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ABSTRACT

Motivation: During task composition, such as can be found in distrib-
uted query processing, workflow systems and Al planning, decisions
have to be made by the system and possibly by users with respect to
how a given problem should be solved. Although there is often more
than one correct way of solving a given problem, these multiple solu-
tions do not necessarily lead to the same result. Some researchers
are addressing this problem by providing data provenance information.
Others use expert advice encoded in a supporting knowledge-base.
In this paper, we propose an approach that assesses the importance
of such decisions with respect to the overall result. We present a way
of measuring decision criticality and describe its potential use.
Results: A multi-agent bioinformatics integration system is used as
the basis of a framework that facilitates such functionality. We pro-
pose an agent architecture, and a concrete bioinformatics example
(prototype) is used to show how certain decisions may not be critical
in the context of more complex tasks.

Contact: ceekk@macs.hw.ac.uk

INTRODUCTION

To solve a complex problem, systems typically break it down into
more manageable smaller problems, which are then executed fol-
lowing some partial ordering. In general, there is atradeoff between
protecting the user from unnecessary detail sof these (de)composition
activities (i.e. providing a high level of transparency) and giving
him/her some control over the answer-finding process.

In many casesthereismorethan oneway to solveaparticular prob-
lem. For example, what scoring matrix should be used for asequence
comparison, and what database should be used to find tissue-specific
gene expression data. We use the term decision point (DP) to refer
to situations where such choices exist. Providing some measure of
the criticality of aDP can aid the system, as well as the biologist in
pruning the possible solution space for any given problem.

For providing such a measure, we compare the results acquired
after making one choice to the results acquired from the other avail-
able choicesof the DP. Alternative choices are executed according to
user preferences and available computational resources. The higher
the differentiation between the result sets over a number of queries
that contain a certain DP, the more critical that DP becomes.

The framework we propose supports three execution modes for
each DP: (1) automatic, where the DP is resolved by the system;

*To whom correspondence should be addressed.

(2) interaction, where the system asks for advice from the user
while presenting known benefits/drawbacks of the available choices;
and (3) comparison, where aternative choices are executed and
the acquired results are compared to calculate criticality. In addi-
tion, after execution, the framework allows the querist to request
an explanation for the choices made during execution—we call that
global explanation.

Thebasic concept of DPsandtheir criticality isapplicableto avari-
ety of technologies, such asdistributed query composition, workflow
composition and hierarchical task network planning.

Agent technology has been applied successfully in the past for
system integration (Bayardo et al., 1997; Sycaraet al., 2001; Carey
et al., 1995; Garcia-Molinaet al., 1997). Furthermore, it has been
argued that it is particularly suitable for integrating bioinformat-
ics resources (Karasavvas et al., 2004). This paper proposes a
multi-agent framework and architecture that enhancesthetraditional
mediation approach to integration. We specify a new agent protocol
and define two new agent roles that will enable measurement of
decisions’ criticality in adistributed environment.

The remainder of the paper is organized as follows: an overview
of the multi-agent system is given in the next two sections; then,
decision criticality is explained in more detail, while the following
section describes the experiments that were carried out; the final
sections discuss related work, evaluation and conclusions.

MULTI-AGENT SYSTEM OVERVIEW

Our systemisapurely communicative multi-agent system: thereisno
external environmental influence and the agents communicate only
by means of messages. The system is based on the FIPA specifica-
tions (http://www.fipa.org), and aFl PA-compliant devel opment tool ,
JADE (Bellifemine et al., 1999), is used for implementation. Mes-
sagesexchanged between agentsareformedin ahigh-level language,
FIPA Agent Communication Language (ACL ), and the ACL content
languageis SL 0—asubset of the FIPA suggested Semantic Language
(SL). In turn, the SLO content conforms to specified ontologies,
discussed later in this section.

Architecture

The agent framework that we will discuss extends the well-
established mediation (Wiederhold, 1992) approach to integration.
This approach is also used by a number of successful integration
systems using agent technology (Bayardo et al., 1997; Sycaraet al.,
2001; Carey et al., 1995; Garcia-Molinaet al., 1997)—not including
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Fig. 1. Mediation-based agent integration architectureincluding the two new
agent types that we propose.

