
Scalable
Workflow

1

Adam Barker
University of St Andrews

www.adambarker.org

http://www.adambarker.org
http://www.adambarker.org

Overview

• Big Data Lab

• Motivation

• Service Oriented Architectures

• Workflow orchestration using Taverna

• WS proxy architecture

• Performance analysis

• Future work and collaboration

2

Big Data Lab

3

4

Section ISH Curate

WorkflowsVisualisationData Mining

Embryo

Mapping

IN-SILICO WET LAB

DATA MANIPULATION

WEB-BASED PORTAL

DATA CURATION

DGEMap: Gene Expression patterns
in early human development

4

Section ISH Curate

WorkflowsVisualisationData Mining

Embryo

Mapping

IN-SILICO WET LAB

DATA MANIPULATION

WEB-BASED PORTAL

DATA CURATION

Large image data

DGEMap: Gene Expression patterns
in early human development

5

Application
Logic

SOAP
Message
Processor

WSDL
Interface

SOAP/XML

SOAP/XML

SOAP/XML SOAP/XML

SOAP/XML

Web Services

Here’s a Taverna Workflow

6

Execution

Engine

RA,DEC

images

RA,DEC

images

RA,DEC images

images
combined

HyperZcombined

multi_band

co-located:
SExtractor
XMatcher

Tools

Orchestration

Mind The Gap

Bottleneck

• Although service-oriented workflows can be composed as
DAGs using tools such as Taverna

• In reality they are usually orchestrated from a single
workflow engine

• Intermediate data (e.g., large images) are routed through a
single centralised engine

• Routing intermediate data through a single engine creates
a bottleneck

• Decreases the performance of a workflow

9

Hybrid Architecture

• Semi-decentralised execution of service-oriented workflows

• Maintains the simplicity of centralised orchestration

• Benefits from distributed data flow

• Reduces intermediate data transfer

• Reduces expensive workflow engine to services link

• Speedup the execution time of a workflow

10

11

Assumption I

Assumption 2

Assumption 3

WS-Proxy

Execution

Engine

14

WS-Proxy

Execution

Engine

P1

14

WS-Proxy

Execution

Engine

getData(x)
P1

14

WS-Proxy

Execution

Engine

store
data at P1

P1
return #data

14

WS-Proxy

Execution

Engine

P1
P2

putData(#data)

14

WS-Proxy

Execution

Engine

P1
P2

 data

putData(#data)

resolve(#data)

14

WS-Proxy

Execution

Engine

P1
P2

 data store
result at P2

return #result

resolve(#data)

14

WS-Proxy
• Mirrors the same interface as the WS it is managing

• Workflow engine sees no difference

• End points change (proxy), reference type (input, output)

• Proxies store intermediate data and talk to one another

• Data are globally identifiable

• Proxy responsible for 1...N services

• Assume that proxy can be deployed as closely (n/w distance)
as possible to back-end services

• Simple to install and configure: WAR file in /webapps
15

16

Performance Analysis

17

mAdd

mBackground

mBgModel

mProject

mDiff

mFitPlane

mConcatFit

Performance Analysis

18

11



















     



















(a) Montage end-to-end performance

















    



















(b) Montage DAG phase performance

















    















(c) The overhead of invoking a proxy

Fig. 10. Montage end-to-end performance (a), Montage individual phases performance (b) and proxy overhead (c).

3) mConcatFit: a simple concatenation of the plane
fit parameters from multiple mDiff/mFitPlane jobs
into a single file. fan-in pattern with 18 inputs (from
different resources), which are passed through the
mConcatFit function.

4) mBgModel: models the sky background using the
plane fit parameters from mDiff/mFitPlane and
computes planar corrections for the input images
that will rectify the background across the entire
mosaic. mBgModel is a fan-out pattern, where the
output is distributed to 10 sinks.

5) mBackground/mAdd: the mBackground function
rectifies the background in a single image, output =
input. Data from each mBackground computation
are sent to the mAdd function, which co-adds a
set of reprojected images to produce a mosaic as
specified in a template header file. This forms a
fan-in pattern with 10 inputs to the mAdd function
(output = 70–90% the size of inputs put together).

The Montage application (Web services and data)
along with a set of proxies were deployed on PlanetLab
nodes spanning the USA. Our deployment maintains
the number of services (i.e., fan-ins and fan-outs), data
sizes and importantly the input-output relationships of
Montage.

