Chapter 39
Biomedical Atlases: Systematics, Informatics
and Analysis

Richard A. Baldock and Albert Burger

Abstract Biomedical imaging is ubiquitous in the Life Sciences. Technology
advances, and the resulting multitude of imaging modalities, have led to a sharp rise
in the quantity and quality of such images. In addition, computational models are
increasingly used to study biological processes involving spatio-temporal changes
from the cell to the organism level, e.g., the development of an embryo or the
growth of a tumour, and models and images are extensively described in natural
language, for example, in research publications and patient records. Together this
leads to a major spatio-temporal data and model integration challenge. Biomedical
atlases have emerged as a key technology in solving this integration problem. Such
atlases typically include an image-based (2D and/or 3D) component as well as a
conceptual representation (ontologies) of the organisms involved. In this chapter,
we review the notion of atlases in the biomedical domain, how they can be created,
how they provide an index to spatio-temporal experimental data, issues of atlas data
integration and their use for the analysis of large volumes of biomedical data.
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1 Introduction

Biomedical research has always relied on visual observation and imaging is a
primary mechanism for recording data from the sub-cellular through to whole-
organism level. In particular, imaging is used to capture the spatial organisation of
biological entities, such as sub-cellular organelle and chromosomal organisation,
cellular morphology, tissue organisation and organ histology and morphology.
At the highest levels of resolution imaging is being used to capture molecular
structures, synaptic organisation and molecular flux within the cytoplasm. Modern
imaging techniques have been extended to capture 3D data not only at all ranges
of resolution, but also to include the option of capture through time. Figure 39.1
shows a range of imaging modes that illustrate the nature of the spatio-temporal
data produced for biomedical research.

In many cases image data are used to support simple observations. For example,
gene X is expressed in the ventral half of the left ventricle, or the cells of the
epithelial layer show an elongated appearance. As more data is collected, the trend
is to use manual and automated means to extract numerical information from the

Fig. 39.1 (a) Optical Projection Tomography (OPT) image of mouse 10.5dpc embryo in-situ
hybridisation expression of Crabpl; (b) Caltech xMRI (Magnetic Resonance Imaging) image from
the Caltech Mouse Atlas; (¢) Time-lapse confocal images of oligodendrocyte development, adapted
by permission from Macmillan Publishers Ltd., Nat Neurosci [21] copyright 2007; (d) Transgenic
expression of vascular development in the mouse embryo [34]; (e) serial-section EM (Electron
Microscopy) reconstruction of a neuropil structure courtesy of SynapseWeb, Kristen M. Harris, PI,
http://synapses.clm.utexas.edu/
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images to provide objective numerical analysis in terms of spatial patterns, signal in-
tensities, shape and morphology, cell densities ablation recovery times, etc. As data
is captured at higher rates and volumes, the requirements for image archiving and
analysis are demanding far greater automation. The focus of this paper is image data
captured to show information at the organ or whole-organism level of biological
organisation. In our case this is with respect to embryo development and can
include gene-expression patterns, lineage tracing, physiology and cellular activity,
morphometric and mutant phenotype. At this level of biological organisation a key
requirementis to be able to compare spatial and temporal patterning and to be able to
collate information from across all the different imaging modalities. At the genomic
and molecular biology level the natural framework for capturing data relationships
is the genome, at the organ/organism level the appropriate framework is provided
by explicit spatio-temporal atlases [9]. To some extent the spatial aspects of the
information can be captured by annotation using an anatomy ontology, but this
does not have the resolution or computational capability of an explicit coordinate
framework provided by a digital atlas.

Atlases provide the integrating framework for spatial data of tissues, organs
and whole organisms. For genomic and molecular level data, information between
species can be compared by “mapping” of the sequence data. Such sequence
mapping provides detailed comparative analysis of the evolution of the genome
and enables the use of model organisms (e.g., mouse) to support research into
human disease and abnormalities for translational purposes. By analogy the basic
information captured at the whole-organ level can be compared across species
including through to human for direct medical research and ultimately clinical
application. If we take the “layer cake” view of biology passing from the lowest
levels of organisation at the base through to tissue, organ and whole-organism level
at the top, then the spatio-temporal data mapped to the atlases at the top serve as
the target for a systems biology understanding of the high level biology. In addition,
the basic research data captured, for example, for model organisms such as zebra-
fish and mouse, serve for comparative analysis and provide basic understanding
to physiological and disease modelling applied for translational research into the
human condition. This can extend through to medical and clinical data sets and
ultimately through to individuals. At this end of the atlas range we envisage
the use of a personal “myAtlas” to capture and record the clinical history of an
individual and perhaps to support patient—doctor consultation. This view of the role
of explicit spatio-temporal atlases in the context of biological and medical research
and potentially clinical practice is illustrated in Fig. 39.2.