‘Comparison Agent’ and‘ Explanation and I nteraction Agent’, which
areintroduced in our framework.

The basic agent roles—and in this case agents—in a mediation-
based integration system are shown in Figure 1. They are:

User agent (UA). This is the entry point of a request. Users
interact with this type of agent to formulate queries and view final
resultsor any errorsthat occurred. An UA knows how to translate an
interface query into an ACL message and send it, and how to display
an ACL message reply received.

Mediator agent (MA). Thistype of agent has mediating capabil -
ities. It acceptsatask, decomposesit to sub-tasks as necessary, sends
them to other agents and then integrates the results before returning
them. Various planning techniques could be used here.

Resource agent (RA).This type of agent has al the required
knowledge to access a specific information resource. It knows how
totrandatearequest it receivesin an ACL to the appropriateresource
query language and how to construct the resource’s answer back to
aproper ACL message—to send back to the requesting agent.

Ontology agent (OA). Thistypeof agent can contain oneor more
ontologies that the system uses. It can be used as a common vocab-
ulary of the system so that other agents can refer to it and resolve
potential semantic heterogeneities. An OA can usually communicate
with any domain-dependent agent.

These are the agents dependent on the application domain. The
shaded components are system agents responsible for the proposed
framework’s functionality. It comprises:

Explanation and interaction agent (EIA).Thistype of agent has
the important role of providing the user with either a global explan-
ation or an interaction—the DP with the available choices together
with argumentation on the benefits of each—to allow the user to
decide. Uponinitiaization, MAswill notify EIA of their DPs, which
the latter usesto build atable containing the MAs, their DPs and the
possible choices for each of these decisions. During execution it
also receives partial execution traces from MAs, so that intheend a
compl ete execution trace can be compiled, to be used in the global
explanation (see Adjustable autonomy protocol section).

Comparison agent (CA). Thistype of agent accepts requests for
comparisons between different result sets. It isresponsiblefor estim-
ating criticality of decisions—and/or of agents', based on all their

available DPs—and storing the results. It also informs other agents
of these results upon request. The criticality will be expressed in an
easily understandable—by the use—format, like a percentage.

Other system components/agents, that for the sake of simplicity
arenot illustrated, deal with agent brokering, life-cycle and message
transport services—Directory Facilitator (DF), Agent Management
System and Message Transport System, respectively, according to
the FIPA specifications.

Other multi-agent integration systems may use different names
for agents, e.g. planning agents, or task composition agents instead
of mediator agents, but their functionality is similar to the one we
describe here.

Prototype: gene-expression case study

We have implemented and tested a prototype system to demonstrate
theideas mentioned above. It isamulti-agent bioinformatics system
integrating gene expression resources for mouse. It comprises GXD
(Ringwald et al., 2001), amouse gene expression database, EMAGE
(Davidson et al., 1997), amouse gene expressi on database with map-
pings to a mouse embryo 3D model and BLAST (Altschul et al.,
1990) at NCBI (http://www.nchi.nlm.nih.gov/BLAST), an Internet
sequence matching tool.

Previoudly, we examined the functionality of each type of agent
available to the system. In this section, we will discuss the specific
application-dependent Resource and Mediator agents used.

Resour ce agents

BLASTAgent. Convertsarequest from SLO—from the content of
an ACL message—to an appropriate format understood by BLAST
and connects(to BLAST) viaasocket connection. It then convertsthe
reply to SLO again and sends an ACL message back to the requesting
agent. BLASTAgent accepts aprotein or DNA sequence and returns
the genes that match the given sequence. Other parameters include
the sequence data source to be used, the organism and the scoring
matrix.

EMAGEAgent. Converts the SLO content of an ACL message
to the appropriate CORBA request(s)—supported by EMAGE—
and then re-converts the reply to SLO, which is then sent back to
the requester. EMAGEAgent requires genes and a developmental
stage as inputs and returns the tissues that the given genes are
expressed in.

