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Introducing VSComp

@ The competition is between teams of up to three people,
armed with one or more verification tools.

@ We describe five verification exercises in this presentation. All
require total correctness proofs.

@ Anyone can participate, and student teams are encouraged.

@ An analysis of the results will be announced at the Tools &
Experiments workshop on Thursday.

@ Valentin Wiistholz helped select and prepare the problems.
@ Gary Leavens, Peter Miiller, and Shankar are the judges

@ These slides are available on
http://www.macs.hw.ac.uk/vsttel0/comp.pdf.
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http://www.macs.hw.ac.uk/vstte10/comp.pdf

Ground Rules

@ Teams can select a name for themselves and nominate a
leader.

@ Teams can only ask questions and receive answers from us in
public.

@ You have two hours from 1600 to 1800 hours to work on
these problems.

e Complete or partial solutions (code, specification, proof)
should be emailed to peter.mueller@inf.ethz.ch.

@ Each email should consist of a solution to a one of the
problems and should be labeled
VSComp-teamname-problem.
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The Solution

@ In solving the problems, you have to formalize the
specification, write the program, construct and verify the
proof with the aid of a verification tool.

@ You don't have to worry about numeric overflows or
underflows or resource bounds, but other kinds of uncaught
exceptions must be shown to be absent.

@ It would be helpful if you could execute your code on the test
cases.

@ Solutions must be reproducible without change on the
verification tools that you have used.

@ We also need the complete transcript of the verification so
that we can examine the steps and observe the run times.
Any other documentation will be helpful.
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Evaluation of Submissions

@ At the end of the competition, we will forward the solutions to
all the participants.

@ Each team can send us their evaluation of the submissions
made by others.

@ The judges (Peter, Shankar, and Gary) will evaluate both the
submissions and the comments from the teams in making the
final evaluation.

@ Our evaluation of results is subjective (completeness,
elegance, automation).

@ We will not be ranking the submissions, but presenting our
overall assessment of the candidate solutions for each problem.
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Problem Format

@ Description: What does the program compute?

@ Properties to prove: Informal statement of properties. (You
have to formalize these in your own terms, and show
termination of all the functions used. )

@ Pseudocode: A candidate program that is a rough guide, but
you can verify a different program with the same behavior.

@ Test Cases: Examples to illustrate how the program should
work.
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Problem 1: Sum and Maximum

@ Description: Given an N-element array of natural numbers,
write a program to compute the sum and the maximum of the
elements in the array.

@ Properties: Given that N > 0 and a[i] > 0for 0 < i <N,
prove the post-condition that sum < N * max.

@ Pseudocode:

int sum, max = O;
int 1i;
for (i=0; i<N; i++){
if (max < a[i]){
max = alil;
¥
sum += alil;
}

@ Test Case: With the array 9,5,0,2,7,3,2,1,10,6, N is 10,

max is 10, and the sum is 40.
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Problem 2: Inverting an Injection

@ Description: Invert an injective array A on N elements in the
subrange from 0 to N — 1, i.e., the output array B must be
such that B[A[i]] =i for 0 < i < N.

@ You can assume that A is surjective.

@ Properties: Show that the resulting array is also injective. For
bonus points, you can demonstrate other properties, e.g., that
A and B are inverses.

@ Pseudocode:

int A[];
for (i=0; i<N; i++){
B[A[i]l] = i

}
@ Test: If Ais9,3,8,2,7,4,0,1,5,6, then output B should be
6,7,3,1,5,8,9,4,2,0.
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Problem 3: Searching a Linked List

@ Probem: Given a linked list representation of a list of integers,
find the index of the first element that is equal to 0.

@ Properties: You have to show that the program returns an
index i equal to the length of the list if there is no such
element. Otherwise, /'th element of the list must be equal to
0, and all the preceding elements must be non-zero.

@ Pseudocode: You may use linked list representation given with
Problem 5.
jj = 11;
int i = 0;
while (jj !'= null && jj.head '= 0){
jj = jj.next;
i++;
}

return i;
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Problem 4: N-Queens

@ Problem: Write a program to place N queens on an N x N
chess board so that no queen can capture another one with a
legal move.

@ The algorithm returns a placement if there is a solution, and
an empty board, otherwise. You can represent the empty
board with a flag or a null pointer.

@ A placement is given by a board which is an N-element array
where the j'th element is j, when the queen is placed in the

j'th row for the i'th column.