In this paper, we outline informatics aspects of atlasing frameworks in the context
of biomedical research and illustrate these with procedures and examples from the
eMouseAtlas project EMAP and EMAGE [4] (Edinburgh Mouse Atlas Project and
Edinburgh Mouse Atlas Gene Expression database).
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Fig. 39.2 Atlases in the context of systems biology and translation biomedical research. Hudsen
is the human development atlas and data resource, the visible human indicates the adult level atlas
and virtual patient and personal atlas indicate resources under development or envisaged. VPH
refers to the international Virtual Physiological Human programme to develop computational and
predictive models of adult human physiology

2 Atlas Systematics

In the scientific world, there often is a general understanding of the meaning of
widely used key terms, such as, “gene” or “ontology”, but a lack of agreement on
their precise definition. This applies particularly to the use of the term “Atlas” in
biomedical research. Here we develop a classification of resources that describe
themselves as atlases and argue that a proper use of the term should imply an overt
spatial representation used to express the spatial relationships in the data.

For most people the definition of an atlas relates back to the familiar geographic
atlases and maps and is typically an overt depiction of a coordinate space, e.g.,
the surface of the earth. This is supplemented with the representation of features
and regions which in the geographic example could be cities and countries. The
Oxford English Dictionary (OED) defines the term atlas: A collection of maps (or
illustrative plates) in a volume, where a map is defined as A diagram or collection
of data showing the spatial distribution of something or the relative positions of its
components. For us the equivalent of the collection of maps is a collection of 2D
or 3D images, which define the space we need to represent for the mapping of data
with spatial relationships. Some technologies, e.g., Optical Projection Tomography
(OPT) [32] allow the generation of the 3D model directly, but from which 2D
section images can be generated. Most atlases we know of use actual images,
such as, generated by microscopy or MRI, instead of symbolic depictions (e.g.,
drawings). In either case, the visual representation in the form of sets of pixels and
voxels, described in an appropriate coordinate framework, forms the first essential
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component of our notion of a biomedical atlas. Although it is not stated so explicitly
in the OED definition implying “spatial distribution” or “relative position” requires
some sort of labelling or mapping of the artefacts in the context of the map. In
geography we expect the regions of countries and cities on a map. Similarly, in
the context of a biomedical atlas, we expect labels describing the components in the
visual representation, e.g., the label “heart” refers to an image region depicting the
heart in the image model. This implies that there is a mapping between the term and
the image model.

The terms may simply consist of a controlled vocabulary such as the names
of anatomical structures, or form a part of a formally specified ontology. This
formalisation can be fairly lightweight, using languages such as SKOS [27], or
rather detailed and precise, using languages such as OWL,' to describe it. The higher
the level of formalisation, the more automated reasoning it will allow, but the more
difficult it is to get widespread acceptance of the ontology as a standard within the
biomedical community. This has implications for interoperability (see Sect. 5).
With this discussion we can identify components that could be part of an atlas:

Representation of space: a visual representation such as an image with the image
coordinates allowing location of specific features or regions. For biomedical atlases
this is typically a selected representative image or an averaged image over a number
of samples.

Spatial reference terms: in biomedical atlases this is typically anatomy.
Mapping: locations or regions of the spatial reference terms in the context of the
spatial representation.

Direction: definition of directions in the context of the underlying object. In a
geographic atlas this is usually simple to identify North or to plot lines of latitude
and longitude. In biomedicine it may require a much more complex mapping of left—
right, dorsal—ventral and anterior—posterior axes at each location within the map.

Data: this is the association of data such as gene-expression or physiological state
with different parts of the spatial representation.

Some “Atlas” resources only include the spatial representation in an implicit way
by referring only to the anatomical terms. Examples of such atlases are the Human
Protein Atlas [5] and Gene Expression Atlas [18], where data is annotated with
anatomical tissue and cellular terms but there is no explicit spatial representation
or mapping. All spatial association is via the spatial understanding of the user.
At the other extreme are the full 3D, spatially mapped anatomical atlases, used
as frameworks for capturing digital image data. Examples here are the mouse
gene-expression databases eMouseAtlas [4, 7] and the Allen Brain Atlas [23].
Between these there are traditional “paper” atlases such as the Atlas of Mouse
Development’ by Kaufman [19] and those with digital content, e.g., the Paxinos
Rat Brain Atlas [29].