GXDAgent. Convertsthe SLO content of an ACL messageto the
appropriate SQL statements and then uses them to query the GXD
database; it then converts the result sets back to SLO and returns
themto therequester. Similar to EMAGEAgent, GXDAgent requires
genesand adevelopmental stage asinputsand returnsthetissuesthat
the given genes are expressed in.

Mediator agents

GenesAgerits responsible for dealing with requests that search for
genes. It mediates on what resources can be used (BLASTAgent)
and it knows what kind of input they require, aswell aswhat kind of
decisions have to be resolved for that request. It accepts requests to
acquire gene names, given a sequence (protein or DNA). Itisin this
agent where the decisions on which parameters, a BLAST request
for example, are selected. Currently, we focus on the scoring matrix
parameter.
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TissuesAgeris responsible for dealing with requests that search
for tissues in a particular developmental stage. It mediates on what
resources can be used (EMAGEAgent, GXDAgent) and it knows
what kind of input they require, as well as what kind of decisions
have to be resolved for that particular request. The decision that we
focuson thisagent isdatasource selection; currently, ‘ TissuesAgent’
can acquiretissues, given genenames, from two gene expression data
sources (EMAGE and GXD).

BioMouseAgenits responsible for high-level requests. The *User
Agent’ would usually contact this agent for mouse gene-expression
related queries. It mediates what RA and/or MA (GenesAgent, Tis-
suesAgent) can be used to tackle a particular request; it knows the
kind of input they require, as well aswhat kind of decisions have to
beresolved for that request. An example of ahigh-level query, which
makes use of other MAS, will be presented later in the Experiments
section.

Our prototype makes use of three ontologies. At the lower
level, fi pa-agent-managenent is a FIPA specified onto-
logy that provides semantics for al necessary low-level sys-
tem functions, such as brokering and life-cycle services. We
defined adj ust abl e- aut onony- ont ol ogy, which specifies
the appropriate ontological objects and functions to understand the
Adjustable Autonomy Protocol (AAP) that constitutesthe skel eton of
the framework presented. Finally, we specified a simple application
domain ontology, called bi onbuse- ont ol ogy, which semantic-
ally definesthe conceptsusedin the prototype. Thisdomain ontology
was used for simplicity instead of other more complete ontologies,
like Gene Ontology (GO) (Ashburner et al., 2000).

Configuration

Inour integration systemthe user isallowed to customizethe system’s
behaviour according to his/her needs. She/he can decideif aDPisto
be resolved automatically by the system or if she/he wants to make
the choice (interaction mode), or when a comparison is required.

The user is able to configure the above agents so asto achieve the
functionality needed. More specifically she/he can specify two flags
for each DP known by the system to indicate execution with respect
to interaction and comparison modes, respectively.

To automate whether or not adecision isexecuted interactively, we
include another configuration parameter, called criticality threshold.
It is expressed in the same format as criticality, i.e. as a percent-
age, which then indicates that a DP is to immediately initiate an
interaction—overriding the interaction flag—, if its criticality is
above the threshold.

To further automate a comparison requirement for a decision,
we include another configuration parameter, called comparison
threshold. It is expressed as a simple number that indicates the least
number of comparisons we want on a particular DP. If the compar-
isons on a DP are less than the threshold, it will attempt to run in
comparison mode, irrespective of whether or not the comparison
flag of the decision is set (it might still not compare in case the
agent/system is overloaded).

The configurable flags and threshol ds that we have mentioned can
be configured at several levels of granularity:

e global: for al DPs;

e decision type: applies to al the DPs of a specific type
encountered during execution of aquery;

o MA appliesto all the DPsreached during execution of the query
that reside on a specific MA—that would be especially useful
when the system makes use of MAs of other organizations;

e acombination of the above two: appliesto all DPs of a specific
type on a specific MA.

The configuration is delegated to the MAs by using a user-defined
dot in the ACL message, according to the FIPA specifications,
which does not interfere with agents that do not understand the
adj ust abl e- aut onony- ont ol ogy.

ADJUSTABLE AUTONOMY PROTOCOL

To achieve the kind of functionality referred to in the Introduction
section, our agents have to follow certain protocols. On the lower
level, for purposes of agent communication, the FIPA interaction
protocols are sufficient—like FIPA-Request, or FIPA-Query.