@ Properties: The post-condition should establish that when the
algorithm returns a placement, it is legal, and if it returns an
empty board, there is no solution.

@ Thus, with N = 2, the result should be empty, whereas with
N = 4, there should be a legal placement.
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Legal Board

A legal board is defined by IsConsistent.

def IsConsistent(int[] board, int pos) : boolean {
for (int q = 0; q < pos; g++) {
if (!((board[q] !'= board[pos])
&& (board[q] - board[pos] != pos - q)
&& (board[pos] - board[q] !'= pos - @))) {
return false;
}
}

return true;
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The search for a consistent board position is defined recursively
over the columns (pos) and scanning each position for a row value
(1).
def Search(int pos, int[] board) : int[] {
if (pos == board.length) {
return board;
}

for (int i = 0; i < board.length; i++) {
board[pos] = i;

if (IsConsistent(board, pos)) {
int[] s = Search(pos + 1, board);

if (s != null) {
return s;
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Problem 5: Amortized Queue

@ An applicative queue with a good amortized complexity can
be implemented using a linked list.

@ The queue structure supports the operations (pseudocode to
follow)

© Enqueue(item: T): Place an element at the rear of the
queue

@ Tail(): Return the queue without the first element

© Front(): Return the first element of the queue.

@ The queue is implemented as a record with two fields: front
and rear which are linked lists so that the Front operation
returns the first element in the list front and Tail returns a
new queue with front as the tail of the original front list. The
Enqueue operation teturns a new queue by inserting an
element at the head of the list rear.
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@ You have to show that the implementation maintains the
invariant that queue.rear.length < queue.front.length.

@ You also have to show that a client invoking these operations
observes an abstract queue given by a sequence.
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Pseudocode for Linked Lists

class LinkedList<T> {
var head: T;
var tail: LinkedList<T>;

var length: int;

/*x
* Constructs an empty linked list.
*/
LinkedList () {
tail = null;
length = 0;
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Pseudocode for List Cons

/**
* Returns a new linked list whose first element (head)
*¥ is "d" and whose tail is "this".
*/
def Cons(d: T) : LinkedList<T> {
r = new LinkedList<T>;

r.head = d;

r.tail = this;
r.length = length + 1;
return r;
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Pseudocode for List Concatenation

/**
* Returns a new list that is the concatenation of this list and
* the list "end".
*/
def Concat(end: LinkedList<T>) : LinkedList<T> {
if (length == 0) {
r = end;
} else {
var ¢ = tail.Concat(end);
r = c.Cons(head) ;
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Pseudocode for List Reverse

/*%
* Returns a new list that is the reverse of this list.
*/
def Reverse() : LinkedList<T> {
var r;
if (length == 0) {
r := new LinkedList<T>;
} else {

r = tail.Reverse();

var e = new LinkedList<T>;
e = e.Cons(head);

r.Concat (e);

R
1]

}

return r;
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Pseudocode for Applicative Queue Constructor

class AmortizedQueue<T> {

// The front of the queue.
var front: LinkedList<T>;

// The rear of the queue (stored in reversed order).
var rear: LinkedList<T>;

/**
* Constructs an empty queue.
*/
AmortizedQueue() {
front = new LinkedList<T>;
rear = new LinkedList<T>;
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Pseudocode for Applicative Queue Constructor

/*%
* Constructs an new queue whose front is ’front’ and whose rear
* is ’rear’.
*
* ’front’ and ’rear’ should be non-null.
*/
AmortizedQueue (front: LinkedList<T>, rear: LinkedList<T>) {
if (rear.length <= front.length) {
this.front = front;
this.rear = rear;
} else {
var f;
f = rear.Reverse();
this.front = front.Concat(f);

this.rear = new LinkedList<T>;
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Pseudocode for Queue Operations

/**
* Returns the first element of a non-empty queue.
*/
def Front() : T {
return front.head;

/%%
* Returns a new queue that contains all elements of
* this queue (non-empty) except for the first element.
*/
def Tail() : AmortizedQueue<T> {
return new AmortizedQueue<T>(front.tail, rear);
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Pseudocode for Queue Operations

/%%
* Returns a new queue that contains all elements of this queue
* and an additional element "item" at the rear of the queue.
*/
def Enqueue(item: T) : AmortizedQueue<T> {

var r;

r = rear.Cons(item);

return new AmortizedQueue<T>(front, r);
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