'www.w3.org/TR/owl2-overview/.
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In order to realise the power of a digital atlas to provide an objective spatial
analysis and provide tools for spatial data mining an explicit spatial representation
is essential, and we therefore define the minimal requirements for a biomedical atlas
to be:

Spatial Representation + Terms 4+ Mappings = Atlas

If an atlas also includes a specification of biological directions then more sophisti-
cated query and analysis in biological terms becomes possible. The construction of
biomedical atlases, the use of atlases to index spatio-temporal experimental data, the
integration across atlases and other resources, and the use of atlases in the context
of the analysis of large quantities of biomedical data are discussed in the following
sections.

3 Atlas Construction and Spatial Annotation

Biomedical atlases that include an explicit coordinate framework can be constructed
in many ways, including “simple” graphical modelling to depict the primary
structures that are to be represented. In practice, atlases developed for biomedical
research are typically based on one or more representative individuals using imaging
that enables full 3D reconstruction. This can be a direct 3D imaging technique, such
as, uMRI [11], uCT [1] (Computed Tomography), block-face imaging [35, 36] or
OPT [32] or, if resolution and contrast are critical, then 2D imaging of microtome
sections followed by 3D reconstruction. When the key requirement is to be able
to capture spatial patterns for subsequent comparison and analysis, for example
anatomical labelling or syn-expression grouping, then it is sufficient for the atlas
to be a representative individual. Such an atlas can also be used to capture
morphological variation of experimental sets by capturing both the mapped data
and the spatial transformation from which variation in the original data set can be
established [8]. If, however, the key purpose is to be able to assess the morphology
of a new sample, it is more convenient to create a probabilistic atlas [13,25].

For the mouse embryo models of the eMouseAtlas database we have used a
combination of OPT 3D imaging to capture the original shape of the embryo
followed by wax-embedding and microtome sectioning so that the individual section
could be stained to reveal the cellular detail. These histological sections are imaged
at high-resolution and reconstructed using the OPT image as a morphological
template. When the 3D model has been reconstructed, it is then segmented into
anatomical regions which provide the link between the spatial representation of the
embryo (image coordinates) and the anatomy ontology. This process is illustrated in
Fig. 39.3. The embryo atlas we have developed in Edinburgh is comprised of a series
of 3D reconstructions, an anatomy ontology to describe the developing anatomy,
plus a set of delineated regions or domains that link the ontology terms (at some
level of resolution) to the 3D image model.
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Fig. 39.3 Reconstruction process used to build the high-resolution 3D models of the mouse
embryo for EMAP

The 3D image can be used directly as an atlas framework. In some cases
it is possible to supplement the image coordinate frame with more biologically
meaningful coordinates such as the stereotaxic coordinates used in neuroscience
studies of the brain [16]. This is not always required and the key requirement for
an atlas to be useful is a mechanism by which data can be spatially transformed
or mapped into the atlas space. This is termed spatial registration or spatial mapping
and in general is a complex non-linear transformation from the original (source)
coordinate frame to the atlas coordinate frame (target). Image registration has been
studied very thoroughly, especially for clinical imaging where comparison between
modalities and for disease progression are important. Techniques that have been
established typically define a deformation field across the volume of image space
enclosing the source image of interest. This deformation field is established by
manual definition of points of correspondence or automation and the full field
defined via a mathematical model such as radial-basis function interpolation or
physical modelling of the deformation. In either case we have found that the
embryo presents special problems because of the extreme deformations that arise
due to the flexibility and variability of presentation and pose. In this situation the
standard warping techniques fail and we therefore have established warping based
on the constrained distance transform [17], which is a combination of rapid manual
alignment to correct the primary deformation due to pose followed by an automated
process using the open-source software ANTs [2] to fine-tune the alignment. The
WIizWarp software tool we use for the manual registration is illustrated in Fig. 39.4.

The procedure to transform experimental samples into the model space can
be considered as spatial annotation. Each location within the sample acquires a
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Fig. 39.4 Spatial mapping of a 3D image of a human Carnegie stage 14 embryo onto the EMAP
Theiler stage 17 embryo model using the WizWarp software tool developed to deal with the
complex mappings required with embryos. Left-hand frame original human embryo; middle frame
the target mouse embryo; right-hand frame the warped human embryo to match the mouse. The
marked locations show locations of point-correspondences (Note: Carnegie and Theiler stages are
classification systems for how far human and mouse embryos, respectively, have progressed in
their development.)

mapping into the model. In this way, data from the model can be presented in
the context of the sample, or data from the sample such as gene-expression signal
intensity, can be transformed into the space of the atlas models. It is then possible
to analyse the data either in terms of the atlas, e.g., to establish anatomical regions
that show gene-expression, or to compare with other data directly, such as, other
gene-expression patterns. In analogous fashion to a text-based annotation, spatial
annotation enables search for patterns but directly in terms of the atlas space, e.g.,
queries, such as, “what genes are expressed at this locations?” or “what gene show
expression in a similar pattern?” are now possible.