While this could be sufficient for requesting a task, it cannot
specify theoverall cooperation needed to achieve user intervention—
adjustable autonomy—and/or how an explanation is constructed for
planning and decision-making. For that purpose we developed a
higher-level protocol, one that coordinates interactions among the
MAs, the RAs, the EIA and the CA. We call this protocol AAP.

The AAPcan berequested froman MA. Theprotocol isillustrated,
using AUML (Odell et al., 2001), in Figure 2. The diagram showsthe
interactions between agents (horizontal arrows specifying direction)
during execution of the protocol. The vertical dashed lines represent
time. The numbered boxes in the diagram represent sub-protocols,
initiated according to user configuration and system planning. The
protocol can be described in stages:

(1) Thefirst MA, root MA, receives arequest/query—which con-
tainsalabel that uniquely identifiesthe query—and constructs
an execution plan. It then checks the user preferences to see
if the plan contains DPs, and for each DP it checks whether:

e the user wants to take control of it, or its criticality
exceeds the criticality threshold, in which caseit sendsa
request to the EIA (1)—see stage 3, or

o the user wishes to measure its criticality, or the number
of comparisons that were made on it are less than the
comparison threshold, in which case a number of pos-
sible choices follow are executed and when the results
return they are forwarded to the CA (6) to measure their
differentiation/similarity (the greater the similarity inthe
results, the less critical the decision is).

When the plan is finalized, the MA notifies the EIA of the
(partial) plan (3)—including the unique query identifier as a
reference—andthe MA executesit. Theplan containsrequests
to RAs (4) and/or other MAs (5).

(2) Non-root MAsalso act according to the previous stage. At the
bottom of the MAs-tree, the leaf MAs, send requests only to
RAs (4).

(3) Upon request for user interaction, the EIA forwardsthe DPto
theUA (2), together with commentson the possibleeffectsthat
thisdecision could have ontheresult and, if available, thecrit-
icality of the decision. The user makes his’her choice through
the UA and the latter informs the EIA of the decision taken,
which in turn informs the MA.
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Fig. 2. Adjustable Autonomy Protocol expressed in AUML.
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Fig. 3. AUML collaboration diagram showing agent interactions.

(4) Answersareintegrated—when appropriate—in MAsand sent
back to therequesters. Then, theroot MA receivesthe answers
to its requests and constructs a final answer.

(5) Inthelast stage, the root MA sends the answer to the initial
requester.

Each UA query islabelled with a unique identifier so that we can
|ater refer to it. Thus, after the user—viathe UA—views the results
she/he can ask for a globa explanation from the EIA by providing
this unique query identifier. The EIA would by now be on par with
the protocol, have a complete trace assembled ready for use in the
construction of the global explanation.*

To better understand the functionality of the protocol, we
describe what happens during initialization and execution of the
system.

Initialization and execution

During start-up, all agents that offer services (such as RA, MA,
EIA and CA) have to register these services with the DF. When a
service is needed, agents have only to ask the DF to retrieve a set
of agents able to cope. In addition, all MAs that deal with critical
decisions have to register with the EIA. The registration message
contains the type of decision and the possible choices, and com-
ments (benefits/drawbacks) on each choice. An UA will request the
possiblecritical decisionsfromtheEIA, sothat it can present themto
the user.

InFigure3weusean AUML collaboration diagram that illustrates
the interactions of a sample execution from our prototype system,

1Global explanation could simply be a beautified version of the trace
or aternatively a natural language explanation using the reconstruction
approach (Wick and Thompson, 1992).