Two experiments were performed: first, “single proxy”
where each Web service is maintained by its own proxy,
and “shared proxy” where groups of 4 Web services were
maintained by a single proxy. Proxies and services were
scattered across PlanetLab nodes spanning the USA,
proxies were always deployed on a separate machine
within the same domain as the Web service it is invoking
and the workflow engine was always remote from both
proxy and Web service. This deployment was executed
50 times across the PlanetLab framework. As with pre-
vious experiments the x-axis represents the size of the
input file and 95% confidence intervals are provided
for every mean performance benefit. A total of 13 data
points were collected from 10MB to 240MB. As we are
focusing purely on optimising data transfer, processing
times in both models have not been taken into account
as these remain the same regardless of the number of

services served per proxy.
Figure 10(a) illustrates the end-to-end mean perfor-

mance benefit of the Montage application using Circu-
late and standard centralised orchestration. Figure 10(b)
illustrates the mean performance benefit (average across
13 data points and 50 runs) per phase of the Montage
application and demonstrates how each phase collec-
tively provides an end-to-end benefit. Phase 1 represents
mProject to mFitPlane, phase 2 mConcatFit, phase 3
mBgModel, and phase 4 mBackground to mAdd.

The end-to-end Montage application resulted in a
mean performance benefit of 6.95 for the single proxy
configuration over all 13 data volumes tested.

This benefit increases slightly as the input data size
increased: from an average of 6.4 (30 seconds for or-
chestration, 192 seconds for Circulate) at 10MB to an
average of 7.6 (246 seconds for orchestration, 1869.6 for
Circulate) at 240MB. The shared proxy configuration
resulted in a mean performance benefit of 7.12, again
the benefit increased slightly as the data size increased:
from 6.5 (24 seconds for orchestration, 156 seconds for
Circulate) at 10MB to 7.75 (216 seconds for orchestration,
1674 seconds for Circulate) at 240MB. The shared proxy
resulted in a marginal benefit over the single proxy
configuration due to reduced data transfer to and from
proxies. With reference to the pattern-based performance
analysis, we confirm that the benefit of using the Cir-
culate architecture increases when isolated patterns are
placed together to form a larger application.

7.1 Proxy Overhead
Figure 10(c) displays the average time (as a ratio: non-
proxy centralised time divided by Circulate elapsed
time) it takes to make a single invocation to a vanilla
Web service and obtain the result vs. an invocation to
a proxy that invokes the service on the orchestration
engines behalf and returns a reference to its data. The
workflow engine is remote to both proxy and service.
Results under the horizontal line indicate the vanilla
approach is optimal, results over the line show a benefit
of using the Circulate architecture.

Circulate effectively separates out the control flow
and data flow messages from one another; the work-

Single = 1 service per proxy
Shared = 4 services per proxy

Questions...?
• Adam Barker, Jon B. Weissman and Jano I. van Hemert.

Reducing Data Transfer in Service-Oriented Architectures:
The Circulate Approach. To appear in the IEEE Transactions
on Services Computing, 2013.

• Adam Barker, Christopher D. Walton and David Robertson.
Choreographing Web Services. IEEE Transactions on
Services Computing, volume 2, number 2, pages 152-166,
IEEE Computer Society, April-June 2009.

• Adam Barker, Jon B. Weissman and Jano van Hemert.
Eliminating the Middle Man: Peer-to-Peer Dataflow. In
HPDC'08: Proceedings of the 17th International
Symposium on High Performance Distributed Computing,
pages 55-64. ACM, June 2008.

19

http://dx.doi.org/10.1109/TSC.2011.23
http://dx.doi.org/10.1109/TSC.2011.23
http://dx.doi.org/10.1109/TSC.2011.23
http://dx.doi.org/10.1109/TSC.2011.23
http://www.computer.org/tsc/
http://www.computer.org/tsc/
http://www.computer.org/tsc/
http://www.computer.org/tsc/
http://www.adambarker.org/papers/tsc09.pdf
http://www.adambarker.org/papers/tsc09.pdf
http://www.computer.org/tsc/
http://www.computer.org/tsc/
http://www.computer.org/tsc/
http://www.computer.org/tsc/
http://www.adambarker.org/papers/hpdc08.pdf
http://www.adambarker.org/papers/hpdc08.pdf
http://www.hpdc.org/past.html
http://www.hpdc.org/past.html
http://www.hpdc.org/past.html
http://www.hpdc.org/past.html