In the mouse atlas EMAP and associated gene-expression database EMAGE [7]
the spatial annotation is a standardised procedure to map the source image, and to
segment the signal into pre-defined strengths of expression.”? The mapped signal
patterns are held in the database and a query against the database results in direct
comparison of image data. This is an image-processing operation and executed in

Zhttp://www.emouseatlas.org/emage/about/data_annotation_methods.html.
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an image server linked to the RDBMS (Relational Data Base Management System)
which manages the metadata. For efficiency the spatial indexing and similarity
calculations are encoded using the Woolz image-processing library.

4 Experimental Data and Atlases

Atlas frameworks can be used to capture, compare and analyse any spatial data,
which can range from cellular signalling and gene-expression patterns through
clonal distributions to long-range neuronal connectivity and physiological function.
Here we will use the data captured in the context of the eMouseAtlas models to
illustrate the issues of mapping and interoperability of atlas-based resources. The
primary data for which the mouse embryo atlas was established is gene-expression
patterns as revealed by in situ hybridisation to mRNA and immunohistochemistry
with protein antibodies. In addition, we have mapped anatomy terms to the 3D
space and explored direct mapping of cellular clonal data following lineage tracing
experiments.

4.1 In situ Data

Transforming a gene-expression pattern from an in situ experiment involves two
steps. The first is to establish the spatial transformation from the experimental data
images to the atlas model. The second is to segment the signal in the context of
the original data and to use the spatial mapping to transform the pattern to the atlas
model context. Our experience with mouse embryo data indicates we need to deal
with a number of different presentations of the information:

2D data: Intrinsically 2D data captured from the embryo. The prime example is a
whole-mount view which is effectively a projection of the underlying 3D data onto
2D and in principle the original 3D location of the signal cannot be recovered. For
this data we have adopted a simple approach of mapping the data to a projection of
the atlas model, i.e., maintain the 2D character of the original data. Within EMAGE
this implies that the data is segregated and a spatial query is currently against either
the wholemeal data or the 3D data.

2D images of 3D data: These are microtome sections of the sample embryo which
has been physically sectioned and stained. In principle, the section image can
be mapped back into a 3D location within the atlas model. In practice this can
be difficult, because distortion of the tissue section could mimic a re-location of
the image within the 3D framework with a consequential ambiguity. This can
be resolved by capturing more than one section and using the adjacent data to
correctly align the sections that have been treated to show the in situ pattern.
Most high-throughput data, such as generated for the Allen Brain Atlas [23] and
Unexpress [12], is of this form — sparse 3D data.
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In EMAGE we have adopted two strategies for the data. The first is simply
to find the best matching section for each sample and to use a mapping tool
such as Maxint to transform (warp) the image onto the atlas. The same tool
then allows a segmentation of the signal into a series of domains to repre-
sent strong, moderate, weak, possible and not-detected expression strengths. An
additional domain not-observed ensures that a null-return from the data base can
distinguish data that shows no-detectable expression from no-data.

A second strategy is to project the 3D data onto 2D and to treat it in a similar
fashion to wholemeal samples. This of course loses the 3D information and reduces
the ability to discriminate patterns, but can be useful for a first-pass automated
mapping to be followed up with a more detailed 3D mapping later.

Full 3D data: This is data from a 3D imaging technique such as OPT or confocal
LAM (Laser Scanning Microscopy) or could be serial sectioning that can be
reconstructed to a full 3D data set. This type of data provides the most complete
view of the overall expression pattern, but is typically at a lower resolution and
does not deliver the cellular detail of real histological sections. A benefit is that the
process of 3D mapping is very much faster than the section-by-section mapping
of sparse data, but does require sophisticated mapping tools such as the WlzWarp
tool based on the constrained distance transform and potentially significant compute
power for the automated fine-alignment phase.

4.2 Sparse Cell Data

In some experiments the observation may be a set of cells that exhibit a particular
stain. A particular instance of this is a clonal set of cells arising from a single
progenitor cell. This could be marking using a vital dye [22] or by a random re-
combination event in a tamoxifen-inducible cre-transgenic line [24]. The issue with
this data is that the individual cells that comprise the clones cannot in general be
identified in the target model. The mechanism for mapping is therefore to map by
direct marking of the estimated best match for each clone cell. With serial section
data this can be very time-consuming. This could be done by direct matching of
a serial section series which encompasses the clone, but this is similarly time-
consuming.