Interaction Agent

according to AAP. In order to demonstrate the use of all agents, each
of the MAs operatesin adifferent mode. ‘ BioMouseAgent’ operates
in automatic mode. It decomposes the initia request received (1:)
into two sub-tasks—we assume that the second sub-task requires
information from the first and thus, they cannot run concurrently.
It makes all the necessary decisions automatically and notifies EIA
of the partial plan (2.1:). It simultaneously requests ‘ GenesAgent’ to
deal with oneof the sub-tasks (2.2:). Thelatter operatesininteraction
mode, so it first requests user intervention from EIA (4:)—which
in turn requests the UserAgent (5:)—before finalizing its plan and
notifying EIA (8.1)). Finaly, after ‘BioMouseAgent’ obtains the
results from the first sub-task (13:) it requests the second sub-task
from ‘TissuesAgent’ (14:), which operates in comparative mode.
That meansit will have to execute more than one decision choice—
we assume that the choiceis between two data sources, EMAGE and
GXD. By default it also operates automatically so it notifiesthe EIA
of the partial plan (15.1), and follows it up with a request for each
choice, oneto ‘EMAGEAgent’ (15.2) and the other to ‘ GXDAgent’
(15.3). After receiving the results (19.1: and 19.2;), ‘ TissuesAgent’
will send them for comparison (20.1:), while also sending a reply
back to ‘BioMouseAgent’ (20.2:). Thefinal result isthen integrated
inthe ‘BioMouseAgent’ and sent back to the UserAgent (22:). Note
that the requests to the RAs are not part of the AAP but areincluded
to provide a complete example.

DECISION CRITICALITY

Criticality of a DP is calculated by comparing the results received
after execution of two or more possible choices. To measurethesim-
ilarity of two sets, we take their intersection (common elements) and
divide the cardinality of the resulting set by the average cardinality
of the two sets (other criticality measurements may be explored); for
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sets A; and A, their similarity s12 is

o= [A1NAz|
2= Tai4a —
2

A1 Ag
|[A1] + |A2]

@

In the case of more than two sets, we need to make all possible
comparisonsin pairs. A result of k sets consistsof n = k(k — 1)/2
pairs, and thus will make that many comparisons. Then, the mean
similarity of k setsiscalculated by:

1 k=1 k
Sk = . Z Z Sij ¥
i=1 j=i+1

Now we al so have the mean differentiation of the k sets, dy = 1 —
sx. Finally, we can expressboth, similarity and differentiation means,
as percentages with Sy, = 5; - 100 and Dy, = d; - 100, respectively.

Asan example, consider thethreesets, A1 = {a, b, c}, A2 = {a, b}
and Az = {a, b, d}. First, wefind al possible pairs:

k(k—1) 33B-1
n = = =

3
2 2
Then we apply Equation (2) and we get:
_ 1
k= ;(512-1-513-!-523)
_1<2~|A10A2| 2-]A1N As| 2-|A20A3|>
~ o\ |Ag] + |Ag] |[A1] + |As] |A2| + |As]
1/2x2 2x2 2x2
== =0.75
(%)

Thus, sets A1, Ap and Az differ by 25% [D; = (1 — 5%) - 100].

Of course, D reflects the differentiation of a DP over only one
query. While thisis useful for analysing the possible fluctuation on
a specific query, wewould also like to have a general differentiation
measurefor aDP over thehistory of all queries. We canthuscalculate
the criticality of adecision d, which is simply the mean:

F—liﬁ ©)
d—hi:1 ’

where £ is the history—number of queries—of that DP.

So far, we measured the criticality of one DP. A query usually
contains more than one such DP. More formally, a query Q can be
said to consist of aset of DPs[Q : (DPy,DPs, ..., DP,)]—each
onewithitsownlocal criticality—that influencesits global (overall)
criticality. Often, a DP depends on another DP that precedes it and
thus depends on the data/criticality of that DP. To specify depen-
dences between DPsweuse ‘' —’, asin: Q : (DP; — DP,), where
DP, needs data acquired after DP; is resolved.

Further analysis of the query result’s criticality relativeto its DPs
criticality could provide important insight on the DPs" influence/
importance during the planning process. Thus, except from local
criticality of DPs, we can identify global criticality, which is based
on theinfluence of the criticality of one DP onto the criticality of its
dependent DP (see next section for a detailed example).

EXPERIMENTS

The framework’s functionality is responsible for the distributed
orchestration of the agents so as to facilitate user interaction with
explanation and criticality calculation for the DPs. All appropriate
information (plans, criticality results, etc.) is stored in a database,
during execution. It requires further tools to data-mine through these
data in order to analyse the DPS' influence on our queries and/or
provide other statistical information concerning the data sources.
We have implemented basic statistical and analysistoolsto analyse
the data acquired for the following experiments.

