Description: Invert an injective array A on N elements in the
subrange from 0 to N — 1, i.e., the output array B must be
such that B[A[i]] =i for 0 < i < N.

@ You can assume that A is surjective.

@ Properties: Show that the resulting array is also injective. For
bonus points, you can demonstrate other properties, e.g., that
A and B are inverses.

@ Pseudocode:

int A[];
for (i=0; i<N; i++){
B[A[i]l] = i

}
@ Test: If Ais9,3,8,2,7,4,0,1,5,6, then output B should be
6,7,3,1,5,8,9,4,2,0.

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Problem 3: Searching a Linked List

@ Probem: Given a linked list representation of a list of integers,
find the index of the first element that is equal to 0.

@ Properties: You have to show that the program returns an
index i equal to the length of the list if there is no such
element. Otherwise, /'th element of the list must be equal to
0, and all the preceding elements must be non-zero.

@ Pseudocode: You may use linked list representation given with
Problem 5.
jj = 11;
int i = 0;
while (jj !'= null && jj.head '= 0){
jj = jj.next;
i++;
}

return i;

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Problem 4: N-Queens

@ Problem: Write a program to place N queens on an N x N
chess board so that no queen can capture another one with a
legal move.

@ The algorithm returns a placement if there is a solution, and
an empty board, otherwise. You can represent the empty
board with a flag or a null pointer.

@ A placement is given by a board which is an N-element array
where the j'th element is j, when the queen is placed in the

j'th row for the i'th column.

@ Properties: The post-condition should establish that when the
algorithm returns a placement, it is legal, and if it returns an
empty board, there is no solution.

@ Thus, with N = 2, the result should be empty, whereas with
N = 4, there should be a legal placement.

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Legal Board

A legal board is defined by IsConsistent.

def IsConsistent(int[] board, int pos) : boolean {
for (int q = 0; q < pos; g++) {
if (!((board[q] !'= board[pos])
&& (board[q] - board[pos] != pos - q)
&& (board[pos] - board[q] !'= pos - @))) {
return false;
}
}

return true;

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

The search for a consistent board position is defined recursively
over the columns (pos) and scanning each position for a row value
(1).
def Search(int pos, int[] board) : int[] {
if (pos == board.length) {
return board;
}

for (int i = 0; i < board.length; i++) {
board[pos] = i;

if (IsConsistent(board, pos)) {
int[] s = Search(pos + 1, board);

if (s != null) {
return s;

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Problem 5: Amortized Queue

@ An applicative queue with a good amortized complexity can
be implemented using a linked list.

@ The queue structure supports the operations (pseudocode to
follow)

© Enqueue(item: T): Place an element at the rear of the
queue

@ Tail(): Return the queue without the first element

© Front(): Return the first element of the queue.

@ The queue is implemented as a record with two fields: front
and rear which are linked lists so that the Front operation
returns the first element in the list front and Tail returns a
new queue with front as the tail of the original front list. The
Enqueue operation teturns a new queue by inserting an
element at the head of the list rear.

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

@ You have to show that the implementation maintains the
invariant that queue.rear.length < queue.front.length.

@ You also have to show that a client invoking these operations
observes an abstract queue given by a sequence.

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Pseudocode for Linked Lists

class LinkedList<T> {
var head: T;
var tail: LinkedList<T>;

var length: int;

/*x
* Constructs an empty linked list.
*/
LinkedList () {
tail = null;
length = 0;

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Pseudocode for List Cons

/**
* Returns a new linked list whose first element (head)
*¥ is "d" and whose tail is "this".
*/
def Cons(d: T) : LinkedList<T> {
r = new LinkedList<T>;

r.head = d;

r.tail = this;
r.length = length + 1;
return r;

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Pseudocode for List Concatenation

/**
* Returns a new list that is the concatenation of this list and
* the list "end".
*/
def Concat(end: LinkedList<T>) : LinkedList<T> {
if (length == 0) {
r = end;
} else {
var ¢ = tail.Concat(end);
r = c.Cons(head) ;

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Pseudocode for List Reverse

/*%
* Returns a new list that is the reverse of this list.
*/
def Reverse() : LinkedList<T> {
var r;
if (length == 0) {
r := new LinkedList<T>;
} else {

r = tail.Reverse();

var e = new LinkedList<T>;
e = e.Cons(head);

r.Concat (e);

R
1]

}

return r;

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Pseudocode for Applicative Queue Constructor

class AmortizedQueue<T> {

// The front of the queue.
var front: LinkedList<T>;

// The rear of the queue (stored in reversed order).
var rear: LinkedList<T>;

/**
* Constructs an empty queue.
*/
AmortizedQueue() {
front = new LinkedList<T>;
rear = new LinkedList<T>;

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Pseudocode for Applicative Queue Constructor

/*%
* Constructs an new queue whose front is ’front’ and whose rear
* is ’rear’.
*
* ’front’ and ’rear’ should be non-null.
*/
AmortizedQueue (front: LinkedList<T>, rear: LinkedList<T>) {
if (rear.length <= front.length) {
this.front = front;
this.rear = rear;
} else {
var f;
f = rear.Reverse();
this.front = front.Concat(f);

this.rear = new LinkedList<T>;

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Pseudocode for Queue Operations

/**
* Returns the first element of a non-empty queue.
*/
def Front() : T {
return front.head;

/%%
* Returns a new queue that contains all elements of
* this queue (non-empty) except for the first element.
*/
def Tail() : AmortizedQueue<T> {
return new AmortizedQueue<T>(front.tail, rear);

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

Pseudocode for Queue Operations

/%%
* Returns a new queue that contains all elements of this queue
* and an additional element "item" at the rear of the queue.
*/
def Enqueue(item: T) : AmortizedQueue<T> {

var r;

r = rear.Cons(item);

return new AmortizedQueue<T>(front, r);

Peter Miiller (ETH Zurich) and N. Shankar (SRI) VSComp: The Verified Software Competition