4.3 Anatomy and Physiology

Classically an atlas depicts the physical geography overlaid with coloured regions
depicting countries and national boundaries. In biological atlases the closest analogy
is anatomy overlaid on a histological image and rather like the geographic case the
“country” boundaries are subject to disagreement and dispute! In the EMAP mouse
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Fig. 39.5 The EMAP anatomy browser. The user can select arbitrary section views through the
3D model and show selected anatomical components overlaid on the histology. In this case we are
showing the limb atlas material from DeLaurier et al. [10]

atlas the anatomy delineations are available for download and can be visualised in
a number of applications. Figure 39.5 shows a screenshot of the anatomy viewer
provided for visualisation in the context of a standard web-browser. In this case we
are showing a view through the limb atlas of DeLaurier et al. [10].

The atlas can of course also capture physiological data such as calcium concen-
tration and ion-channel status in the heart or functional imaging of the brain. This
type of data will clearly include detailed temporal and behavioural information, but
the spatial aspects of the observations can be mapped to the atlas and compared with
other data. An example we have been exploring is discussed in the next section; it is
the use of the atlas approach to integrate a detailed physiological model of the heart
with a statistical model of dynamic heart morphology over the cardiac cycle. The
basic concept is to map both models to a common atlas model which can then also
bring in other data from for example the EMAGE gene-expression database into the
same analysis.

S Integration of Biomedical Atlases

Computational frameworks, such as the atlases described in this paper, are in the first
instance mechanisms for the management of data and knowledge, initially simply
to capture and store it, but subsequently also to query it and to perform complex
analysis studies (see Sect. 6). Typically, we find more than one atlas covering the
same or related data, and we usually want to link data in an atlas to that in a
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Fig. 39.6 (a) For the gene expression use case, a client application specifies a point in Waxholm
Space (WHS) in order to access relevant gene-expression data in EMAGE and AGEA, (b)
mapping between atlases can be achieved by applying image-processing techniques, ontology-
based mappings and the specification of locations using spatial rules which are based on the 3D
models as well as the ontological description of the atlas anatomies

non-atlas resource, e.g., entries for gene-expression experiments in EMAGE have
links to Ensemble (www.ensemble.org) for further information about the gene under
consideration. All this creates a challenging integration problem for biomedical
atlases. As always, the desired interoperability between atlas and related resources
depends to a large extent on agreed standards. In this section, we illustrate these
interoperability issues, drawing on our experience of a use case study linking the
EMAGE data set to the Allen Brain Atlas [28] using the emerging Waxholm Space
standard [16] which is a 3D reference atlas for the adult mouse brain.

The basic architecture for this use case is shown in Fig. 39.6a. It is based on the
INCEF Digital Atlas Infrastructure (INCF-DAI), which is currently being developed
by the INCF (International Neuroinformatics Coordination Facility, www.incf.org).
The INCF hubs for EMAP and ABA (Allen Brain Atlas) are responsible for map-
ping the point of interest in Waxholm Space (WHS) into corresponding locations
in their respective atlas spaces — an alternative approach where a central spatial
transformation INCF hub will assume responsibility for all spatial transformations
is being considered — and then retrieve the relevant gene-expression data for return
to the client. At this stage, the hubs simply return URLs to html pages containing
the gene-expression query results. The client displays these in two separate browser
windows, but does not merge the results. To facilitate the latter, a standard for gene-
expression query results needs to be agreed first. This is a key point, as it applies
to many different types of data. Achieving interoperability between different spatio-
temporal reference frameworks does not guarantee the interoperability of the data
that is indexed by these frameworks. Standards, such as for gene-expression data,
are required in addition, if the analysis of the data across multiple atlases is to be
maximally supported by software.

As discussed in Sect. 2, although there is no single definition of what biomedical
atlases should consist of, it is usually the case that they have an image component as
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well as textual labels for identifiable regions of the image space. In some cases
the textual labels are part of comprehensive anatomy ontologies. This leads us
to the following three spatial mapping types: (1) based on image processing, (2)
based on ontology mapping and (3) based on spatial rules; see Fig. 39.6b for an
overview diagram in the context of our use case. The first of these uses image-
processing algorithms to transform pixels and voxels from one space to another. In
our examples we use a constrained distance transform to link between the WHS
atlas and the EMAP atlas spaces. The second type is based on mapping anatomical
concepts from one ontology to another, e.g., the concept Cerebellumin the ABA
maps to the Cerebellum in EMAP. The third type uses spatial relations, such
as, contained.-in and next_to, known about identified regions in the atlas to
describe a spatial location. Whilst the image-processing solution can potentially
achieve very good accuracy, it does so only for atlases that are morphologically
not too different. Ontology-based mappings deal with such differences more easily,
but do not achieve the same level of precision. The use of spatial rules is a com-
promise solution that aims at reasonable accuracy in spite of some morphological
differences.