The experimental results presented here are based on thefollowing
query: ‘Find the mouse tissues that express the genes which match
the given protein sequence’. Thisquery can be decomposed into two
sub-queries or steps:

(a) which mouse genes correspond to the protein sequence given
asinput, and

(b) which mouse tissues express these genes at a particular
developmental stage.

Wetested 44 queries, where theinput of each was a protein sequence
randomly taken from known existing genes. We collected these
sequences from the Swiss-Prot (part of Uniprot) protein sequence
database.

In our integration system we use an online BLAST sequence tool
for sub-query (a). There are many parametersto be considered when
querying BLAST, e.g. sequence database, scoring matrix and gap
costs. Each parameter could constitute another DP during the task
composition process. For this experiment we examined only one,
the scoring matrix, and more specifically we only considered two
matrix choices, BLOSUM62 and PAM70. The criteria on the basis
of which we picked these matrices were that they are not of the same
series, and that their default gap costs are neither identical nor very
different.

For sub-query (b) we use two different gene-expression resources,
GXD and EMAGE. Thus, the decision to be made is, which of the
two databases should be used to acquire the final results.

In each sub-query, either automatically (by the system), or inter-
actively (by the user) one choice would be selected and followed
through to acquire the final results—mouse tissues for this query.
For example, matrix BLOSUM 62 could be used to obtain the mouse
genes and the GXD resource to obtain the mouse tissues. A differ-
ent combination may provide different results, both intermediate and
final. Indeed, comparing theresultswould enable usto calcul ate their
differences and consequently how critical adecisionis.

Our example query can be written as: Q, : (DP; — DPy), where
DP; and DP; arethe DPsfor the scoring matrix and the gene expres-
sion database, respectively, and the arrow specifies dependence, i.e.
an execution ordering of DPs.

The upper panel diagram in Figure 4 provides an overview of the
execution of the sample query. At the bottom we have al possible
result sets for this two-step query. By acquiring both result sets at
a DP and comparing them, we can calculate the local criticality for
that DP. At step one, we use BLAST to get the genes that correspond
to the input protein sequences. Using a different matrix resultsin a
different gene set. Comparing thegene setsfor each query and getting
the mean of their differentiation gives us the local criticality of that
decision, 14%for our example. Weonly comparevery closematches,
i.e., resultswherethe BLAST expect valueis <1 x 10710 (please see
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Fig. 4. Upper panel: Overview of experiment’s DPs and criticalities; lower left panel: (Step 1) differentiation between BLOSUM62 and PAM70. (Step
2) Differentiation between same matrix and different data sources; lower right panel: (Step 1) differentiation between BLOSUMG62 and PAM70. (Step 2)

Differentiation between different matrices and same data sources.

http://www.ncbi.nlm.nih.gov/blast/blast_FAQs.shtml#Expect for an
explanation). Both lower panel diagrams in Figure 4 illustrate the
differentiation (sorted in ascending order) for each query between
BLOSUMG62 and PAM 70 matrices with the norma lines; note that
although the mean criticality is 14% the standard deviation is very
high. In brief, for some of the given protein sequences (represented
by the queries along the x-axis) it mattered which matrix was used,
while for othersit did not. One can conclude that given in isolation,
this DP should be given some attention.

At step two, we use both the gene sets that we got from the mat-
rix DP and continue execution for each one. For the mouse genes
returned from the BLOSUM®62 choice, we acquired results from
both the GXD and the EMAGE databases and then compared the
results—BLOSUM62-GXD (cmp) BLOSUM62-EMAGE (see nor-
mal dashed line in the lower |eft panel diagram). The average of
the differentiations yields a 76.6% criticality. Similarly, we com-
pared the tissue results acquired from GXD and EMAGE using the
PAM70 genes result set as an input—PAM70-GXD (cmp) PAM70-
EMAGE (see the bold dashed line in the diagram)—which yielded
75.8% when we cal culated the mean of the differentiations.

