Contents

e This slide deck summarizes the evaluation of
the VSTTE 2010 verification competition

e The comments refer to the versions submitted
in time. Versions that arrived late are
mentioned on the slides and included in the
zip file, but not commented on

e Further discussions are encouraged and
should be posted on

http://verifythis.cost-ic0701.org/

Overview: Submissions Received
—

Alexandra.Tsyban

anonymousHolHacker X

holfoot

KeY

Leino X X X X X (12 mins

late)

SPARKuLike

monapoli X X

Resolve X (before
contest)

RobArthan X

VC Crushers

VeriFast X X (Lists only)

http://www.macs.hw.ac.uk/vstte10/Solutions.zip

Problem 1: Sum and Max

e Alexandra Tsyban
— Isabelle/HOL/Vcg
— Complete: functional, partial correctness
— Automation: Axiom, two lemmas, and main proof, all interactive

o KeY
— Java/IML verifier

— Completeness: Total correctness for specs including sum/max
properties

— Automation: Proved in 6 seconds
e Monapoli
— Boogie
— Completeness: Contracts, but script not shown
— Automation: Proved in 2 seconds

Problem 1: Sum and Max

* Leino
— Dafny/Boogie/Z3
— Completeness: Total correctness
— Automation: Verified 4 proofs in 2 seconds

e Rob Arthan

— Proofpower/Z

— Completeness: Total correctness with functional program,
literate presentation

— Automation: Interactive proof

e SPARKuLike
— SPARK/Ada
— Completeness: Total correctness with numeric bounds

— Automation: 18 VCs; 4 interactive (comprehensive
documentation)

Problem 1: Sum and Max

e \/C Crushers

— C verification from contracts
— Completeness: Partial correctness; Uses unproved lemma
— Automation: fully automatic in 2.3 seconds

* VeriFast
— C Verification with separation logic
— Completeness: Partial correctness; Uses unproved lemmas
— Automation: Several definitions/lemmas

e HOLFoot
— HOL/Separation Logic
— Completeness: Total correctness
— Automation: Simple interactive proof

Problem 1: KeY Solution

class MaxSum {

int sum;
int max;

/*@ public normal_behaviour
@ requires (\forall int i; 0<=i && i < a.length; a[i] >=
0);
@ ensures (\forall int i; 0<=i && i < a.length; max >=
alil);
@ ensures (a.length >0 ==>
@ (\exists int i; 0<=i && i < a.length; max == a[i]));
@ ensures sum == (\sum inti; 0<=i && i < a.length;
alil);
@ ensures sum <= a.length * max;
@*/
void sumAndMax(int[] a) {
sum =0;
max = 0;
intk=0;

/*@ loop_invariant
@ (\forall inti; O<=i && i < k; max >= a[i])
@[.]%)& (k >0 ==> (\exists int i; 0<=i && i < k; max ==
a[i
@ && sum == (\bsum inti; 0; k; a[i])
@ && sum <=k * max
@ && 0<=k && k <=a.length
@ && (k==0==>max==0);
@
@ decreases a.length - k;
@ modifies max, sum, k;
@*/
while(k < a.length){
if (max < a[k]){
max = a[k];
}
sum += a[k];
k++;

} ;

Problem 1: Dafny Solution

method M(N: int, a: array<int>) returns (sum: int, max: int)
requires 0 <= N && a != null && |a| == N && (forall k :: 0 <= k && k < N ==> 0 <= a[k]);
ensures sum <= N * max;
{
sum :=0;
max :=0;
vari:=0;
while (i < N)
invariant i <= N && sum <=i * max;
{
if (max < al[i]) {
max := ali];
}
sum :=sum + alil;
i=i+1;
}
}

Problem 2: Invert Array

o KeY

— JML annotated Java, using the KeY tool

— Complete: functional correctness, termination, and
framing

— Automation: two manual rule instantiations; the rest is
automatic

— Very clear specifications, but longer than the code
* Leino
— Dafny

— Completeness: only preconditions specified
(full specification arrived at 5:20am)

— Automation: fully automatic, 2 second verification
— Elegant specifications, nice notation

Problem 2: KeY Solution

/*@ public normal_behaviour
requires a |=b;
requires a.length == b.length;
requires (\forall int x; 0 <= x && x < a.length; 0 <= a[x] && a[x] < a.length);
requires (\forall int x, y; 0 <= x && x <y && y < a.length; a[x] != a[y]);
requires (\forall int q; 0 <= g && ¢ < a.length; (\exists int w; 0 <= w && w < a.length; a[w] == q));
assignable b[*];
ensures (\forall int x, y; 0 <= x && x <y && y < b.length; b[x] != b[y]);
ensures (\forall int x; 0 <= x && x < b.length; b[a[x]] == x);
@*/

public static void invert(int[] a, int[] b) {

/*@ loop_invariant 0 <= i && i <= a.length
@ && (\forallint x; 0 <= x && x < i; b[a[x]] == x);
@ modifies i, b[*];
@ decreases a.length - i;
@*/

for(inti=0;i<a.length; i++) {

bla[i]] =i;

Problem 3: List Traversal

e Alexandra.Tsyban
— Isabelle, based on VCG theory
— Completeness: partial correctness
— Automation: ~50 lines of interactive proof
— Elegance: concise specification; fields encoded as functions
* Leino
— Dafny
— Completeness: total correctness
— Automation: fully automatic, 2.6secs; includes Cons and client code
— Elegance: concise specification
e Monapoli
— Boogie
— Automation: fully automatic, 2.3 secs; uses two unproven lemmas
— Completeness: partial correctness
— Elegance: uses several auxiliary functions; fields encoded as functions

Problem 3 (cont’d)

RobArthan
— ProofPower-HOL
— Completeness: total correctness for ML implementation
— Automation: ~25 lines of interactive proof
— Elegance: concise and general specification
VC Crushers
— VCC
— Completeness : partial correctness
— Automation: fully automatic

— Elegance: much overhead for data structure and data abstraction
(invariants)

VeriFast
— Java
— Completeness : partial correctness
— Automation: fully automatic, including proven lemmas
— Elegance: uses several auxiliary functions and predicates

Problem 4: N-Queens

e Leino
— Dafny

— Completeness: partial solution (IsConsistent is
uninterpreted; uses assumptions)

e Almost complete solution submitted at 6:50am
(one assume statement left)

— Automation: fully automatic, 2.2secs

Problem 5: AmortizedQueue

* Leino
— Dafny
— Original partial (only LinkedList), Late: complete
— Automation: fully automatic 9 sec (12 for whole)
— Elegant solution, late part only took 12 more min.

* Anonymous HOL Hacker
— HOL functional code + proof script
— Completeness: complete, but uses HOL lists
— Automation: most of proof could have been
— Specifications just stated as theorems

Problem 5:
Solutions out of Competition

e Resolve
— Done before contest (on web)
— Complete solution with proofs (but no running code)

— Automation: proofs are automated with SplitDecision
(proof time ~100ms)

— Two-state loop invariants interesting
— Fully worked out and proved, some unusual aspects

* VeriFast
— Java with VeriFast annotations
— Completeness: Only the List nodes
— Automation: some close annotations needed
— Nice partial solution