We know that the level of formalisation of the terms used by atlases has a
significant impact on their interoperability. In principle, a more detailed ontology
leads to better integration possibilities, but only if this ontology is widely shared
and used by the biomedical atlasing community. Herein, however, lies the dilemma,
since the more detail one specifies in the ontology, the more difficult it becomes to
obtain community acceptance. There exists, of course, a large body of work on the
topic of biomedical ontologies, and a detailed discussion of it lies outside the scope
of this paper. For a collection of relevant papers, we refer the reader to [6]. An area
of biomedical ontologies that has not been explored very much thus far is their use
in the context of spatial rules-based mappings, which will require, amongst other
things, some level of standardisation of the meaning of directional terms, such as,
“lateral to”, “close to”, etc. The challenge in biomedical atlasing is the lack of a
single frame of reference, such as is available in the geo-sciences; there is only one
Earth, but there are many instances of organisms such as human and mouse.

It is important to remember that in the context of integrated spatial queries,
several mappings across different spaces may be involved. Figure 39.7 illustrates
how we distinguish between four categories of spaces. Initially, experiments, such
as for in-situ hybridisation gene-expression analysis, are carried out in the context
of specific animal experiments resulting in 2D and 3D image data for their particular
experiments space. These results are typically mapped into a standard spatial
or spatio-temporal repository framework, the respository space, such as EMAP,
through which they can then be queried. To integrate across two or more repositories
may involve a mediator space such as Waxholm Space (WHS), and if the data that
has triggered the original query of interest is based on a particular experiment, we
require a mapping from the guery space to the mediator space. Where labs produce
their own data for their reference space, the distinction between repository and
experiments space may not explicitly exist. So, an integrated query to EMAGE and
AGEA brain gene-expression data, using WHS as the mediator, would involve at
least 4 spatial mappings and potentially all three mapping types.
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Fig. 39.7 Types of spaces

As the number of mappings across spaces increases, the accuracy of the results
for a query is likely to diminish. Intuitively, one might argue to expect the overall
accuracy to be determined by the “weakest link”, i.e., the least accurate spatial
mapping involved in the query. However, there may also be an accumulative effect
resulting in even worse accuracy. There is also an issue of giving an end user the
impression of high precision, for example, because his/her query space was very
carefully mapped into the mediator space, but that the actual results are by far less
accurate due to other mappings involved.

The above discussion has focused on the integration of atlases as spatio-temporal
frameworks for experimental data, but as more and more such data becomes
available, we also see an increase in computational models which firstly help explain
the underlying biomedical processes resulting in this data, and secondly include pre-
dictive capabilities for scenarios that have not yet been studied experimentally. The
integration of “data atlases” with the spatio-temporal frameworks of computational
models is critical for the development and calibration, as well as the validation and
verification, of the models. As part of the European Union’s Virtual Physiological
Human (VPH) research programme (www.vph-noe.eu), the RICORDO project
(www.ricordo.eu) investigates this data model integration for volumetric data.
Amongst other work, it has developed a spatial mapping from the computational
heart developed at the University of Auckland to the EMAP atlas in Edinburgh.
To the best of our knowledge this is the first example of mapping volumetric,
computational VPH model sections to the corresponding location in a 3D framework
for molecular data (gene expression). Although it is outwith the scope of this paper
to discuss the technical details of this mapping, it illustrates one example of this
extended requirement for atlas integration. Based on the increasing amounts of
experimental data and related models, we predict that the importance of this type
of integration will significantly increase over the next five years.


www.vph-noe.eu
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6 Using Atlases for Data Analysis

Atlas frameworks provide a straightforward context for spatial comparison and
analysis. The types of analysis depend on the nature of the data collected and can
be characterised by the nature of the input data and the output results. For example,
if the input is a point or region defined within the atlas space, the result could be
atlas-based, such as an image of the overall gene-expression intensity, or a numeric
result, such as the similarity to another expression pattern, or just a list of assay
results that match the query. Similarly the input could be a list of genes for which
co-expression hot-spots are required in which case the output would be a heat-map
type image with a gene-list associated with each point. In this section we illustrate
the use of atlases for data analysis in the context of the embryo and atlas databases
that we have integrated with the eMouseAtlas resource. These include the human
embryo atlas and database Hudsen [20], GUDMAP [26], EurExpress [12] and Chick
Atlas® databases.