Criticality in both cases was high but comparing the two dashed
lines, we observed only minor differences between them, no matter
how high the matrix criticality was. The results suggest that even
though the local criticality of the matrix choice varies, i.e. result sets
can be quite different at times; when used to further query for the
mouse tissues, the impact of this difference is less significant, i.e.
its global criticality? (with respect to the given query) is relatively
low. Hence, even though DP, dependson theresultsof DP;, thelocal
criticality of thelatter doesnot influencethefinal resultssignificantly.
This suggests that, for the given example, most of the genesthat are
expressed in mouse were found by both BLOSUM62 and PAM70.

Another approach to analyse the results of this two-step query
would be to make comparisons between the first and the third tissue

2 Notethat theglobal criticality, GC, isnot thedifference of thetwo alternative
criticalitiesat the second step, but rather themean of theglobal differentiations
of the second step. The global differentiation of DP; is calculated as the
standard deviation of the local differentiations of DP, that resulted from the
gene sets we got from step one. A detailed explanation of global criticality
calculation is not included due to space limitations.
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setsand between the second and thefourth ones, That would meanwe
could use the partial result sets of the matrix DP (gene sets acquired
from different scoring matrices) to the same gene-expression data-
base; thus, in the second step there is no DP and no choice selection,
as the partial result sets are passed over to the same choice: GXD
to get the first and the third tissue sets and EMAGE to get the
other two.

We can see therelevant calculationsin the upper panel diagram of
Figure4; andin thelower right panel diagram the detailed differenti-
ations for each query. The percentages calculated in the second step
(8.3 and 7.8%) do not represent the criticality of any DP, rather the
difference between two result sets. This should be obvious, as there
isno DPinthe second step; thetwo results setsacquired from thefirst
step are both passed to GXD, and then again to EMAGE. Thus, the
two bottom percentages in the diagram cannot be used to calculate
the global criticality, asthelatter ismeant to provide the deviationin
criticality that the partial results of a DP have from the next depend-
ent DP (detailed explanation of how GC is calculated is not included
due to space limitations).

What these calculations really show, is the influence that a par-
ticular gene-expression database has on the decision criticality of
the matrix DP. The difference that matrix DP result sets introduced
decreases when passing them to agene-expression database; 8.3 and
7.8%, respectively. This shows that only a very small amount of
significant genes were matched by one matrix and not by the other—
a conclusion which is in agreement with our analysis made in the
previous section.

To summarize, the first approach shows the influence that the
choices of the first step can have on the DP criticality of the second
step, whilethe second approach provides an estimate of theinfluence
that a specific choice (and not choices) at the second step can have
on the DP criticality of the first step.

RELATED WORK

The focus of mixed-initiative systems (Ferguson et al., 1996;
Ferguson and Allen, 1998) is cooperation between humans and
computer systems. The primary concern of these systemsisthe dis-
course/dialogue model (Allen, 1999; Horvitz, 1999; Guinn, 1999);
the system engages the user in a dialogue and ‘discusses’ the
planning process. They provide enhanced functionality as far as
collaboration—between users and systems—is concerned, but col-
laboration isin most casesobligatory. Our framework allowsthe user
to take control of decisions, if she/he needs to but can also execute
independent of the user.

Decision Support Systems (DSSs) (Sprague and Watson, 1986)
am to help users make certain decisions. They are typically used
in abstract problems such as high-level management decisions
(Adelman, 1992). At first glance one might notice similarities to our
framework but there are fundamental differences. A DSS supports
the user in making a decision. The user queries the system to obtain
help and then he/she has to make the choice. Our framework com-
prisesareasoning modul e ableto replicate human behaviour—expert
system—while extending it by providing explanation of and user
control over DPs. The system queries the user on DPs—according
to preferences—and the latter may or may not make the choices.

Although inrecent yearsthework on agents’ adjustable autonomy
(American Association for Artificia Intelligence, 1999) is increas-
ing, it is still in the very early stages. As the need to increase users

trust of agentsbecomesmoreimportant so does adj ustabl e autonomy.
However, work is focused on whether to transfer control to the user
and when rather than how (Scerri et al., 2002). |dentification of the
DPs and calculation of their criticality provide us with the know-
ledge of whether to transfer control and when, and thus we can focus
on how.

Workflow composition systems, such as Geodise (Chen et al.,
2003), use domain knowledge to guide the user during the composi-
tion process. In contrast to our framework, thisis not automated and
the user has to manually construct the workflow with the help of the
system.

Finally, our approach, in addition to domain knowledge uses an
independent measure, criticality, which is based on the actual data of
theresourcesinvolvedinthecomposition. Thisdata-centric approach
of calculating criticality differentiates our system substantially from
all the other aforementioned approaches.

EVALUATION

Since its conception, this project has benefited from the guidance
of expert bicinformaticians and biologists, feedback from whom
has helped to refine the data-centric framework and requirements
introduced in the previous sections. Further sources used to revise
the system include feedback received during workshops and confer-
ences, aswell asfrom theimplementation and testing of the theoretic
framework and the agent communication protocol in the prototype.
The latter demonstrated that the communication and interaction
between the agents worked as was expected.

In order to further assess the quality of our research and the use-
fulness of thelatter to bioinformaticians, we also decided to conduct
an evaluation. It isimportant to point out here that since the imple-
mentation of our framework was but a prototype to demonstrate the
work presented in this thesis rather than a fully functional software
tool, the aforesaid evaluation has not been aimed at the implementa-
tion itself—as is usually the case with more formal appraisals—but
rather at the concepts behind the framework and the usefulness of
the functionality provided.

To obtain opinions of the experts, we opted for a combination of
an informal presentation/interview and a questionnaire. During the
presentation stage of the process we explained the motivation and
rational e behind thiswork and familiarized theintervieweeswith the
functionality provided by our framework—including the criticality
calculation and analysis and choice delegation and explanation. We
demonstrated this functionality with the results of the experiments,
also presented in this work. Following the preliminary discussion,
we presented the users with a questionnaire comprising statements,
each related to some aspect of the ideas presented in this paper. For
each statement, the users had to rate their agreement using a scale
from‘1’ meaning‘strongly disagree’ to‘5’ meaning‘strongly agree’.
We are not going to describe the questionnaire in detail, but rather
focus on three very important statementsthat the users had to rate:

S1. Showingthecriticality of aDPtotheexpert user helpshim/her
to decide whether he/she wants to intervene to the decision-
making and when not.

S2. Criticdity thresholds, set by expert users, should be used to
determine when to delegate decision-making to the user.

S3. Theexperiment demonstrated that the matrix choice between
BLOSUMG62 and PAM70, in thefirst step, does not influence

3162

2102 ‘2 AInc uo 159nb Aq /610°S[eulno[pioxo soireuliouiolg//:dny woiyj papeojumoq


http://bioinformatics.oxfordjournals.org/

Criticality-based framework for task composition

thecriticality of the second step. On thisevidence, itissafeto
automate the matrix choice (first step) without substantially
affecting the final results.

The questionnaire was completed by five expert bioinformaticians
and biologists, and the average of their appraisal wasthat they agree
with all of the above statements (rated 4 and above). The only objec-
tion raised was that words like ‘high’ or ‘very low’ would possibly
be more meaningful to users and, thus, be a better way of indicat-
ing a score than percentages. However, it is our belief that attaching
specific adjective-labels to specific percentages would obscure the
fact that one single percentage is not necessarily equally critical, for
every query. Criticality, and by implication, the adjective that can
successfully replace a percentage varies, depending on the experi-
ment conducted. All inall, theusers endorsement of statements that
are central to the evaluation of the framework shows that the | atter is
not only well understood, but also that it will provide agood practical
solution.

CONCLUSIONS

Bioinformaticsintegration systems need facilitiesthat can help users
to better understand and control the consequences of certain choices
made during task composition. We have introduced the concepts of
DPs and their local and global criticality, as well as a multi-agent
framework that facilitates the realization of these concepts. A con-
crete bioinformati cs exampl ewas used to show how certain decisions
may hot be critical in the context of more complex tasks. The work
was carried out using aprototype multi-agent system for mouse gene
expression research, developed at the MRC Human Genetics Unitin
Edinburgh.
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