6.1 Annotation and Query

Mapping data onto the atlas framework provides a means to specify a query on
the database in graphical terms. This could be as simple as a single vertex or
as an arbitrary point-set representing a complex region within the domain of the
atlas model. In addition, an atlas within which the anatomical tissues have been
delineated makes it possible to query using the anatomical terms. These provide
two simple examples of data analysis. The first is annotation. By mapping the
expression pattern onto the atlas model and comparing the mapped pattern with
the anatomical domains delineated within the model, it is possible to generate an
anatomical description of the gene-expression pattern. This is illustrated in Fig. 39.8
in the context of the EMAGE database. As well as establishing the list of tissues
that show gene-expression, it is possible to calculate the relative proportion of each
tissue that shows expression.

The second example is to use the spatial location or region as a means of finding
genes expressed at the given location or area of interest. To process this query the
given location is compared to each stored pattern in the database to establish if it is
contained within the mapped region. In this case the spatial “index” of a mapped
gene-expression pattern is represented internally as an image region or binary
image. The query region as a single point or a second image region is compared
with the expression pattern using a simple image operation of domain-intersection.
This is equivalent to the intersection of two point-sets, but executed as an efficient
image-processing algorithm. If the resulting intersection domain is non-empty then

Shitp://www.echickatlas.org/.
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Fig. 39.8 Spatial analysis. The mapped expression pattern for the gene Bone morphogenic protein
5 (Bmp5) is mapped onto the Theiler stage 12 embryo atlas (a). The mapped section data is
shown in 3D (b) and in the context of the wholemount embryo (¢). The bar chart (d) shows the
expression analysis in the terms of anatomical tissues that is automatically generated by comparing
the expression domain with the delineated anatomy domains

the two patterns overlap. This is repeated for each pattern that could form a match.
The result in the context of EMAGE is a list of assays that show overlap with the
query region (see Fig. 39.9).

6.2 Similarity and Correlation

In addition to using the pattern to simply test spatial overlap or containment, the
patterns can be compared for spatial similarity. For potentially dispersed and non-
contiguous patterns we have discovered that the Jaccard index, which is a simple
set-based measure of similarity, provides a suitable first-pass numerical value of
similarity which is robust to the variation and noise found in typical gene-expression
patterns. Here it is implemented in the context of a spatial region of interest defined
by dilating the query pattern by the equivalent of about 300 um. The tool is the
LOcal Spatial Similarity Search Tool (LOSSST) and is described by Venkataraman
et al. [33]. Figure 39.9 shows the result of using LOSSST to query the EMAGE
database using the expression pattern of Bmp5 at Theiler stage 12. Using the option
of mapping the query region through to other embryonic stages, it is possible to
extend the query to return temporal data.
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Fig. 39.9 Result of a spatial query on the EMAGE gene-expression database. In this screen shot
the data has been sorted by similarity with the expression of Bmp5. The Bmp5 pattern is returned
at the top if the list with a maximum similarity match of 1.0, the next most similar if Bmp7 from
the same gene-family. Note real interface uses colour to show pattern strength

The use of similarity provides a sorted query result bringing to the top syn-
expression patterns for any given gene. The same query can be posed on text-
annotated data such as in the EurExpress database. The two annotation options
are complementary. Text annotation can provide a more accurate and focussed
return for very sparse and isolated tissue and cell-type specific expression patterns.
Spatial annotation delivers accurate analysis of more complex and in particular near
ubiquitous, but non-uniform, expression patterns.

A second measure that becomes available with spatially mapped data is expres-
sion correlation. With spatial similarity the query is to find genes with similar spatial
expression patterns. It is also possible to test the expression correlation between
spatial locations, i.e., to query for similar expression profiles between different
locations. A good example of this is the interface provided by the Allen Brain
Atlas [28] (see Fig. 39.10). For a given seed point, selected by “clicking” the
required point on the screen, the system returns a correlation map which of course
will have value 1 at the seed and typically includes the local region. Regions that
have similar expression signatures are not always spatially connected and this may
well indicate similar function or similar developmental lineage.
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Fig. 39.10 Allen Brain atlas AGEA interface showing the correlation map for gene-expression
with respect to the selected seed point

6.3 Data Mining

Atlas-based data with a mapping either onto the spatial framework of the atlas or the
ontological framework, such as anatomy, becomes accessible for data mining. The
simplest data mining approach is clustering based on a measure of spatial similarity
or annotation. An example of this clustering is provided by the EurExpress data
set [12], and the downloaded data can be visualized using standard cluster viewing
packages, such as, TreeView and MeV. The results can be displayed in two ways:
the first is as a set of gene-expression patterns that show similar spatial distributions
and the orthogonal clustering will reveal the set of atlas regions that show similar
expression profiles. These are related to the search options described above, but
are not directed, and therefore provide a more objective overview of the structures
implicit in the data.

Data mining can also be used to extract more detailed information from the
data by using one set of data to train a classifier that can then be used to infer
new relationships with a measure of confidence. An example here is the automated
annotation of gene-expression patterns with anatomical terms by using an annotated
set of images to train a classifier which can then be applied to new image samples.
Han et al. [15] use this approach to develop tissue classifiers in the context of the
EurExpress gene-expression data set.
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6.4 Morphometric Variation

Atlases provide a natural framework in which to capture spatial patterns, such as,
gene-expression, cell morphologies and behaviour. They can also be used to capture
morphological variation even though the atlas may not be an “average” or “correct”
model in the sense of representing the average size and shape for a given stage of
development. In fact, in the context of mouse development a standard embryo is very
difficult to define given the dynamic nature and heterochronicity of development
even for pure strains. Nevertheless, if an experiment collects a standardised set
of embryos with a protocol that will preserve size and shape, then morphological
variation can be captured. The key to understanding this is that the data set that
needs to be preserved is the non-linear mapping from each experimental instance as
well as any data that may be mapped. If the mapping structures are available, i.e.,
the detail of how each point in the source experimental embryo is mapped, then it
is straightforward to establish the average mapping from the experimental set to the
atlas, and by applying the inverse of this transform to the atlas, an average embryo
can be established. The meaning of this is that for each point within the average
the sum of the displacements from each of the source experimental embryos will
be zero. With this average in place other quantities that relate to morphological
variation can be established. For example, the mean size and shapes of any given
structure, say the heart, are the transformed version of the same structure in the
original atlas. To establish the variation of any given feature, it is simply a matter
of defining that feature in the atlas, e.g., the volume of the ventricular space in the
brain, applying the inverse transform to the original sample and then re-measure the
volume.

In addition, spatial patterns of variation, such as parts of tissues, that exhibit
most volume variation can be displayed as a heat map in the context of the atlas
and overlaid with other information. In this way it may be possible to associate
morphological variation with gene-expression. Cleary et al. [8] showed how tMRI
can be used to capture this type of data for late stage mouse embryos. Their
methodology would not work for earlier stages of development because it lacks
resolution and tissue contrast, but the principle is clear. Atlases deliver the necessary
framework to associate complex morphological variation with other patterns and
phenotypes in the biology.

7 Discussion and Conclusion

In the context of the developing mouse embryo, we have illustrated aspects of
a new “bioinformatics” that can capture and manage data associated with higher
levels of biological organisation. This approach in biology was pioneered by the
Edinburgh Mouse Atlas Project (EMAP) [3,30] and demonstrates the use of explicit
biomedical atlases to collate, compare and analyse spatially organised data. For
the associated computer science infrastructure we coin the term “atlas informatics”
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which covers the underlying theory and practice of using spatio-temporal atlases as
the organising framework for spatial data. The geo-sciences have been working with
geographic information systems for many years, but biology and medicine require
significant extension of the techniques and capabilities, because of the variability of
the underlying data sources and the complexity of the structures.

It is clear that atlases can provide the key integrating framework for data
associated with individual model organisms and with the development of the
methods and services for atlas integration many of the aspects of comparative
analysis that are taken for granted at the genomic level become possible at the tissue
and whole-organism level. This can be based on “simple” image-based mapping
but a much richer semantic mapping is possible by using the underlying biology
to define spatial location and direction. Developing this atlas semantic context and
the logic and algebra that can use these natural coordinate systems is an immediate
challenge for atlas informatics.

Finally, in a special issue of Science* dedicated to the “data deluge” a paper
entitled “The disappearing third dimension”, Rowe and Frank [31] discuss the
difficulties of publishing 3D data, citing examples of tissue and palaeontology
samples which may be difficult to replicate. They compare the image context with
genomics which has a natural framework on which to associate data where re-use
of experimental data is the norm. They conclude:

Funding agencies can rejoice in the unexpected longevity and growing value in voxels they
have already produced. But they must first secure the basic tenet of science by ensuring that
researchers have the means to archive, disclose, validate and re-purpose their primary data.

Image repositories such as the Open Microscopy Environment [14] are essential to
address part of this problem, but to retrieve, compare and analyse “re-purposed”
data, a spatial framework is required, which is the role of atlases. Atlas frameworks
are the key component of any informatics strategy to manage and analyse such data.
In this paper we have illustrated some of the atlas informatics issues in the context of
the mouse embryo but the underlying informatics model applies across biological,
medical and natural sciences.
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